Fecundity

Last updated

Fecundity is defined in two ways; in human demography, it is the potential for reproduction of a recorded population as opposed to a sole organism, while in population biology, it is considered similar to fertility, [1] [2] [3] the natural capability to produce offspring, [4] measured by the number of gametes (eggs), seed set, or asexual propagules.

Contents

Human demography

Human demography considers only human fecundity, at its culturally differing rates, while population biology studies all organisms. The term fecundity in population biology is often used to describe the rate of offspring production after one time step (often annual). In this sense, fecundity may include both birth rates and survival of young to that time step. While levels of fecundity vary geographically, it is generally a consistent feature of each culture. Fecundation is another term for fertilization.

In obstetrics and gynecology, fecund-ability is the probability of being pregnant in a single menstrual cycle, and fecundity is the probability of achieving a live birth within a single cycle. [5]

Population ecology

In ecology, fecundity is a measure of the reproductive capacity of an individual or population, typically restricted to the reproductive individuals. It can be equally applied to sexual and asexual reproduction, as the purpose of fecundity is to measure how many new individuals are being added to a population. [6] Fecundity may be defined differently for different ecological studies to explain the specific data the study examined. For example, some studies use apparent fecundity to describe that their data looks at a particular moment in time rather than the species' entire life span. In other studies, these definitions are changed to better quantify fecundity for the organism in question. This need is particularly true for modular organisms, as their modular organization differs from the more typical unitary organism, in which fecundity is best defined through a count of offspring. [7]

Life history patterns (parity)

Parity is the organization of fecundity into two distinct types, semelparity, and iteroparity.

Semelparity occurs when an organism reproduces only once in its lifetime, with death being a part of its reproductive strategy. These species produce many offspring during their one reproductive event, giving them a potential advantage when it comes to fecundity, as they are producing more offspring.

Iteroparity is when a species reproduces multiple times over its lifetime. This species' strategy is to protect against the unpredictable survivability of their offspring, in which if their first litter of offspring dies, they can reproduce again and replace the dead offspring. It also allows the organism to care for its offspring, as they will be alive during their development. [8]

Factors affecting fecundity

There are a multitude of factors that potentially affect the rates of fecundity. For example: ontogeny, population density and latitude.

Ontogeny

Fecundity in iteroparous organisms often increases with age but can decline at older ages. Several hypotheses have been proposed to explain this relationship. For species with declining growth rates after maturity, the suggestion is that as the organism's growth rate decreases, more resources can be allocated to reproduction. Other possible explanations exist for this pattern for organisms that do not grow after maturity. These explanations include: increased competence of older individuals; less fit individuals have already died off; or since life expectancy decreases with age, older individuals may allocate more resources to reproduction at the expense of survival. [6] In semelparous species, age is frequently a poor predictor of fecundity. In these cases, size is likely a better predictor. [9]

Population density

Population density is often observed to negatively affect fecundity, making fecundity density-dependent. The reasoning behind this observation is that once an area is overcrowded, fewer resources are available for each individual. Thus there may be insufficient energy to reproduce in high numbers when offspring survival is low. Occasionally high density can stimulate the production of offspring, particularly in plant species, because if there are more plants, there is food to lure pollinators, who will then spread that plant's pollen and allow for more reproduction. [6]

Latitude

There are many different hypotheses to explain the relationship between latitude and fecundity. One claimed that fecundity increases predictably with increasing latitude. Reginald Morean proposed this hypothesis, the explanation being that there is higher mortality in seasonal environments.[ citation needed ]

A different hypothesis by David Lack attributed the positive relationship to the change in daylight hours found with changing latitudes. These differing daylight hours, in turn, change the hours in which a parent can collect food. He also accounts for a drop in fecundity at the poles due to their extreme amounts of day lengths, which can exhaust the parent. [10]

Fecundity intensity due to seasonality is a hypothesis proposed by Phillip Ashmole. He suggests latitude affects fecundity due to seasonality increasing with increasing latitudes. This theory relies on the mortality concept proposed by Moreau but focuses on how seasonality affects mortality and, in turn, population densities. Thus in places with higher mortality, there is more food availability, leading to higher fecundity. Another hypothesis claims that seasonality affects fecundity due to varying lengths of breeding seasons. This idea suggests that shorter breeding seasons select a larger clutch size to compensate for the reduced reproduction frequency, thus increasing those species' fecundity. [10]

Fecundity and fitness

Fecundity is a significant component of fitness. Fecundity selection builds on that idea. This idea claims that the genetic selection of traits that increase an organism's fecundity is, in turn, advantageous to an organism's fitness. [10]

Fecundity Schedule

Fecundity Schedules are data tables that display the patterns of birth amongst individuals of different ages in a population. These are typically found in life tables under the columns Fx and mx.

