Stable release | |
---|---|
Repository | |
Written in | C++ |
Operating system | Cross-platform |
Type | graphics software |
License | GPL |
Website | www.cloudcompare.org |
CloudCompare is a 3D point cloud processing software (such as those obtained with a laser scanner). It can also handle triangular meshes and calibrated images.
Originally created during a collaboration between Telecom ParisTech and the R&D division of EDF, the CloudCompare project began in 2003 with the PhD of Daniel Girardeau-Montaut on Change detection on 3D geometric data. [2] At that time, its main purpose was to quickly detect changes in 3D high density point clouds acquired with laser scanners in industrial facilities (such as power plants) or building sites. [3] Afterwards it evolved towards a more general and advanced 3D data processing software. It is now an independent open source project and a free software.
CloudCompare provides a set of basic tools for manually editing and rendering 3D points clouds and triangular meshes. It also offers various advanced processing algorithms, among which methods for performing:
CloudCompare can handle unlimited scalar fields per point cloud on which various dedicated algorithms can be applied (smoothing, gradient evaluation, statistics, etc.). A dynamic color rendering system helps the user to visualize per-point scalar fields in an efficient way. Therefore, CloudCompare can also be used to visualize N-D data.
The user can interactively segment 3D entities (with a 2D polyline drawn on screen), interactively rotate/translate one or more entities relatively to the others, interactively pick single points or couples of points (to get the corresponding segment length) or triplets of points (to get the corresponding angle and plane normal). The latest version also supports the creation of 2D labels attached to points or rectangular areas annotations.
CloudCompare is available on Windows, Linux and Mac OS X platforms, for both 32 and 64 bits architectures. It is developed in C++ with Qt.
CloudCompare supports read/write in the following formats [4] :
Moreover, CloudCompare can also read (but not write) other formats. For example, thanks to a collaboration with Pr. Irwin Scollar (creator of AirPhoto SE, a program for the geometric rectification of aerial images & orthophotos from multiple images), CloudCompare can import Snavely's Bundler SfM software output file (.out) to generate orthorectified images (directly as image files or as 2D point clouds) and an approximated DTM (based on Bundler key-points) colored with images data. CloudCompare can also import various other formats: Aveva PDMS '.mac' scripts (supported primitives: cylinder, plane, cone, torus, dish, box, snout and profile extrusion), SOI (from old Mensi Soisic scanners), PN, PV, POV, ICM, etc.
Eventually, CloudCompare can also export Maya ASCII files (MA).
A plugin mechanism enables further extension of CloudCompare capabilities. Two kinds of plugins are available:
Rendering is the process of generating a photorealistic or non-photorealistic image from input data such as 3D models. The word "rendering" originally meant the task performed by an artist when depicting a real or imaginary thing. Today, to "render" commonly means to generate an image or video from a precise description using a computer program.
Vector graphics are a form of computer graphics in which visual images are created directly from geometric shapes defined on a Cartesian plane, such as points, lines, curves and polygons. The associated mechanisms may include vector display and printing hardware, vector data models and file formats, as well as the software based on these data models. Vector graphics are an alternative to raster or bitmap graphics, with each having advantages and disadvantages in specific situations.
A point cloud is a discrete set of data points in space. The points may represent a 3D shape or object. Each point position has its set of Cartesian coordinates. Points may contain data other than position such as RGB colors, normals, timestamps and others. Point clouds are generally produced by 3D scanners or by photogrammetry software, which measure many points on the external surfaces of objects around them. As the output of 3D scanning processes, point clouds are used for many purposes, including to create 3D computer-aided design (CAD) or geographic information systems (GIS) models for manufactured parts, for metrology and quality inspection, and for a multitude of visualizing, animating, rendering, and mass customization applications.
In vector computer graphics, CAD systems, and geographic information systems, geometric primitive is the simplest geometric shape that the system can handle. Sometimes the subroutines that draw the corresponding objects are called "geometric primitives" as well. The most "primitive" primitives are point and straight line segment, which were all that early vector graphics systems had.
X3D is a set of royalty-free ISO/IEC standards for declaratively representing 3D computer graphics. X3D includes multiple graphics file formats, programming-language API definitions, and run-time specifications for both delivery and integration of interactive network-capable 3D data. X3D version 4.0 has been approved by Web3D Consortium, and is under final review by ISO/IEC as a revised International Standard (IS).
