Coefficient of restitution

Last updated

A bouncing ball captured with a stroboscopic flash at 25 images per second: Ignoring air resistance, the square root of the ratio of the height of one bounce to that of the preceding bounce gives the coefficient of restitution for the ball/surface impact. Bouncing ball strobe edit.jpg
A bouncing ball captured with a stroboscopic flash at 25 images per second: Ignoring air resistance, the square root of the ratio of the height of one bounce to that of the preceding bounce gives the coefficient of restitution for the ball/surface impact.

The coefficient of restitution (COR, also denoted by e), is the ratio of the relative velocity of separation after collision to the relative velocity of approach before collision. It can also be defined as the square root of the ratio of the final kinetic energy to the initial kinetic energy. It normally ranges from 0 to 1 where 1 would be a perfectly elastic collision. A perfectly inelastic collision has a coefficient of 0, but a 0 value does not have to be perfectly inelastic. It is measured in the Leeb rebound hardness test, expressed as 1000 times the COR, but it is only a valid COR for the test, not as a universal COR for the material being tested.

Contents

The value is almost always less than 1 due to initial translational kinetic energy being lost to rotational kinetic energy, plastic deformation, and heat. It can be more than 1 if there is an energy gain during the collision from a chemical reaction, a reduction in rotational energy, or another internal energy decrease that contributes to the post-collision velocity.

The mathematics were developed by Sir Isaac Newton in 1687. [1] It is also known as Newton's experimental law.

Further details

Line of impact – It is the line along which e is defined or in absence of tangential reaction force between colliding surfaces, force of impact is shared along this line between bodies. During physical contact between bodies during impact its line along common normal to pair of surfaces in contact of colliding bodies. Hence e is defined as a dimensionless one-dimensional parameter.

Range of values for e – treated as a constant

e is usually a positive, real number between 0 and 1:

Paired objects

The COR is a property of a pair of objects in a collision, not a single object. If a given object collides with two different objects, each collision would have its own COR. When an object is described as having a coefficient of restitution, as if it were an intrinsic property without reference to a second object, it is assumed to be between identical spheres or against a perfectly rigid wall.

A perfectly rigid wall is not possible but can be approximated by a steel block if investigating the COR of spheres with a much smaller modulus of elasticity. Otherwise, the COR will rise and then fall based on collision velocity in a more complicated manner. [5]

Relationship with conservation of energy and momentum

In a one-dimensional collision, the two key principles are: conservation of energy (conservation of kinetic energy if the collision is perfectly elastic) and conservation of (linear) momentum. A third equation can be derived[ citation needed ] from these two, which is the restitution equation as stated above. When solving problems, any two of the three equations can be used. The advantage of using the restitution equation is that it sometimes provides a more convenient way to approach the problem.

Let , be the mass of object 1 and object 2 respectively. Let , be the initial velocity of object 1 and object 2 respectively. Let , be the final velocity of object 1 and object 2 respectively. From the first equation, From the second equation, After division, The equation above is the restitution equation, and the coefficient of restitution is 1, which is a perfectly elastic collision.

Sports equipment

Thin-faced golf club drivers utilize a "trampoline effect" that creates drives of a greater distance as a result of the flexing and subsequent release of stored energy which imparts greater impulse to the ball. The USGA (America's governing golfing body) tests [6] drivers for COR and has placed the upper limit at 0.83. COR is a function of rates of clubhead speeds and diminish as clubhead speed increase. [7] In the report COR ranges from 0.845 for 90 mph to as low as 0.797 at 130 mph. The above-mentioned "trampoline effect" shows this since it reduces the rate of stress of the collision by increasing the time of the collision. According to one article (addressing COR in tennis racquets), "[f]or the Benchmark Conditions, the coefficient of restitution used is 0.85 for all racquets, eliminating the variables of string tension and frame stiffness which could add or subtract from the coefficient of restitution." [8]

The International Table Tennis Federation specifies that the ball shall bounce up 24–26 cm when dropped from a height of 30.5 cm on to a standard steel block thereby having a COR of 0.887 to 0.923. [9]

A basketball's COR is designated by requiring that the ball shall rebound to a height of between 960 and 1160 mm when dropped from a height of 1800 mm, resulting in a COR between 0.73–0.80. [10] [ failed verification ]

Equations

In the case of a one-dimensional collision involving two objects, object A and object B, the coefficient of restitution is given by:

where:

Though e does not explicitly depend on the masses of the objects, it is important to note that the final velocities are mass-dependent. For two- and three-dimensional collisions of rigid bodies, the velocities used are the components perpendicular to the tangent line/plane at the point of contact, i.e. along the line of impact.

