Ensifentrine

Last updated

Ensifentrine
Ensifentrine.svg
Clinical data
Trade names Ohtuvayre
Other namesRPL-554, LS-193,855
AHFS/Drugs.com Multum Consumer Information
License data
Routes of
administration
Inhalation
Drug class PDE3 inhibitor/PDE4 inhibitor
ATC code
  • None
Legal status
Legal status
Identifiers
  • N-{2-[(2E)-2-(mesitylimino)-9,10-dimethoxy-4-oxo-6,7-dihydro-2H-pyrimido[6,1-a]-isoquinolin-3(4H)-yl]ethyl}urea
CAS Number
PubChem CID
DrugBank
ChemSpider
UNII
KEGG
CompTox Dashboard (EPA)
ECHA InfoCard 100.245.423 OOjs UI icon edit-ltr-progressive.svg
Chemical and physical data
Formula C26H31N5O4
Molar mass 477.565 g·mol−1
3D model (JSmol)
  • Cc3cc(C)cc(C)c3N=c2cc1-c(cc4OC)c(cc4OC)CCn1c(=O)n2CCNC(N)=O
  • InChI=1S/C26H31N5O4/c1-15-10-16(2)24(17(3)11-15)29-23-14-20-19-13-22(35-5)21(34-4)12-18(19)6-8-30(20)26(33)31(23)9-7-28-25(27)32/h10-14H,6-9H2,1-5H3,(H3,27,28,32)/b29-23+ Yes check.svgY
  • Key:CSOBIBXVIYAXFM-BYNJWEBRSA-N Yes check.svgY
   (verify)

Ensifentrine, sold under the brand name Ohtuvayre, is a medication used for the treatment of chronic obstructive pulmonary disease (COPD) in adults. [1] It is a phosphodiesterase 3 inhibitor and phosphodiesterase 4 inhibitor. [1] It is given by inhalation. [1]

Contents

It is an analog of trequinsin and, like trequinsin, is a highly selective inhibitor of the phosphodiesterase enzyme, PDE3; indeed, it is >3000-times more potent against PDE3 than PDE4. [2] As of October 2015, inhaled RPL-554 delivered via a nebulizer was in development for COPD and had been studied in asthma. [3]

PDE3 inhibitors act as bronchodilators, while PDE4 inhibitors have an anti-inflammatory effect. [2] [4]

Medical uses

Ensifentrine is indicated for the maintenance treatment of chronic obstructive pulmonary disease in adults. [1]

History

Ensifentrine was part of a family of compounds invented by Sir David Jack, former head of R&D for GlaxoSmithKline, and Alexander Oxford, a medicinal chemist; the patents on their work were assigned to Vernalis plc. [5] [6] [7] :19–20

In 2005, Rhinopharma Ltd, acquired the rights to the intellectual property from Vernalis. [7] :19–20 Rhinopharma was a startup founded in Vancouver, Canada in 2004 by Michael Walker, Clive Page, and David Saint, to discover and develop drugs for chronic respiratory diseases, [7] :16 and intended to develop ensifentrine, delivered with an inhaler, first for allergic rhinitis, then asthma, then for COPD. [7] :16–17 Ensifentrine was synthesized at a contract research organization, under the supervision of Oxford, and was studied in collaboration with Page's lab at King’s College, London. [2] In 2006 Rhinopharma recapitalized and was renamed Verona Pharma plc. [7]

Ensifentrine was approved for medical use in the United States in June 2024. [1] [8]

Related Research Articles

<span class="mw-page-title-main">Phosphodiesterase inhibitor</span> Drug

A phosphodiesterase inhibitor is a drug that blocks one or more of the five subtypes of the enzyme phosphodiesterase (PDE), thereby preventing the inactivation of the intracellular second messengers, cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) by the respective PDE subtype(s). The ubiquitous presence of this enzyme means that non-specific inhibitors have a wide range of actions, the actions in the heart, and lungs being some of the first to find a therapeutic use.

