Forest ecology

Last updated
The Daintree Rainforest in Queensland, Australia Daintree Rainforest.JPG
The Daintree Rainforest in Queensland, Australia

Forest ecology is the scientific study of the interrelated patterns, processes, flora, fauna and ecosystems in forests. [1] The management of forests is known as forestry, silviculture, and forest management. A forest ecosystem is a natural woodland unit consisting of all plants, animals, and micro-organisms (Biotic components) in that area functioning together with all of the non-living physical (abiotic) factors of the environment. [2]

Contents

Importance

Forests have an enormously important role to play in the global ecosystem. Forests produce approximately 28% of the Earth's oxygen (the vast majority being created by oceanic plankton), [3] they also serve as homes for millions of people, and billions depend on forests in some way. Likewise, a large proportion of the world's animal species live in forests. Forests are also used for economic purposes such as fuel and wood products. Forest ecology therefore has a great impact upon the whole biosphere and human activities that are sustained by it. [4]

Approaches

Redwood tree in northern California forest, where many trees are managed for preservation and longevity Redwood M D Vaden.jpg
Redwood tree in northern California forest, where many trees are managed for preservation and longevity

Forests are studied at a number of organisational levels, from the individual organism to the ecosystem. However, as the term forest connotes an area inhabited by more than one organism, forest ecology most often concentrates on the level of the population, community or ecosystem. Logically, trees are an important component of forest research, but the wide variety of other life forms and abiotic components in most forests means that other elements, such as wildlife or soil nutrients, are also crucial components. [5]

Forest ecology shares characteristics and methodological approaches with other areas of terrestrial plant ecology, however, the presence of trees makes forest ecosystems and their study unique in numerous ways due to the potential for a wide variety of forest structures created by the uniquely large size and height of trees compared with other terrestrial plants.[ citation needed ]

Forest pathology

Forest pathology is the research of both biotic and abiotic maladies affecting the health of a forest ecosystem, primarily fungal pathogens and their insect vectors. [6] [7] It is a subfield of forestry and plant pathology.

Forest pathology is part of the broader approach of forest protection.

Insects, diseases and severe weather events damaged about 40 million ha of forests in 2015, mainly in the temperate and boreal domains. [8]

Community diversity and complexity

Overall decline in a forest-specialist index for 268 forest vertebrate species (455 populations), 1970-2014, from the Food and Agriculture Organization publication The State of the World's Forests 2020. Forests, biodiversity and people - In brief Overall decline in a forest-specialist index for 268 forest vertebrate species (455 populations), 1970-2014.svg
Overall decline in a forest-specialist index for 268 forest vertebrate species (455 populations), 1970–2014, from the Food and Agriculture Organization publication The State of the World's Forests 2020. Forests, biodiversity and people – In brief

Since trees can grow larger than other plant life-forms, there is the potential for a wide variety of forest structures (or physiognomies). The infinite number of possible spatial arrangements of trees of varying size and species makes for a highly intricate and diverse micro-environment in which environmental variables such as solar radiation, temperature, relative humidity, and wind speed can vary considerably over large and small distances. In addition, an important proportion of a forest ecosystem's biomass is often underground, where soil structure, water quality and quantity, and levels of various soil nutrients can vary greatly. [10] Thus, forests are often highly heterogeneous environments compared to other terrestrial plant communities. This heterogeneity in turn can enable great biodiversity of species of both plants and animals. Some structures, such as tree ferns may be keystone species for a diverse range of other species. [11]

A number of factors within the forest affect biodiversity; primary factors enhancing wildlife abundance and biodiversity was the presence of diverse tree species within the forest and the absence of even aged timber management. [12] For example, the wild turkey thrives when uneven heights and canopy variations exist and its numbers are diminished by even aged timber management.

