Кольцо (геометрия)

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
Версия для печати больше не поддерживается и может содержать ошибки обработки. Обновите закладки браузера и используйте вместо этого функцию печати браузера по умолчанию.
Кольцо

Кольцо — плоская геометрическая фигура, ограниченная двумя концентрическими окружностями.

Открытое кольцо является топологическим эквивалентом цилиндра и проколотой плоскости.

Площадь кольца

Площадь кольца, ограниченного окружностями радиусов R и r, определяется как разность площадей кругов с такими радиусами:

Площадь кольца также может быть вычислена путём умножения числа пи на квадрат половины длины самого большого отрезка, лежащего внутри кольца. Это можно доказать через теорему Пифагора — такой отрезок будет являться касательной к кругу меньшего радиуса. Половина длины отрезка с радиусами r и R образуют прямоугольный треугольник.

В комплексном анализе

Kольцо на комплексной плоскости определяется следующим образом:

Kольцо является открытым множеством Если r равно 0, область называется проколотым диском радиуса R вокруг точки a.

Как подмножество комплексной плоскости кольцо может рассматриваться в качестве Римановой поверхности. Комплексная структура кольца зависит только от отношения r/R. Каждое кольцо ann(a; r, R) может быть голоморфно отображено в расположенное в начале координат стандартное кольцо с внешним радиусом 1 с помощью отображения:

Внутренний радиус тогда будет r/R < 1.

Свойства

Ссылки