Freezing is a phase transition in which a liquid turns into a solid when its temperature is lowered below its freezing point. [1] [2]
For most substances, the melting and freezing points are the same temperature; however, certain substances possess differing solid-liquid transition temperatures. For example, agar displays a hysteresis in its melting point and freezing point. It melts at 85 °C (185 °F) and solidifies from 32 to 40 °C (90 to 104 °F). [3]
Most liquids freeze by crystallization, formation of crystalline solid from the uniform liquid. This is a first-order thermodynamic phase transition, which means that as long as solid and liquid coexist, the temperature of the whole system remains very nearly equal to the melting point due to the slow removal of heat when in contact with air, which is a poor heat conductor.[ citation needed ] Because of the latent heat of fusion, the freezing is greatly slowed and the temperature will not drop anymore once the freezing starts but will continue dropping once it finishes.[ citation needed ]
Crystallization consists of two major events, nucleation and crystal growth. "Nucleation" is the step wherein the molecules start to gather into clusters, on the nanometer scale, arranging in a defined and periodic manner that defines the crystal structure. "Crystal growth" is the subsequent growth of the nuclei that succeed in achieving the critical cluster size.
In spite of the second law of thermodynamics, crystallization of pure liquids usually begins at a lower temperature than the melting point, due to high activation energy of homogeneous nucleation. The creation of a nucleus implies the formation of an interface at the boundaries of the new phase. Some energy is expended to form this interface, based on the surface energy of each phase. If a hypothetical nucleus is too small, the energy that would be released by forming its volume is not enough to create its surface, and nucleation does not proceed. Freezing does not start until the temperature is low enough to provide enough energy to form stable nuclei. In presence of irregularities on the surface of the containing vessel, solid or gaseous impurities, pre-formed solid crystals, or other nucleators, heterogeneous nucleation may occur, where some energy is released by the partial destruction of the previous interface, raising the supercooling point to be near or equal to the melting point. The melting point of water at 1 atmosphere of pressure is very close to 0 °C (32 °F; 273 K), and in the presence of nucleating substances the freezing point of water is close to the melting point, but in the absence of nucleators water can supercool to −40 °C (−40 °F; 233 K) before freezing. [4] [5] Under high pressure (2,000 atmospheres) water will supercool to as low as −70 °C (−94 °F; 203 K) before freezing. [6]
Freezing is almost always an exothermic process, meaning that as liquid changes into solid, heat and pressure are released. This is often seen as counter-intuitive, since the temperature of the material does not rise during freezing, except if the liquid were supercooled. But this can be understood since heat must be continually removed from the freezing liquid or the freezing process will stop. The energy released upon freezing is a latent heat, and is known as the enthalpy of fusion and is exactly the same as the energy required to melt the same amount of the solid.
Low-temperature helium is the only known exception to the general rule. [7] Helium-3 has a negative enthalpy of fusion at temperatures below 0.3 K. Helium-4 also has a very slightly negative enthalpy of fusion below 0.8 K. This means that, at appropriate constant pressures, heat must be added to these substances in order to freeze them. [8]
Certain materials, such as glass and glycerol, may harden without crystallizing; these are called amorphous solids. Amorphous materials, as well as some polymers, do not have a freezing point, as there is no abrupt phase change at any specific temperature. Instead, there is a gradual change in their viscoelastic properties over a range of temperatures. Such materials are characterized by a glass transition that occurs at a glass transition temperature, which may be roughly defined as the "knee" point of the material's density vs. temperature graph. Because vitrification is a non-equilibrium process, it does not qualify as freezing, which requires an equilibrium between the crystalline and liquid state.
The size of substances increases or expands on being heated. This increase in the size of a body due to heating is called thermal expansion .. Thermal expansion takes place in all objects and in all states of matter. However, different substances have different rates of expansion for the same rise in temperature.
