Gibberellin

Last updated

Gibberellins (GAs) are plant hormones that regulate various developmental processes, including stem elongation, germination, dormancy, flowering, flower development, and leaf and fruit senescence. [1] They are one of the longest-known classes of plant hormone. It is thought that the selective breeding (albeit unconscious) of crop strains that were deficient in GA synthesis was one of the key drivers of the "green revolution" in the 1960s, [2] a revolution that is credited to have saved over a billion lives worldwide. [3]

Contents

Chemistry

All known gibberellins are diterpenoid acids synthesized by the terpenoid pathway in plastids and then modified in the endoplasmic reticulum and cytosol until they reach their biologically active form. [4] All are derived via the ent-gibberellane skeleton, but are synthesised via ent-kaurene. The gibberellins are named GA1 through GAn in order of discovery. [5] Gibberellic acid, which was the first gibberellin to be structurally characterized, is GA3. [6]

As of 2020, [5] there are 136 GAs identified from plants, fungi, and bacteria. [1] [6] [5]

Gibberellins are tetracyclic diterpene acids. There are two classes, with either 19 or 20 carbons. The 19-carbon gibberellins are generally the biologically active forms. They have lost carbon 20 and, in place, possess a five-member lactone bridge that links carbons 4 and 10. Hydroxylation also has a great effect on its biological activity. In general, the most biologically active compounds are dihydroxylated gibberellins, with hydroxyl groups on both carbons 3 and 13. Gibberellic acid is a 19-carbon dihydroxylated gibberellin. [7]

Bioactive GAs

The bioactive Gibberellins are GA1, GA3, GA4, and GA7. [8] There are three common structural traits between these GAs: 1) hydroxyl group on C-3β, 2) a carboxyl group on carbon 6, and 3) a lactone between carbons 4 and 10. [8]

The 3β-hydroxyl group can be exchanged for other functional groups at C-2 and/or C-3 positions. [8] GA5 and GA6 are examples of bioactive GAs without a hydroxyl group on C-3β. [8] The presence of GA1 in various plant species suggests that it is a common bioactive GA. [9]

Biological function

1. Shows a plant lacking gibberellins, and which and has an internode length of "0" as well as being a dwarf plant. 2. Shows an average plant with a moderate amount of gibberellins, and an average internode length. 3. Shows a plant with a large amount of gibberellins and so has a much longer internode length, because gibberellins promote cell division in the stem. The effect of Gibberellins.svg
1. Shows a plant lacking gibberellins, and which and has an internode length of "0" as well as being a dwarf plant. 2. Shows an average plant with a moderate amount of gibberellins, and an average internode length. 3. Shows a plant with a large amount of gibberellins and so has a much longer internode length, because gibberellins promote cell division in the stem.

Gibberellins are involved in the natural process of breaking dormancy and other aspects of germination. Before the photosynthetic apparatus develops sufficiently in the early stages of germination, the seed reserves of starch nourish the seedling. Usually in germination, the breakdown of starch to glucose in the endosperm begins shortly after the seed is exposed to water. [10] Gibberellins in the seed embryo are believed to signal starch hydrolysis through inducing the synthesis of the enzyme α-amylase in the aleurone cells. In the model for gibberellin-induced production of α-amylase, it is demonstrated that gibberellins from the scutellum diffuse to the aleurone cells, where they stimulate the secretion α-amylase. [4] α-Amylase then hydrolyses starch (abundant in many seeds), into glucose that can be used to produce energy for the seed embryo. Studies of this process have indicated gibberellins cause higher levels of transcription of the gene coding for the α-amylase enzyme, to stimulate the synthesis of α-amylase. [7]

Exposition to cold temperatures increases the production of Gibberellins. They stimulate cell elongation, breaking and budding, and seedless fruits. Gibberellins cause also seed germination by breaking the seed's dormancy and acting as a chemical messenger. Its hormone binds to a receptor, and calcium activates the protein calmodulin, and the complex binds to DNA, producing an enzyme to stimulate growth in the embryo.

Metabolism

Biosynthesis

Gibberellins are usually synthesized from the methylerythritol phosphate (MEP) pathway in higher plants. [11] In this pathway, bioactive GA is produced from trans-geranylgeranyl diphosphate (GGDP), with the participation of three classes of enzymes: terpene syntheses (TPSs), cytochrome P450 monooxygenases (P450s), and 2-oxoglutarate–dependent dioxygenases (2ODDs). [11] [8] The MEP pathway follows eight steps: [8]

  1. GGDP is converted to ent-copalyl diphosphate (ent-CDP) by ent-copalyl diphosphate synthase (CPS)
  2. ent-CDP is converted to ent-kaurene by ent-kaurene synthase (KS)
  3. ent-kaurene is converted to ent-kaurenol by ent-kaurene oxidase (KO)
  4. ent-kaurenol is converted to ent-kaurenal by KO
  5. ent-kaurenal is converted to ent-kaurenoic acid by KO
  6. ent-kaurenoic acid is converted to ent-7a-hydroxykaurenoic acid by ent-kaurenoic acid oxidase (KAO)
  7. ent-7a-hydroxykaurenoic acid is converted to GA12-aldehyde by KAO
  8. GA12-aldehyde is converted to GA12 by KAO. GA12 is processed to the bioactive GA4 by oxidations on C-20 and C-3, which is accomplished by 2 soluble ODDs: GA 20-oxidase and GA 3-oxidase.

