Rahmani et al., 2020 - Google Patents
Burst‐aware virtual machine migration for improving performance in the cloudRahmani et al., 2020
- Document ID
- 9126784441060552012
- Author
- Rahmani S
- Khajehvand V
- Publication year
- Publication venue
- International journal of communication systems
External Links
Snippet
Burst is a common pattern in the user's requirements, which suddenly increases the workload of virtual machines (VMs) and reduces the performance and energy efficiency of cloud computing systems (CCS). Virtualization technology with the ability to migrate VMs …
- 230000005012 migration 0 title abstract description 123
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for programme control, e.g. control unit
- G06F9/06—Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
- G06F9/46—Multiprogramming arrangements
- G06F9/50—Allocation of resources, e.g. of the central processing unit [CPU]
- G06F9/5061—Partitioning or combining of resources
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for programme control, e.g. control unit
- G06F9/06—Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
- G06F9/46—Multiprogramming arrangements
- G06F9/48—Programme initiating; Programme switching, e.g. by interrupt
- G06F9/4806—Task transfer initiation or dispatching
- G06F9/4843—Task transfer initiation or dispatching by program, e.g. task dispatcher, supervisor, operating system
- G06F9/4881—Scheduling strategies for dispatcher, e.g. round robin, multi-level priority queues
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for programme control, e.g. control unit
- G06F9/06—Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
- G06F9/46—Multiprogramming arrangements
- G06F9/50—Allocation of resources, e.g. of the central processing unit [CPU]
- G06F9/5083—Techniques for rebalancing the load in a distributed system
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F1/00—Details of data-processing equipment not covered by groups G06F3/00 - G06F13/00, e.g. cooling, packaging or power supply specially adapted for computer application
- G06F1/26—Power supply means, e.g. regulation thereof
- G06F1/32—Means for saving power
- G06F1/3203—Power Management, i.e. event-based initiation of power-saving mode
- G06F1/3234—Action, measure or step performed to reduce power consumption
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F1/00—Details of data-processing equipment not covered by groups G06F3/00 - G06F13/00, e.g. cooling, packaging or power supply specially adapted for computer application
- G06F1/26—Power supply means, e.g. regulation thereof
- G06F1/32—Means for saving power
- G06F1/3203—Power Management, i.e. event-based initiation of power-saving mode
- G06F1/3206—Monitoring a parameter, a device or an event triggering a change in power modality
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/30—Monitoring
- G06F11/34—Recording or statistical evaluation of computer activity, e.g. of down time, of input/output operation; Recording or statistical evaluation of user activity, e.g. usability assessment
- G06F11/3409—Recording or statistical evaluation of computer activity, e.g. of down time, of input/output operation; Recording or statistical evaluation of user activity, e.g. usability assessment for performance assessment
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network-specific arrangements or communication protocols supporting networked applications
- H04L67/10—Network-specific arrangements or communication protocols supporting networked applications in which an application is distributed across nodes in the network
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06Q—DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance or administration or management of packet switching networks
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—INDEXING SCHEME RELATING TO CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. INCLUDING HOUSING AND APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B60/00—Information and communication technologies [ICT] aiming at the reduction of own energy use
- Y02B60/10—Energy efficient computing
- Y02B60/16—Reducing energy-consumption in distributed systems
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—INDEXING SCHEME RELATING TO CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. INCLUDING HOUSING AND APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B60/00—Information and communication technologies [ICT] aiming at the reduction of own energy use
- Y02B60/10—Energy efficient computing
- Y02B60/14—Reducing energy-consumption by means of multiprocessor or multiprocessing based techniques, other than acting upon the power supply
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic regulation in packet switching networks
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—INDEXING SCHEME RELATING TO CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. INCLUDING HOUSING AND APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B60/00—Information and communication technologies [ICT] aiming at the reduction of own energy use
- Y02B60/30—Techniques for reducing energy-consumption in wire-line communication networks
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Huang et al. | SSUR: an approach to optimizing virtual machine allocation strategy based on user requirements for cloud data center | |
Askarizade Haghighi et al. | An energy-efficient dynamic resource management approach based on clustering and meta-heuristic algorithms in cloud computing IaaS platforms: Energy efficient dynamic cloud resource management | |
Zahedi Fard et al. | A dynamic VM consolidation technique for QoS and energy consumption in cloud environment | |
Khoshkholghi et al. | Energy-efficient algorithms for dynamic virtual machine consolidation in cloud data centers | |
Javadpour et al. | An energy-optimized embedded load balancing using DVFS computing in cloud data centers | |
Hieu et al. | Virtual machine consolidation with multiple usage prediction for energy-efficient cloud data centers | |
Tarafdar et al. | Energy and quality of service-aware virtual machine consolidation in a cloud data center | |
Rahmani et al. | Burst‐aware virtual machine migration for improving performance in the cloud | |
Adhikary et al. | Quality of service aware cloud resource provisioning for social multimedia services and applications | |
Magotra et al. | Adaptive computational solutions to energy efficiency in cloud computing environment using VM consolidation | |
Surendran et al. | How to improve the resource utilization in cloud data center? | |
Tarahomi et al. | A prediction‐based and power‐aware virtual machine allocation algorithm in three‐tier cloud data centers | |
Kulkarni et al. | Context aware VM placement optimization technique for heterogeneous IaaS cloud | |
Saxena et al. | Workload forecasting and resource management models based on machine learning for cloud computing environments | |
Monshizadeh Naeen et al. | Adaptive Markov‐based approach for dynamic virtual machine consolidation in cloud data centers with quality‐of‐service constraints | |
Zhou et al. | An experience-based scheme for energy-SLA balance in cloud data centers | |
Rahmani et al. | Burstiness-aware virtual machine placement in cloud computing systems | |
Meng et al. | Service-oriented reliability modeling and autonomous optimization of reliability for public cloud computing systems | |
Li et al. | CSL-driven and energy-efficient resource scheduling in cloud data center | |
Babu et al. | Interference aware prediction mechanism for auto scaling in cloud | |
Najafizadegan et al. | An autonomous model for self‐optimizing virtual machine selection by learning automata in cloud environment | |
Sohrabi et al. | Adaptive virtual machine migration mechanism for energy efficiency | |
Ahmadi et al. | A flexible approach for virtual machine selection in cloud data centers with AHP | |
Ismaeel et al. | Energy-consumption clustering in cloud data centre | |
Kaaouache et al. | An energy-efficient VM placement method for cloud data centers using a hybrid genetic algorithm |