Many living organisms are able to tolerate prolonged periods of time at temperatures below the freezing point of water. Most living organisms accumulate cryoprotectants such as anti-nucleating proteins, polyols, and glucose to protect themselves against frost damage by sharp ice crystals. Most plants, in particular, can safely reach temperatures of −4 °C to −12 °C. Certain bacteria, notably Pseudomonas syringae , produce specialized proteins that serve as potent ice nucleators, which they use to force ice formation on the surface of various fruits and plants at about −2 °C. [9] The freezing causes injuries in the epithelia and makes the nutrients in the underlying plant tissues available to the bacteria. [10]
Three species of bacteria, Carnobacterium pleistocenium , as well as Chryseobacterium greenlandensis and Herminiimonas glaciei , have reportedly been revived after surviving for thousands of years frozen in ice.[ citation needed ]
Many plants undergo a process called hardening, which allows them to survive temperatures below 0 °C for weeks to months.
The nematode Haemonchus contortus can survive 44 weeks frozen at liquid nitrogen temperatures. Other nematodes that survive at temperatures below 0 °C include Trichostrongylus colubriformis and Panagrolaimus davidi . Many species of reptiles and amphibians survive freezing.
Human gametes and 2-, 4- and 8-cell embryos can survive freezing and are viable for up to 10 years, a process known as cryopreservation.
Experimental attempts to freeze human beings for later revival are known as cryonics.
Freezing is a common method of food preservation that slows both food decay and the growth of micro-organisms. Besides the effect of lower temperatures on reaction rates, freezing makes water less available for bacteria growth. Freezing is a widely used method of food preservation. Freezing generally preserves flavours, smell and nutritional content. Freezing became commercially viable
To From | Solid | Liquid | Gas | Plasma |
---|---|---|---|---|
Solid | Melting | Sublimation | ||
Liquid | Freezing | Vaporization | ||
Gas | Deposition | Condensation | Ionization | |
Plasma | Recombination |
Frost is a thin layer of ice on a solid surface, which forms from water vapor that deposits onto a freezing surface. Frost forms when the air contains more water vapor than it can normally hold at a specific temperature. The process is similar to the formation of dew, except it occurs below the freezing point of water typically without crossing through a liquid state.
Melting, or fusion, is a physical process that results in the phase transition of a substance from a solid to a liquid. This occurs when the internal energy of the solid increases, typically by the application of heat or pressure, which increases the substance's temperature to the melting point. At the melting point, the ordering of ions or molecules in the solid breaks down to a less ordered state, and the solid melts to become a liquid.
In the physical sciences, a phase is a region of material that is chemically uniform, physically distinct, and (often) mechanically separable. In a system consisting of ice and water in a glass jar, the ice cubes are one phase, the water is a second phase, and the humid air is a third phase over the ice and water. The glass of the jar is a different material, in its own separate phase.
In thermodynamics, the enthalpy of vaporization, also known as the (latent) heat of vaporization or heat of evaporation, is the amount of energy (enthalpy) that must be added to a liquid substance to transform a quantity of that substance into a gas. The enthalpy of vaporization is a function of the pressure and temperature at which the transformation takes place.
The melting point of a substance is the temperature at which it changes state from solid to liquid. At the melting point the solid and liquid phase exist in equilibrium. The melting point of a substance depends on pressure and is usually specified at a standard pressure such as 1 atmosphere or 100 kPa.
A phase diagram in physical chemistry, engineering, mineralogy, and materials science is a type of chart used to show conditions at which thermodynamically distinct phases occur and coexist at equilibrium.
Latent heat is energy released or absorbed, by a body or a thermodynamic system, during a constant-temperature process—usually a first-order phase transition, like melting or condensation.
Supercooling, also known as undercooling, is the process of lowering the temperature of a liquid below its freezing point without it becoming a solid. As per the established international definition, supercooling means ‘cooling a substance below the normal freezing point without solidification’ While it can be achieved by different physical means, the postponed solidification is most often due to the absence of seed crystals or nuclei around which a crystal structure can form. The supercooling of water can be achieved without any special techniques other than chemical demineralization, down to −48.3 °C (−54.9 °F). Supercooled water can occur naturally, for example in the atmosphere, animals or plants.
Sublimation is the transition of a substance directly from the solid to the gas state, without passing through the liquid state. The verb form of sublimation is sublime, or less preferably, sublimate. Sublimate also refers to the product obtained by sublimation. The point at which sublimation occurs rapidly is called critical sublimation point, or simply sublimation point. Notable examples include sublimation of dry ice at room temperature and atmospheric pressure, and that of solid iodine with heating.
