This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.
Grimnes, S. and Martinsen, Ø. G. 2015. Bioimpedance and bio-electricity basics. 3rd edition. Elsevier-Academic Press.GrimnesS.MartinsenØ. G.20153rd editionElsevier-Academic Press10.1016/B978-0-12-411470-8.00003-9Search in Google Scholar
Sanchez, B., Louarroudi, E., and Pintelon, R. 2015. Time-invariant measurement of time-varying bioimpedance using vector impedance analysis. Physiol. Meas. 36, pp. 595-620. https://doi.org/10.1088/0967-3334/36/3/595SanchezB.LouarroudiE.PintelonR.2015Time-invariant measurement of time-varying bioimpedance using vector impedance analysis36595620https://doi.org/10.1088/0967-3334/36/3/59510.1088/0967-3334/36/3/59525700023Search in Google Scholar
Pliquett, U. 2010. Bioimpedance: A review for food processing. Food. Eng. Rev. 2, 2010, pp. 74-94. https://doi.org/10.1007/s12393-010-9019-zPliquettU.2010Bioimpedance: A review for food processing220107494https://doi.org/10.1007/s12393-010-9019-z10.1007/s12393-010-9019-zSearch in Google Scholar
Ojarand, J. and Min, M. 2014. Crest factor optimization of the multisine waveform for impedance spectroscopy bioimpedance spectroscopy. Physiol. Meas. 35, pp. 1019-1033. https://doi.org/10.1088/0967-3334/35/6/1019OjarandJ.MinM.2014Crest factor optimization of the multisine waveform for impedance spectroscopy bioimpedance spectroscopy10191033https://doi.org/10.1088/0967-3334/35/6/101910.1088/0967-3334/35/6/101924844568Search in Google Scholar
Min, M., Parve, T. and Pliquett, U. 2015. Impedance detection. In: Prof. Dongqing Li ed. Encyclopedia of microfluidics and nanofluidics. 2nd edition. New York: Springer, pp. 1338-1361. https://doi.org/10.1007/978-1-4614-5491-5_1783MinM.ParveT.PliquettU.2015Impedance detection2nd editionNew YorkSpringer13381361https://doi.org/10.1007/978-1-4614-5491-5_178310.1007/978-1-4614-5491-5_1783Search in Google Scholar
Schwan, H. P. 1963. Determination of biological impedances. In: Nastuk W.L. ed. Physical techniques in biological research. New York: Academic Press. 6, pp. 323-406. https://doi.org/10.1016/B978-1-4831-6743-5.50013-7SchwanH. P.1963Determination of biological impedancesNastukW.L.New YorkAcademic Press. 6323406https://doi.org/10.1016/B978-1-4831-6743-5.50013-710.1016/B978-1-4831-6743-5.50013-7Search in Google Scholar
Smith, S. 1999. The Scientist and engineer's guide to digital signal processing. San Diego: California Technical Publishing.SmithS.1999San DiegoCalifornia Technical PublishingSearch in Google Scholar
Nahvi, M. and Hoyle, B. 2009. Electrical impedance spectroscopy sensing for industrial processes. IEEE Sensors Journal. 9, pp. 1808-1816. https://doi.org/10.1109/JSEN.2009.2030979NahviM.HoyleB.2009Electrical impedance spectroscopy sensing for industrial processes918081816https://doi.org/10.1109/JSEN.2009.203097910.1109/JSEN.2009.2030979Search in Google Scholar
Ojarand, J. et al. 2010. Nonlinear chirp pulse excitation for the fast impedance spectroscopy. Electronics and Electrical Engineering. 100(4), pp. 73-76.OjarandJ.2010Nonlinear chirp pulse excitation for the fast impedance spectroscopy10047376Search in Google Scholar
Pliquett, U. 2013. Time-domain based impedance measurement: strengths and drawbacks. Journal of Physics: Conference Series 434, pp. 1-4. https://doi.org/10.1088/1742-6596/434/1/012092PliquettU.2013Time-domain based impedance measurement: strengths and drawbacks43414https://doi.org/10.1088/1742-6596/434/1/01209210.1088/1742-6596/434/1/012092Search in Google Scholar