In scientific visualization and computer graphics, volume rendering is a set of techniques used to display a 2D projection of a 3D discretely sampled data set, typically a 3D scalar field.
In 3D computer graphics, polygonal modeling is an approach for modeling objects by representing or approximating their surfaces using polygon meshes. Polygonal modeling is well suited to scanline rendering and is therefore the method of choice for real-time computer graphics. Alternate methods of representing 3D objects include NURBS surfaces, subdivision surfaces, and equation-based representations used in ray tracers.
3D scanning is the process of analyzing a real-world object or environment to collect three dimensional data of its shape and possibly its appearance. The collected data can then be used to construct digital 3D models.
In computer graphics, a heightmap or heightfield is a raster image used mainly as Discrete Global Grid in secondary elevation modeling. Each pixel stores values, such as surface elevation data, for display in 3D computer graphics. A heightmap can be used in bump mapping to calculate where this 3D data would create shadow in a material, in displacement mapping to displace the actual geometric position of points over the textured surface, or for terrain where the heightmap is converted into a 3D mesh.
gvSIG, geographic information system (GIS), is a desktop application designed for capturing, storing, handling, analyzing and deploying any kind of referenced geographic information in order to solve complex management and planning problems. gvSIG is known for having a user-friendly interface, being able to access the most common formats, both vector and raster ones. It features a wide range of tools for working with geographic-like information.
The following are common definitions related to the machine vision field.
DAVID Laserscanner is a software package for low-cost 3D laser scanning. It allows scanning and digitizing of three-dimensional objects using a camera, a hand-held line laser, and two plain boards in the background. The software generates 3D data in real time and shows them on the computer screen while the laser line is swept over the object by hand. The line may be swept over the object multiple times, until the results are satisfactory.
In 3D computer graphics, 3D modeling is the process of developing a mathematical coordinate-based representation of a surface of an object in three dimensions via specialized software by manipulating edges, vertices, and polygons in a simulated 3D space.
Euclideon Pty Ltd is an Australian computer software company known for a middleware 3D graphics engine, called Unlimited Detail. Euclideon is also the parent company and operator of Holoverse, a 'holographic entertainment centre' located on the Gold Coast, in Queensland, Australia. Euclideon claims that Unlimited Detail is based on a point cloud search engine indexing system and that the technology can provide 'unlimited graphics power', proposing it as a replacement for polygon-based rendering.
The Point Cloud Library (PCL) is an open-source library of algorithms for point cloud processing tasks and 3D geometry processing, such as occur in three-dimensional computer vision. The library contains algorithms for filtering, feature estimation, surface reconstruction, 3D registration, model fitting, object recognition, and segmentation. Each module is implemented as a smaller library that can be compiled separately. PCL has its own data format for storing point clouds - PCD, but also allows datasets to be loaded and saved in many other formats. It is written in C++ and released under the BSD license.
A digital outcrop model (DOM), also called a virtual outcrop model, is a digital 3D representation of the outcrop surface, mostly in a form of textured polygon mesh.
Orx is an open-source, portable, lightweight, plug-in-based, data-driven and easy to use 2D-oriented game engine written in C.
Vaa3D is an Open Source visualization and analysis software suite created mainly by Hanchuan Peng and his team at Janelia Research Campus, HHMI and Allen Institute for Brain Science. The software performs 3D, 4D and 5D rendering and analysis of very large image data sets, especially those generated using various modern microscopy methods, and associated 3D surface objects. This software has been used in several large neuroscience initiatives and a number of applications in other domains. In a recent Nature Methods review article, it has been viewed as one of the leading open-source software suites in the related research fields. In addition, research using this software was awarded the 2012 Cozzarelli Prize from the National Academy of Sciences.
metigo is a software application that performs image-based modelling and close range photogrammetry. It produces rectified imagery plans, true ortho-projections on planar, cylindric and conic surfaces, 3D photorealistic models, measurements from photography and mappings on a photographic base for uses in the cultural heritage sector, mainly conservation.
This is a glossary of terms relating to computer graphics.