Strandjord et al., 2020 - Google Patents

Improved urban navigation with shadow matching and specular matching

Strandjord et al., 2020

View PDF
Document ID
4830519719271315860
Author
Strandjord K
Axelrad P
Mohiuddin S
Publication year
Publication venue
NAVIGATION: Journal of the Institute of Navigation

External Links

Snippet

As the dependence of Global Navigation Systems (GNSS) increases, so does a growing demand for GNSS accuracy in urban environments. This research aims to improve navigation in these environments by integrating non-line-of-sight signals, building models …
Continue reading at navi.ion.org (PDF) (other versions)

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/51Relative positioning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/40Correcting position, velocity or attitude
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in preceding groups
    • G01C21/26Navigation; Navigational instruments not provided for in preceding groups specially adapted for navigation in a road network
    • G01C21/28Navigation; Navigational instruments not provided for in preceding groups specially adapted for navigation in a road network with correlation of data from several navigational instruments
    • G01C21/30Map- or contour-matching
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0205Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in preceding groups
    • G01C21/20Instruments for performing navigational calculations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/0009Transmission of position information to remote stations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S1/00Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • G06T17/05Geographic models

Similar Documents

Publication Publication Date Title
Wang et al. GNSS shadow matching: Improving urban positioning accuracy using a 3D city model with optimized visibility scoring scheme
Adjrad et al. Enhancing least squares GNSS positioning with 3D mapping without accurate prior knowledge
Zhang et al. 3D mapping database aided GNSS based collaborative positioning using factor graph optimization
Wang et al. Urban positioning on a smartphone: Real-time shadow matching using GNSS and 3D city models
Adjrad et al. Intelligent urban positioning: Integration of shadow matching with 3D-mapping-aided GNSS ranging
Ng et al. A computation effective range-based 3D mapping aided GNSS with NLOS correction method
Wang et al. Multi-constellation GNSS performance evaluation for urban canyons using large virtual reality city models
Groves et al. GNSS shadow matching: The challenges ahead
Groves et al. Shadow matching: Improved GNSS accuracy in urban canyons
Chen et al. Geospatial computing in mobile devices
Ng et al. Robust GNSS shadow matching for smartphones in urban canyons
Zhang et al. Rectification of GNSS-based collaborative positioning using 3D building models in urban areas
Adjrad et al. Intelligent urban positioning using shadow matching and GNSS ranging aided by 3D mapping
Taylor et al. Modelling and prediction of GPS availability with digital photogrammetry and LiDAR
Groves It’s time for 3D mapping–aided GNSS
Ackermann et al. Digital surface models for GNSS mission planning in critical environments
Bento et al. Cooperative GNSS positioning aided by road-features measurements
Zhang et al. GNSS shadow matching based on intelligent LOS/NLOS classifier
Strandjord et al. Improved urban navigation with shadow matching and specular matching
Miura et al. GPS error correction by multipath adaptation
Lines et al. 3D map creation using crowdsourced GNSS data
Strandjord et al. Evaluating the urban signal environment for GNSS and LTE signals
Schön et al. Towards Integrity for GNSS-based urban navigation–challenges and lessons learned
Zhong et al. Outlier detection for 3D-mapping-aided GNSS positioning
Wang Investigation of shadow matching for GNSS positioning in urban canyons