<span class="mw-page-title-main">Theophylline</span> Drug used to treat respiratory diseases

Theophylline, also known as 1,3-dimethylxanthine, is a drug that inhibits phosphodiesterase and blocks adenosine receptors. It is used to treat chronic obstructive pulmonary disease (COPD) and asthma. Its pharmacology is similar to other methylxanthine drugs. Trace amounts of theophylline are naturally present in tea, coffee, chocolate, yerba maté, guarana, and kola nut.

<span class="mw-page-title-main">Phosphodiesterase</span> Class of enzymes

A phosphodiesterase (PDE) is an enzyme that breaks a phosphodiester bond. Usually, phosphodiesterase refers to cyclic nucleotide phosphodiesterases, which have great clinical significance and are described below. However, there are many other families of phosphodiesterases, including phospholipases C and D, autotaxin, sphingomyelin phosphodiesterase, DNases, RNases, and restriction endonucleases, as well as numerous less-well-characterized small-molecule phosphodiesterases.

<span class="mw-page-title-main">2,5-Dimethoxy-4-iodoamphetamine</span> Chemical compound

2,5-Dimethoxy-4-iodoamphetamine (DOI) is a psychedelic drug and a substituted amphetamine. Unlike many other substituted amphetamines, however, it is not primarily a stimulant. DOI has a stereocenter and R-(−)-DOI is the more active stereoisomer. In neuroscience research, [125I]-R-(−)-DOI is used as a radioligand and indicator of the presence of 5-HT2A serotonin receptors. DOI's effects have been compared to LSD, although there are differences that experienced users can distinguish. Besides the longer duration, the trip tends to be more energetic than an LSD trip, with more body load and a different subjective visual experience. The after effects include residual stimulation and difficulty sleeping, which, depending on the dose, may persist for days. While rare, it is sometimes sold as a substitute for LSD, or even sold falsely as LSD, which may be dangerous because DOI does not have the same established safety profile as LSD.

cGMP-specific phosphodiesterase type 5 Mammalian protein found in humans

Cyclic guanosine monophosphate-specific phosphodiesterase type 5 is an enzyme from the phosphodiesterase class. It is found in various tissues, most prominently the corpus cavernosum of the clitoris and of the penis as well as the retina. It has also been recently discovered to play a vital role in the cardiovascular system.

The Controlled Drugs and Substances Act is Canada's federal drug control statute. Passed in 1996 under Prime Minister Jean Chrétien's government, it repeals the Narcotic Control Act and Parts III and IV of the Food and Drugs Act, and establishes eight Schedules of controlled substances and two Classes of precursors. It provides that "The Governor in Council may, by order, amend any of Schedules I to VIII by adding to them or deleting from them any item or portion of an item, where the Governor in Council deems the amendment to be necessary in the public interest."

<span class="mw-page-title-main">Amrinone</span> Chemical compound

Amrinone, also known as inamrinone, and sold as Inocor, is a pyridine phosphodiesterase 3 inhibitor. It is a drug that may improve the prognosis in patients with congestive heart failure. Amrinone has been shown to increase the contractions initiated in the heart by high-gain calcium induced calcium release (CICR). The positive inotropic effect of amrinone is mediated by the selective enhancement of high-gain CICR, which contributes to the contraction of myocytes by phosphorylation through cAMP dependent protein kinase A (PKA) and Ca2+ calmodulin kinase pathways.

Phosphodiesterase 1, PDE1, EC 3.1.4.1, systematic name oligonucleotide 5-nucleotidohydrolase) is a phosphodiesterase enzyme also known as calcium- and calmodulin-dependent phosphodiesterase. It is one of the 11 families of phosphodiesterase (PDE1-PDE11). Phosphodiesterase 1 has three subtypes, PDE1A, PDE1B and PDE1C which divide further into various isoforms. The various isoforms exhibit different affinities for cAMP and cGMP.

