Durham tube

Last updated • 1 min readFrom Wikipedia, The Free Encyclopedia
Durham tube
UsesVisual detection of gas produced by a microorganism
Related items Test tube
Diagram of a Durham Tube Durham tube diagram.jpg
Diagram of a Durham Tube

Durham tubes are used in microbiology to detect production of gas by microorganisms. They are simply smaller test tubes inserted upside down in another test tube so they are freely movable. The culture media to be tested is then added to the larger tube and sterilized, which also eliminates the initial air gap produced when the tube is inserted upside down. The culture media typically contains a single substance to be tested with the organism, such as to determine whether an organism can ferment a particular carbohydrate. After inoculation and incubation, any gas that is produced will form a visible gas bubble inside the small tube. [1] Litmus solution can also be added to the culture media to give a visual representation of pH changes that occur during the production of gas. [1] [2] The method was first reported in 1898 by British microbiologist Herbert Durham. [1]

One limitation of the Durham tube is that it does not allow for precise determination of the type of gas that is produced within the inner tube, or measurements of the quantity of gas produced. [3] However, Durham argued that quantitive measurements are of limited value because of the culture solution will absorb some of the gas in unknown, variable proportions. [3] Additionally, using Durham tubes to provide evidence of fermentation may not be able to detect slow- or weakly-fermenting organisms when the resultant carbon dioxide diffuses back into the solution as quickly as it is formed, [4] so a negative test using Durham tubes does not indicate decisive physiological significance. [5]

Related Research Articles

<span class="mw-page-title-main">Nutrition</span> Provision to cells and organisms to support life

Nutrition is the biochemical and physiological process by which an organism uses food to support its life. It provides organisms with nutrients, which can be metabolized to create energy and chemical structures. Failure to obtain sufficient nutrients causes malnutrition. Nutritional science is the study of nutrition, though it typically emphasizes human nutrition.

An anaerobic organism or anaerobe is any organism that does not require molecular oxygen for growth. It may react negatively or even die if free oxygen is present. In contrast, an aerobic organism (aerobe) is an organism that requires an oxygenated environment. Anaerobes may be unicellular or multicellular. Most fungi are obligate aerobes, requiring oxygen to survive. However, some species, such as the Chytridiomycota that reside in the rumen of cattle, are obligate anaerobes; for these species, anaerobic respiration is used because oxygen will disrupt their metabolism or kill them. Deep waters of the ocean are a common anoxic environment.

<span class="mw-page-title-main">Test tube</span> Glass or plastic laboratory glassware

A test tube, also known as a culture tube or sample tube, is a common piece of laboratory glassware consisting of a finger-like length of glass or clear plastic tubing, open at the top and closed at the bottom.

<span class="mw-page-title-main">Agar plate</span> Petri dish with agar used to culture microbes

An agar plate is a Petri dish that contains a growth medium solidified with agar, used to culture microorganisms. Sometimes selective compounds are added to influence growth, such as antibiotics.

<span class="mw-page-title-main">Microbiological culture</span> Method of allowing microorganisms to multiply in a controlled medium

A microbiological culture, or microbial culture, is a method of multiplying microbial organisms by letting them reproduce in predetermined culture medium under controlled laboratory conditions. Microbial cultures are foundational and basic diagnostic methods used as a research tool in molecular biology.

<span class="mw-page-title-main">Bacteriological water analysis</span>

Bacteriological water analysis is a method of analysing water to estimate the numbers of bacteria present and, if needed, to find out what sort of bacteria they are. It represents one aspect of water quality. It is a microbiological analytical procedure which uses samples of water and from these samples determines the concentration of bacteria. It is then possible to draw inferences about the suitability of the water for use from these concentrations. This process is used, for example, to routinely confirm that water is safe for human consumption or that bathing and recreational waters are safe to use.

<span class="mw-page-title-main">Bioreactor</span> Device or system that supports a biologically active environment

A bioreactor refers to any manufactured device or system that supports a biologically active environment. In one case, a bioreactor is a vessel in which a chemical process is carried out which involves organisms or biochemically active substances derived from such organisms. This process can either be aerobic or anaerobic. These bioreactors are commonly cylindrical, ranging in size from litres to cubic metres, and are often made of stainless steel. It may also refer to a device or system designed to grow cells or tissues in the context of cell culture. These devices are being developed for use in tissue engineering or biochemical/bioprocess engineering.