For an object bouncing off a stationary target, e is defined as the ratio of the object's speed after the impact to that prior to impact:

where

In a case where frictional forces can be neglected and the object is dropped from rest onto a horizontal surface, this is equivalent to:

where

The coefficient of restitution can be thought of as a measure of the extent to which mechanical energy is conserved when an object bounces off a surface. In the case of an object bouncing off a stationary target, the change in gravitational potential energy, Ep, during the course of the impact is essentially zero; thus, e is a comparison between the kinetic energy, Ek, of the object immediately before impact with that immediately after impact:

In a cases where frictional forces can be neglected (nearly every student laboratory on this subject [11] ), and the object is dropped from rest onto a horizontal surface, the above is equivalent to a comparison between the Ep of the object at the drop height with that at the bounce height. In this case, the change in Ek is zero (the object is essentially at rest during the course of the impact and is also at rest at the apex of the bounce); thus:

Speeds after impact

The equations for collisions in 1 dimension between elastic particles can be modified to use the COR, thus becoming applicable to inelastic collisions, as well, and every possibility in between.

and where

Derivation

The above equations can be derived from the analytical solution to the system of equations formed by the definition of the COR and the law of the conservation of momentum (which holds for all collisions). Using the notation from above where represents the velocity before the collision and after, yields:

Solving the momentum conservation equation for and the definition of the coefficient of restitution for yields:

Next, substitution into the first equation for and then resolving for gives:

A similar derivation yields the formula for .

COR variation due to object shape and off-center collisions

When colliding objects do not have a direction of motion that is in-line with their centers of gravity and point of impact, or if their contact surfaces at that point are not perpendicular to that line, some energy that would have been available for the post-collision velocity difference will be lost to rotation and friction. Energy losses to vibration and the resulting sound are usually negligible.

Colliding different materials and practical measurement

When a soft object strikes a harder object, most of the energy available for the post-collision velocity will be stored in the soft object. The COR will depend on how efficient the soft object is at storing the energy in compression without losing it to heat and plastic deformation. A rubber ball will bounce better off concrete than a glass ball, but the COR of glass-on-glass is a lot higher than rubber-on-rubber because some of the energy in rubber is lost to heat when it is compressed. When a rubber ball collides with a glass ball, the COR will depend entirely on the rubber. For this reason, determining the COR of a material when there is not identical material for collision is best done by using a much harder material.

Since there is no perfectly rigid material, hard materials such as metals and ceramics have their COR theoretically determined by considering the collision between identical spheres. In practice, a 2-ball Newton's cradle may be employed but such a set up is not conducive to quickly testing samples.

The Leeb rebound hardness test is the only commonly-available test related to determining the COR. It uses a tip of tungsten carbide, one of the hardest substances available, dropped onto test samples from a specific height. But the shape of the tip, the velocity of impact, and the tungsten carbide are all variables that affect the result that is expressed in terms of 1000*COR. It does not give an objective COR for the material that is independent from the test.

A comprehensive study of coefficients of restitution in dependence on material properties (elastic moduli, rheology), direction of impact, coefficient of friction and adhesive properties of impacting bodies can be found in Willert (2020). [12]

Predicting from material properties

The COR is not a material property because it changes with the shape of the material and the specifics of the collision, but it can be predicted from material properties and the velocity of impact when the specifics of the collision are simplified. To avoid the complications of rotational and frictional losses, we can consider the ideal case of an identical pair of spherical objects, colliding so that their centers of mass and relative velocity are all in-line.

Many materials like metals and ceramics (but not rubbers and plastics) are assumed to be perfectly elastic when their yield strength is not approached during impact. The impact energy is theoretically stored only in the spring-effect of elastic compression and results in e = 1. But this applies only at velocities less than about 0.1 m/s to 1 m/s. The elastic range can be exceeded at higher velocities because all the kinetic energy is concentrated at the point of impact. Specifically, the yield strength is usually exceeded in part of the contact area, losing energy to plastic deformation by not remaining in the elastic region. To account for this, the following estimates the COR by estimating the percent of the initial impact energy that did not get lost to plastic deformation. Approximately, it divides how easily a volume of the material can store energy in compression () by how well it can stay in the elastic range ():

For a given material density and velocity this results in:

A high yield strength allows more of the "contact volume" of the material to stay in the elastic region at higher energies. A lower elastic modulus allows a larger contact area to develop during impact so the energy is distributed to a larger volume beneath the surface at the contact point. This helps prevent the yield strength from being exceeded.

