The Attachment Unit Interface (AUI) is a physical and logical interface defined in the IEEE 802.3 standard for 10BASE5 Ethernet [1] and the earlier DIX standard. The physical interface consists of a 15-pin D-subminiature connector that links an Ethernet node's physical signaling to the Medium Attachment Unit (MAU), [2] sometimes referred to as a transceiver. An AUI cable can extend up to 50 metres (160 feet), though often the MAU and data terminal equipment's (DTE) medium access controller (MAC) are directly connected, bypassing the need for a cable. In Ethernet implementations where the DTE and MAU are combined, the AUI is typically omitted.
The IEEE 802.3 specification officially defines the AUI as an interconnect between a DTE and the MAU. However, devices like the DEC Digital Ethernet Local Network Interconnect (DELNI) provided hub-like functionality using AUI-compatible connectors. [3] [4] Additionally, under certain conditions, it was possible to directly connect two AUI devices without the need for transceivers using a crossover cable. [5]
AUI connectors became increasingly rare in the early 1990s as computers and hubs directly integrated the MAU, especially with the rising adoption of the 10BASE-T standard. This shift led to the decline of 10BASE5 (thicknet) and 10BASE2 (thinnet) which made use of the interface. [6] [7] The electrical AUI connection remained internally within equipment for some time.
With the introduction of Fast Ethernet, the AUI interface became obsolete and was replaced by the Media Independent Interface (MII). [8] Subsequent Ethernet standards, such as Gigabit Ethernet and 10 Gigabit Ethernet, introduced the GMII and XGMII interfaces, respectively. A 10 Gigabit Ethernet interface, known as XAUI, was developed to extend the operational distance of XGMII and reduce the number of interface signals.
A smaller variant called the Apple Attachment Unit Interface (AAUI) was introduced on Apple Macintosh computers in 1991, and was phased out by 1998. [9]
The AUI can operate in both normal mode and monitor mode. In normal mode, it functions as a direct connection between the DTE and the network medium. Monitor mode, an optional feature, isolates the MAU's transmitter from the medium while allowing the DTE to observe network activity. This mode is useful for diagnostic and monitoring purposes without impacting the physical medium. [1]
The AUI uses Manchester encoding for data transmission, which ensures clock synchronization without requiring a separate timing signal. The data and control circuits operate independently and are self-clocked. Control signals coordinate communication between the DTE and MAU, enabling error signaling, MAU isolation, and medium access requests. [1]
An AUI connector is a DA-15 (D-subminiature) type, where the DTE side has a female connector and the MAU side has a male connector. [1]
The connector often uses a sliding clip instead of the typical thumbscrews found on D-connectors, allowing the DTE and MAU to be directly attached, even when their size or shape would not accommodate thumbscrews. However, the clip mechanism is sometimes considered awkward or unreliable. [10]
In the case of incompatible fittings, the jackposts or sliding clip can be unscrewed and replaced, or adapter dongles and cables can be used.
Electrically, the AUI's differential signals are designed for use with a 78 Ω cable and can transmit data between DTE and MAU at 10 Mbps over the standard's specified 50-meter length. [1]
AUI drivers and receivers are required to tolerate wiring faults without permanent impairment of the pair. Signal jitter is controlled to within 1.5 nanoseconds across the interface. [1]
The DA-15 pinout is specified by the IEEE 802.3 standard and describes four differential pairs:
Ethernet is a family of wired computer networking technologies commonly used in local area networks (LAN), metropolitan area networks (MAN) and wide area networks (WAN). It was commercially introduced in 1980 and first standardized in 1983 as IEEE 802.3. Ethernet has since been refined to support higher bit rates, a greater number of nodes, and longer link distances, but retains much backward compatibility. Over time, Ethernet has largely replaced competing wired LAN technologies such as Token Ring, FDDI and ARCNET.
10BASE2 is a variant of Ethernet that uses thin coaxial cable terminated with BNC connectors to build a local area network. During the mid to late 1980s, this was the dominant 10 Mbit/s Ethernet standard.
10BASE5 was the first commercially available variant of Ethernet. The technology was standardized in 1982 as IEEE 802.3. 10BASE5 uses a thick and stiff coaxial cable up to 500 meters (1,600 ft) in length. Up to 100 stations can be connected to the cable using vampire taps and share a single collision domain with 10 Mbit/s of bandwidth shared among them. The system is difficult to install and maintain.
Ethernet over twisted-pair technologies use twisted-pair cables for the physical layer of an Ethernet computer network. They are a subset of all Ethernet physical layers.
Apple Attachment Unit Interface (AAUI) is a mechanical re-design by Apple of the standard Attachment Unit Interface (AUI) used to connect computer equipment to Ethernet. The AUI was popular in the era before the dominance of 10BASE-T networking that started in the early 1990s; the AAUI was an attempt to make the connector much smaller and more user friendly, though the proprietary nature of the interface was also criticized.
In computer networking, Fast Ethernet physical layers carry traffic at the nominal rate of 100 Mbit/s. The prior Ethernet speed was 10 Mbit/s. Of the Fast Ethernet physical layers, 100BASE-TX is by far the most common.