<span class="mw-page-title-main">Blood culture</span> Test to detect bloodstream infections

A blood culture is a medical laboratory test used to detect bacteria or fungi in a person's blood. Under normal conditions, the blood does not contain microorganisms: their presence can indicate a bloodstream infection such as bacteremia or fungemia, which in severe cases may result in sepsis. By culturing the blood, microbes can be identified and tested for resistance to antimicrobial drugs, which allows clinicians to provide an effective treatment.

<span class="mw-page-title-main">Coliform bacteria</span>

Coliform bacteria are defined as either motile or non-motile Gram-negative non-spore forming Bacilli that possess β-galactosidase to produce acids and gases under their optimal growth temperature of 35-37°C. They can be aerobes or facultative aerobes, and are a commonly used indicator of low sanitary quality of foods, milk, and water. Coliforms can be found in the aquatic environment, in soil and on vegetation; they are universally present in large numbers in the feces of warm-blooded animals as they are known to inhabit the gastrointestinal system. While coliform bacteria are not normally causes of serious illness, they are easy to culture, and their presence is used to infer that other pathogenic organisms of fecal origin may be present in a sample, or that said sample is not safe to consume. Such pathogens include disease-causing bacteria, viruses, or protozoa and many multicellular parasites.

Industrial fermentation is the intentional use of fermentation in manufacturing products useful to humans. In addition to the mass production of fermented foods and drinks, industrial fermentation has widespread applications in chemical industry. Commodity chemicals, such as acetic acid, citric acid, and ethanol are made by fermentation. Moreover, nearly all commercially produced industrial enzymes, such as lipase, invertase and rennet, are made by fermentation with genetically modified microbes. In some cases, production of biomass itself is the objective, as is the case for single-cell proteins, baker's yeast, and starter cultures for lactic acid bacteria used in cheesemaking.

<span class="mw-page-title-main">Antibiotic sensitivity testing</span> Microbiology test used in medicine

Antibiotic sensitivity testing or antibiotic susceptibility testing is the measurement of the susceptibility of bacteria to antibiotics. It is used because bacteria may have resistance to some antibiotics. Sensitivity testing results can allow a clinician to change the choice of antibiotics from empiric therapy, which is when an antibiotic is selected based on clinical suspicion about the site of an infection and common causative bacteria, to directed therapy, in which the choice of antibiotic is based on knowledge of the organism and its sensitivities.

<span class="mw-page-title-main">Food microbiology</span> Study of the microorganisms that inhibit, create, or contaminate food

Food microbiology is the study of the microorganisms that inhabit, create, or contaminate food. This includes the study of microorganisms causing food spoilage; pathogens that may cause disease ; microbes used to produce fermented foods such as cheese, yogurt, bread, beer, and wine; and microbes with other useful roles, such as producing probiotics.

<span class="mw-page-title-main">Medical microbiology</span> Branch of medical science

Medical microbiology, the large subset of microbiology that is applied to medicine, is a branch of medical science concerned with the prevention, diagnosis and treatment of infectious diseases. In addition, this field of science studies various clinical applications of microbes for the improvement of health. There are four kinds of microorganisms that cause infectious disease: bacteria, fungi, parasites and viruses, and one type of infectious protein called prion.

<span class="mw-page-title-main">Nutrient agar</span> Liquid medium for growing microorganisms

Nutrient agar is a general purpose liquid medium supporting growth of a wide range of non-fastidious organisms. It typically contains (mass/volume):

<span class="mw-page-title-main">Sampling (medicine)</span> Collection of bodily substances for medical assessment

In medicine, sampling is gathering of matter from the body to aid in the process of a medical diagnosis and/or evaluation of an indication for treatment, further medical tests or other procedures. In this sense, the sample is the gathered matter, and the sampling tool or sampler is the person or material to collect the sample.

