Dictyostelium | |
---|---|
Dictyostelium fruiting bodies | |
Scientific classification | |
Domain: | Eukaryota |
Phylum: | Amoebozoa |
Class: | Dictyostelia |
Order: | Dictyosteliida |
Family: | Dictyosteliidae |
Genus: | Dictyostelium Bref. |
Type species | |
Dictyostelium mucoroides Brefeld 1869 | |
Synonyms | |
|
Dictyostelium is a genus of single- and multi-celled eukaryotic, phagotrophic bacterivores. Though they are Protista and in no way fungal, they traditionally are known as "slime molds". They are present in most terrestrial ecosystems as a normal and often abundant component of the soil microflora, and play an important role in the maintenance of balanced bacterial populations in soils. [1] [2]
The genus Dictyostelium is in the order Dictyosteliida, the so-called cellular slime molds or social amoebae. In turn the order is in the infraphylum Mycetozoa. Members of the order are Protista of great theoretical interest in biology because they have aspects of both unicellularity and multicellularity. The individual cells in their independent phase are common on organic detritus or in damp soils and caves. In this phase they are amoebae. Typically, the amoebal cells grow separately and wander independently, feeding mainly on bacteria. However, they interact to form multi-cellular structures following starvation. Groups of up to about 100,000 cells signal each other by releasing chemoattractants such as cyclic AMP (cAMP) or glorin. They then coalesce by chemotaxis to form an aggregate that becomes surrounded by an extracellular matrix. The aggregate forms a fruiting body, with cells differentiating individually into different components of the final structure. [3] In some species, the whole aggregate may move collectively – forming a structure known as a grex or "slug" – before finally forming a fruiting body. Basic processes of development such as differential cell sorting, pattern formation, stimulus-induced gene expression, and cell-type regulation are common to Dictyostelium and metazoans. For further detail see family Dictyostelid.
The cellular slime mold was formerly considered to be fungi following their discovery in 1869 by Brefeld. Although they resemble fungi in some respects, they have been included in the kingdom Protista. [4] Individual cells resemble small amoebae in their movement and feeding, and so are referred to as myxamoebae. D. discoideum is the most studied of the genus.
Most of its life, this haploid social amoeba undergoes a vegetative cycle, preying upon bacteria in the soil, and periodically dividing mitotically. When food is scarce, either the sexual cycle or the social cycle begins. Under the social cycle, amoebae aggregate in response to cAMP by the thousands, and form a motile slug, which moves towards light. Ultimately the slug forms a fruiting body in which about 20% of the cells die to lift the remaining cells up to a better place for sporulation and dispersal.
When starved for their bacterial food supply and exposed to dark, moist conditions, heterothallic or homothallic strains can undergo sexual development that results in the formation of a diploid zygote. [5] Heterothallic mating has been best studied in D. discoideum and homothallic mating has been best studied in Dictyostelium mucoroides (strain DM7). In the heterothallic sexual cycle, amoebae aggregate in response to cAMP and sex pheromones, and two cells of opposite mating types fuse, and then begin consuming the other attracted cells. Before they are consumed, some of the prey cells form a cellulose wall around the entire group. When cannibalism is complete, the giant diploid cell is a hardy macrocyst which eventually undergoes recombination and meiosis, [6] and hatches hundreds of recombinants. [7] [8] In D. mucoroides (DM7) homothallic mating, cells are directed towards sexual development by ethylene. [5] Scientists also found the collective cell migration could occur without the presence of cAMP oscillations at multicellular stages, and novel models have been proposed to interpret this interesting phenomenon. [9]
Professor John Tyler Bonner (1920-2019) spent a lifetime researching the slime molds and created a number of fascinating films in the 1940s to show the life cycle; he mostly studied D. discoideum. In the videos, intelligence appears to be observed as the single cells, after separation, regroup into a cellular mass. The time-lapse film captivated audiences; indeed, Bonner when giving conferences stated that the film "always stole the show". [10] The video is available on YouTube. [11]
When the organisms congregate, the mass is made of genetically distinct cells. Through natural selection, it is determined which of the organisms' genetic information will be present in future generations. The conflict is evidenced by unequal representations of two genetically different clones in spores of a chimera, the reduction of functionality seen in migrating chimeras, and a differentiation inducing factor (DIF) system, akin to poison, that appears to be made of cells forcing others to cease output of genetic information. [12]
Taxonomy of Dictyostelium is complicated. It has also been confused by the different forms in the life cycle stages and by the similar Polysphondylium spp. Below are some reported examples. [13]
Slime mold or slime mould is an informal name given to a polyphyletic assemblage of unrelated eukaryotic organisms in the Stramenopiles, Rhizaria, Discoba, Amoebozoa and Holomycota clades. Most are microscopic; those in the Myxogastria form larger plasmodial slime molds visible to the naked eye. The slime mold life cycle includes a free-living single-celled stage and the formation of spores. Spores are often produced in macroscopic multicellular or multinucleate fruiting bodies that may be formed through aggregation or fusion; aggregation is driven by chemical signals called acrasins. Slime molds contribute to the decomposition of dead vegetation; some are parasitic.
