Feline hyperaldosteronism

Last updated • 3 min readFrom Wikipedia, The Free Encyclopedia

Feline hyperaldosteronism is a disease in cats. The symptoms are caused by abnormally high concentrations of the hormone aldosterone, [1] which is secreted by the adrenal gland. The high concentrations of aldosterone may be due directly to a disorder of the adrenal gland (primary hyperaldosteronism), or due to something outside of the adrenal gland causing it to secrete excessive aldosterone (secondary hyperaldosteronism).

Contents

Causes

Primary hyperaldosteronism

Primary hyperaldosteronism (PHA) is a disorder of the adrenal cortex that causes increased circulating aldosterone levels. There are two types of PHA. One type is caused by a unilateral aldosterone-producing adenoma or adenocarcinoma. The other type, known as idiopathic hyperaldosteronism, occurs with bilateral adrenal hyperplasia. [1]

Secondary hyperaldosteronism

Secondary hyperaldosteronism is a normal physiological response to decreased arterial blood volume, wherein hypovolemia activates the renin–angiotensin system to stimulate aldosterone synthesis and thus increase fluid retention. [2]

Mechanism

Aldosterone receptors are present on the epithelial cells of the distal nephron in the kidney. Aldosterone activates sodium channels that result in sodium resorption from the urine. [1] Increased sodium and water retention results in systemic arterial hypertension. [2] This increase in active sodium reabsorption generates an electrochemical gradient that leads to passive transfer of potassium from the tubular cells into the urine. This causes a lower total body concentration of potassium and potentially, hypokalemia. [1] Hypokalemia affects polarization of nerve and muscle membranes, which causes episodic muscle weakness. [2]

Symptoms

Most affected cats present with muscular weakness and/or ocular signs of hypertension. Signs of muscle weakness can include a plantigrade stance of the hindlimbs, cervical ventroflexion, inability to jump, lateral recumbency, or collapse. Ocular signs of arterial hypertension include mydriasis, hyphema, or blindness due to retinal detachment and/or intraocular hemorrhages. [1] A palpable mass in the cranial abdomen is another potential finding. [2]

Diagnosis

Persistently increased blood pressure may also be due to kidney disease or hyperthyroidism. When a cause is not readily apparent, and especially when hypokalemia is identified, hyperaldosteronism should be considered. Diagnostic imaging, usually beginning with abdominal ultrasound, may identify that one or both adrenal glands are enlarged. Imaging may also detect metastasis and usually includes radiographs of the chest in addition to abdominal ultrasound and/or computerized tomography (CT). [1]

The ratio of plasma aldosterone concentration (PAC) to plasma renin activity (PRA) can be used as a screening test for PHA. In cats with unilateral or bilateral zona glomerulosa tumors, the PAC may be very high while the PRA is completely suppressed. In cats with idiopathic bilateral nodular hyperplasia of the zona glomerulosa, the PAC may be slightly elevated or high normal. In the presence of hypokalemia even a mildly elevated aldosterone should be considered inappropriately high. A high-normal or elevated PAC with a low PRA indicates persistent aldosterone synthesis in the presence of little or no stimulation of the renin–angiotensin system.

Treatment

Unilateral primary hyperaldosteronism due to an adrenocortical adenoma or adrenocarcinoma can be potentially cured surgically. Unilateral adrenalectomy is the treatment of choice for unilateral PHA. Potential complications include hemorrhage and postoperative hypokalemia. With complete removal of the tumor, prognosis is excellent. [1]

Bilateral primary hyperaldosteronism due to hyperplasia of the zona glomerulosa or metastasized adrenocortical adenocarcinoma should be treated medically. Medical therapy is aimed at normalizing blood pressure and plasma potassium concentration. Mineralocorticoid receptor blockers, such as spironolactone, coupled with potassium supplementation are the most commonly used treatments. Specific therapy for treating high blood pressure (e.g., amlodipine), should be added if necessary. [2]

Epidemiology

Most affected cats are over 10 years old. No breed or sex is predisposed to hyperadlosteronism. [3]

Related Research Articles

Adrenal gland Endocrine gland

The adrenal glands are endocrine glands that produce a variety of hormones including adrenaline and the steroids aldosterone and cortisol. They are found above the kidneys. Each gland has an outer cortex which produces steroid hormones and an inner medulla. The adrenal cortex itself is divided into three zones: the zona glomerulosa, the zona fasciculata and the zona reticularis.

Renin

Renin, also known as an angiotensinogenase, is an aspartic protease protein and enzyme secreted by the kidneys that participates in the body's renin–angiotensin–aldosterone system (RAAS)—also known as the renin–angiotensin–aldosterone axis—that mediates the volume of extracellular fluid and arterial vasoconstriction. Thus, it regulates the body's mean arterial blood pressure.

