Erbium(III) chloride

Last updated
Erbium(III) chloride
Erbium(III)chloride sunlight.jpg
Names
IUPAC name
Erbium(III) chloride
Other names
Erbium trichloride
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.030.337 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 233-385-0
PubChem CID
UNII
  • InChI=1S/3ClH.Er/h3*1H;/q;;;+3/p-3 Yes check.svgY
    Key: HDGGAKOVUDZYES-UHFFFAOYSA-K Yes check.svgY
  • InChI=1/3ClH.Er/h3*1H;/q;;;+3/p-3
    Key: HDGGAKOVUDZYES-DFZHHIFOAE
  • Cl[Er](Cl)Cl
Properties
ErCl3 (anhydrous)
ErCl3·6H2O (hexahydrate)
Molar mass 273.62 g/mol (anhydrous)
381.71 g/mol (hexahydrate)
Appearanceviolet hygroscopic monoclinic crystals (anhydrous)
pink hygroscopic crystals (hexahydrate)
Density 4.1 g/cm3 (anhydrous)
Melting point 776 °C (1,429 °F; 1,049 K) (anhydrous)
decomposes (hexahydrate)
Boiling point 1,500 °C (2,730 °F; 1,770 K)
soluble in water (anhydrous)
slightly soluble in ethanol (hexahydrate) [1]
Structure [2]
monoclinic
C2/m, No. 12
a = 6.80 Å, b = 11.79 Å, c = 6.39 Å
α = 90°, β = 110.7°, γ = 90°
479 Å3
4
Related compounds
Other anions
Erbium(III) oxide
Other cations
Holmium(III) chloride, Thulium(III) chloride
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Erbium(III) chloride is a violet solid with the formula ErCl3. It is used in the preparation of erbium metal.

Contents

Preparation

Erbium(III) chloride hydrate photographed under a fluorescent lamp Erbium(III) chloride in fluorescent light.jpg
Erbium(III) chloride hydrate photographed under a fluorescent lamp

Anhydrous erbium(III) chloride can be produced by the ammonium chloride route. [3] [4] [5] In the first step, erbium(III) oxide is heated with ammonium chloride to produce the ammonium salt of the pentachloride:

Er2O3 + 10 [NH4]Cl → 2 [NH4]2ErCl5 + 6 H2O + 6 NH3

In the second step, the ammonium chloride salt is converted to the trichloride by heating in a vacuum at 350-400 °C:

[NH4]2ErCl5 → ErCl3 + 2 HCl + 2 NH3

Structural data

Erbium(III) chloride forms crystals of the AlCl3 type, with monoclinic crystals and the point group C2/m. [2]

Erbium(III) chloride hexahydrate also forms monoclinic crystals with the point group of P2/n (P2/c) - C42h. In this compound, erbium is octa-coordinated to form [Er(H2O)6Cl2]+ ions with the isolated Cl completing the structure. [6]

Optical properties

Erbium(III) chloride solutions show a negative nonlinear absorption effect. [7] [ clarification needed ]

Catalytic properties

The use of erbium(III) chloride as a catalyst has been demonstrated in the acylation of alcohols and phenols [8] and in an amine functionalisation of furfural. [9] It is a catalyst for Friedel–Crafts-type reactions, and can be used in place of cerium(III) chloride for Luche reductions. [10]

Related Research Articles

<span class="mw-page-title-main">Erbium</span> Chemical element with atomic number 68 (Er)

Erbium is a chemical element; it has symbol Er and atomic number 68. A silvery-white solid metal when artificially isolated, natural erbium is always found in chemical combination with other elements. It is a lanthanide, a rare-earth element, originally found in the gadolinite mine in Ytterby, Sweden, which is the source of the element's name.

<span class="mw-page-title-main">Cerium(III) chloride</span> Chemical compound

Cerium(III) chloride (CeCl3), also known as cerous chloride or cerium trichloride, is a compound of cerium and chlorine. It is a white hygroscopic salt; it rapidly absorbs water on exposure to moist air to form a hydrate, which appears to be of variable composition, though the heptahydrate CeCl3·7H2O is known. It is highly soluble in water, and (when anhydrous) it is soluble in ethanol and acetone.

<span class="mw-page-title-main">Praseodymium(III) chloride</span> Chemical compound

Praseodymium(III) chloride is the inorganic compound with the formula PrCl3. Like other lanthanide trichlorides, it exists both in the anhydrous and hydrated forms. It is a blue-green solid that rapidly absorbs water on exposure to moist air to form a light green heptahydrate.