The dictyostelids or cellular slime molds are a group of slime molds or social amoebae.
Mycetozoa is a polyphyletic grouping of slime molds. It was originally thought to be a monophyletic clade, but recently it was discovered that protostelia are a polyphyletic group within Conosa.
A multicellular organism is an organism that consists of more than one cell, in contrast to unicellular organism. All species of animals, land plants and most fungi are multicellular, as are many algae, whereas a few organisms are partially uni- and partially multicellular, like slime molds and social amoebae such as the genus Dictyostelium.
Amoebozoa is a major taxonomic group containing about 2,400 described species of amoeboid protists, often possessing blunt, fingerlike, lobose pseudopods and tubular mitochondrial cristae. In traditional classification schemes, Amoebozoa is usually ranked as a phylum within either the kingdom Protista or the kingdom Protozoa. In the classification favored by the International Society of Protistologists, it is retained as an unranked "supergroup" within Eukaryota. Molecular genetic analysis supports Amoebozoa as a monophyletic clade. Modern studies of eukaryotic phylogenetic trees identify it as the sister group to Opisthokonta, another major clade which contains both fungi and animals as well as several other clades comprising some 300 species of unicellular eukaryotes. Amoebozoa and Opisthokonta are sometimes grouped together in a high-level taxon, variously named Unikonta, Amorphea or Opimoda.
The Rhizaria are a diverse and species-rich supergroup of mostly unicellular eukaryotes. Except for the Chlorarachniophytes and three species in the genus Paulinella in the phylum Cercozoa, they are all non-photosynthethic, but many foraminifera and radiolaria have a symbiotic relationship with unicellular algae. A multicellular form, Guttulinopsis vulgaris, a cellular slime mold, has been described. This group was used by Cavalier-Smith in 2002, although the term "Rhizaria" had been long used for clades within the currently recognized taxon. Being described mainly from rDNA sequences, they vary considerably in form, having no clear morphological distinctive characters (synapomorphies), but for the most part they are amoeboids with filose, reticulose, or microtubule-supported pseudopods. In the absence of an apomorphy, the group is ill-defined, and its composition has been very fluid. Some Rhizaria possess mineral exoskeletons, which are in different clades within Rhizaria made out of opal, celestite, or calcite. Certain species can attain sizes of more than a centimeter with some species being able to form cylindrical colonies approximately 1 cm in diameter and greater than 1 m in length. They feed by capturing and engulfing prey with the extensions of their pseudopodia; forms that are symbiotic with unicellular algae contribute significantly to the total primary production of the ocean.
Microbial intelligence is the intelligence shown by microorganisms. The concept encompasses complex adaptive behavior shown by single cells, and altruistic or cooperative behavior in populations of like or unlike cells mediated by chemical signalling that induces physiological or behavioral changes in cells and influences colony structures.
The family Acrasidae is a family of slime molds which belongs to the excavate group Percolozoa. The name element acrasio- comes from the Greek akrasia, meaning "acting against one's judgement". This group consists of cellular slime molds.
Eumycetozoa, or true slime molds, is a diverse group of protists that behave as slime molds and develop fruiting bodies, either as sorocarps or as sporocarps. It is a monophyletic group or clade within the phylum Amoebozoa that contains the myxogastrids, dictyostelids and protosporangiids.