In computer networking, Gigabit Ethernet is the term applied to transmitting Ethernet frames at a rate of a gigabit per second. The most popular variant, 1000BASE-T, is defined by the IEEE 802.3ab standard. It came into use in 1999, and has replaced Fast Ethernet in wired local networks due to its considerable speed improvement over Fast Ethernet, as well as its use of cables and equipment that are widely available, economical, and similar to previous standards. The first standard for faster 10 Gigabit Ethernet was approved in 2002.
In the seven-layer OSI model of computer networking, the physical layer or layer 1 is the first and lowest layer: the layer most closely associated with the physical connection between devices. The physical layer provides an electrical, mechanical, and procedural interface to the transmission medium. The shapes and properties of the electrical connectors, the frequencies to transmit on, the line code to use and similar low-level parameters, are specified by the physical layer.
StarLAN was the first IEEE 802.3 standard for Ethernet over twisted pair wiring. It was standardized by the IEEE Standards Association as 802.3e in 1986, as the 1BASE5 version of Ethernet. The StarLAN Task Force was chaired by Bob Galin.
10 Gigabit Attachment Unit Interface is a standard for extending the XGMII between the MAC and PHY layer of 10 Gigabit Ethernet (10GbE) defined in Clause 47 of the IEEE 802.3 standard. The name is a concatenation of the Roman numeral X, meaning ten, and the initials of "Attachment Unit Interface".
The media-independent interface (MII) was originally defined as a standard interface to connect a Fast Ethernet medium access control (MAC) block to a PHY chip. The MII is standardized by IEEE 802.3u and connects different types of PHYs to MACs. Being media independent means that different types of PHY devices for connecting to different media can be used without redesigning or replacing the MAC hardware. Thus any MAC may be used with any PHY, independent of the network signal transmission medium.
A Medium Attachment Unit (MAU) is a transceiver which converts signals on an Ethernet cable to and from Attachment Unit Interface (AUI) signals.
An Ethernet hub, active hub, network hub, repeater hub, multiport repeater, or simply hub is a network hardware device for connecting multiple Ethernet devices together and making them act as a single network segment. It has multiple input/output (I/O) ports, in which a signal introduced at the input of any port appears at the output of every port except the original incoming. A hub works at the physical layer. A repeater hub also participates in collision detection, forwarding a jam signal to all ports if it detects a collision. In addition to standard 8P8C ("RJ45") ports, some hubs may also come with a BNC or an Attachment Unit Interface (AUI) connector to allow connection to legacy 10BASE2 or 10BASE5 network segments.
A medium-dependent interface (MDI) describes the interface in a computer network from a physical-layer implementation to the physical medium used to carry the transmission. Ethernet over twisted pair also defines a medium-dependent interface – crossover (MDI-X) interface. Auto–MDI-X ports on newer network interfaces detect if the connection would require a crossover and automatically choose the MDI or MDI-X configuration to complement the other end of the link.
The physical-layer specifications of the Ethernet family of computer network standards are published by the Institute of Electrical and Electronics Engineers (IEEE), which defines the electrical or optical properties and the transfer speed of the physical connection between a device and the network or between network devices. It is complemented by the MAC layer and the logical link layer. An implementation of a specific physical layer is commonly referred to as PHY.
40 Gigabit Ethernet (40GbE) and 100 Gigabit Ethernet (100GbE) are groups of computer networking technologies for transmitting Ethernet frames at rates of 40 and 100 gigabits per second (Gbit/s), respectively. These technologies offer significantly higher speeds than 10 Gigabit Ethernet. The technology was first defined by the IEEE 802.3ba-2010 standard and later by the 802.3bg-2011, 802.3bj-2014, 802.3bm-2015, and 802.3cd-2018 standards. The first succeeding Terabit Ethernet specifications were approved in 2017.
Ethernet over Coax (EoC) is a family of technologies that supports the transmission of Ethernet frames over coaxial cable. The Institute of Electrical and Electronics Engineers (IEEE) maintains all official Ethernet standards in the IEEE 802 family.
10 Gigabit Ethernet is a group of computer networking technologies for transmitting Ethernet frames at a rate of 10 gigabits per second. It was first defined by the IEEE 802.3ae-2002 standard. Unlike previous Ethernet standards, 10GbE defines only full-duplex point-to-point links which are generally connected by network switches; shared-medium CSMA/CD operation has not been carried over from the previous generations of Ethernet standards so half-duplex operation and repeater hubs do not exist in 10GbE. The first standard for faster 100 Gigabit Ethernet links was approved in 2010.
Terabit Ethernet (TbE) is Ethernet with speeds above 100 Gigabit Ethernet. The 400 Gigabit Ethernet and 200 Gigabit Ethernet standard developed by the IEEE P802.3bs Task Force using broadly similar technology to 100 Gigabit Ethernet was approved on December 6, 2017. On February 16, 2024 the 800 Gigabit Ethernet standard developed by the IEEE P802.3df Task Force was approved.
The 5-4-3 rule, also referred to as the IEEE way, is a design guideline for Ethernet computer networks covering the number of repeaters and segments on shared-medium Ethernet backbones in a tree topology. It means that in a collision domain there should be at most 5 segments tied together with 4 repeaters, with up to 3 mixing segments. Link segments can be 10BASE-T, 10BASE-FL or 10BASE-FB. This rule is also designated the 5-4-3-2-1 rule with there being two link segments and one collision domain.
{{cite web}}
: CS1 maint: archived copy as title (link){{cite web}}
: CS1 maint: archived copy as title (link)