XA102 | |
---|---|
Type | Adaptive cycle engine |
National origin | United States |
Manufacturer | General Electric |
Major applications | Next Generation Air Dominance (planned) |
The General Electric XA102 is an American adaptive cycle engine demonstrator being developed by General Electric (GE). It is competing with the Pratt & Whitney XA103 as the powerplant for the United States Air Force's sixth generation fighter program, the Next Generation Air Dominance (NGAD). [1]
The three-stream adaptive cycle design can direct air to the bypass third stream for increased fuel efficiency and cooling or to the core and fan streams for additional thrust and performance. The engine thrust has not been disclosed, although it is speculated by aviation reporters to be in the 35,000–40,000 lbf (156–178 kN) thrust class. [2]
The U.S. Air Force and U.S. Navy began pursuing adaptive cycle engines in 2007 with the Adaptive Versatile Engine Technology (ADVENT) program, a part of the larger Versatile Affordable Advanced Turbine Engines (VAATE) program. [3] This technology research program was then followed by the Adaptive Engine Technology Demonstrator (AETD) program in 2012, which continued to mature the technology, with tests performed using demonstrator engines. GE's ground demonstrator consists of a three-stage adaptive fan and a high pressure compressor derived from CFM LEAP's ten-stage compressor; the tests in 2015 yielded the highest combined compressor and turbine temperatures in the history of jet propulsion. [4] The follow-on Adaptive Engine Transition Program (AETP) was launched in 2016 to develop and test adaptive engines for sixth generation fighter propulsion as well as potential re-engining of the F-35 from the existing F135 turbofan engine. The demonstrators were assigned the designation XA100 for General Electric's design and XA101 for Pratt & Whitney's. [5] While the XA100 and XA101 became focused on the potential re-engine of the F-35, a separate engine program was initiated for the Air Force's Next Generation Air Dominance fighter, which is expected to be optimized differently with a greater emphasis on supersonic cruise (or supercruise) performance; this program became the Next Generation Adaptive Propulsion (NGAP) and the entrants were the General Electric XA102 and Pratt & Whitney XA103.
Critical design review of the XA102 was completed in December 2023, and flight testing is expected to begin in the late 2020s. [6] [7]
The XA102 is a three-stream adaptive cycle engine that can adjust the bypass ratio and fan pressure to increase fuel efficiency or thrust, depending on the scenario. It does this by employing an adaptive fan that can direct air into a third bypass stream in order to increase fuel economy and act as a heat sink for cooling. The increased cooling and power generation also enables the potential employment of directed energy weapons in the future. [8] [9] When additional thrust is needed, the air from the third stream can be directed to the core and fan streams. In addition to three-stream adaptive cycle configuration, the engine also uses new heat-resistant materials such as ceramic matrix composites (CMC) to enable higher turbine temperatures and improved performance.[ citation needed ]
Data from Royal Aeronautics Society [2]
Related development
Comparable engines
Related lists
A turbofan or fanjet is a type of airbreathing jet engine that is widely used in aircraft propulsion. The word "turbofan" is a combination of references to the preceding generation engine technology of the turbojet and the additional fan stage. It consists of a gas turbine engine which achieves mechanical energy from combustion, and a ducted fan that uses the mechanical energy from the gas turbine to force air rearwards. Thus, whereas all the air taken in by a turbojet passes through the combustion chamber and turbines, in a turbofan some of that air bypasses these components. A turbofan thus can be thought of as a turbojet being used to drive a ducted fan, with both of these contributing to the thrust.
The CFM International CFM56 series is a Franco-American family of high-bypass turbofan aircraft engines made by CFM International (CFMI), with a thrust range of 18,500 to 34,000 lbf. CFMI is a 50–50 joint-owned company of Safran Aircraft Engines of France, and GE Aerospace (GE) of the United States. GE produces the high-pressure compressor, combustor, and high-pressure turbine, Safran manufactures the fan, gearbox, exhaust and the low-pressure turbine, and some components are made by Avio of Italy and Honeywell from the US. Both companies have their own final assembly line, GE in Evendale, Ohio, and Safran in Villaroche, France. The engine initially had extremely slow sales but has gone on to become the most used turbofan aircraft engine in the world.
The bypass ratio (BPR) of a turbofan engine is the ratio between the mass flow rate of the bypass stream to the mass flow rate entering the core. A 10:1 bypass ratio, for example, means that 10 kg of air passes through the bypass duct for every 1 kg of air passing through the core.
The General Electric/Rolls-Royce F136 was an advanced turbofan engine being developed by General Electric and Rolls-Royce plc for the Lockheed Martin F-35 Lightning II. The two companies stopped work on the project in December 2011 after failing to gather Pentagon support for further development.
The General Electric F110 is an afterburning turbofan jet engine produced by GE Aerospace. It was derived from the General Electric F101 as an alternative engine to the Pratt & Whitney F100 for powering tactical fighter aircraft, with the F-16C Fighting Falcon and F-14A+/B Tomcat being the initial platforms; the F110 would eventually power new F-15 Eagle variants as well. The engine is also built by IHI Corporation in Japan, TUSAŞ Engine Industries (TEI) in Turkey, and Samsung Techwin in South Korea as part of licensing agreements.