Forest management techniques that mimic natural disturbance events (variable retention forestry [13] ) can allow community diversity to recover rapidly for a variety of groups including beetles. [14]

Types of Forests Ecosystems

Temperate Forests

Tropical Forests

Paca the South American rodent species that has shared features with the African chevrotain due to convergent evolution. Cuniculus paca.jpg
Paca the South American rodent species that has shared features with the African chevrotain due to convergent evolution.
The African chevrotain an ungulate that shares convergently evolved features with the South American paca. Indian spotted chevrotain Moschiola indica Mouse deer from the Anaimalai hills DSC9927 03.jpg
The African chevrotain an ungulate that shares convergently evolved features with the South American paca.

Tropical forests are some of the most diverse ecosystems in the world. [15] Although there are many different tree species present per acre of forest, many share similar appearances due to the similar environmental pressures. [15] [16] Some of these shared traits, possessed by many tropical trees, include thick and leathery leaves that are elongated and ovular with mid-ribs and drip-tips. [15] [16] These adaptations help to quickly drain water from the leaves, likely to help prevent algae or lichen growth [15] and prevent water reflecting the sunlight or restricting transpiration. [16] Commonly, tropical trees have large buttress roots on larger trees, and stilt roots on mid-sized trees which help support their tall and vertical structures in the shallow and moist soil. [15] [16] Tropical forests grow very densely due to the heavy rainfall and year-round growing season. This creates competition for light which causes many trees to grow very tall, blocking out most or all of the light from reaching the forest floor. [15] Because of this, the canopy exhibits distinct stratified layers from the tallest trees to the tightly packed midstory trees below. [15] Due to low light on the forest floor, there is a diverse population of epiphytes, a type of plant that grows on the canopy trees, rather than soil, to access better light. Many vines use a similar tactic, however they root in the ground, growing up the trees to reach light. [15] The fauna in tropical forests also show many unique adaptations to fill various niches. These adaptations are possessed by different species depending on where they are located. [15] For example, there are similar looking animals in the rainforests of South America and Africa that share ecological niches, however the mammals from South America are rodents while the African ones are ungulates. This clearly demonstrates the convergent evolution between species found in tropical forest environments. [15]

Coniferous Forests

Conifers have unique traits that make them especially adapted to harsh conditions, including cold, drought, wind, and snow. [16] Their leaves have a wax coating and are filled with resin to help prevent moisture loss, this makes them unpalatable to animals and slow to decompose. This leaf litter creates an acidic forest floor that is distinct to coniferous forests. [16] Because of the types of leaves possessed by conifers, they face the problem of soil nutrient loss; this problem is solved through mycorrhizal symbiosis with fungi that help transport the limited nutrients to the trees in exchange for sugars. [16] Some conifers are incapable of surviving without mycorrhizal fungi. [16] The majority of conifers are also evergreen, allowing them to take advantage of the short growing seasons of their respective environments. [16] Their thin tapered structure helps them to withstand strong winds without being blown over. [16] The stereotypically cone shape of conifers helps prevent large quantities of snow from building up on their branches and breaking them. [15] Due to the harsh environments that coniferous forests are commonly found, the diversity is limited in both plant and animal species. The colder climates limit the number of reptilian and amphibian species that can survive. [16] The species more commonly found in coniferous forests are mammals, including large herbivores such as moose and elk, predators like bears and wolves, along with a few smaller species like rabbits, foxes, and mink. There are also a variety of migratory bird species and some birds of prey such as owls and hawks. [16] Coniferous forests contain a variety of valuable pulp and lumber trees making them some of the most economically important ecosystems. [16] They have also been historically sought for the fur trade due to the animals species that inhabit them. [16]

Island Forests

Ecological Interactions

Plant-Plant Interactions

In forests, trees and shrubs often serve as nurse plants that facilitate the establishment and seedling growth of understory plants. The forest canopy protects young understory plants from extremes of temperature and dry conditions. [17]

Mycorrhizal Symbiosis

The benefits of mycorrhizal fungi interacting with plant roots to improve nutrient absorption among other benefits compared to a plant without this symbiotic relationship. Positive effects of arbuscular mycorrhizal (AM) colonization.png
The benefits of mycorrhizal fungi interacting with plant roots to improve nutrient absorption among other benefits compared to a plant without this symbiotic relationship.