One or two genes encode the enzymes responsible for the first steps of GA biosynthesis in Arabidopsis and rice. [8] The null alleles of the genes encoding CPS, KS, and KO result in GA-deficient Arabidopsis dwarves. [12] Multigene families encode the 2ODDs that catalyze the formation of GA12 to bioactive GA4. [8]

AtGA3ox1 and AtGA3ox2, two of the four genes that encode GA3ox in Arabidopsis, affect vegetative development. [13] Environmental stimuli regulate AtGA3ox1 and AtGA3ox2 activity during seed germination. [14] [15] In Arabidopsis, GA20ox overexpression leads to an increase in GA concentration. [16] [17]

Sites of biosynthesis

Most bioactive Gibberellins are located in actively growing organs on plants. [11] Both GA20ox and GA3ox genes (genes coding for GA 20-oxidase and GA 3-oxidase) and the SLENDER1 gene (a GA signal transduction gene) are found in growing organs on rice, which suggests bioactive GA synthesis occurs at their site of action in growing organs in plants. [18] During flower development, the tapetum of anthers is believed to be a primary site of GA biosynthesis. [18] [19]

Differences between biosynthesis in fungi and lower plants

The flower Arabidopsis and the fungus Gibberella fujikuroi possess different GA pathways and enzymes. [8] P450s in fungi perform functions analogous to the functions of KAOs in plants. [20] The function of CPS and KS in plants is performed by a single enzyme in fungi (CPS/KS). [21] [22] [23] In plants the Gibberellin biosynthesis genes are found randomly on multiple chromosomes, but in fungi are found on one chromosome . [24] [25]

Plants produce low amount of Gibberellic Acid, therefore is produced for industrial purposes by microorganisms. Industrially GA3 can be produced by submerged fermentation, but this process presents low yield with high production costs and hence higher sale value, nevertheless other alternative process to reduce costs of its production is solid-state fermentation (SSF) that allows the use of agro-industrial residues. [26]

Catabolism

Several mechanisms for inactivating Giberellins have been identified. 2β-hydroxylation deactivates them, and is catalyzed by GA2-oxidases (GA2oxs). [11] Some GA2oxs use 19-carbon Gibberellins as substrates, while other use C20-GAs. [27] [28] Cytochrome P450 mono-oxygenase, encoded by elongated uppermost internode (eui), converts Gibberellins into 16α,17-epoxides. [29] Rice eui mutants amass bioactive Gibberellins at high levels, which suggests cytochrome P450 mono-oxygenase is a main enzyme responsible for deactivation GA in rice. [29] The Gamt1 and gamt2 genes encode enzymes that methylate the C-6 carboxyl group of GAs. [30] In a gamt1 and gamt2 mutant, concentrations of GA in developing seeds is increased. [30]

Homeostasis

Feedback and feedforward regulation maintains the levels of bioactive Gibberellins in plants. [31] [32] Levels of AtGA20ox1 and AtGA3ox1 expression are increased in a Gibberellin deficient environment, and decreased after the addition of bioactive GAs, [14] [33] [34] [35] [36] Conversely, expression of the Gibberellin deactivation genes AtGA2ox1 and AtGA2ox2 is increased with addition of Gibberellins. [27]

Regulation

Regulation by other hormones

The auxin indole-3-acetic acid (IAA) regulates concentration of GA1 in elongating internodes in peas. [37] Removal of IAA by removal of the apical bud, the auxin source, reduces the concentration of GA1, and reintroduction of IAA reverses these effects to increase the concentration of GA1. [37] This has also been observed in tobacco plants. [38] Auxin increases GA 3-oxidation and decreases GA 2-oxidation in barley. [39] Auxin also regulates GA biosynthesis during fruit development in peas. [40] These discoveries in different plant species suggest the auxin regulation of GA metabolism may be a universal mechanism.

Ethylene decreases the concentration of bioactive GAs. [41]

Regulation by environmental factors

Recent evidence suggests fluctuations in GA concentration influence light-regulated seed germination, photomorphogenesis during de-etiolation, and photoperiod regulation of stem elongation and flowering. [8] Microarray analysis showed about one fourth cold-responsive genes are related to GA-regulated genes, which suggests GA influences response to cold temperatures. [15] Plants reduce growth rate when exposed to stress. A relationship between GA levels and amount of stress experienced has been suggested in barley. [42]

Role in seed development

Bioactive GAs and abscisic acid (ABA) levels have an inverse relationship and regulate seed development and germination. [43] [44] Levels of FUS3, an Arabidopsis transcription factor, are upregulated by ABA and downregulated by Giberellins, which suggests that there is a regulation loop that establishes the balance of Gibberellins and Abscisic Acid. [45]

In the practice, this means that farmers can alter this balance to make all fruits mature a little later, at a same time, or 'glue' the fruit in the trees until the harvest day (because ABA participates in the maturation of the fruits, and many crops mature and drop a few fruits a day for several weeks, that is undesirable for markets).