A more precise theoretical development [13] shows the velocity and density of the material to also be important when predicting the COR at moderate velocities faster than elastic collision (greater than 0.1 m/s for metals) and slower than large permanent plastic deformation (less than 100 m/s). A lower velocity increases the coefficient by needing less energy to be absorbed. A lower density also means less initial energy needs to be absorbed. The density instead of mass is used because the volume of the sphere cancels out with the volume of the affected volume at the contact area. In this way, the radius of the sphere does not affect the coefficient. A pair of colliding spheres of different sizes but of the same material have the same coefficient as below, but multiplied by

Combining these four variables, a theoretical estimation of the coefficient of restitution can be made when a ball is dropped onto a surface of the same material. [14]

This equation overestimates the actual COR. For metals, it applies when v is approximately between 0.1 m/s and 100 m/s and in general when:

At slower velocities the COR is higher than the above equation predicts, theoretically reaching e=1 when the above fraction is less than m/s. It gives the following theoretical coefficient of restitution for solid spheres dropped 1 meter (v = 4.5 m/s). Values greater than 1 indicate that the equation has errors. Yield strength instead of dynamic yield strength was used.

Metals and Ceramics:Predicted COR, e
silicon1.79
Alumina0.45 to 1.63
silicon nitride0.38 to 1.63
silicon carbide0.47 to 1.31
highest amorphous metal1.27
tungsten carbide0.73 to 1.13
stainless steel0.63 to 0.93
magnesium alloys0.5 to 0.89
titanium alloy grade 50.84
aluminum alloy 7075-T60.75
glass (soda-lime)0.69
glass (borosilicate)0.66
nickel alloys0.15 to 0.70
zinc alloys0.21 to 0.62
cast iron0.3 to 0.6
copper alloys0.15 to 0.55
titanium grade 20.46
tungsten0.37
aluminum alloys 3003 6061, 7075-00.35
zinc0.21
nickel0.15
copper0.15
aluminum0.1
lead0.08

The COR for plastics and rubbers are greater than their actual values because they do not behave as ideally elastic as metals, glasses, and ceramics due to heating during compression. So the following is only a guide to ranking of polymers.

Polymers (overestimated compared to metals and ceramics):

  • polybutadiene (golf balls shell)
  • butyl rubber
  • EVA
  • silicone elastomers
  • polycarbonate
  • nylon
  • polyethylene
  • Teflon
  • polypropylene
  • ABS
  • acrylic
  • PET
  • polystyrene
  • PVC

For metals the range of speeds to which this theory can apply is about 0.1 to 5 m/s which is a drop of 0.5 mm to 1.25 meters (page 366 [15] ).

See also

Related Research Articles

<span class="mw-page-title-main">Brownian motion</span> Random motion of particles suspended in a fluid

Brownian motion is the random motion of particles suspended in a medium.

<span class="mw-page-title-main">Kinetic energy</span> Energy of a moving physical body

In physics, the kinetic energy of an object is the form of energy that it possesses due to its motion.

<span class="mw-page-title-main">Maxwell–Boltzmann distribution</span> Specific probability distribution function, important in physics

In physics, the Maxwell–Boltzmann distribution, or Maxwell(ian) distribution, is a particular probability distribution named after James Clerk Maxwell and Ludwig Boltzmann.

<span class="mw-page-title-main">Momentum</span> Property of a mass in motion

In Newtonian mechanics, momentum is the product of the mass and velocity of an object. It is a vector quantity, possessing a magnitude and a direction. If m is an object's mass and v is its velocity, then the object's momentum p is:

<span class="mw-page-title-main">Collision</span> Instance of two or more bodies physically contacting each other within a short period of time

In physics, a collision is any event in which two or more bodies exert forces on each other in a relatively short time. Although the most common use of the word collision refers to incidents in which two or more objects collide with great force, the scientific use of the term implies nothing about the magnitude of the force.

In physical chemistry, the Arrhenius equation is a formula for the temperature dependence of reaction rates. The equation was proposed by Svante Arrhenius in 1889, based on the work of Dutch chemist Jacobus Henricus van 't Hoff who had noted in 1884 that the van 't Hoff equation for the temperature dependence of equilibrium constants suggests such a formula for the rates of both forward and reverse reactions. This equation has a vast and important application in determining the rate of chemical reactions and for calculation of energy of activation. Arrhenius provided a physical justification and interpretation for the formula. Currently, it is best seen as an empirical relationship. It can be used to model the temperature variation of diffusion coefficients, population of crystal vacancies, creep rates, and many other thermally induced processes and reactions. The Eyring equation, developed in 1935, also expresses the relationship between rate and energy.