Neodymium(III) chloride or neodymium trichloride is a chemical compound of neodymium and chlorine with the formula NdCl3. This anhydrous compound is a mauve-colored solid that rapidly absorbs water on exposure to air to form a purple-colored hexahydrate, NdCl3·6H2O. Neodymium(III) chloride is produced from minerals monazite and bastnäsite using a complex multistage extraction process. The chloride has several important applications as an intermediate chemical for production of neodymium metal and neodymium-based lasers and optical fibers. Other applications include a catalyst in organic synthesis and in decomposition of waste water contamination, corrosion protection of aluminium and its alloys, and fluorescent labeling of organic molecules (DNA).

<span class="mw-page-title-main">Samarium(III) chloride</span> Chemical compound

Samarium(III) chloride, also known as samarium trichloride, is an inorganic compound of samarium and chloride. It is a pale yellow salt that rapidly absorbs water to form a hexahydrate, SmCl3.6H2O. The compound has few practical applications but is used in laboratories for research on new compounds of samarium.

<span class="mw-page-title-main">Europium(III) chloride</span> Chemical compound

Europium(III) chloride is an inorganic compound with the formula EuCl3. The anhydrous compound is a yellow solid. Being hygroscopic it rapidly absorbs water to form a white crystalline hexahydrate, EuCl3·6H2O, which is colourless. The compound is used in research.

<span class="mw-page-title-main">Aluminium chloride</span> Chemical compound

Aluminium chloride, also known as aluminium trichloride, is an inorganic compound with the formula AlCl3. It forms a hexahydrate with the formula [Al(H2O)6]Cl3, containing six water molecules of hydration. Both the anhydrous form and the hexahydrate are colourless crystals, but samples are often contaminated with iron(III) chloride, giving them a yellow colour.

<span class="mw-page-title-main">Dysprosium(III) chloride</span> Chemical compound

Dysprosium(III) chloride (DyCl3), also known as dysprosium trichloride, is a compound of dysprosium and chlorine. It is a white to yellow solid which rapidly absorbs water on exposure to moist air to form a hexahydrate, DyCl3·6H2O. Simple rapid heating of the hydrate causes partial hydrolysis to an oxychloride, DyOCl.

<span class="mw-page-title-main">Rhodium(III) chloride</span> Chemical compound

Rhodium(III) chloride refers to inorganic compounds with the formula RhCl3(H2O)n, where n varies from 0 to 3. These are diamagnetic red-brown solids. The soluble trihydrated (n = 3) salt is the usual compound of commerce. It is widely used to prepare compounds used in homogeneous catalysis.

<span class="mw-page-title-main">Iridium(III) chloride</span> Chemical compound

Iridium(III) chloride is the inorganic compound with the formula IrCl3. The anhydrous compound is relatively rare, but the related hydrate is much more commonly encountered. The anhydrous salt has two polymorphs, α and β, which are brown and red colored respectively. More commonly encountered is the hygroscopic dark green trihydrate IrCl3(H2O)3 which is a common starting point for iridium chemistry.

<span class="mw-page-title-main">Terbium(III,IV) oxide</span> Chemical compound

Terbium(III,IV) oxide, occasionally called tetraterbium heptaoxide, has the formula Tb4O7, though some texts refer to it as TbO1.75. There is some debate as to whether it is a discrete compound, or simply one phase in an interstitial oxide system. Tb4O7 is one of the main commercial terbium compounds, and the only such product containing at least some Tb(IV) (terbium in the +4 oxidation state), along with the more stable Tb(III). It is produced by heating the metal oxalate, and it is used in the preparation of other terbium compounds. It is also used in Electronics and Data Storage, Green Energy Technologies, Medical Imaging and Diagnosis, and Chemical Processes. Terbium forms three other major oxides: Tb2O3, TbO2, and Tb6O11.

<span class="mw-page-title-main">Gadolinium(III) chloride</span> Chemical compound

Gadolinium(III) chloride, also known as gadolinium trichloride, is GdCl3. It is a colorless, hygroscopic, water-soluble solid. The hexahydrate GdCl3∙6H2O is commonly encountered and is sometimes also called gadolinium trichloride. Gd3+ species are of special interest because the ion has the maximum number of unpaired spins possible, at least for known elements. With seven valence electrons and seven available f-orbitals, all seven electrons are unpaired and symmetrically arranged around the metal. The high magnetism and high symmetry combine to make Gd3+ a useful component in NMR spectroscopy and MRI.

<span class="mw-page-title-main">Chromium(III) fluoride</span> Chemical compound

Chromium(III) fluoride is an inorganic compound with the chemical formula CrF3. It forms several hydrates. The compound CrF3 is a green crystalline solid that is insoluble in common solvents, but the hydrates [Cr(H2O)6]F3 (violet) and [Cr(H2O)6]F3·3H2O (green) are soluble in water. The anhydrous form sublimes at 1100–1200 °C.