Oxidative/fermentation glucose test is a biological technique. It was developed in 1953 by Hugh and Leifson to be utilized in microbiology to determine the way a microorganism metabolizes a carbohydrate such as glucose (dextrose). OF-glucose deeps contain glucose as a carbohydrate, peptones, bromothymol blue indicator for Hugh-Leifson's OF medium or phenol red for King's OF medium, and 0.5% agar.

<span class="mw-page-title-main">Auto-brewery syndrome</span> Medical condition

Auto-brewery syndrome(ABS) is a condition characterized by the fermentation of ingested carbohydrates in the gastrointestinal tract of the body caused by bacteria or fungi. ABS is a rare medical condition in which intoxicating quantities of ethanol are produced through endogenous fermentation within the digestive system. The organisms responsible for ABS include various yeasts and bacteria, including Saccharomyces cerevisiae, S. boulardii, Candida albicans, C. tropicalis, C. krusei, C. glabrata, C. kefyr, C. parapsilosis, Klebsiella pneumoniae, and Enterococcus faecium. These organisms use lactic acid fermentation or mixed acid fermentation pathways to produce an ethanol end product. The ethanol generated from these pathways is absorbed in the small intestine, causing an increase in blood alcohol concentrations that produce the effects of intoxication without the consumption of alcohol.

<span class="mw-page-title-main">Indirect calorimetry</span> Measurement of the heat of living organisms through indirect means

Indirect calorimetry calculates heat that living organisms produce by measuring either their production of carbon dioxide and nitrogen waste, or from their consumption of oxygen. Indirect calorimetry estimates the type and rate of substrate utilization and energy metabolism in vivo starting from gas exchange measurements. This technique provides unique information, is noninvasive, and can be advantageously combined with other experimental methods to investigate numerous aspects of nutrient assimilation, thermogenesis, the energetics of physical exercise, and the pathogenesis of metabolic diseases.

Diagnostic microbiology is the study of microbial identification. Since the discovery of the germ theory of disease, scientists have been finding ways to harvest specific organisms. Using methods such as differential media or genome sequencing, physicians and scientists can observe novel functions in organisms for more effective and accurate diagnosis of organisms. Methods used in diagnostic microbiology are often used to take advantage of a particular difference in organisms and attain information about what species it can be identified as, which is often through a reference of previous studies. New studies provide information that others can reference so that scientists can attain a basic understanding of the organism they are examining.

<span class="mw-page-title-main">Colonial morphology</span> Examination of microbial colonies

In microbiology, colonial morphology refers to the visual appearance of bacterial or fungal colonies on an agar plate. Examining colonial morphology is the first step in the identification of an unknown microbe. The systematic assessment of the colonies' appearance, focusing on aspects like size, shape, colour, opacity, and consistency, provides clues to the identity of the organism, allowing microbiologists to select appropriate tests to provide a definitive identification.

References

  1. 1 2 3 Durham, Herbert E (1898). "A simple method for demonstrating the production of gas by bacteria". British Medical Journal. 1: 1387. PMC   2411497 . PMID   20757850.
  2. Cappuccino, James G.; Sherman, Natalie (2014). "Experiment 23: Carbohydrate Fermentation". Microbiology: A Laboratory Manual (10th ed.). Pearson. p. 161. ISBN   978-0-321-84022-6.
  3. 1 2 Hall, Ivan C. (1914). "An Improved (Durham) Fermentation Tube". American Journal of Public Health. 4 (12): 1173–1178.
  4. Kreger-Van Rij, Nelly J. W. (1962). "The Use of Biochemical Criteria In The Taxonomy of Yeasts". Microbial classification: Twelfth Symposium of the Society for General Microbiology held at the Royal Institution, London, April 1962. The Syndics of the Cambridge University Press. p. 201.
  5. Van Dijken, Johannes P.; Van Den Bosch, Eduard; Hermans, John J.; De Miranda, Lennart Rodrigues; Scheffers, W. Alexander (1986). "Alcoholic fermentation by "non-fermentative" yeasts". Yeast. 2 (2): 123–127. doi:10.1002/yea.320020208.