Each species of slime mold has its own specific chemical messenger, which are collectively referred to as acrasins. These chemicals signal that many individual cells aggregate to form a single large cell or plasmodium. One of the earliest acrasins to be identified was cyclic AMP, found in the species Dictyostelium discoideum by Brian Shaffer, which exhibits a complex swirling-pulsating spiral pattern when forming a pseudoplasmodium.
Cyclic AMP receptors from slime molds are a distinct family of G-protein coupled receptors. These receptors control development in Dictyostelium discoideum.
Dictyostelium discoideum is a species of soil-dwelling amoeba belonging to the phylum Amoebozoa, infraphylum Mycetozoa. Commonly referred to as slime mold, D. discoideum is a eukaryote that transitions from a collection of unicellular amoebae into a multicellular slug and then into a fruiting body within its lifetime. Its unique asexual life cycle consists of four stages: vegetative, aggregation, migration, and culmination. The life cycle of D. discoideum is relatively short, which allows for timely viewing of all stages. The cells involved in the life cycle undergo movement, chemical signaling, and development, which are applicable to human cancer research. The simplicity of its life cycle makes D. discoideum a valuable model organism to study genetic, cellular, and biochemical processes in other organisms.
A macrocyst is an aggregate of cells of Dictyostelids formed during sexual reproduction enclosed in a cellulose wall.
Differentiation-inducing factor (DIF) is one of a class of effector molecules that induce changes in cell chemistry, inhibiting growth and promoting differentiation of cell type. This name has been given to several factors before it was clear if they were the same or different effectors. More recently DIFs have garnered interest with their potential tumor inhibiting properties. DIFs have also been used to help regulate plant growth.
Acytostelium is a genus of dictyostelid Acytostelium is a lesser-known cellular slime mold that elicits scientific attention. The organisms belonging to the family Acanthamoebidae offer a distinctive perspective on the realm of microorganisms, owing to their intricate life cycles and distinct biological functions. This essay will discuss the natural history of Acytostelium and provide guidance on selecting a scientifically substantiated statement or natural history observation to augment its Wikipedia stub. This will facilitate the elucidation of this intriguing organism.
Polysphondylium is a genus of cellular slime mold, including the species Polysphondylium pallidum. The genus was circumscribed by German mycologist Julius Oscar Brefeld in 1884.
Fonticula is a genus of cellular slime mold which forms a fruiting body in a volcano shape. As long ago as 1979 it has been known to not have a close relationship with either the Dictyosteliida or the Acrasidae, the two well-established groups of cellular slime molds. In 1979, Fonticula was made a new genus of its own due to the unique characteristics of its fruiting body, with only one species: Fonticula alba.
An amoeba, often called an amoeboid, is a type of cell or unicellular organism with the ability to alter its shape, primarily by extending and retracting pseudopods. Amoebae do not form a single taxonomic group; instead, they are found in every major lineage of eukaryotic organisms. Amoeboid cells occur not only among the protozoa, but also in fungi, algae, and animals.
Pauline Schaap is a Dutch cell biologist and evolutionary biologist. She is Professor of Developmental Signalling at the University of Dundee., a corresponding member of the Royal Netherlands Academy of Arts and Sciences, a Fellow of the Royal Society of Biology, and a Fellow of the Royal Society of Edinburgh.
Amoebozoa of the free living genus Acanthamoeba and the social amoeba genus Dictyostelium are single celled eukaryotic organisms that feed on bacteria, fungi, and algae through phagocytosis, with digestion occurring in phagolysosomes. Amoebozoa are present in most terrestrial ecosystems including soil and freshwater. Amoebozoa contain a vast array of symbionts that range from transient to permanent infections, confer a range of effects from mutualistic to pathogenic, and can act as environmental reservoirs for animal pathogenic bacteria. As single celled phagocytic organisms, amoebas simulate the function and environment of immune cells like macrophages, and as such their interactions with bacteria and other microbes are of great importance in understanding functions of the human immune system, as well as understanding how microbiomes can originate in eukaryotic organisms.