An important interaction in forest ecosystems is the mycorrhizal network, which consists of fungi and plants that share symbiotic relationships. [18] Mycorrhizal networks have been shown to increase the uptake of important nutrients, especially ones which disperse slowly into the soil like phosphorus. [19] The fine hypha of the mycelium is able to reach farther into the soil than the roots of the plant, allowing it to better access phosphorus and water. [19] The mycorrhizal network can also transport water and nutrients between plants. [20] These interactions can help provide drought resistance to their symbiotic plants, helping protect them through the progression of climate change. [19] However, it's been shown that the benefit of mycorrhizal networks vary greatly depending on the species of plant and nutrient availability. The plants’ benefit from mycorrhizal fungus decreases as nutrient density increases, because the plants' loss of sugars costs more than the benefit they receive. [18] While many plants rely on mycorrhizal symbiosis, not all possess this ability, and those without are shown to be negatively affected by the presence of mycorrhizal fungi. [18]

Ecological potential of forest species

The ecological potential of a particular species is a measure of its capacity to effectively compete in a given geographical area, ahead of other species, as they all try to occupy a natural space. For some areas it has been quantified, as for instance by Hans-Jürgen Otto, for central Europe. [21] He takes three groups of parameters:

  1. Related to site requirements: Tolerance to low temperatures, tolerance to dry climate, frugality.
  2. Specific qualities: Shade tolerance, height growth, stability, longevity, regeneration capacity.
  3. Specific risks: Resistance to late freezing, resistance to wind/ice storm, resistance to fire, resistance to biotic agents.

Every parameter is scored between 0 and 5 for each considered species, and then a global mean value calculated. A value above 3.5 is considered high, below 3.0 low, and intermediate for those in between. In this study Fagus sylvatica has a score of 3.82, Fraxinus excelsior 3.08 and Juglans regia 2.92; and are examples of the three categories.

Matter and energy flows

Energy flux

Forest ecologists are interested in the effects of large disturbances, such as wildfires. Montana, United States. RockyPointTrailAsFirebreak.jpg
Forest ecologists are interested in the effects of large disturbances, such as wildfires. Montana, United States.

Forests accumulate large amounts of standing biomass, and many are capable of accumulating it at high rates, i.e. they are highly productive. Such high levels of biomass and tall vertical structures represent large stores of potential energy that can be converted to kinetic energy under the right circumstances.[ citation needed ]

The world’s forests contain about 606 gigatonnes of living biomass (above- and below-ground) and 59 gigatonnes of dead wood. [22]

Two such conversions of great importance are fires and treefalls, both of which radically alter the biota and the physical environment where they occur. Also, in forests of high productivity, the rapid growth of the trees themselves induces biotic and environmental changes, although at a slower rate and lower intensity than relatively instantaneous disturbances such as fires.

Water

Forest trees store large amounts of water because of their large size and anatomical/physiological characteristics. They are therefore important regulators of hydrological processes, especially those involving groundwater hydrology and local evaporation and rainfall/snowfall patterns. [23]

An estimated 399 million ha of forest is designated primarily for the protection of soil and water, an increase of 119 million ha since 1990. [22]

Thus, forest ecological studies are sometimes closely aligned with meteorological and hydrological studies in regional ecosystem or resource planning studies. Perhaps more importantly the duff or leaf litter can form a major repository of water storage. When this litter is removed or compacted (through grazing or human overuse), erosion and flooding are exacerbated as well as deprivation of dry season water for forest organisms.

