Cinazepam

Last updated
Cinazepam
Cinazepam.svg
Clinical data
ATC code
  • None
Identifiers
  • 4-{[7-Bromo-5-(2-chlorophenyl)-2-oxo-2,3-dihydro-1H-1,4-benzodiazepin-3-yl]oxy}-4-oxobutanoic acid
CAS Number
PubChem CID
ChemSpider
UNII
CompTox Dashboard (EPA)
Chemical and physical data
Formula C19H14BrClN2O5
Molar mass 465.68 g·mol−1
3D model (JSmol)
  • c1ccc(c(c1)C2=NC(C(=O)Nc3c2cc(cc3)Br)OC(=O)CCC(=O)O)Cl
  • InChI=1S/C19H14BrClN2O5/c20-10-5-6-14-12(9-10)17(11-3-1-2-4-13(11)21)23-19(18(27)22-14)28-16(26)8-7-15(24)25/h1-6,9,19H,7-8H2,(H,22,27)(H,24,25)
  • Key:NQTRBZXDWMDXAQ-UHFFFAOYSA-N

Cinazepam (BD-798, sold under brand name Levana) is an atypical benzodiazepine derivative. [1] It produces pronounced hypnotic, sedative, and anxiolytic effects with minimal myorelaxant side effects. [2] [3] [4] In addition, unlike many other benzodiazepine and nonbenzodiazepine hypnotics such as diazepam, flunitrazepam, and zopiclone, cinazepam does not violate sleep architecture, and the continuity of slow-wave sleep and REM sleep are proportionally increased. [2] [3] [4] As such, cinazepam produces a sleep state close to physiological, and for that reason, may be advantageous compared to other, related drugs in the treatment of insomnia and other sleep disorders. [2]

Contents

Cinazepam has an order of magnitude lower affinity for the benzodiazepine receptor of the GABAA complex relative to other well-known hypnotic benzodiazepines such as nitrazepam and phenazepam. [2] Moreover, in mice, it is rapidly metabolized, with only 5% of the base compound remaining within 30 minutes of administration. [2] As such, cinazepam is considered to be a benzodiazepine prodrug; specifically, to 3-hydroxyphenazepam, as the main active metabolite. [2]

Synthesis

Patents: Compound #6: Cinazepam synthesis.svg
Patents: Compound #6:

The reaction between 2-amino-5-bromo-2'-chlorobenzophenone [60773-49-1] (1) and bromoacetyl bromide [598-21-0] gives 5-bromo-2'-chloro-2-bromoacetamido-benzophenone, PC33695403 (2). Finkelstein reaction with sodium iodide gives PC11375008 (3). Reaction with hydroxylamine preferentially causes alkylation by displacement of the leaving group than oxime formation. Hence, the product of this step is PC129780422 (4). Ring closure in acid led to Phenazepam 4-Oxide [1177751-52-8] (5). Treatment with acetic anhydride and Polonovski rearrangement gave PC630731 (6). Saponification of the ester yielded 3-Hydroxyphenazepam [70030-11-4] (7). Treatment with succinic anhydride completed the synthesis of Cinazepam (8).

See also

Related Research Articles

<span class="mw-page-title-main">Benzodiazepine</span> Class of depressant drugs

Benzodiazepines, colloquially known as "benzos", are a class of depressant drugs whose core chemical structure is the fusion of a benzene ring and a diazepine ring. They are prescribed to treat conditions such as anxiety disorders, insomnia, and seizures. The first benzodiazepine, chlordiazepoxide (Librium), was discovered accidentally by Leo Sternbach in 1955, and was made available in 1960 by Hoffmann–La Roche, which followed with the development of diazepam (Valium) three years later, in 1963. By 1977, benzodiazepines were the most prescribed medications globally; the introduction of selective serotonin reuptake inhibitors (SSRIs), among other factors, decreased rates of prescription, but they remain frequently used worldwide.

<span class="mw-page-title-main">Zolpidem</span> Hypnotic medication

Zolpidem, sold under the brand name Ambien among others, is a medication primarily used for the short-term treatment of sleeping problems. Guidelines recommend that it be used only after cognitive behavioral therapy for insomnia and after behavioral changes, such as sleep hygiene, have been tried. It decreases the time to sleep onset by about fifteen minutes and at larger doses helps people stay asleep longer. It is taken by mouth and is available in conventional tablets, sublingual tablets, or oral spray.

<span class="mw-page-title-main">Clonazepam</span> Benzodiazepine medication

Clonazepam, sold under the brand name Klonopin among others, is a benzodiazepine medication used to prevent and treat anxiety disorders, seizures, bipolar mania, agitation associated with psychosis, obsessive–compulsive disorder (OCD), and akathisia. It is a long-acting tranquilizer of the benzodiazepine class. It possesses anxiolytic, anticonvulsant, sedative, hypnotic, and skeletal muscle relaxant properties. It is typically taken orally but is also used intravenously. Effects begin within one hour and last between eight and twelve hours in adults.