Signalling mechanism

Receptor

In the early 1990s, there were several lines of evidence that suggested the existence of a GA receptor in oat seeds located at the plasma membrane. However, despite intensive research, to date, no membrane-bound GA receptor has been isolated. This, along with the discovery of a soluble receptor, GA insensitive dwarf 1 (GID1) has led many to doubt that a membrane-bound receptor exists. [1]

GA-GID1-DELLA signal pathway: In the absence of GA, DELLA proteins bind to and inhibit transcription factors (TFs) and prefoldins (PFDs). When GA is present, GID1 triggers the degradation of DELLAs and releases the TFs and PFDs. GA signal cascade.png
GA-GID1-DELLA signal pathway: In the absence of GA, DELLA proteins bind to and inhibit transcription factors (TFs) and prefoldins (PFDs). When GA is present, GID1 triggers the degradation of DELLAs and releases the TFs and PFDs.

GID1 was first identified in rice [46] and in Arabidopsis there are three orthologs of GID1, AtGID1a, b, and c. [1] GID1s have a high affinity for bioactive GAs. [46] GA binds to a specific binding pocket on GID1; the C3-hydroxyl on GA makes contact with tyrosine-31 in the GID1 binding pocket. [47] [48] GA binding to GID1 causes changes in GID1 structure, causing a 'lid' on GID1 to cover the GA binding pocket. The movement of this lid results in the exposure of a surface which enables the binding of GID1 to DELLA proteins. [47] [48]

DELLA proteins: Repression of a repressor

DELLA proteins (such as SLR1 in rice or GAI and RGA in Arabidopsis) are repressors of plant development, characterized by the presence of a DELLA motif (aspartate-glutamate-leucine-leucine-alanine or D-E-L-L-A in the single letter amino acid code). [49]

DELLAs inhibit seed germination, seed growth, flowering and GA reverses these effects. [50] When Gibberellins bind to the GID1 receptor, it enhances the interaction between GID1 and DELLA proteins, forming a GA-GID1-DELLA complex. In that complex it is thought that the structure of DELLA proteins experience changes, enabling their binding to F-box proteins for their degradation. [51] [49] [52] F-box proteins (SLY1 in Arabidopsis or GID2 in rice) catalyse the addition of ubiquitin to their targets. [51] Adding ubiquitin to DELLA proteins promotes their degradation via the 26S-proteosome. [49] This releases cells from DELLAs repressive effects.

Targets of DELLA proteins

Transcription factors

The first targets of DELLA proteins identified were Phytochrome Interacting Factors (PIFs). PIFs are transcription factors that negatively regulate light signalling and are strong promoters of elongation growth. In the presence of GA, DELLAs are degraded and this then allows PIFs to promote elongation. [53] It was later found that DELLAs repress a large number of other transcription factors, among which are positive regulators of auxin, brassinosteroid and ethylene signalling. [54] [55] DELLAs can repress transcription factors either by stopping their binding to DNA or by promoting their degradation. [53]

Prefoldins and microtubule assembly

In addition to repressing transcription factors, DELLAs also bind to prefoldins (PFDs). PFDs are molecular chaperones (they assist in the folding of other proteins) that work in the cytosol, but when DELLAs bind to them are restricted to the nucleus. An important function of PFDs is to assist in the folding of β-tubulin, a vital component of the cytoskeleton in the form of microtubules. As such, in the absence of Gibberellins (high level of DELLA proteins), PFDs reduce its activity, leading to a lower cellular pool of β-tubulin. When GA is present the DELLAs are degraded, PFDs can move to the cytosol and assist in the folding of β-tubulin. As such, GA allows for re-organisation of the cytoskeleton, and the elongation of cells. [56]

Microtubules are also required for the trafficking of membrane vesicles, that is needed for the correct positioning of several hormone transporters. One of the most well characterized hormone transporters are PIN proteins, which are responsible for the movement of the hormone auxin between cells. In the absence of Gibberellins, DELLA proteins reduce the levels of microtubules and thereby inhibit membrane vesicle trafficking. This reduces the level of PIN proteins at the cell membrane, and the level of auxin in the cell. GA reverses this process and allows for PIN protein trafficking to the cell membrane to enhance the level of auxin in the cell. [57]

Related Research Articles

<span class="mw-page-title-main">Plant hormone</span> Chemical compounds that regulate plant growth and development

Plant hormones are signal molecules, produced within plants, that occur in extremely low concentrations. Plant hormones control all aspects of plant growth and development, including embryogenesis, the regulation of organ size, pathogen defense, stress tolerance and reproductive development. Unlike in animals each plant cell is capable of producing hormones. Went and Thimann coined the term "phytohormone" and used it in the title of their 1937 book.

<span class="mw-page-title-main">Auxin</span> Plant hormone

Auxins are a class of plant hormones with some morphogen-like characteristics. Auxins play a cardinal role in coordination of many growth and behavioral processes in plant life cycles and are essential for plant body development. The Dutch biologist Frits Warmolt Went first described auxins and their role in plant growth in the 1920s. Kenneth V. Thimann became the first to isolate one of these phytohormones and to determine its chemical structure as indole-3-acetic acid (IAA). Went and Thimann co-authored a book on plant hormones, Phytohormones, in 1937.

<span class="mw-page-title-main">Cytokinin</span> Class of plant hormones promoting cell division

Cytokinins (CK) are a class of plant hormones that promote cell division, or cytokinesis, in plant roots and shoots. They are involved primarily in cell growth and differentiation, but also affect apical dominance, axillary bud growth, and leaf senescence.