Death and regeneration

Forest regrowth after a forest fire, Cascade Range, United States Cascades Regrowth after forest fire.jpg
Forest regrowth after a forest fire, Cascade Range, United States

Woody material, often referred to as coarse woody debris, decays relatively slowly in many forests in comparison to most other organic materials, due to a combination of environmental factors and wood chemistry (see lignin). [24] Trees growing in arid and/or cold environments do so especially slowly. Thus, tree trunks and branches can remain on the forest floor for long periods, affecting such things as wildlife habitat, fire behaviour, and tree regeneration processes.

Some trees leave behind eerie skeletons after death. In reality these deaths are actually very few compared to the amount of tree deaths that go unnoticed. Thousands of seedlings can be produced from a single tree but only a few can actually grow to maturity. [25] Most of those deaths are caused from competition for light, water, or soil nutrients, this is called natural thinning. Singular deaths caused by natural thinning go unnoticed, but many deaths can help form forest ecosystems. [25] There are four stages to forest regrowth after a disturbance, the establishment phase which is rapid increase in seedlings, the thinning phase which happens after a canopy is formed and the seedlings covered by it die, the transition phase which occurs when one tree from the canopy dies and creates a pocket of light giving new seedlings opportunity to grow, and lastly the steady-state phase which happens when the forest has different sizes and ages of trees. [25]

See also

Related Research Articles

<span class="mw-page-title-main">Ecosystem</span> Community of living organisms together with the nonliving components of their environment

An ecosystem is a system that environments and their organisms form through their interaction. The biotic and abiotic components are linked together through nutrient cycles and energy flows.

<span class="mw-page-title-main">Forest</span> Dense collection of trees covering a relatively large area

A forest is an ecosystem characterized by a dense community of trees. Hundreds of definitions of forest are used throughout the world, incorporating factors such as tree density, tree height, land use, legal standing, and ecological function. The United Nations' Food and Agriculture Organization (FAO) defines a forest as, "Land spanning more than 0.5 hectares with trees higher than 5 meters and a canopy cover of more than 10 percent, or trees able to reach these thresholds in situ. It does not include land that is predominantly under agricultural or urban use." Using this definition, Global Forest Resources Assessment 2020 found that forests covered 4.06 billion hectares, or approximately 31 percent of the world's land area in 2020.

This glossary of ecology is a list of definitions of terms and concepts in ecology and related fields. For more specific definitions from other glossaries related to ecology, see Glossary of biology, Glossary of evolutionary biology, and Glossary of environmental science.

<span class="mw-page-title-main">Tropical rainforest</span> Forest in areas with heavy rainfall in the tropics

Tropical rainforests are dense and warm rainforests with high rainfall typically found between 10° north and south of the Equator. They are a subset of the tropical forest biome that occurs roughly within the 28° latitudes. Tropical rainforests are a type of tropical moist broadleaf forest, that includes the more extensive seasonal tropical forests. True rainforests usually occur in tropical rainforest climates where no dry season occurs; all months have an average precipitation of at least 60 mm (2.4 in). Seasonal tropical forests with tropical monsoon or savanna climates are sometimes included in the broader definition.

<span class="mw-page-title-main">Old-growth forest</span> Forest that has developed over a long period of time without disturbance

An old-growth forest is a forest that has developed over a long period of time without disturbance. Due to this, old-growth forests exhibit unique ecological features. The Food and Agriculture Organization of the United Nations defines primary forests as naturally regenerated forests of native tree species where there are no clearly visible indications of human activity and the ecological processes are not significantly disturbed. One-third of the world's forests are primary forests. Old-growth features include diverse tree-related structures that provide diverse wildlife habitats that increases the biodiversity of the forested ecosystem. Virgin or first-growth forests are old-growth forests that have never been logged. The concept of diverse tree structure includes multi-layered canopies and canopy gaps, greatly varying tree heights and diameters, and diverse tree species and classes and sizes of woody debris.

<span class="mw-page-title-main">Ecosystem ecology</span> Study of living and non-living components of ecosystems and their interactions

Ecosystem ecology is the integrated study of living (biotic) and non-living (abiotic) components of ecosystems and their interactions within an ecosystem framework. This science examines how ecosystems work and relates this to their components such as chemicals, bedrock, soil, plants, and animals.