<span class="mw-page-title-main">Muscimol</span> Neurotransmission inhibitor

Muscimol is one of the principal psychoactive constituents of Amanita muscaria and related species of mushroom. Muscimol is a potent and selective orthosteric agonist for the GABAA receptor and displays sedative-hypnotic, depressant and hallucinogenic psychoactivity. This colorless or white solid is classified as an isoxazole.

<span class="mw-page-title-main">Nitrazepam</span> Benzodiazepine sedative

Nitrazepam, sold under the brand name Mogadon among others, is a hypnotic drug of the benzodiazepine class used for short-term relief from severe, disabling anxiety and insomnia. It also has sedative (calming) properties, as well as amnestic, anticonvulsant, and skeletal muscle relaxant effects.

<span class="mw-page-title-main">Zaleplon</span> Medication used to treat insomnia

Zaleplon, sold under the brand name Sonata among others, is a sedative and hypnotic which is used to treat insomnia. It is a nonbenzodiazepine or Z-drug of the pyrazolopyrimidine class. It was developed by King Pharmaceuticals and approved for medical use in the United States in 1999.

<span class="mw-page-title-main">Quazepam</span> Benzodiazipine

Quazepam, sold under the brand name Doral among others, is a relatively long-acting benzodiazepine derivative drug developed by the Schering Corporation in the 1970s. Quazepam is used for the treatment of insomnia, including sleep induction and sleep maintenance. Quazepam induces impairment of motor function and has relatively selective hypnotic and anticonvulsant properties with considerably less overdose potential than other benzodiazepines. Quazepam is an effective hypnotic which induces and maintains sleep without disruption of the sleep architecture.

<span class="mw-page-title-main">Estazolam</span> Triazolobenzodiazepine tranquilizer drug

Estazolam, sold under the brand name Prosom among others, is a tranquilizer medication of the triazolobenzodiazepine (TBZD) class, which are benzodiazepines (BZDs) fused with a triazole ring. It possesses anxiolytic, anticonvulsant, hypnotic, sedative and skeletal muscle relaxant properties. Estazolam is an intermediate-acting oral benzodiazepine. It is used for short-term treatment of insomnia.

<span class="mw-page-title-main">Alpidem</span> Anxiolytic medication

Alpidem, sold under the brand name Ananxyl, is a nonbenzodiazepine anxiolytic medication which was briefly used to treat anxiety disorders but is no longer marketed. It was previously marketed in France, but was discontinued due to liver toxicity. Alpidem is taken by mouth.

<span class="mw-page-title-main">Camazepam</span> Chemical compound

Camazepam is a benzodiazepine psychoactive drug, marketed under the brand names Albego, Limpidon and Paxor. It is the dimethyl carbamate ester of temazepam, a metabolite of diazepam. While it possesses anxiolytic, anticonvulsant, skeletal muscle relaxant and hypnotic properties it differs from other benzodiazepines in that its anxiolytic properties are particularly prominent but has comparatively limited anticonvulsant, hypnotic and skeletal muscle relaxant properties.

<span class="mw-page-title-main">Gidazepam</span> Benzodiazepine medication

Gidazepam, also known as hydazepam or hidazepam, is a drug which is an atypical benzodiazepine derivative, developed in the Soviet Union. It is a selectively anxiolytic benzodiazepine. It also has therapeutic value in the management of certain cardiovascular disorders.

<span class="mw-page-title-main">Lormetazepam</span> Benzodiazepine medication

Lormetazepam, sold under the brand name Noctamid among others, is a drug which is a short to intermediate acting 3-hydroxy benzodiazepine derivative and temazepam analogue. It possesses hypnotic, anxiolytic, anticonvulsant, sedative, and skeletal muscle relaxant properties.

<span class="mw-page-title-main">Bretazenil</span> Chemical compound

Bretazenil (Ro16-6028) is an imidazopyrrolobenzodiazepine anxiolytic drug which is derived from the benzodiazepine family, and was invented in 1988. It is most closely related in structure to the GABA antagonist flumazenil, although its effects are somewhat different. It is classified as a high-potency benzodiazepine due to its high affinity binding to benzodiazepine binding sites where it acts as a partial agonist. Its profile as a partial agonist and preclinical trial data suggests that it may have a reduced adverse effect profile. In particular bretazenil has been proposed to cause a less strong development of tolerance and withdrawal syndrome. Bretazenil differs from traditional 1,4-benzodiazepines by being a partial agonist and because it binds to α1, α2, α3, α4, α5 and α6 subunit containing GABAA receptor benzodiazepine receptor complexes. 1,4-benzodiazepines bind only to α1, α2, α3 and α5GABAA benzodiazepine receptor complexes.

<span class="mw-page-title-main">Phenazepam</span> Benzodiazepine drug

Phenazepam is a benzodiazepine drug, first developed in the Soviet Union in 1975, and now produced in Russia and several other countries.