Renin–angiotensin system

The renin–angiotensin system (RAS), or renin–angiotensin–aldosterone system (RAAS), is a hormone system that regulates blood pressure and fluid and electrolyte balance, as well as systemic vascular resistance.

Adrenal cortex

Situated along the perimeter of the adrenal gland, the adrenal cortex mediates the stress response through the production of mineralocorticoids and glucocorticoids, such as aldosterone and cortisol, respectively. It is also a secondary site of androgen synthesis.

Aldosterone

Aldosterone, the main mineralocorticoid hormone, is a steroid hormone produced by the zona glomerulosa of the adrenal cortex in the adrenal gland. It is essential for sodium conservation in the kidney, salivary glands, sweat glands and colon. It plays a central role in the homeostatic regulation of blood pressure, plasma sodium (Na+), and potassium (K+) levels. It does so primarily by acting on the mineralocorticoid receptors in the distal tubules and collecting ducts of the nephron. It influences the reabsorption of sodium and excretion of potassium (from and into the tubular fluids, respectively) of the kidney, thereby indirectly influencing water retention or loss, blood pressure and blood volume. When dysregulated, aldosterone is pathogenic and contributes to the development and progression of cardiovascular and kidney disease. Aldosterone has exactly the opposite function of the atrial natriuretic hormone secreted by the heart.

Primary aldosteronism

Primary aldosteronism (PA), also known as primary hyperaldosteronism or Conn's syndrome, refers to the excess production of the hormone aldosterone from the adrenal glands, resulting in low renin levels. This abnormality is caused by hyperplasia or tumors. Many suffer from fatigue, potassium deficiency and high blood pressure which may cause poor vision, confusion or headaches. Symptoms may also include: muscular aches and weakness, muscle spasms, low back and flank pain from the kidneys, trembling, tingling sensations, numbness and excessive urination. Complications include cardiovascular disease such as stroke, myocardial infarction, kidney failure and abnormal heart rhythms.

Mineralocorticoid

Mineralocorticoids are a class of corticosteroids, which in turn are a class of steroid hormones. Mineralocorticoids are produced in the adrenal cortex and influence salt and water balances. The primary mineralocorticoid is aldosterone.

Potassium-sparing diuretic

Potassium-sparing diuretics refers to drugs that cause diuresis without causing potassium loss in the urine and leading to hypokalemia. They are typically used as an adjunct in management of hypertension, cirrhosis, and congestive heart failure. The steroidal aldosterone antagonists can also be used for treatment of primary hyperaldosteronism. Spironolactone, a steroidal aldosterone antagonist, is also used in management of female hirsutism and acne from PCOS or other causes.

Hypoaldosteronism

Hypoaldosteronism is an endocrinological disorder characterized decreased levels of the hormone aldosterone. Similarly, isolated hypoaldosteronism is the condition of having lowered aldosterone without corresponding changes in cortisol.

Zona glomerulosa part of the adrenal gland

The zona glomerulosa of the adrenal gland is the most superficial layer of the adrenal cortex, lying directly beneath the renal capsule. Its cells are ovoid and arranged in clusters or arches.

Secondary hypertension is a type of hypertension which by definition is caused by an identifiable underlying primary cause. It is much less common than the other type, called essential hypertension, affecting only 5-10% of hypertensive patients. It has many different causes including endocrine diseases, kidney diseases, and tumors. It also can be a side effect of many medications.

Hyperaldosteronism Hormonal disorder

Hyperaldosteronism is a medical condition wherein too much aldosterone is produced by the adrenal glands, which can lead to lowered levels of potassium in the blood (hypokalemia) and increased hydrogen ion excretion (alkalosis).

Apparent mineralocorticoid excess syndrome

Apparent mineralocorticoid excess is an autosomal recessive disorder causing hypertension and hypokalemia. It results from mutations in the HSD11B2 gene, which encodes the kidney isozyme of 11β-hydroxysteroid dehydrogenase type 2. In an unaffected individual, this isozyme inactivates circulating cortisol to the less active metabolite cortisone. The inactivating mutation leads to elevated local concentrations of cortisol in the aldosterone sensitive tissues like the kidney. Cortisol at high concentrations can cross-react and activate the mineralocorticoid receptor due to the non-selectivity of the receptor, leading to aldosterone-like effects in the kidney. This is what causes the hypokalemia, hypertension, and hypernatremia associated with the syndrome. Patients often present with severe hypertension and end-organ changes associated with it like left ventricular hypertrophy, retinal, renal and neurological vascular changes along with growth retardation and failure to thrive. In serum both aldosterone and renin levels are low.

Liddles syndrome

Liddle's syndrome, also called Liddle syndrome is a genetic disorder inherited in an autosomal dominant manner that is characterized by early, and frequently severe, high blood pressure associated with low plasma renin activity, metabolic alkalosis, low blood potassium, and normal to low levels of aldosterone. Liddle syndrome involves abnormal kidney function, with excess reabsorption of sodium and loss of potassium from the renal tubule, and is treated with a combination of low sodium diet and potassium-sparing diuretics. It is extremely rare, with fewer than 30 pedigrees or isolated cases having been reported worldwide as of 2008.