An aquatic ecosystem is an ecosystem found in and around a body of water, in contrast to land-based terrestrial ecosystems. Aquatic ecosystems contain communities of organisms—aquatic life—that are dependent on each other and on their environment. The two main types of aquatic ecosystems are marine ecosystems and freshwater ecosystems. Freshwater ecosystems may be lentic ; lotic ; and wetlands.

<span class="mw-page-title-main">Disturbance (ecology)</span> Temporary change in environmental conditions that causes a pronounced change in an ecosystem

In ecology, a disturbance is a temporary change in environmental conditions that causes a pronounced change in an ecosystem. Disturbances often act quickly and with great effect, to alter the physical structure or arrangement of biotic and abiotic elements. A disturbance can also occur over a long period of time and can impact the biodiversity within an ecosystem.

Ecological facilitation or probiosis describes species interactions that benefit at least one of the participants and cause harm to neither. Facilitations can be categorized as mutualisms, in which both species benefit, or commensalisms, in which one species benefits and the other is unaffected. This article addresses both the mechanisms of facilitation and the increasing information available concerning the impacts of facilitation on community ecology.

<span class="mw-page-title-main">Temperate deciduous forest</span> Deciduous forest in the temperate regions

Temperate deciduous or temperate broad-leaf forests are a variety of temperate forest 'dominated' by deciduous trees that lose their leaves each winter. They represent one of Earth's major biomes, making up 9.69% of global land area. These forests are found in areas with distinct seasonal variation that cycle through warm, moist summers, cold winters, and moderate fall and spring seasons. They are most commonly found in the Northern Hemisphere, with particularly large regions in eastern North America, East Asia, and a large portion of Europe, though smaller regions of temperate deciduous forests are also located in South America. Examples of trees typically growing in the Northern Hemisphere's deciduous forests include oak, maple, basswood, beech and elm, while in the Southern Hemisphere, trees of the genus Nothofagus dominate this type of forest. Temperate deciduous forests provide several unique ecosystem services, including habitats for diverse wildlife, and they face a set of natural and human-induced disturbances that regularly alter their structure.

<span class="mw-page-title-main">Plant ecology</span> The study of effect of the environment on the abundance and distribution of plants

Plant ecology is a subdiscipline of ecology that studies the distribution and abundance of plants, the effects of environmental factors upon the abundance of plants, and the interactions among plants and between plants and other organisms. Examples of these are the distribution of temperate deciduous forests in North America, the effects of drought or flooding upon plant survival, and competition among desert plants for water, or effects of herds of grazing animals upon the composition of grasslands.

<span class="mw-page-title-main">Mycoforestry</span> Permaculture forest management system using fungi

Mycoforestry is an ecological forest management system implemented to enhance forest ecosystems and plant communities, by introducing the mycorrhizal and saprotrophic fungi. Mycoforestry is considered a type of permaculture and can be implemented as a beneficial component of an agroforestry system. It can enhance the yields of tree crops and produce edible mushrooms, an economically valuable product. By integrating plant-fungal associations into a forestry management system, native forests can be preserved, wood waste can be recycled back into the ecosystem, carbon sequestration can be increased, planted restoration sites are enhanced, and the sustainability of forest ecosystems are improved. Mycoforestry is an alternative to the practice of clearcutting, which removes dead wood from forests, thereby diminishing nutrient availability and reducing soil depth.

Forest pathology is the research of both biotic and abiotic maladies affecting the health of a forest ecosystem, primarily fungal pathogens and their insect vectors. It is a subfield of forestry and plant pathology.