<span class="mw-page-title-main">Niaprazine</span> Sedative-hypnotic medication

Niaprazine (INN) is a sedative-hypnotic drug of the phenylpiperazine group. It has been used in the treatment of sleep disturbances since the early 1970s in several European countries including France, Italy, and Luxembourg. It is commonly used with children and adolescents on account of its favorable safety and tolerability profile and lack of abuse potential.

<span class="mw-page-title-main">Gaboxadol</span> Chemical compound

Gaboxadol, also known as 4,5,6,7-tetrahydroisoxazolo(5,4-c)pyridin-3-ol (THIP), is a conformationally constrained derivative of the alkaloid muscimol that was first synthesized in 1977 by the Danish chemist Poul Krogsgaard-Larsen. In the early 1980s gaboxadol was the subject of a series of pilot studies that tested its efficacy as an analgesic and anxiolytic, as well as a treatment for tardive dyskinesia, Huntington's disease, Alzheimer's disease, and spasticity. It was not until 1996 that researchers attempted to harness gaboxadol's frequently reported sedative "adverse effect" for the treatment of insomnia, resulting in a series of clinical trials sponsored by Lundbeck and Merck. In March, 2007, Merck and Lundbeck cancelled work on the drug, citing safety concerns and the failure of an efficacy trial. It acts on the GABA system, but in a different way from benzodiazepines, Z-Drugs, and barbiturates. Lundbeck states that gaboxadol also increases deep sleep. Unlike benzodiazepines, gaboxadol does not demonstrate reinforcement in mice or baboons despite activation of dopaminergic neurons in the ventral tegmental area.

GABA<sub>A</sub> receptor positive allosteric modulator GABAA receptor positive modulators

In pharmacology, GABAA receptor positive allosteric modulators, also known as GABAkines or GABAA receptor potentiators, are positive allosteric modulator (PAM) molecules that increase the activity of the GABAA receptor protein in the vertebrate central nervous system.

<span class="mw-page-title-main">Adapromine</span> Chemical compound

Adapromine is an antiviral drug of the adamantane group related to amantadine (1-aminoadamantane), rimantadine, and memantine (1-amino-3,5-dimethyladamantane) that is marketed in Russia for the treatment and prevention of influenza. It is an alkyl analogue of rimantadine and is similar to rimantadine in its antiviral activity but possesses a broader spectrum of action, being effective against influenza viruses of both type A and B. Strains of type A influenza virus with resistance to adapromine and rimantadine and the related drug deitiforine were encountered in Mongolia and the Soviet Union in the 1980s.

<span class="mw-page-title-main">3-Hydroxyphenazepam</span> Benzodiazepine medication

3-Hydroxyphenazepam is a benzodiazepine with hypnotic, sedative, anxiolytic, and anticonvulsant properties. It is an active metabolite of phenazepam, as well as the active metabolite of the benzodiazepine prodrug cinazepam. Relative to phenazepam, 3-hydroxyphenazepam has diminished myorelaxant properties, but is about equivalent in most other regards. Like other benzodiazepines, 3-hydroxyphenazepam behaves as a positive allosteric modulator of the benzodiazepine site of the GABAA receptor with an EC50 value of 10.3 nM. It has been sold as a designer drug.

<span class="mw-page-title-main">Desmethylflunitrazepam</span> Chemical compound

Desmethylflunitrazepam (also known as norflunitrazepam, Ro05-4435 and fonazepam) is a benzodiazepine that is a metabolite of flunitrazepam and has been sold online as a designer drug. It has an IC50 value of 1.499 nM for the GABAA receptor.

References

  1. Sleep Research. Vol. 26. Brain Information Service/Brain Research Institute, University of California. 1997. p. 115.
  2. 1 2 3 4 5 6 Schukin SI, Zinkovsky VG, Zhuk OV (2011). "Elimination kinetics of the novel prodrug cinazepam possessing psychotropic activity in mice". Pharmacological Reports. 63 (5): 1093–1100. doi:10.1016/s1734-1140(11)70628-4. PMID   22180351. S2CID   4744087.
  3. 1 2 Makan SY, Boiko IA, Smul'skii SP, Andronati SA (2007). "Effect of cinazepam administration on the ligand affinity of neuromediator system receptors in rat brain". Pharmaceutical Chemistry Journal. 41 (5): 249–252. doi:10.1007/s11094-007-0055-9. ISSN   0091-150X. S2CID   24532012.
  4. 1 2 Andronati SA, Makan SY, Neshchadin DP, Yakubovskaya LN, Sava VM, Andronati KS (1998). "Bioaccessibility of cinazepam introduced as inclusion complex with β-cyclodextrin". Pharmaceutical Chemistry Journal. 32 (10): 513–515. doi:10.1007/BF02465736. ISSN   0091-150X. S2CID   26513288.
  5. С.А. Андронати, et al. RU1828645C (1996).
  6. Кирил Сергійович Андронаті, et al. UA60361C2 (2003).
  7. Сергей Андреевич Андронати, et al. SU1162800 (1985).