Fx lists the total number of young produced by each age class, and mx is the mean number of young produced, found by finding the number of young produced per surviving individual. For example, if you have 12 individuals in an age class and they produced 16 surviving young, the Fx is 16, and the mx is 1.336. [9]

Infecundity

Infecundity is a term meaning "inability to conceive after several years of exposure to the risk of pregnancy." This usage is prevalent in medicine, especially reproductive medicine, and in demographics. Infecundity would be synonymous with infertility, but in demographic and medical use fertility (and thus its antonym infertility) may refer to quantity and rates of offspring produced, rather than any physiological or other limitations on reproduction. [11]

Additional information

Additionally, social trends and societal norms may influence fecundity, though this influence tends to be temporary. Indeed, it is considered impossible to cease reproduction based on social factors, and fecundity tends to rise after a brief decline.

Fecundity has also been shown to increase in ungulates with relation to warmer weather.[ citation needed ]

In sexual evolutionary biology, especially in sexual selection, fecundity is contrasted to reproductivity.

See also

Related Research Articles

Fertility is the ability to conceive a child. The fertility rate is the average number of children born during an individual's lifetime and is quantified demographically. Conversely, infertility is the difficulty or inability to reproduce naturally. In general, infertility is defined as not being able to conceive a child after one year of unprotected sex. Infertility is widespread, with fertility specialists available all over the world to assist parents and couples who experience difficulties conceiving a baby.

<span class="mw-page-title-main">Evolution of sexual reproduction</span> How sexually reproducing multicellular organisms could have evolved from a common ancestor species

Sexual reproduction is an adaptive feature which is common to almost all multicellular organisms and various unicellular organisms. Currently, the adaptive advantage of sexual reproduction is widely regarded as a major unsolved problem in biology. As discussed below, one prominent theory is that sex evolved as an efficient mechanism for producing variation, and this had the advantage of enabling organisms to adapt to changing environments. Another prominent theory, also discussed below, is that a primary advantage of outcrossing sex is the masking of the expression of deleterious mutations. Additional theories concerning the adaptive advantage of sex are also discussed below. Sex does, however, come with a cost. In reproducing asexually, no time nor energy needs to be expended in choosing a mate and, if the environment has not changed, then there may be little reason for variation, as the organism may already be well-adapted. However, very few environments have not changed over the millions of years that reproduction has existed. Hence it is easy to imagine that being able to adapt to changing environment imparts a benefit. Sex also halves the amount of offspring a given population is able to produce. Sex, however, has evolved as the most prolific means of species branching into the tree of life. Diversification into the phylogenetic tree happens much more rapidly via sexual reproduction than it does by way of asexual reproduction.

<span class="mw-page-title-main">Population ecology</span> Study of the dynamics of species populations and how these populations interact with the environment

Population ecology is a sub-field of ecology that deals with the dynamics of species populations and how these populations interact with the environment, such as birth and death rates, and by immigration and emigration.

<span class="mw-page-title-main">Reproductive success</span> Passing of genes on to the next generation in a way that they too can pass on those genes

Reproductive success is an individual's production of offspring per breeding event or lifetime. This is not limited by the number of offspring produced by one individual, but also the reproductive success of these offspring themselves.

<span class="mw-page-title-main">Grandmother hypothesis</span> Hypothesis concerning the existence of menopause

The grandmother hypothesis is a hypothesis to explain the existence of menopause in human life history by identifying the adaptive value of extended kin networking. It builds on the previously postulated "mother hypothesis" which states that as mothers age, the costs of reproducing become greater, and energy devoted to those activities would be better spent helping her offspring in their reproductive efforts. It suggests that by redirecting their energy onto those of their offspring, grandmothers can better ensure the survival of their genes through younger generations. By providing sustenance and support to their kin, grandmothers not only ensure that their genetic interests are met, but they also enhance their social networks which could translate into better immediate resource acquisition. This effect could extend past kin into larger community networks and benefit wider group fitness.

<i>r</i>/<i>K</i> selection theory Ecological theory concerning the selection of life history traits

In ecology, r/K selection theory relates to the selection of combinations of traits in an organism that trade off between quantity and quality of offspring. The focus on either an increased quantity of offspring at the expense of individual parental investment of r-strategists, or on a reduced quantity of offspring with a corresponding increased parental investment of K-strategists, varies widely, seemingly to promote success in particular environments. The concepts of quantity or quality offspring are sometimes referred to as "cheap" or "expensive", a comment on the expendable nature of the offspring and parental commitment made. The stability of the environment can predict if many expendable offspring are made or if fewer offspring of higher quality would lead to higher reproductive success. An unstable environment would encourage the parent to make many offspring, because the likelihood of all of them surviving to adulthood is slim. In contrast, more stable environments allow parents to confidently invest in one offspring because they are more likely to survive to adulthood.