<span class="mw-page-title-main">Jasmonate</span> Lipid-based plant hormones

Jasmonate (JA) and its derivatives are lipid-based plant hormones that regulate a wide range of processes in plants, ranging from growth and photosynthesis to reproductive development. In particular, JAs are critical for plant defense against herbivory and plant responses to poor environmental conditions and other kinds of abiotic and biotic challenges. Some JAs can also be released as volatile organic compounds (VOCs) to permit communication between plants in anticipation of mutual dangers.

<span class="mw-page-title-main">Abscisic acid</span> Plant hormone

Abscisic acid is a plant hormone. ABA functions in many plant developmental processes, including seed and bud dormancy, the control of organ size and stomatal closure. It is especially important for plants in the response to environmental stresses, including drought, soil salinity, cold tolerance, freezing tolerance, heat stress and heavy metal ion tolerance.

Shade avoidance is a set of responses that plants display when they are subjected to the shade of another plant. It often includes elongation, altered flowering time, increased apical dominance and altered partitioning of resources. This set of responses is collectively called the shade-avoidance syndrome (SAS).

<span class="mw-page-title-main">Brassinolide</span> Chemical compound

Brassinolide is a plant hormone. The first isolated brassinosteroid, it was discovered when it was shown that pollen from rapeseed could promote stem elongation and cell division. The biologically active component was isolated and named brassinolide.

mir-160 microRNA precursor family

In molecular biology, mir-160 is a microRNA that has been predicted or experimentally confirmed in a range of plant species including Arabidopsis thaliana and Oryza sativa (rice). miR-160 is predicted to bind complementary sites in the untranslated regions of auxin response factor genes to regulate their expression. The hairpin precursors are predicted based on base pairing and cross-species conservation; their extents are not known. In this case, the mature sequence is excised from the 5' arm of the hairpin.

Expansins are a family of closely related nonenzymatic proteins found in the plant cell wall, with important roles in plant cell growth, fruit softening, abscission, emergence of root hairs, pollen tube invasion of the stigma and style, meristem function, and other developmental processes where cell wall loosening occurs. Expansins were originally discovered as mediators of acid growth, which refers to the widespread characteristic of growing plant cell walls to expand faster at low (acidic) pH than at neutral pH. Expansins are thus linked to auxin action. They are also linked to cell enlargement and cell wall changes induced by other plant hormones such as gibberellin, cytokinin, ethylene and brassinosteroids.

In enzymology, an ent-copalyl diphosphate synthase is an enzyme that catalyzes the chemical reaction:

<span class="mw-page-title-main">B3 domain</span> DNA binding domain

The B3 DNA binding domain (DBD) is a highly conserved domain found exclusively in transcription factors combined with other domains. It consists of 100-120 residues, includes seven beta strands and two alpha helices that form a DNA-binding pseudobarrel protein fold ; it interacts with the major groove of DNA.

<span class="mw-page-title-main">Paclobutrazol</span> Chemical compound

Paclobutrazol (PBZ) is the ISO common name for an organic compound that is used as a plant growth retardant and triazole fungicide. It is a known antagonist of the plant hormone gibberellin, acting by inhibiting gibberellin biosynthesis, reducing internodal growth to give stouter stems, increasing root growth, causing early fruitset and increasing seedset in plants such as tomato and pepper. PBZ has also been shown to reduce frost sensitivity in plants. Moreover, paclobutrazol can be used as a chemical approach for reducing the risk of lodging in cereal crops. PBZ has been used by arborists to reduce shoot growth and shown to have additional positive effects on trees and shrubs. Among those are improved resistance to drought stress, darker green leaves, higher resistance against fungi and bacteria, and enhanced development of roots. Cambial growth, as well as shoot growth, has been shown to be reduced in some tree species.

GAI or Gibberellic-Acid Insensitive is a gene in Arabidopsis thaliana which is involved in regulation of plant growth. GAI represses the pathway of gibberellin-sensitive plant growth. It does this by way of its conserved DELLA motif.

Peptide signaling plays a significant role in various aspects of plant growth and development and specific receptors for various peptides have been identified as being membrane-localized receptor kinases, the largest family of receptor-like molecules in plants. Signaling peptides include members of the following protein families.

<span class="mw-page-title-main">Auxin binding protein</span>

In molecular biology, the auxin binding protein family is a family of proteins which bind the plant hormone auxin. They are located in the lumen of the endoplasmic reticulum (ER). The primary structure of these proteins contains an N-terminal hydrophobic leader sequence of 30-40 amino acids, which could represent a signal for translocation of the protein to the ER. The mature protein comprises around 165 residues, and contains a number of potential N-glycosylation sites. In vitro transport studies have demonstrated co-translational glycosylation. Retention within the lumen of the ER correlates with an additional signal located at the C terminus, represented by the sequence Lys-Asp-Glu-Leu, known to be responsible for preventing secretion of proteins from the lumen of the ER in eukaryotic cells.