In humans and other animals, the adrenocortical hormones are hormones produced by the adrenal cortex, the outer region of the adrenal gland. These polycyclic steroid hormones have a variety of roles that are crucial for the body’s response to stress, and they also regulate other functions in the body. Threats to homeostasis, such as injury, chemical imbalances, infection, or psychological stress, can initiate a stress response. Examples of adrenocortical hormones that are involved in the stress response are aldosterone and cortisol. These hormones also function in regulating the conservation of water by the kidneys and glucose metabolism, respectively.

Pseudohyperaldosteronism is a medical condition which mimics the effects of elevated aldosterone (hyperaldosteronism) by presenting with high blood pressure (hypertension), low blood potassium levels (hypokalemia), metabolic alkalosis, and low levels of plasma renin activity (PRA). However, unlike hyperaldosteronism, this conditions exhibits low or normal levels of aldosterone in the blood. Causes include genetic disorders, acquired conditions, metabolic disorders, and dietary imbalances including excessive consumption of licorice. Confirmatory diagnosis depends on the specific root cause and may involve blood tests, urine tests, or genetic testing; however, all forms of this condition exhibit abnormally low concentrations of both plasma renin activity (PRA) and plasma aldosterone concentration (PAC) which differentiates this group of conditions from other forms of secondary hypertension. Treatment is tailored to the specific cause and focuses on symptom control, blood pressure management, and avoidance of triggers.

11-Deoxycorticosterone Chemical compound

11-Deoxycorticosterone (DOC), or simply deoxycorticosterone, also known as 21-hydroxyprogesterone, as well as desoxycortone (INN), deoxycortone, and cortexone, is a steroid hormone produced by the adrenal gland that possesses mineralocorticoid activity and acts as a precursor to aldosterone. It is an active (Na+-retaining) mineralocorticoid. As its names indicate, 11-deoxycorticosterone can be understood as the 21-hydroxy-variant of progesterone or as the 11-deoxy-variant of corticosterone.

Adrenocortical adenoma

Adrenocortical adenoma is commonly described as a benign neoplasm emerging from the cells that comprise the adrenal cortex. Like most adenomas, the adrenocortical adenoma is considered a benign tumor since the majority of them are non-functioning and asymptomatic. Adrenocortical adenomas are classified as ACTH-independent disorders, and are commonly associated with conditions linked to hyperadrenalism such as Cushing's syndrome (hypercortisolism) or Conn's syndrome (hyperaldosteronism), which is also known as primary aldosteronism. In addition, recent case reports further support the affiliation of adrenocortical adenomas with hyperandrogenism or florid hyperandrogenism which can cause hyperandrogenic hirsutism in females. "Cushing's syndrome" differs from the "Cushing's disease" even though both conditions are induced by hypercortisolism. The term "Cushing's disease" refers specifically to "secondary hypercortisolism" classified as "ACTH-dependent Cushing's syndrome" caused by pituitary adenomas. In contrast, "Cushing's syndrome" refers specifically to "primary hypercortisolism" classified as "ACTH-independent Cushing's syndrome" caused by adrenal adenomas.

Glucocorticoid remediable aldosteronism also describable as aldosterone synthase hyperactivity, is an autosomal dominant disorder in which the increase in aldosterone secretion produced by ACTH is no longer transient.

Familial hyperaldosteronism is a group of inherited conditions in which the adrenal glands, which are small glands located on top of each kidney, produce too much of the hormone aldosterone. Excess aldosterone causes the kidneys to retain more salt than normal, which in turn increases the body's fluid levels and causes high blood pressure. People with familial hyperaldosteronism may develop severe high blood pressure, often early in life. Without treatment, hypertension increases the risk of strokes, heart attacks, and kidney failure. There are other forms of hyperaldosteronism that are not inherited.

References

  1. 1 2 3 4 5 6 7 Djajadiningrat-Laanen, S.; Galac, S.; Kooistra, Hans (2011). "Primary Hyperaldosteronism: Expanding the diagnostic net". Journal of Feline Medicine and Surgery. 13 (9): 641–650. doi:10.1016/j.jfms.2011.07.017.
  2. 1 2 3 4 5 Kooistra, Hans S. (2006). Hyperaldosteronism in Cats. World Small Animal Veterinary Association World Congress Proceedings.
  3. Feldman, EC (2015). "Primary hyperaldosteronism in cats". In Feldman, EC; Nelson, RW; Reusch, C; Scott-Moncrieff, JC (eds.). Canine and Feline Endocrinology (4th ed.). Elsevier, Saunders. pp. 478–481. ISBN   9781455744565.