<span class="mw-page-title-main">Phosphodiesterase 2</span> Class of enzymes

The PDE2 enzyme is one of 21 different phosphodiesterases (PDE) found in mammals. These different PDEs can be subdivided to 11 families. The different PDEs of the same family are functionally related despite the fact that their amino acid sequences show considerable divergence. The PDEs have different substrate specificities. Some are cAMP selective hydrolases, others are cGMP selective hydrolases and the rest can hydrolyse both cAMP and cGMP.

<span class="mw-page-title-main">PDE3 inhibitor</span> Chemical compound

A PDE3 inhibitor is a drug which inhibits the action of the phosphodiesterase enzyme PDE3. They are used for the therapy of acute heart failure and cardiogenic shock.

<span class="mw-page-title-main">Ibudilast</span> Chemical compound

Ibudilast is an anti-inflammatory drug used mainly in Japan, which acts as a phosphodiesterase inhibitor, inhibiting the PDE4 subtype to the greatest extent, but also showing significant inhibition of other PDE subtypes.

<span class="mw-page-title-main">PDE4B</span> Protein-coding gene in the species Homo sapiens

cAMP-specific 3',5'-cyclic phosphodiesterase 4B is an enzyme that in humans is encoded by the PDE4B gene.

<span class="mw-page-title-main">Cilomilast</span> Chemical compound

Cilomilast is a drug which was developed for the treatment of respiratory disorders such as asthma and chronic obstructive pulmonary disease (COPD). It is orally active and acts as a selective phosphodiesterase-4 inhibitor.

<span class="mw-page-title-main">Roflumilast</span> Medication

Roflumilast, sold under the brand name Daxas among others, is a medication used for the treatment of chronic obstructive pulmonary disease, plaque psoriasis, seborrheic dermatitis, and atopic dermatitis. It acts as a selective, long-acting inhibitor of the enzyme phosphodiesterase-4 (PDE-4). It has anti-inflammatory effects.

<span class="mw-page-title-main">PDE4 inhibitor</span> Class of chemical compounds

A phosphodiesterase-4 inhibitor, commonly referred to as a PDE4 inhibitor, is a drug used to block the degradative action of phosphodiesterase 4 (PDE4) on cyclic adenosine monophosphate (cAMP). It is a member of the larger family of PDE inhibitors. The PDE4 family of enzymes are the most prevalent PDE in immune cells. They are predominantly responsible for hydrolyzing cAMP within both immune cells and cells in the central nervous system.

<span class="mw-page-title-main">Indantadol</span> Chemical compound

Indantadol is a drug which was formerly being investigated as an anticonvulsant and neuroprotective and is now under development for the treatment of neuropathic pain and chronic cough in Europe by Vernalis and Chiesi. It acts as a competitive, reversible, and non-selective monoamine oxidase inhibitor, and as a low affinity, non-competitive NMDA receptor antagonist. A pilot study of indantadol for chronic cough was initiated in October 2009 and in April 2010 it failed to achieve significant efficacy in neuropathic pain in phase IIb clinical trials.

<span class="mw-page-title-main">Filaminast</span> Chemical compound

Filaminast was a drug candidate developed by Wyeth-Ayerst. It is a phosphodiesterase 4 inhibitor and an analog of rolipram, which served as a prototype molecule for several development efforts. It was discontinued after a Phase II trial showed that its therapeutic window was too narrow; it could not be dosed high enough without causing significant side effects, which was a problem with the rolipram class of molecules.

<span class="mw-page-title-main">Apremilast</span> Medication for psoriasis and psoriatic arthritis

Apremilast, sold under the brand name Otezla among others, is a medication for the treatment of certain types of psoriasis and psoriatic arthritis. The drug acts as a selective inhibitor of the enzyme phosphodiesterase 4 (PDE4). It is taken by mouth.