Ent-kaurene oxidase (EC 1.14.14.86, Formerly EC 1.14.13.78) is an enzyme with systematic name ent-kaur-16-ene,NADPH:oxygen oxidoreductase (hydroxylating). This enzyme catalyses the following chemical reaction

L-tryptophan—pyruvate aminotransferase is an enzyme with systematic name L-tryptophan:pyruvate aminotransferase. This enzyme catalyses the following chemical reaction

PIN proteins are integral membrane proteins in plants that transport the anionic form of the hormone auxin across membranes. The discovery of the initial member of the PIN gene family, PIN1, occurred through the identification of the pin-formed1 (pin1) mutation in Arabidopsis thaliana. This mutation led to a stem that lacked almost all organs, including leaves and flowers.

<span class="mw-page-title-main">Ethylene (plant hormone)</span> Alkene gas naturally regulating the plant growth

Ethylene (CH
2
=CH
2
) is an unsaturated hydrocarbon gas (alkene) acting as a naturally occurring plant hormone. It is the simplest alkene gas and is the first gas known to act as hormone. It acts at trace levels throughout the life of the plant by stimulating or regulating the ripening of fruit, the opening of flowers, the abscission (or shedding) of leaves and, in aquatic and semi-aquatic species, promoting the 'escape' from submergence by means of rapid elongation of stems or leaves. This escape response is particularly important in rice farming. Commercial fruit-ripening rooms use "catalytic generators" to make ethylene gas from a liquid supply of ethanol. Typically, a gassing level of 500 to 2,000 ppm is used, for 24 to 48 hours. Care must be taken to control carbon dioxide levels in ripening rooms when gassing, as high temperature ripening (20 °C; 68 °F) has been seen to produce CO2 levels of 10% in 24 hours.

Christoph Benning is a German–American plant biologist. He is an MSU Foundation Professor and University Distinguished Professor at Michigan State University. Benning's research into lipid metabolism in plants, algae and photosynthetic bacteria, led him to be named Editor-in-Chief of The Plant Journal in October 2008.