The Pratt & Whitney F119, company designation PW5000, is an afterburning turbofan engine developed by Pratt & Whitney for the Advanced Tactical Fighter (ATF) program, which resulted in the Lockheed Martin F-22 Raptor. The engine delivers thrust in the 35,000 lbf (156 kN) class and was designed for sustained supersonic flight without afterburners, or supercruise. Delivering almost 22% more thrust with 40% fewer parts than its F100 predecessor, the F119 allows the F-22 to achieve supercruise speeds of up to Mach 1.8. The F119's nozzles incorporate thrust vectoring that enable them to direct the engine thrust ±20° in the pitch axis to give the F-22 enhanced maneuverability.
The General Electric TF39 is a high-bypass turbofan engine that was developed to power the Lockheed C-5 Galaxy. The TF39 was the first high-power, high-bypass jet engine developed. The TF39 was further developed into the CF6 series of engines, and formed the basis of the LM2500 and LM6000 marine and industrial gas turbine. On September 7, 2017, the last active C-5A powered with TF39 engines made its final flight to Davis-Monthan Air Force Base for retirement. The TF39 was effectively retired, and all remaining active C-5 Galaxies are now powered by F138 engines.
The Pratt & Whitney F100 is a low bypass afterburning turbofan engine. It was designed and manufactured by Pratt & Whitney to power the U.S. Air Force's "FX" initiative in 1965, which became the F-15 Eagle. The engine was to be developed in tandem with the F401 which shares a similar core but with an upscaled fan for the U.S. Navy's F-14 Tomcat. The F401 was later abandoned due to costs and reliability issues. The F100 also powered the F-16 Fighting Falcon for the Air Force's Lightweight Fighter (LWF) program.
The General Electric J79 is an axial-flow turbojet engine built for use in a variety of fighter and bomber aircraft and a supersonic cruise missile. The J79 was produced by General Electric Aircraft Engines in the United States, and under license by several other companies worldwide. Among its major uses was the Lockheed F-104 Starfighter, Convair B-58 Hustler, McDonnell Douglas F-4 Phantom II, North American A-5 Vigilante and IAI Kfir.
The General Electric GE36 was an experimental aircraft engine, a hybrid between a turbofan and a turboprop, known as an unducted fan (UDF) or propfan. The GE36 was developed by General Electric Aircraft Engines, with its CFM International equal partner Snecma taking a 35 percent share of development. Development was cancelled in 1989.
A jet engine performs by converting fuel into thrust. How well it performs is an indication of what proportion of its fuel goes to waste. It transfers heat from burning fuel to air passing through the engine. In doing so it produces thrust work when propelling a vehicle but a lot of the fuel is wasted and only appears as heat. Propulsion engineers aim to minimize the degradation of fuel energy into unusable thermal energy. Increased emphasis on performance improvements for commercial airliners came in the 1970s from the rising cost of fuel.
The General Electric CJ805 is a jet engine which was developed by General Electric Aircraft Engines in the late 1950s. It was a civilian version of the J79 and differed only in detail. It was developed in two versions. The basic CJ805-3 was a turbojet and powered the Convair 880 airliner, and the CJ805-23 a turbofan derivative which powered the Convair 990 Coronado variant of the 880.
The General Electric YF120, internally designated as GE37, was a variable cycle afterburning turbofan engine designed by General Electric Aircraft Engines in the late 1980s and early 1990s for the United States Air Force's Advanced Tactical Fighter (ATF) program. It was designed to produce maximum thrust in the 35,000 lbf (156 kN) class. Prototype engines were installed in the two competing technology demonstrator aircraft, the Lockheed YF-22 and Northrop YF-23.
A variable cycle engine (VCE), also referred to as adaptive cycle engine (ACE), is an aircraft jet engine that is designed to operate efficiently under mixed flight conditions, such as subsonic, transonic and supersonic.
The Pratt & Whitney PW1120 turbojet is a derivative of the F100 turbofan. It was installed as a modification to a single F-4E fighter jet, and powered the canceled IAI Lavi.
The Adaptive Versatile Engine Technology (ADVENT) program was an aircraft engine development program run by the United States Air Force with the goal of developing an efficient adaptive cycle, or variable cycle engine for next generation military aircraft in the 20,000 lbf (89 kN) thrust class.
The General Electric Passport is a turbofan developed by GE Aerospace for large business jets. It was selected in 2010 to power the Bombardier Global 7500 and 8000, first run on June 24, 2013, and first flown in 2015. It was certified in April 2016 and powered the Global 7500 first flight on November 4, 2016, before its 2018 introduction. It produces 14,000 to 20,000 lbf of thrust, a range previously covered by the General Electric CF34. A smaller scaled CFM LEAP, it is a twin-spool axial engine with a 5.6:1 bypass ratio and a 45:1 overall pressure ratio and is noted for its large one-piece 52 in (130 cm) fan 18-blade titanium blisk.
The General Electric XA100 is an American adaptive cycle engine demonstrator being developed by General Electric (GE) for the Lockheed Martin F-35 Lightning II and form the technological foundation for the company's XA102 propulsion system for the United States Air Force's sixth generation fighter program, the Next Generation Air Dominance (NGAD).
The Pratt & Whitney XA101 is an American adaptive cycle engine demonstrator being developed by Pratt & Whitney for the Lockheed Martin F-35 Lightning II and form the technological foundation for the company's XA103 propulsion system for the United States Air Force's sixth generation fighter program, the Next Generation Air Dominance (NGAD).
The Pratt & Whitney XA103 is an American adaptive cycle engine demonstrator being developed by Pratt & Whitney. It is competing with the General Electric XA102 as the powerplant for the United States Air Force's sixth generation fighter program, the Next Generation Air Dominance (NGAD).