Monodominance is an ecological condition in which more than 60% of the tree canopy comprises a single species of tree. Monodominant forests are quite common under conditions of extra-tropical climate types. Although monodominance is studied across different regions, most research focuses on the many prominent species in tropical forests. Connel and Lowman, originally called it single-dominance. Conventional explanations of biodiversity in tropical forests in the decades prior to Connel and Lowman's work either ignored monodominance entirely or predicted that it would not exist.

<span class="mw-page-title-main">Gap dynamics</span>

Gap dynamics refers to the pattern of plant growth that occurs following the creation of a forest gap, a local area of natural disturbance that results in an opening in the canopy of a forest. Gap dynamics are a typical characteristic of both temperate and tropical forests and have a wide variety of causes and effects on forest life.

<span class="mw-page-title-main">Mycorrhizal network</span> Underground fungal networks that connect individual plants together

A mycorrhizal network is an underground network found in forests and other plant communities, created by the hyphae of mycorrhizal fungi joining with plant roots. This network connects individual plants together. Mycorrhizal relationships are most commonly mutualistic, with both partners benefiting, but can be commensal or parasitic, and a single partnership may change between any of the three types of symbiosis at different times.

<span class="mw-page-title-main">Ectomycorrhiza</span> Non-penetrative symbiotic association between a fungus and the roots of a vascular plant

An ectomycorrhiza is a form of symbiotic relationship that occurs between a fungal symbiont, or mycobiont, and the roots of various plant species. The mycobiont is often from the phyla Basidiomycota and Ascomycota, and more rarely from the Zygomycota. Ectomycorrhizas form on the roots of around 2% of plant species, usually woody plants, including species from the birch, dipterocarp, myrtle, beech, willow, pine and rose families. Research on ectomycorrhizas is increasingly important in areas such as ecosystem management and restoration, forestry and agriculture.

<span class="mw-page-title-main">Afforestation in Japan</span> Projects to plant native tree species in open areas

The Japanese temperate rainforest is well sustained and maintains a high biodiversity. One method that has been utilized in maintaining the health of forests in Japan has been afforestation. The Japanese government and private businesses have set up multiple projects to plant native tree species in open areas scattered throughout the country. This practice has resulted in shifts in forest structure and a healthy temperate rainforest that maintains a high biodiversity.

<span class="mw-page-title-main">Light gap</span> Ecological terminology

In ecology, a light gap is a break in forest canopy or similar barrier that allows young plants to grow where they would be otherwise inhibited by the lack of light reaching the seedbed. Light gaps form predominantly when a tree falls, and thus produces an opening in the forest canopy. Light gaps are important for maintaining diversity in species-rich ecosystems.

<span class="mw-page-title-main">Tropical Wet Forests (US and Mexico)</span>

The Tropical Wet Forests are a Level I ecoregion of North America designated by the Commission for Environmental Cooperation (CEC) in its North American Environmental Atlas. As the CEC consists only of Mexico, the United States, and Canada, the defined ecoregion does not extend outside these countries to Central America nor the Caribbean.