References

  1. 1 2 3 4 Hedden P, Sponsel V (2015). "A Century of Gibberellin Research". Journal of Plant Growth Regulation. 34 (4): 740–60. doi:10.1007/s00344-015-9546-1. PMC   4622167 . PMID   26523085.
  2. Spielmeyer W, Ellis MH, Chandler PM (June 2002). "Semidwarf (sd-1), "green revolution" rice, contains a defective gibberellin 20-oxidase gene". Proceedings of the National Academy of Sciences of the United States of America. 99 (13): 9043–8. Bibcode:2002PNAS...99.9043S. doi: 10.1073/pnas.132266399 . PMC   124420 . PMID   12077303.
  3. "Norman Borlaug: A Billion Lives Saved". www.agbioworld.org. Retrieved 2018-05-11.
  4. 1 2 Campbell N, Reec JB (2002). Biology (6th ed.). San Francisco: Benjamin Cummings. ISBN   9780805366242.
  5. 1 2 3 Sponsel, Valerie M.; Hedden, Peter (2010), Davies, Peter J. (ed.), "Gibberellin Biosynthesis and Inactivation", Plant Hormones, Dordrecht: Springer Netherlands, pp. 63–94, doi:10.1007/978-1-4020-2686-7_4, ISBN   978-1-4020-2684-3 , retrieved 2022-01-29
  6. 1 2 Hedden, Peter (2020-11-23). "The Current Status of Research on Gibberellin Biosynthesis". Plant and Cell Physiology. 61 (11): 1832–1849. doi:10.1093/pcp/pcaa092. ISSN   1471-9053. PMC   7758035 . PMID   32652020.
  7. 1 2 "Gibberellins". AccessScience. doi:10.1036/1097-8542.289000.
  8. 1 2 3 4 5 6 7 8 9 10 Yamaguchi S (2008). "Gibberellin metabolism and its regulation". Annual Review of Plant Biology. 59: 225–51. doi:10.1146/annurev.arplant.59.032607.092804. PMID   18173378.
  9. MacMillan J (December 2001). "Occurrence of Gibberellins in Vascular Plants, Fungi, and Bacteria". Journal of Plant Growth Regulation. 20 (4): 387–442. doi:10.1007/s003440010038. PMID   11986764. S2CID   44504525.
  10. Davies PJ. "Plant growth". AccessScience. doi:10.1036/1097-8542.523000.
  11. 1 2 3 4 Hedden P, Thomas SG (May 2012). "Gibberellin biosynthesis and its regulation". The Biochemical Journal. 444 (1): 11–25. doi:10.1042/BJ20120245. PMID   22533671. S2CID   25627726.
  12. Koornneef M, van der Veen JH (November 1980). "Induction and analysis of gibberellin sensitive mutants in Arabidopsis thaliana (L.) heynh". Theoretical and Applied Genetics. 58 (6): 257–63. doi:10.1007/BF00265176. PMID   24301503. S2CID   22824299.
  13. Mitchum MG, Yamaguchi S, Hanada A, Kuwahara A, Yoshioka Y, Kato T, Tabata S, Kamiya Y, Sun TP (March 2006). "Distinct and overlapping roles of two gibberellin 3-oxidases in Arabidopsis development". The Plant Journal. 45 (5): 804–18. doi: 10.1111/j.1365-313X.2005.02642.x . PMID   16460513.
  14. 1 2 Yamaguchi S, Smith MW, Brown RG, Kamiya Y, Sun T (December 1998). "Phytochrome regulation and differential expression of gibberellin 3beta-hydroxylase genes in germinating Arabidopsis seeds". The Plant Cell. 10 (12): 2115–26. doi:10.1105/tpc.10.12.2115. PMC   143973 . PMID   9836749.
  15. 1 2 Yamauchi Y, Ogawa M, Kuwahara A, Hanada A, Kamiya Y, Yamaguchi S (February 2004). "Activation of gibberellin biosynthesis and response pathways by low temperature during imbibition of Arabidopsis thaliana seeds". The Plant Cell. 16 (2): 367–78. doi:10.1105/tpc.018143. PMC   341910 . PMID   14729916.
  16. Coles JP, Phillips AL, Croker SJ, García-Lepe R, Lewis MJ, Hedden P (March 1999). "Modification of gibberellin production and plant development in Arabidopsis by sense and antisense expression of gibberellin 20-oxidase genes". The Plant Journal. 17 (5): 547–56. doi:10.1046/j.1365-313X.1999.00410.x. PMID   10205907.
  17. Huang S, Raman AS, Ream JE, Fujiwara H, Cerny RE, Brown SM (November 1998). "Overexpression of 20-oxidase confers a gibberellin-overproduction phenotype in Arabidopsis". Plant Physiology. 118 (3): 773–81. doi:10.1104/pp.118.3.773. PMC   34787 . PMID   9808721.
  18. 1 2 Kaneko M, Itoh H, Inukai Y, Sakamoto T, Ueguchi-Tanaka M, Ashikari M, Matsuoka M (July 2003). "Where do gibberellin biosynthesis and gibberellin signaling occur in rice plants?". The Plant Journal. 35 (1): 104–15. doi: 10.1046/j.1365-313X.2003.01780.x . PMID   12834406.
  19. Itoh H, Tanaka-Ueguchi M, Kawaide H, Chen X, Kamiya Y, Matsuoka M (October 1999). "The gene encoding tobacco gibberellin 3beta-hydroxylase is expressed at the site of GA action during stem elongation and flower organ development". The Plant Journal. 20 (1): 15–24. doi: 10.1046/j.1365-313X.1999.00568.x . PMID   10571861.
  20. Rojas MC, Hedden P, Gaskin P, Tudzynski B (May 2001). "The P450-1 gene of Gibberella fujikuroi encodes a multifunctional enzyme in gibberellin biosynthesis". Proceedings of the National Academy of Sciences of the United States of America. 98 (10): 5838–43. Bibcode:2001PNAS...98.5838R. doi: 10.1073/pnas.091096298 . PMC   33300 . PMID   11320210.
  21. Kawaide H, Imai R, Sassa T, Kamiya Y (August 1997). "Ent-kaurene synthase from the fungus Phaeosphaeria sp. L487. cDNA isolation, characterization, and bacterial expression of a bifunctional diterpene cyclase in fungal gibberellin biosynthesis". The Journal of Biological Chemistry. 272 (35): 21706–12. doi: 10.1074/jbc.272.35.21706 . PMID   9268298.