<span class="mw-page-title-main">Cereblon E3 ligase modulator</span> Class of immunomodulatory drugs

Cereblon E3 ligase modulators, also known as immunomodulatory imide drugs (IMiDs), are a class of immunomodulatory drugs containing an imide group. The IMiD class includes thalidomide and its analogues. These drugs may also be referred to as 'Cereblon modulators'. Cereblon (CRBN) is the protein targeted by this class of drugs.

Benjamin Weiss is an American neuropharmacologist, Emeritus Professor of Pharmacology and Physiology at Drexel University College of Medicine. He is best known for his work with cyclic nucleotide phosphodiesterases. He was the first to propose, based on his experimental work, that selective inhibition of phosphodiesterases which are expressed differentially in all tissues, could be used as a target for drug development. His work is the basis for many marketed and developmental human drugs that selectively inhibit cyclic nucleotide phosphodiesterases.

References

  1. 1 2 3 4 5 6 "Ohtuvayre- ensifentrine suspension". DailyMed. 18 June 2024. Retrieved 15 August 2024.
  2. 1 2 3 Boswell-Smith V, Spina D, Oxford AW, Comer MB, Seeds EA, Page CP (August 2006). "The pharmacology of two novel long-acting phosphodiesterase 3/4 inhibitors, RPL554 [9,10-dimethoxy-2(2,4,6-trimethylphenylimino)-3-(n-carbamoyl-2-aminoethyl)-3,4,6,7-tetrahydro-2H-pyrimido[6,1-a]isoquinolin-4-one] and RPL565 [6,7-dihydro-2-(2,6-diisopropylphenoxy)-9,10-dimethoxy-4H-pyrimido[6,1-a]isoquinolin-4-one]" (PDF). The Journal of Pharmacology and Experimental Therapeutics . 318 (2): 840–8. doi:10.1124/jpet.105.099192. PMID   16682455. S2CID   15490792. Archived from the original (PDF) on 2 March 2019.
  3. Taylor NP (1 October 2015). "Verona sets sights on PhIIb after COPD drug comes through early trial". FierceBiotech.
  4. Turner MJ, Matthes E, Billet A, Ferguson AJ, Thomas DY, Randell SH, et al. (January 2016). "The dual phosphodiesterase 3 and 4 inhibitor RPL554 stimulates CFTR and ciliary beating in primary cultures of bronchial epithelia". American Journal of Physiology. Lung Cellular and Molecular Physiology . 310 (1): L59-70. doi: 10.1152/ajplung.00324.2015 . PMID   26545902.
  5. EP 1165558,Oxford AW, Jack D,"Derivatives of pyrimido[6,1-a]isoquinolin-4-one",published 2002-01-02, assigned to Verona Pharma plc
  6. Boswell-Smith V, Spina D, Oxford AW, Comer MB, Seeds EA, Page CP (August 2006). "The pharmacology of two novel long-acting phosphodiesterase 3/4 inhibitors, RPL554 [9,10-dimethoxy-2(2,4,6-trimethylphenylimino)-3-(n-carbamoyl-2-aminoethyl)-3,4,6,7-tetrahydro-2H-pyrimido[6,1-a]isoquinolin-4-one] and RPL565 [6,7-dihydro-2-(2,6-diisopropylphenoxy)-9,10-dimethoxy-4H-pyrimido[6,1-a]isoquinolin-4-one]". The Journal of Pharmacology and Experimental Therapeutics . 318 (2): 840–848. doi:10.1124/jpet.105.099192. PMID   16682455. S2CID   15490792.
  7. 1 2 3 4 5 "Proposed Acquisition of Rhinopharma" (PDF). Isis Resources plc. 23 August 2006. Archived from the original (PDF) on 2 March 2016.
  8. "Novel Drug Approvals for 2024". U.S. Food and Drug Administration (FDA). 1 October 2024. Retrieved 29 November 2024.