References

  1. Führer, Erwin (2000-06-15). "Forest functions, ecosystem stability and management". Forest Ecology and Management. 132 (1): 29–38. doi:10.1016/S0378-1127(00)00377-7. ISSN   0378-1127.
  2. Robert W. Christopherson. 1996
  3. "Save the Plankton, Breathe Freely". 28 February 2012.
  4. "Forest Ecology and Management". Climate Transform. 2021-03-09. Retrieved 2021-03-15.
  5. Dunson, William A.; Travis, Joseph (1991). "The Role of Abiotic Factors in Community Organization". The American Naturalist. 138 (5): 1067–1091. doi:10.1086/285270. ISSN   0003-0147. JSTOR   2462508.
  6. "Forest Pathology | Diseases of forest and shade trees". Forest Pathology. Retrieved 2023-11-15.
  7. "Forest Pathology Journal Overview" . Retrieved 2023-11-15.
  8. Global Forest Resources Assessment 2020 – Key findings. Rome: FAO. 2020. doi:10.4060/ca8753en. ISBN   978-92-5-132581-0. S2CID   130116768.
  9. The State of the World's Forests 2020. Forests, biodiversity and people – In brief. Rome: FAO & UNEP. 2020. doi:10.4060/ca8985en. ISBN   978-92-5-132707-4. S2CID   241416114.
  10. James P. Kimmins. 2004
  11. Fountain-Jones N.M, Mc Quillan P and Grove S. (2012) ‘Beetle communities associated with the tree fern Dicksonia antarctica Labill. in Tasmania’ Australian Journal of Entomology. 51, 154-165.
  12. Philip Joseph Burton. 2003
  13. Franklin et al 1997
  14. Fountain-Jones, N.M, Baker, S.B and Jordan, G (2015). ‘Moving beyond the guild concept: developing a consistent functional trait framework for terrestrial beetles’ Ecological Entomology. 40, 1-13.
  15. 1 2 3 4 5 6 7 8 9 10 11 Ehrlich, Paul R.; Roughgarden, Joan (1987). The science of ecology. New York : London: Macmillan ; Collier Macmillan. ISBN   978-0-02-331700-2.
  16. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 The International book of the forest. New York: Simon and Schuster. 1981. ISBN   978-0-671-41004-9.
  17. Martinkova, Zdenka; Honek, Alois; Pekar, Stano (2014). "The Role of Nurse Plants in Facilitating the Germination of Dandelion (Taraxacum officinale) Seeds". Weed Science. 62 (3): 474–482. doi:10.1614/WS-D-13-00162.1. S2CID   85658841.
  18. 1 2 3 Van der Heijden, Marcel G. A.; Horton, Thomas R. (2009). "Socialism in Soil? the Importance of Mycorrhizal Fungal Networks for Facilitation in Natural Ecosystems". Journal of Ecology. 97 (6).
  19. 1 2 3 Berger, John J.; Restoring the Earth (Organization); University of California, Berkeley; University of California, Berkeley; San Francisco Bay Conservation and Development Commission, eds. (1990). Environmental restoration: science and strategies for restoring the Earth. Washington, D.C.: Island Press. ISBN   978-0-933280-94-6.
  20. Bingham, Marcus A.; Simard, Suzanne W. (2011). "Do mycorrhizal network benefits to survival and growth of interior Douglas-fir seedlings increase with soil moisture stress?". Ecology and Evolution. 1 (3): 306–316. doi:10.1002/ece3.24. PMC   3287316 . PMID   22393502.
  21. Otto, Hans-Jürgen (1998). Écologie Forestière (in French). Paris: Institut pour le Développement Forestier. ISBN   9782904740657.
  22. 1 2 Global Forest Resources Assessment 2020 – Key findings. Rome: FAO. 2020. doi:10.4060/ca8753en. ISBN   978-92-5-132581-0. S2CID   130116768.
  23. Smerdon, Brian D; et al. (2009). "An overview of the effects of forest management on ground water hydrology" (PDF). BC Journal of Ecosystems and Management. 10 (1): 22–44. Archived from the original (PDF) on 2016-11-22. Retrieved 2016-11-21.
  24. Ganjegunte, Girisha K; Condron, Leo M; Clinton, Peter W; Davis, Murray R; Mahieu, Nathalie (2004-01-23). "Decomposition and nutrient release from radiata pine (Pinus radiata) coarse woody debris". Forest Ecology and Management. 187 (2): 197–211. doi:10.1016/S0378-1127(03)00332-3. ISSN   0378-1127.
  25. 1 2 3 Peet, Robert K.; Christensen, Norman L. (1987). "Competition and Tree Death". BioScience. 37 (8): 586–595. doi:10.2307/1310669. JSTOR   1310669.

Bibliography

Definition of Free Cultural Works logo notext.svg  This article incorporates text from a free content work. Licensed under CC BY-SA 3.0( license statement/permission ). Text taken from Global Forest Resources Assessment 2020 Key findings , FAO, FAO.