<span class="mw-page-title-main">Ideal gas law</span> Equation of the state of a hypothetical ideal gas

The ideal gas law, also called the general gas equation, is the equation of state of a hypothetical ideal gas. It is a good approximation of the behavior of many gases under many conditions, although it has several limitations. It was first stated by Benoît Paul Émile Clapeyron in 1834 as a combination of the empirical Boyle's law, Charles's law, Avogadro's law, and Gay-Lussac's law. The ideal gas law is often written in an empirical form:

<span class="mw-page-title-main">Kinetic theory of gases</span> Understanding of gas properties in terms of molecular motion

The kinetic theory of gases is a simple classical model of the thermodynamic behavior of gases. It treats a gas as composed of numerous particles, too small to see with a microscope, which are constantly in random motion. Their collisions with each other and with the walls of their container are used to explain physical properties of the gas—for example, the relationship between its temperature, pressure, and volume. The particles are now known to be the atoms or molecules of the gas.

<span class="mw-page-title-main">Ideal gas</span> Mathematical model which approximates the behavior of real gases

An ideal gas is a theoretical gas composed of many randomly moving point particles that are not subject to interparticle interactions. The ideal gas concept is useful because it obeys the ideal gas law, a simplified equation of state, and is amenable to analysis under statistical mechanics. The requirement of zero interaction can often be relaxed if, for example, the interaction is perfectly elastic or regarded as point-like collisions.

<span class="mw-page-title-main">Elastic collision</span> Collision in which kinetic energy is conserved

In physics, an elastic collision is an encounter (collision) between two bodies in which the total kinetic energy of the two bodies remains the same. In an ideal, perfectly elastic collision, there is no net conversion of kinetic energy into other forms such as heat, noise, or potential energy.

<span class="mw-page-title-main">Inelastic collision</span> Collision in which energy is lost to heat

An inelastic collision, in contrast to an elastic collision, is a collision in which kinetic energy is not conserved due to the action of internal friction.

<span class="mw-page-title-main">Internal energy</span> Energy contained within a system

The internal energy of a thermodynamic system is the energy contained within it, measured as the quantity of energy necessary to bring the system from its standard internal state to its present internal state of interest, accounting for the gains and losses of energy due to changes in its internal state, including such quantities as magnetization. It excludes the kinetic energy of motion of the system as a whole and the potential energy of position of the system as a whole, with respect to its surroundings and external force fields. It includes the thermal energy, i.e., the constituent particles' kinetic energies of motion relative to the motion of the system as a whole. The internal energy of an isolated system cannot change, as expressed in the law of conservation of energy, a foundation of the first law of thermodynamics.

<span class="mw-page-title-main">Buckling</span> Sudden change in shape of a structural component under load

In structural engineering, buckling is the sudden change in shape (deformation) of a structural component under load, such as the bowing of a column under compression or the wrinkling of a plate under shear. If a structure is subjected to a gradually increasing load, when the load reaches a critical level, a member may suddenly change shape and the structure and component is said to have buckled. Euler's critical load and Johnson's parabolic formula are used to determine the buckling stress of a column.

<span class="mw-page-title-main">Mechanical energy</span> Sum of potential and kinetic energy

In physical sciences, mechanical energy is the sum of potential energy and kinetic energy. The principle of conservation of mechanical energy states that if an isolated system is subject only to conservative forces, then the mechanical energy is constant. If an object moves in the opposite direction of a conservative net force, the potential energy will increase; and if the speed of the object changes, the kinetic energy of the object also changes. In all real systems, however, nonconservative forces, such as frictional forces, will be present, but if they are of negligible magnitude, the mechanical energy changes little and its conservation is a useful approximation. In elastic collisions, the kinetic energy is conserved, but in inelastic collisions some mechanical energy may be converted into thermal energy. The equivalence between lost mechanical energy and an increase in temperature was discovered by James Prescott Joule.

In physics and engineering, a constitutive equation or constitutive relation is a relation between two or more physical quantities that is specific to a material or substance or field, and approximates its response to external stimuli, usually as applied fields or forces. They are combined with other equations governing physical laws to solve physical problems; for example in fluid mechanics the flow of a fluid in a pipe, in solid state physics the response of a crystal to an electric field, or in structural analysis, the connection between applied stresses or loads to strains or deformations.

A Coulomb collision is a binary elastic collision between two charged particles interacting through their own electric field. As with any inverse-square law, the resulting trajectories of the colliding particles is a hyperbolic Keplerian orbit. This type of collision is common in plasmas where the typical kinetic energy of the particles is too large to produce a significant deviation from the initial trajectories of the colliding particles, and the cumulative effect of many collisions is considered instead. The importance of Coulomb collisions was first pointed out by Lev Landau in 1936, who also derived the corresponding kinetic equation which is known as the Landau kinetic equation.