Life history theory (LHT) is an analytical framework designed to study the diversity of life history strategies used by different organisms throughout the world, as well as the causes and results of the variation in their life cycles. It is a theory of biological evolution that seeks to explain aspects of organisms' anatomy and behavior by reference to the way that their life histories—including their reproductive development and behaviors, post-reproductive behaviors, and lifespan —have been shaped by natural selection. A life history strategy is the "age- and stage-specific patterns" and timing of events that make up an organism's life, such as birth, weaning, maturation, death, etc. These events, notably juvenile development, age of sexual maturity, first reproduction, number of offspring and level of parental investment, senescence and death, depend on the physical and ecological environment of the organism.

Voltinism is a term used in biology to indicate the number of broods or generations of an organism in a year. The term is most often applied to insects, and is particularly in use in sericulture, where silkworm varieties vary in their voltinism.

Irruptive growth is a growth pattern over time, defined by a sudden rapid growth in the population of an organism. Irruptive growth is studied in population ecology. Population cycles often display irruptive growth, but with a predictable pattern subsequent decline. It is a phenomenon typically associated with r-strategists.

Enquiry into the evolution of ageing, or aging, aims to explain why a detrimental process such as ageing would evolve, and why there is so much variability in the lifespans of organisms. The classical theories of evolution suggest that environmental factors, such as predation, accidents, disease, and/or starvation, ensure that most organisms living in natural settings will not live until old age, and so there will be very little pressure to conserve genetic changes that increase longevity. Natural selection will instead strongly favor genes which ensure early maturation and rapid reproduction, and the selection for genetic traits which promote molecular and cellular self-maintenance will decline with age for most organisms.

Michael R. Rose is a Professor in the Department of Ecology and Evolutionary Biology at the University of California, Irvine.

Semelparity and iteroparity are two contrasting reproductive strategies available to living organisms. A species is considered semelparous if it is characterized by a single reproductive episode before death, and iteroparous if it is characterized by multiple reproductive cycles over the course of its lifetime. Iteroparity can be further divided into continuous iteroparity and seasonal iteroparity Some botanists use the parallel terms monocarpy and polycarpy.

<span class="mw-page-title-main">Avian clutch size</span>

Clutch size refers to the number of eggs laid in a single brood by a nesting pair of birds. The numbers laid by a particular species in a given location are usually well defined by evolutionary trade-offs with many factors involved, including resource availability and energetic constraints. Several patterns of variation have been noted and the relationship between latitude and clutch size has been a topic of interest in avian reproduction and evolution. David Lack and R.E. Moreau were among the first to investigate the effect of latitude on the number of eggs per nest. Since Lack's first paper in the mid-1940s there has been extensive research on the pattern of increasing clutch size with increasing latitude. The proximate and ultimate causes for this pattern have been a subject of intense debate involving the development of ideas on group, individual, and gene-centric views of selection.

Fecundity selection, also known as fertility selection, is the fitness advantage resulting from selection on traits that increases the number of offspring. Charles Darwin formulated the theory of fecundity selection between 1871 and 1874 to explain the widespread evolution of female-biased sexual size dimorphism (SSD), where females were larger than males.

<span class="mw-page-title-main">Annual vs. perennial plant evolution</span>

Annuality and perenniality represent major life history strategies within plant lineages. These traits can shift from one to another over both macroevolutionary and microevolutionary timescales. While perenniality and annuality are often described as discrete either-or traits, they often occur in a continuous spectrum. The complex history of switches between annual and perennial habit involve both natural and artificial causes, and studies of this fluctuation have importance to sustainable agriculture.

<span class="mw-page-title-main">Capital and income breeding</span>

Capital breeding and income breeding refer to the methods by which some organisms perform time breeding and use resources to finance their breeding. The former "describes the situation in which reproduction is financed using stored capital; [whereas the latter] [...] refers to the use of concurrent intake to pay for a reproductive attempt."

This glossary of genetics and evolutionary biology is a list of definitions of terms and concepts used in the study of genetics and evolutionary biology, as well as sub-disciplines and related fields, with an emphasis on classical genetics, quantitative genetics, population biology, phylogenetics, speciation, and systematics. Overlapping and related terms can be found in Glossary of cellular and molecular biology, Glossary of ecology, and Glossary of biology.

