The Adamkiewicz reaction is part of a biochemical test used to detect the presence of the amino acid tryptophan in proteins. When concentrated sulfuric acid is combined with a solution of protein and glyoxylic acid, a red/purple colour is produced. It was named after its discoverer, Albert Wojciech Adamkiewicz. [1] [2] Pure sulfuric acid and a minimal amount of pure formaldehyde, along with an oxidizing agent introduced into the sulfuric acid, allow the reaction to proceed. [3] Later studies clarified the reaction's dependence on glyoxylic acid and its specific interaction with the amino acid tryptophan. These findings also shed light on the underlying chemical mechanism. [4] [5]
In 1901, researchers Fredricks Hopkins and Sydney W. Cole determined that glyoxylic acid, an impurity in acetic acid, was an essential component in the Adamkiewicz reaction. It was observed that the violet-red characteristic of the reaction occurred only when glyoxylic acid was present in the acetic acid used in the reaction. Without glyoxylic acid, the reaction failed, even if other conditions remained unchanged. Their work demonstrated that glyoxylic acid, in the presence of concentrated sulfuric acid and tryptophan, reacted with proteins to produce the characteristic violet-red coloration of the Adamkiewicz reaction. [4] [5]
The reaction relies on the interaction between glyoxylic acid and the indole ring of the amino acid tryptophan, a structural feature found in most proteins. When proteins are exposed to concentrated sulfuric acid and glyoxylic acid, the indole group undergoes a reaction that produces a highly colored compound. This interaction highlights tryptophan's central role in the test, as proteins lacking this amino acid do not produce the characteristic color change. Hopkins and Cole further noted that the sulfuric acid provided the acidic environment and acted as an oxidizing agent necessary for the reaction to proceed. [4] [5]
Later studies proposed that the reaction involves a condensation process, where glyoxylic acid combines with the indole group of tryptophan to form a complex quinonoid structure. This process explains the strong color change observed in the test and has been key to understanding tryptophan's chemical properties and its function in proteins. [5]
Cysteine is a semiessential proteinogenic amino acid with the formula HOOC−CH(−NH2)−CH2−SH. The thiol side chain in cysteine enables the formation of disulfide bonds, and often participates in enzymatic reactions as a nucleophile. Cysteine is chiral, but both D and L-cysteine are found in nature. L‑Cysteine is a protein monomer in all biota, and D-cysteine acts as a signaling molecule in mammalian nervous systems. Cysteine is named after its discovery in urine, which comes from the urinary bladder or cyst, from Greek κύστη kýsti, "bladder".
Tryptophan (symbol Trp or W) is an α-amino acid that is used in the biosynthesis of proteins. Tryptophan contains an α-amino group, an α-carboxylic acid group, and a side chain indole, making it a polar molecule with a non-polar aromatic beta carbon substituent. Tryptophan is also a precursor to the neurotransmitter serotonin, the hormone melatonin, and vitamin B3 (niacin). It is encoded by the codon UGG.
Tryptophan synthase or tryptophan synthetase is an enzyme that catalyzes the final two steps in the biosynthesis of tryptophan. It is commonly found in Eubacteria, Archaebacteria, Protista, Fungi, and Plantae. However, it is absent from Animalia. It is typically found as an α2β2 tetramer. The α subunits catalyze the reversible formation of indole and glyceraldehyde-3-phosphate (G3P) from indole-3-glycerol phosphate (IGP). The β subunits catalyze the irreversible condensation of indole and serine to form tryptophan in a pyridoxal phosphate (PLP) dependent reaction. Each α active site is connected to a β active site by a 25 Ångstrom long hydrophobic channel contained within the enzyme. This facilitates the diffusion of indole formed at α active sites directly to β active sites in a process known as substrate channeling. The active sites of tryptophan synthase are allosterically coupled.
Malate dehydrogenase (EC 1.1.1.37) (MDH) is an enzyme that reversibly catalyzes the oxidation of malate to oxaloacetate using the reduction of NAD+ to NADH. This reaction is part of many metabolic pathways, including the citric acid cycle. Other malate dehydrogenases, which have other EC numbers and catalyze other reactions oxidizing malate, have qualified names like malate dehydrogenase (NADP+).
In chemistry, a chemical test is a qualitative or quantitative procedure designed to identify, quantify, or characterise a chemical compound or chemical group.
Indole-3-acetic acid is the most common naturally occurring plant hormone of the auxin class. It is the best known of the auxins, and has been the subject of extensive studies by plant physiologists. IAA is a derivative of indole, containing a carboxymethyl substituent. It is a colorless solid that is soluble in polar organic solvents.