Ojarand, J., Rist, M., Min, M. 2016. Comparison of excitation signals and methods for a wideband bioimpedance measurement. In: Proc. of IEEE International Instrumentation and Measurement Technology Conference (I2MTC 2016), Taipei, Taiwan, May 23-26. Hoboken, NJ, USA: IEEE Conference Publications, pp. 1291-1296. https://doi.org/10.1109/I2MTC.2016.7520555OjarandJ.RistM.MinM.2016Comparison of excitation signals and methods for a wideband bioimpedance measurementTaipei, Taiwan, May 23-26Hoboken, NJ, USAIEEE Conference Publications12911296https://doi.org/10.1109/I2MTC.2016.752055510.1109/I2MTC.2016.7520555Search in Google Scholar
Godfrey, K. R. 1991. Introduction to binary signals used in system identification. Proc. Int. Conf. Control. 1, pp. 161-166.GodfreyK. R.1991Introduction to binary signals used in system identification1161166Search in Google Scholar
Ward, L. and Cornish, B. 2004. Multiple frequency bioelectrical impedance analysis: how many frequencies to use? In: Proc. ICEBI XII and EIT V. 61, pp. 321-324.WardL.CornishB.2004Multiple frequency bioelectrical impedance analysis: how many frequencies to use?61321324Search in Google Scholar
Ojarand, J. and Min, M. 2017. Recent advances in crest factor minimization of multisine. Electronics and Electrical Engineering. 23(2), pp. 59-62. https://doi.org/10.5755/j01.eie.23.2.18001OjarandJ.MinM.2017Recent advances in crest factor minimization of multisine2325962https://doi.org/10.5755/j01.eie.23.2.1800110.5755/j01.eie.23.2.18001Search in Google Scholar
Ojarand, J. et al. 2014. Optimization of multisine excitation for a bioimpedance measurement device. In: IEEE International Instrumentation and Measurement Technology Conference (I2MTC 2014), Montevideo, Uruguay, May 12-15. Hoboken, NJ, USA: IEEE Conference Publications, pp. 829-832. https://doi.org/10.1109/I2MTC.2014.6860859OjarandJ.2014Optimization of multisine excitation for a bioimpedance measurement deviceMay 12-15Hoboken, NJ, USAIEEE Conference Publications829832https://doi.org/10.1109/I2MTC.2014.686085910.1109/I2MTC.2014.6860859Search in Google Scholar
Yang, Y. et al. H. 2014. Development of a stair-step multifrequency synchronized excitation signal for fast bioimpedance spectroscopy. BioMed Research International. 2014, pp. 1-8.YangY.H. 2014. Development of a stair-step multifrequency synchronized excitation signal for fast bioimpedance spectroscopy20141810.1155/2014/625601429089825610869Search in Google Scholar
Yang, Y. et al. 2015. Design of tri-level excitation signals for broadband bioimpedance spectroscopy. Physiol. Meas. 36, pp. 1995-2007. https://doi.org/10.1088/0967-3334/36/9/1995YangY.2015Design of tri-level excitation signals for broadband bioimpedance spectroscopy361995-2007https://doi.org/10.1088/0967-3334/36/9/199510.1088/0967-3334/36/9/199526261063Search in Google Scholar
Ojarand, J. and Min, M. 2014. Efficient excitation signals for the fast impedance spectroscopy. Electronics and Electrical Engineering. 20(5), pp. 144-149. https://doi.org/10.5755/j01.eee.20.5.7115OjarandJ.MinM.2014Efficient excitation signals for the fast impedance spectroscopy205144149https://doi.org/10.5755/j01.eee.20.5.711510.5755/j01.eee.20.5.7115Search in Google Scholar