  22. Toyomasu T, Kawaide H, Ishizaki A, Shinoda S, Otsuka M, Mitsuhashi W, Sassa T (March 2000). "Cloning of a full-length cDNA encoding ent-kaurene synthase from Gibberella fujikuroi: functional analysis of a bifunctional diterpene cyclase". Bioscience, Biotechnology, and Biochemistry. 64 (3): 660–4. doi: 10.1271/bbb.64.660 . PMID   10803977.
  23. Tudzynski B, Kawaide H, Kamiya Y (September 1998). "Gibberellin biosynthesis in Gibberella fujikuroi: cloning and characterization of the copalyl diphosphate synthase gene". Current Genetics. 34 (3): 234–40. doi:10.1007/s002940050392. PMID   9745028. S2CID   3021994.
  24. Hedden P, Phillips AL, Rojas MC, Carrera E, Tudzynski B (December 2001). "Gibberellin Biosynthesis in Plants and Fungi: A Case of Convergent Evolution?". Journal of Plant Growth Regulation. 20 (4): 319–331. doi:10.1007/s003440010037. PMID   11986758. S2CID   25623658.
  25. Kawaide H (March 2006). "Biochemical and molecular analyses of gibberellin biosynthesis in fungi". Bioscience, Biotechnology, and Biochemistry. 70 (3): 583–90. doi: 10.1271/bbb.70.583 . PMID   16556972. S2CID   20952424.
  26. Lopes AL, Silva DN, Rodrigues C, Costa JL, Machado MP, Penha RO, Biasi LA, Ricardo C (2013). "Gibberellic acid fermented extract obtained by solid-state fermentation using citric pulp by Fusarium moniliforme: Influence on Lavandula angustifolia Mill. cultivated in vitro". Pak J Bot. 45: 2057–2064.
  27. 1 2 Thomas SG, Phillips AL, Hedden P (April 1999). "Molecular cloning and functional expression of gibberellin 2- oxidases, multifunctional enzymes involved in gibberellin deactivation". Proceedings of the National Academy of Sciences of the United States of America. 96 (8): 4698–703. Bibcode:1999PNAS...96.4698T. doi: 10.1073/pnas.96.8.4698 . PMC   16395 . PMID   10200325.
  28. Schomburg FM, Bizzell CM, Lee DJ, Zeevaart JA, Amasino RM (January 2003). "Overexpression of a novel class of gibberellin 2-oxidases decreases gibberellin levels and creates dwarf plants". The Plant Cell. 15 (1): 151–63. doi:10.1105/tpc.005975. PMC   143488 . PMID   12509528.
  29. 1 2 Zhu Y, Nomura T, Xu Y, Zhang Y, Peng Y, Mao B, Hanada A, Zhou H, Wang R, Li P, Zhu X, Mander LN, Kamiya Y, Yamaguchi S, He Z (February 2006). "ELONGATED UPPERMOST INTERNODE encodes a cytochrome P450 monooxygenase that epoxidizes gibberellins in a novel deactivation reaction in rice". The Plant Cell. 18 (2): 442–56. doi:10.1105/tpc.105.038455. PMC   1356550 . PMID   16399803.
  30. 1 2 Varbanova M, Yamaguchi S, Yang Y, McKelvey K, Hanada A, Borochov R, Yu F, Jikumaru Y, Ross J, Cortes D, Ma CJ, Noel JP, Mander L, Shulaev V, Kamiya Y, Rodermel S, Weiss D, Pichersky E (January 2007). "Methylation of gibberellins by Arabidopsis GAMT1 and GAMT2". The Plant Cell. 19 (1): 32–45. doi:10.1105/tpc.106.044602. PMC   1820973 . PMID   17220201.
  31. Hedden P, Phillips AL (December 2000). "Gibberellin metabolism: new insights revealed by the genes". Trends in Plant Science. 5 (12): 523–30. doi:10.1016/S1360-1385(00)01790-8. PMID   11120474.
  32. Olszewski N, Sun TP, Gubler F (2002). "Gibberellin signaling: biosynthesis, catabolism, and response pathways". The Plant Cell. 14 Suppl (Suppl): S61–80. doi:10.1105/tpc.010476. PMC   151248 . PMID   12045270.
  33. Chiang HH, Hwang I, Goodman HM (February 1995). "Isolation of the Arabidopsis GA4 locus". The Plant Cell. 7 (2): 195–201. doi:10.1105/tpc.7.2.195. PMC   160775 . PMID   7756830.
  34. Matsushita A, Furumoto T, Ishida S, Takahashi Y (March 2007). "AGF1, an AT-hook protein, is necessary for the negative feedback of AtGA3ox1 encoding GA 3-oxidase". Plant Physiology. 143 (3): 1152–62. doi:10.1104/pp.106.093542. PMC   1820926 . PMID   17277098.
  35. Phillips AL, Ward DA, Uknes S, Appleford NE, Lange T, Huttly AK, Gaskin P, Graebe JE, Hedden P (July 1995). "Isolation and expression of three gibberellin 20-oxidase cDNA clones from Arabidopsis". Plant Physiology. 108 (3): 1049–57. doi:10.1104/pp.108.3.1049. PMC   157456 . PMID   7630935.
  36. Xu YL, Li L, Gage DA, Zeevaart JA (May 1999). "Feedback regulation of GA5 expression and metabolic engineering of gibberellin levels in Arabidopsis". The Plant Cell. 11 (5): 927–36. doi:10.1105/tpc.11.5.927. PMC   144230 . PMID   10330476.
  37. 1 2 Ross JJ, O'Neill DP, Smith JJ, Kerckhoffs LH, Elliott RC (March 2000). "Evidence that auxin promotes gibberellin A1 biosynthesis in pea". The Plant Journal. 21 (6): 547–52. doi: 10.1046/j.1365-313x.2000.00702.x . PMID   10758505.
  38. Wolbang CM, Ross JJ (November 2001). "Auxin promotes gibberellin biosynthesis in decapitated tobacco plants". Planta. 214 (1): 153–7. Bibcode:2001Plant.214..153W. doi:10.1007/s004250100663. PMID   11762165. S2CID   31185063.
  39. Wolbang CM, Chandler PM, Smith JJ, Ross JJ (February 2004). "Auxin from the developing inflorescence is required for the biosynthesis of active gibberellins in barley stems". Plant Physiology. 134 (2): 769–76. doi:10.1104/pp.103.030460. PMC   344552 . PMID   14730077.