Human reproductive ecology is a subfield in evolutionary biology that is concerned with human reproductive processes and responses to ecological variables. It is based in the natural and social sciences, and is based on theory and models deriving from human and animal biology, evolutionary theory, and ecology. It is associated with fields such as evolutionary anthropology and seeks to explain human reproductive variation and adaptations. The theoretical orientation of reproductive ecology applies the theory of natural selection to reproductive behaviors, and has also been referred to as the evolutionary ecology of human reproduction.

Extrinsic mortality is the sum of the effects of external factors, such as predation, starvation and other environmental factors not under control of the individual that cause death. This is opposed to intrinsic mortality, which is the sum of the effects of internal factors contributing to normal, chronologic aging, such as, for example, mutations due to DNA replication errors, and which determined species maximum lifespan. Extrinsic mortality plays a significant role in evolutionary theories of aging, as well as the discussion of health barriers across socioeconomic borders.

Few animals have a menopause: humans are joined by just four other species in which females live substantially longer than their ability to reproduce. The others are all cetaceans: beluga whales, narwhals, orcas and short-finned pilot whales. There are various theories on the origin and process of the evolution of menopause. These attempt to suggest evolutionary benefits to the human species stemming from the cessation of women's reproductive capability before the end of their natural lifespan. Explanations can be categorized as adaptive and non-adaptive:

References

  1. Etienne van de Valle and Louis Henry (1982). "Fecundity". Multilingual demographic dictionary, English section, second edition. Demopaedia.org, International Union for the Scientific Study of Population. p.  621-1 . Retrieved 8 February 2010.
  2. Eugene Grebenik (1959). "Fecundity". Multilingual demographic dictionary, English section. Prepared by the Demographic Dictionary Committee of the International Union for the Scientific Study of Population. Demopaedia.org, United Nations Department of Economic and Social Affairs (DESA). p.  621-1. Archived from the original on 11 February 2010. Retrieved 8 February 2010.
  3. Habbema, J.D.F. (2004-07-01). "Towards less confusing terminology in reproductive medicine: a proposal". Human Reproduction. Oxford University Press (OUP). 19 (7): 1497–1501. doi: 10.1093/humrep/deh303 . ISSN   1460-2350. PMID   15220305.
  4. Zegers-Hochschild, Fernando; Adamson, G. David; Dyer, Silke; Racowsky, Catherine; de Mouzon, Jacques; Sokol, Rebecca; Rienzi, Laura; Sunde, Arne; Schmidt, Lone; Cooke, Ian D.; Simpson, Joe Leigh; van der Poel, Sheryl (2017). "The International Glossary on Infertility and Fertility Care, 2017". Fertility and Sterility. Elsevier BV. 108 (3): 393–406. doi: 10.1016/j.fertnstert.2017.06.005 . ISSN   0015-0282. PMID   28760517.
  5. Berek JS and Novak E. Berek & Novak's gynecology. 14th ed. 2007, Philadelphia: Lippincott Williams & Wilkins. Pg. 1186
  6. 1 2 3 Bradshaw, C. J. A.; McMahon, C. R. (2008-01-01), "Fecundity", in Jørgensen, Sven Erik; Fath, Brian D. (eds.), Encyclopedia of Ecology, Oxford: Academic Press, pp. 1535–1543, ISBN   978-0-08-045405-4 , retrieved 2022-11-08
  7. Ramirez Llodra, Eva (2002-01-01). Fecundity and life-history strategies in marine invertebrates. Advances in Marine Biology. Vol. 43. pp. 87–170. doi:10.1016/S0065-2881(02)43004-0. ISBN   9780120261437. ISSN   0065-2881. PMID   12154615.
  8. "4: Semelparity versus Iteroparity". Biology LibreTexts. 2022-01-06. Retrieved 2022-11-10.
  9. 1 2 Begon, Michal; Howarth, Robert W.; Townsend, Colin R. (2014). Essentials of Ecology (4th ed.). John Wiley & Sons. pp. 87, 132–135. ISBN   9780470909133.
  10. 1 2 3 Pincheira-Donoso, Daniel; Hunt, John (February 2017). "Fecundity selection theory: concepts and evidence: Fecundity selection". Biological Reviews. 92 (1): 341–356. doi:10.1111/brv.12232. PMID   26526765. S2CID   3033879.
  11. Rutstein, Shea O. and Iqbal H. Shah. 2004. Infecundity, Infertility, and Childlessness in Developing Countries. DHS Comparative Reports No. 9. Calverton, Maryland, USA: ORC Macro and the World Health Organization https://dhsprogram.com/publications/publication-cr9-comparative-reports.cfm