In physics and chemistry, flash freezing is the process whereby objects are rapidly frozen. This is done by subjecting them to cryogenic temperatures, or it can be done through direct contact with liquid nitrogen at −196 °C (−320.8 °F). It is commonly used in the food industry.
Crystallization is the process by which solids form, where the atoms or molecules are highly organized into a structure known as a crystal. Some ways by which crystals form are precipitating from a solution, freezing, or more rarely deposition directly from a gas. Attributes of the resulting crystal depend largely on factors such as temperature, air pressure, cooling rate, and in the case of liquid crystals, time of fluid evaporation.
A phase-change material (PCM) is a substance which releases/absorbs sufficient energy at phase transition to provide useful heat or cooling. Generally the transition will be from one of the first two fundamental states of matter - solid and liquid - to the other. The phase transition may also be between non-classical states of matter, such as the conformity of crystals, where the material goes from conforming to one crystalline structure to conforming to another, which may be a higher or lower energy state.
In thermodynamics, nucleation is the first step in the formation of either a new thermodynamic phase or structure via self-assembly or self-organization within a substance or mixture. Nucleation is typically defined to be the process that determines how long an observer has to wait before the new phase or self-organized structure appears. For example, if a volume of water is cooled significantly below 0 °C, it will tend to freeze into ice, but volumes of water cooled only a few degrees below 0 °C often stay completely free of ice for long periods (supercooling). At these conditions, nucleation of ice is either slow or does not occur at all. However, at lower temperatures nucleation is fast, and ice crystals appear after little or no delay.
Slurry ice is a phase changing refrigerant made up of millions of ice "micro-crystals" formed and suspended within a solution of water and a freezing point depressant. Some compounds used in the field are salt, ethylene glycol, propylene glycol, alcohols like isobutyl and ethanol, and sugars like sucrose and glucose. Slurry ice has greater heat absorption compared to single phase refrigerants like brine, because the melting enthalpy of the ice is also used.
Insect winter ecology describes the overwinter survival strategies of insects, which are in many respects more similar to those of plants than to many other animals, such as mammals and birds. Unlike those animals, which can generate their own heat internally (endothermic), insects must rely on external sources to provide their heat (ectothermic). Thus, insects persisting in winter weather must tolerate freezing or rely on other mechanisms to avoid freezing. Loss of enzymatic function and eventual freezing due to low temperatures daily threatens the livelihood of these organisms during winter. Not surprisingly, insects have evolved a number of strategies to deal with the rigors of winter temperatures in places where they would otherwise not survive.
The glass–liquid transition, or glass transition, is the gradual and reversible transition in amorphous materials from a hard and relatively brittle "glassy" state into a viscous or rubbery state as the temperature is increased. An amorphous solid that exhibits a glass transition is called a glass. The reverse transition, achieved by supercooling a viscous liquid into the glass state, is called vitrification.
In thermodynamics, the enthalpy of fusion of a substance, also known as (latent) heat of fusion, is the change in its enthalpy resulting from providing energy, typically heat, to a specific quantity of the substance to change its state from a solid to a liquid, at constant pressure.
Pumpable icetechnology (PIT) uses thin liquids, with the cooling capacity of ice. Pumpable ice is typically a slurry of ice crystals or particles ranging from 5 micrometers to 1 cm in diameter and transported in brine, seawater, food liquid, or gas bubbles of air, ozone, or carbon dioxide.
An ice nucleus, also known as an ice nucleating particle (INP), is a particle which acts as the nucleus for the formation of an ice crystal in the atmosphere.
Hoffman nucleation theory is a theory developed by John D. Hoffman and coworkers in the 1970s and 80s that attempts to describe the crystallization of a polymer in terms of the kinetics and thermodynamics of polymer surface nucleation. The theory introduces a model where a surface of completely crystalline polymer is created and introduces surface energy parameters to describe the process. Hoffman nucleation theory is more of a starting point for polymer crystallization theory and is better known for its fundamental roles in the Hoffman–Weeks lamellar thickening and Lauritzen–Hoffman growth theory.
,