  40. Ngo P, Ozga JA, Reinecke DM (July 2002). "Specificity of auxin regulation of gibberellin 20-oxidase gene expression in pea pericarp". Plant Molecular Biology. 49 (5): 439–48. doi:10.1023/A:1015522404586. PMID   12090620. S2CID   22530544.
  41. Achard P, Baghour M, Chapple A, Hedden P, Van Der Straeten D, Genschik P, Moritz T, Harberd NP (April 2007). "The plant stress hormone ethylene controls floral transition via DELLA-dependent regulation of floral meristem-identity genes". Proceedings of the National Academy of Sciences of the United States of America. 104 (15): 6484–9. Bibcode:2007PNAS..104.6484A. doi: 10.1073/pnas.0610717104 . PMC   1851083 . PMID   17389366.
  42. Vettakkorumakankav NN, Falk D, Saxena P, Fletcher RA (1999). "A Crucial Role for Gibberellins in Stress Protection of Plants". Plant and Cell Physiology. 40 (5): 542–548. doi: 10.1093/oxfordjournals.pcp.a029575 .
  43. Batge SL, Ross JJ, Reid JB (1999). "Abscisic acid levels in seeds of the gibberellin-deficient mutant lh-2 of pea (Pisum sativum)". Physiologia Plantarum. 195 (3): 485–490. doi: 10.1034/j.1399-3054.1999.105313.x .
  44. White CN, Proebsting WM, Hedden P, Rivin CJ (April 2000). "Gibberellins and seed development in maize. I. Evidence that gibberellin/abscisic acid balance governs germination versus maturation pathways". Plant Physiology. 122 (4): 1081–8. doi:10.1104/pp.122.4.1081. PMC   58942 . PMID   10759503.
  45. Gazzarrini S, Tsuchiya Y, Lumba S, Okamoto M, McCourt P (September 2004). "The transcription factor FUSCA3 controls developmental timing in Arabidopsis through the hormones gibberellin and abscisic acid". Developmental Cell. 7 (3): 373–85. doi: 10.1016/j.devcel.2004.06.017 . PMID   15363412.
  46. 1 2 Ueguchi-Tanaka M, Nakajima M, Katoh E, Ohmiya H, Asano K, Saji S, Hongyu X, Ashikari M, Kitano H, Yamaguchi I, Matsuoka M (July 2007). "Molecular interactions of a soluble gibberellin receptor, GID1, with a rice DELLA protein, SLR1, and gibberellin". The Plant Cell. 19 (7): 2140–55. doi:10.1105/tpc.106.043729. PMC   1955699 . PMID   17644730.
  47. 1 2 Murase K, Hirano Y, Sun TP, Hakoshima T (November 2008). "Gibberellin-induced DELLA recognition by the gibberellin receptor GID1". Nature. 456 (7221): 459–63. Bibcode:2008Natur.456..459M. doi:10.1038/nature07519. PMID   19037309. S2CID   16280595.
  48. 1 2 Shimada A, Ueguchi-Tanaka M, Nakatsu T, Nakajima M, Naoe Y, Ohmiya H, Kato H, Matsuoka M (November 2008). "Structural basis for gibberellin recognition by its receptor GID1". Nature. 456 (7221): 520–3. Bibcode:2008Natur.456..520S. doi:10.1038/nature07546. PMID   19037316. S2CID   205215510.
  49. 1 2 3 Davière JM, Achard P (March 2013). "Gibberellin signaling in plants". Development. 140 (6): 1147–51. doi: 10.1242/dev.087650 . PMID   23444347.
  50. Achard P, Genschik P (2009). "Releasing the brakes of plant growth: how GAs shutdown DELLA proteins". Journal of Experimental Botany. 60 (4): 1085–92. doi: 10.1093/jxb/ern301 . PMID   19043067.
  51. 1 2 Lechner E, Achard P, Vansiri A, Potuschak T, Genschik P (December 2006). "F-box proteins everywhere". Current Opinion in Plant Biology. 9 (6): 631–8. Bibcode:2006COPB....9..631L. doi:10.1016/j.pbi.2006.09.003. PMID   17005440.
  52. McGinnis KM, Thomas SG, Soule JD, Strader LC, Zale JM, Sun TP, Steber CM (May 2003). "The Arabidopsis SLEEPY1 gene encodes a putative F-box subunit of an SCF E3 ubiquitin ligase". The Plant Cell. 15 (5): 1120–30. doi:10.1105/tpc.010827. PMC   153720 . PMID   12724538.
  53. 1 2 Zheng Y, Gao Z, Zhu Z (October 2016). "DELLA-PIF Modules: Old Dogs Learn New Tricks". Trends in Plant Science. 21 (10): 813–815. doi:10.1016/j.tplants.2016.08.006. PMID   27569991.
  54. Oh E, Zhu JY, Bai MY, Arenhart RA, Sun Y, Wang ZY (May 2014). "Cell elongation is regulated through a central circuit of interacting transcription factors in the Arabidopsis hypocotyl". eLife. 3. doi: 10.7554/eLife.03031 . PMC   4075450 . PMID   24867218.
  55. Marín-de la Rosa N, Sotillo B, Miskolczi P, Gibbs DJ, Vicente J, Carbonero P, Oñate-Sánchez L, Holdsworth MJ, Bhalerao R, Alabadí D, Blázquez MA (October 2014). "Large-scale identification of gibberellin-related transcription factors defines group VII ETHYLENE RESPONSE FACTORS as functional DELLA partners". Plant Physiology. 166 (2): 1022–32. doi:10.1104/pp.114.244723. PMC   4213073 . PMID   25118255.
  56. Locascio A, Blázquez MA, Alabadí D (May 2013). "Dynamic regulation of cortical microtubule organization through prefoldin-DELLA interaction". Current Biology. 23 (9): 804–9. Bibcode:2013CBio...23..804L. doi: 10.1016/j.cub.2013.03.053 . hdl: 10251/66422 . PMID   23583555.
  57. Salanenka Y, Verstraeten I, Löfke C, Tabata K, Naramoto S, Glanc M, Friml J (April 2018). "Gibberellin DELLA signaling targets the retromer complex to redirect protein trafficking to the plasma membrane". Proceedings of the National Academy of Sciences of the United States of America. 115 (14): 3716–3721. Bibcode:2018PNAS..115.3716S. doi: 10.1073/pnas.1721760115 . PMC   5889667 . PMID   29463731.