Glyoxylic acid or oxoacetic acid is an organic compound. Together with acetic acid, glycolic acid, and oxalic acid, glyoxylic acid is one of the C2 carboxylic acids. It is a colourless solid that occurs naturally and is useful industrially.
Indican is a colourless organic compound, soluble in water, naturally occurring in Indigofera plants. It is a precursor of indigo dye.
The branched-chain α-ketoacid dehydrogenase complex is a multi-subunit complex of enzymes that is found on the mitochondrial inner membrane. This enzyme complex catalyzes the oxidative decarboxylation of branched, short-chain alpha-ketoacids. BCKDC is a member of the mitochondrial α-ketoacid dehydrogenase complex family, which also includes pyruvate dehydrogenase and alpha-ketoglutarate dehydrogenase, key enzymes that function in the Krebs cycle.
The indole test is a biochemical test performed on bacterial species to determine the ability of the organism to convert tryptophan into indole. This division is performed by a chain of a number of different intracellular enzymes, a system generally referred to as "tryptophanase."
The beta hairpin is a simple protein structural motif involving two beta strands that look like a hairpin. The motif consists of two strands that are adjacent in primary structure, oriented in an antiparallel direction, and linked by a short loop of two to five amino acids. Beta hairpins can occur in isolation or as part of a series of hydrogen bonded strands that collectively comprise a beta sheet.
Albert Wojciech Adamkiewicz was a Polish pathologist.
Indole is an organic compound with the formula C6H4CCNH3. Indole is classified as an aromatic heterocycle. It has a bicyclic structure, consisting of a six-membered benzene ring fused to a five-membered pyrrole ring. Indoles are derivatives of indole where one or more of the hydrogen atoms have been replaced by substituent groups. Indoles are widely distributed in nature, most notably as amino acid tryptophan and neurotransmitter serotonin.
The xanthoproteic reaction is a method that can be used to detect a presence of protein soluble in a solution, using concentrated nitric acid. The test gives a positive result in amino acids carrying aromatic groups, especially in the presence of tyrosine. If the test is positive the proof is neutralized with an alkali, turning dark yellow. The yellow colour is due to xanthoproteic acid which is formed due to nitration of certain amino acids, most common examples being tyrosine and tryptophan. This chemical reaction is a qualitative test, determining the presence or absence of proteins.
Tryptophol is an aromatic alcohol that induces sleep in humans. It is found in wine as a secondary product of ethanol fermentation. It was first described by Felix Ehrlich in 1912. It is also produced by the trypanosomal parasite in sleeping sickness.
Kovács reagent is a biochemical reagent consisting of isoamyl alcohol, para-dimethylaminobenzaldehyde (DMAB), and concentrated hydrochloric acid. It is used for the diagnostical indole test, to determine the ability of the organism to split indole from the amino acid tryptophan. The indole produced yields a red complex with para-dimethylaminobenzaldehyde under the given conditions. This was invented by the Hungarian physician Nicholas Kovács and was published in 1928. This reagent is used in the confirmation of E. coli and many other pathogenic microorganisms.
The Hopkins-Cole reaction, also known as the glyoxylic acid reaction, is a chemical test used for detecting the presence of tryptophan in proteins. A protein solution is mixed with Hopkins Cole reagent, which consists of glyoxylic acid. Concentrated sulfuric acid is slowly added to form two layers. A purple ring appears between the two layers if the test is positive for tryptophan. Nitrites, chlorates, nitrates and excess chlorides prevent the reaction from occurring.
The Acree–Rosenheim reaction is a chemical test used for detecting the presence of tryptophan in proteins. A protein mixture is mixed with formaldehyde. Concentrated sulfuric acid is added to form two layers. A purple ring appears between the two layers if the test is positive for tryptophan.
Photo-Induced Cross-Linking of Unmodified Proteins (PICUP) is a protein cross-linking method by visible light irradiation of a photocatalyst in the presence of an electron acceptor and the protein of interest. Irradiation results in a highly reactive protein radical that forms a covalent bond between the amino acid side chains of the proteins to be linked. Cross-linking methods developed prior to PICUP, including the use of physical, oxidative, and chemical cross-linkers, often require more time and result in protein byproducts. In addition, the cross-linked protein yield is very low due to the multifunctionality of the cross-linking reagents.
Salkowski's test, also known simply as Salkowski test, is a qualitative chemical test, that is used in chemistry and biochemistry for detecting a presence of cholesterol and other sterols. This biochemical method got its name after German biochemist Ernst Leopold Salkowski, who is known for development of multiple new chemical tests, that are used for detection of different kinds of molecules. A solution that has tested positive on the Salkowski's test becomes red and gets yellow glow.