<span class="mw-page-title-main">Yttrium(III) chloride</span> Chemical compound

Yttrium(III) chloride is an inorganic compound of yttrium and chloride. It exists in two forms, the hydrate (YCl3(H2O)6) and an anhydrous form (YCl3). Both are colourless salts that are highly soluble in water and deliquescent.

<span class="mw-page-title-main">Ytterbium(III) chloride</span> Chemical compound

Ytterbium(III) chloride (YbCl3) is an inorganic chemical compound. It reacts with NiCl2 to form a very effective catalyst for the reductive dehalogenation of aryl halides. It is poisonous if injected, and mildly toxic by ingestion. It is an experimental teratogen, known to irritate the skin and eyes.

<span class="mw-page-title-main">Lanthanum(III) chloride</span> Chemical compound

Lanthanum chloride is the inorganic compound with the formula LaCl3. It is a common salt of lanthanum which is mainly used in research. It is a white solid that is highly soluble in water and alcohols.

<span class="mw-page-title-main">Thulium(III) chloride</span> Chemical compound

Thulium(III) chloride or thulium trichloride is as an inorganic salt composed of thulium and chlorine with the formula TmCl3. It forms yellow crystals. Thulium(III) chloride has the YCl3 (AlCl3) layer structure with octahedral thulium ions. It has been used as a starting material for some exotic nanostructures prepared for NIR photocatalysis.

Lanthanide trichlorides are a family of inorganic compound with the formula LnCl3, where Ln stands for a lanthanide metal. The trichlorides are standard reagents in applied and academic chemistry of the lanthanides. They exist as anhydrous solids and as hydrates.

Manganese(III) chloride is the hypothetical inorganic compound with the formula MnCl3.

Erbium compounds are compounds containing the element erbium (Er). These compounds are usually dominated by erbium in the +3 oxidation state, although the +2, +1 and 0 oxidation states have also been reported.

References

  1. Lide, David R. (1998). Handbook of Chemistry and Physics (87 ed.). Boca Raton, Florida: CRC Press. pp. 4–57. ISBN   0-8493-0594-2.
  2. 1 2 Tempelton DH, Carter GF (1954). "The Crystal Structure of Yttrium Trichloride and Similar Compounds". J Phys Chem. 58 (11): 940–943. doi:10.1021/j150521a002.
  3. Brauer, G., ed. (1963). Handbook of Preparative Inorganic Chemistry (2nd ed.). New York: Academic Press.
  4. Meyer, G. (1989). "The Ammonium Chloride Route to Anhydrous Rare Earth Chlorides—The Example of Ycl 3". The Ammonium Chloride Route to Anhydrous Rare Earth Chlorides-The Example of YCl3. Inorganic Syntheses. Vol. 25. pp. 146–150. doi:10.1002/9780470132562.ch35. ISBN   978-0-470-13256-2.
  5. Edelmann, F. T.; Poremba, P. (1997). Herrmann, W. A. (ed.). Synthetic Methods of Organometallic and Inorganic Chemistry. Vol. VI. Stuttgart: Georg Thieme Verlag. ISBN   978-3-13-103021-4.
  6. Graebner EJ, Conrad GH, Duliere SF (1966). "Crystallographic data for solvated rare earth chlorides". Acta Crystallographica . 21 (6): 1012–1013. doi:10.1107/S0365110X66004420.
  7. Maeda Y, Akidzuki Y, Yamada T (1998). "All-optical liquid device derived from negative nonlinear absorption effect in an erbium chloride solution". Applied Physics Letters. 73 (17): 2411–2413. Bibcode:1998ApPhL..73.2411M. doi:10.1063/1.122450.
  8. Dalpozzo Renato, De Nino Antonio, Maiuolo Loredana, Oliverio Manuela, Procopio Antonio, Russo Beatrice, Tocci Amedeo (2007) Erbium(iii) Chloride: a Very Active Acylation Catalyst. Australian Journal of Chemistry 60, 75-79. doi : 10.1071/CH06346
  9. Synthesis of trans-4,5-Bis-dibenzylaminocyclopent-2-enone from Furfural Catalyzed by ErCl3·6H2O Mónica S. Estevão, Ricardo J. V. Martins, and Carlos A. M. Afonso Journal of Chemical Education 2017 94 (10), 1587-1589 doi : 10.1021/acs.jchemed.6b00470
  10. Luche, Jean-Louis (2001-04-15), "Erbium(III) Chloride", in John Wiley & Sons, Ltd (ed.), Encyclopedia of Reagents for Organic Synthesis, Chichester, UK: John Wiley & Sons, Ltd, pp. re006, doi:10.1002/047084289x.re006, ISBN   978-0-471-93623-7