Elastic energy is the mechanical potential energy stored in the configuration of a material or physical system as it is subjected to elastic deformation by work performed upon it. Elastic energy occurs when objects are impermanently compressed, stretched or generally deformed in any manner. Elasticity theory primarily develops formalisms for the mechanics of solid bodies and materials. The elastic potential energy equation is used in calculations of positions of mechanical equilibrium. The energy is potential as it will be converted into other forms of energy, such as kinetic energy and sound energy, when the object is allowed to return to its original shape (reformation) by its elasticity.

In astrodynamics and celestial mechanics a radial trajectory is a Kepler orbit with zero angular momentum. Two objects in a radial trajectory move directly towards or away from each other in a straight line.

In the context of classical mechanics simulations and physics engines employed within video games, collision response deals with models and algorithms for simulating the changes in the motion of two solid bodies following collision and other forms of contact.

<span class="mw-page-title-main">Bouncing ball</span> Physics of bouncing balls

The physics of a bouncing ball concerns the physical behaviour of bouncing balls, particularly its motion before, during, and after impact against the surface of another body. Several aspects of a bouncing ball's behaviour serve as an introduction to mechanics in high school or undergraduate level physics courses. However, the exact modelling of the behaviour is complex and of interest in sports engineering.

References

  1. Weir, G.; McGavin, P. (8 May 2008). "The coefficient of restitution for the idealized impact of a spherical, nano-scale particle on a rigid plane". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 464 (2093): 1295–1307. Bibcode:2008RSPSA.464.1295W. doi:10.1098/rspa.2007.0289. S2CID   122562612.
  2. Louge, Michel; Adams, Michael (2002). "Anomalous behavior of normal kinematic restitution in the oblique impacts of a hard sphere on an elastoplastic plate". Physical Review E. 65 (2): 021303. Bibcode:2002PhRvE..65b1303L. doi:10.1103/PhysRevE.65.021303. PMID   11863512.
  3. Kuninaka, Hiroto; Hayakawa, Hisao (2004). "Anomalous Behavior of the Coefficient of Normal Restitution in Oblique Impact". Physical Review Letters. 93 (15): 154301. arXiv: cond-mat/0310058 . Bibcode:2004PhRvL..93o4301K. doi:10.1103/PhysRevLett.93.154301. PMID   15524884. S2CID   23557976.
  4. Calsamiglia, J.; Kennedy, S. W.; Chatterjee, A.; Ruina, A.; Jenkins, J. T. (1999). "Anomalous Frictional Behavior in Collisions of Thin Disks". Journal of Applied Mechanics. 66 (1): 146. Bibcode:1999JAM....66..146C. CiteSeerX   10.1.1.467.8358 . doi:10.1115/1.2789141.
  5. "IMPACT STUDIES ON PURE METALS" (PDF). Archived from the original (PDF) on 19 March 2015.
  6. Conforming Golf Clubusga.org Archived 16 June 2021 at the Wayback Machine
  7. "Do Long Hitters Get An Unfair Advantage?". USGA. 14 February 2015. Retrieved 1 June 2023.
  8. "Coefficient of Restitution". Archived from the original on 23 November 2016.
  9. "Tennis Tech resources | ITF". Archived from the original on 3 December 2019.
  10. "FIBA.basketball". FIBA.basketball. Retrieved 28 May 2023.
  11. Mohazzabi, Pirooz (2011). "When Does Air Resistance Become Significant in Free Fall?". The Physics Teacher. 49 (2): 89–90. Bibcode:2011PhTea..49...89M. doi:10.1119/1.3543580.
  12. Willert, Emanuel (2020). Stoßprobleme in Physik, Technik und Medizin: Grundlagen und Anwendungen (in German). Springer Vieweg. doi:10.1007/978-3-662-60296-6. ISBN   978-3-662-60295-9. S2CID   212954456.
  13. "Materials Data Book" (PDF). cam.ac.uk. 2003. Retrieved 1 June 2023.
  14. Jackson, Robert L.; Green, Itzhak; Marghitu, Dan B. (27 September 2009). "Predicting the coefficient of restitution of impacting elastic-perfectly plastic spheres". Nonlinear Dynamics. 60 (3): 217–229. doi:10.1007/s11071-009-9591-z. ISSN   0924-090X.
  15. "Home | Rensselaer at Work" (PDF).

Works cited