Wang et al., 2021 - Google Patents
Experimental study on water pipeline leak using In-Pipe acoustic signal analysis and artificial neural network predictionWang et al., 2021
View PDF- Document ID
- 477443345193300632
- Author
- Wang W
- Sun H
- Guo J
- Lao L
- Wu S
- Zhang J
- Publication year
- Publication venue
- Measurement
External Links
Snippet
Water pipeline leakage is a common and significant global problem. In-pipe inspection based on hydrophone is one of the most direct, accurate, and reliable solutions for leak detection and recognition. In this study, a scheme of in-pipe detector was designed to pick …
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water   O 0 title abstract description 42
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING STRUCTURES OR APPARATUS NOT OTHERWISE PROVIDED FOR
- G01M3/00—Investigating fluid-tightness of structures
- G01M3/02—Investigating fluid-tightness of structures by using fluid or vacuum
- G01M3/26—Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors
- G01M3/28—Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for pipes, cables or tubes; for pipe joints or seals; for valves for welds
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING STRUCTURES OR APPARATUS NOT OTHERWISE PROVIDED FOR
- G01M3/00—Investigating fluid-tightness of structures
- G01M3/02—Investigating fluid-tightness of structures by using fluid or vacuum
- G01M3/04—Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/02—Indexing codes associated with the analysed material
- G01N2291/028—Material parameters
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F1/00—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through the meter in a continuous flow
- G01F1/05—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through the meter in a continuous flow by using mechanical effects
- G01F1/34—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through the meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure
- G01F1/36—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through the meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure the pressure or differential pressure being created by the use of flow constriction
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/44—Processing the detected response signal, e.g. electronic circuits specially adapted therefor
- G01N29/46—Processing the detected response signal, e.g. electronic circuits specially adapted therefor by spectral analysis, e.g. Fourier analysis or wavelet analysis
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/22—Details, e.g. general constructional or apparatus details
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/44—Processing the detected response signal, e.g. electronic circuits specially adapted therefor
- G01N29/4472—Mathematical theories or simulation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F1/00—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through the meter in a continuous flow
- G01F1/66—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through the meter in a continuous flow by measuring frequency, phaseshift, or propagation time of electro-magnetic or other waves, e.g. ultrasonic flowmeters
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F1/00—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through the meter in a continuous flow
- G01F1/74—Devices for measuring flow of a fluid or flow of a fluent solid material in suspension in another fluid
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F1/00—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through the meter in a continuous flow
- G01F1/704—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through the meter in a continuous flow using marked regions or existing inhomogeneities within the fluid stream, e.g. statistically occurring variations in a fluid parameter
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N3/00—Investigating strength properties of solid materials by application of mechanical stress
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by the preceding groups
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F15/00—Details of, or accessories for, apparatus of the preceding groups insofar as such details or appliances are not adapted to particular types of such apparatus
- G01F15/10—Preventing damage by freezing or excess pressure or insufficient pressure
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING STRUCTURES OR APPARATUS NOT OTHERWISE PROVIDED FOR
- G01M7/00—Vibration-testing of structures; Shock-testing of structures
- G01M7/02—Vibration-testing by means of a shake table
- G01M7/025—Measuring arrangements
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wang et al. | Experimental study on water pipeline leak using In-Pipe acoustic signal analysis and artificial neural network prediction | |
Ismail et al. | A review of vibration detection methods using accelerometer sensors for water pipeline leakage | |
Ben-Mansour et al. | Computational fluid dynamic simulation of small leaks in water pipelines for direct leak pressure transduction | |
Wang et al. | Experimental research on in-pipe leaks detection of acoustic signature in gas pipelines based on the artificial neural network | |
Zhang et al. | A novel hybrid technique for leak detection and location in straight pipelines | |
Sekhavati et al. | Computational methods for pipeline leakage detection and localization: A review and comparative study | |
Pan et al. | FRF-based transient wave analysis for the viscoelastic parameters identification and leak detection in water-filled plastic pipes | |
Xu et al. | An overview of transient fault detection techniques | |
CA2960587C (en) | Device and method for fluid leakage detection in pressurized pipes | |
Duan et al. | Transient wave-blockage interaction and extended blockage detection in elastic water pipelines | |
Lang et al. | A multiple leaks’ localization method in a pipeline based on change in the sound velocity | |
CN106015951B (en) | A kind of gas pipeline leak detection system and method adapting to various states variation | |
Lang et al. | A small leak localization method for oil pipelines based on information fusion | |
Almeida et al. | The effects of resonances on time delay estimation for water leak detection in plastic pipes | |
Huang et al. | An optimization approach to leak detection in pipe networks using simulated annealing | |
CN105840987A (en) | Pipeline leakage weighted positioning method and device based on pressure waves and sound waves | |
Xu et al. | A small leakage detection approach for oil pipeline using an inner spherical ball | |
Xu et al. | Leakage identification in water pipes using explainable ensemble tree model of vibration signals | |
us Saqib et al. | A multiscale approach to leak detection and localization in water pipeline network | |
Liu et al. | Feature extraction and identification of leak acoustic signal in water supply pipelines using correlation analysis and Lyapunov exponent | |
Alexander et al. | Experimental investigation of the effects of air pocket configuration on fluid transients in a pipeline | |
Kim | Advanced numerical and experimental transient modelling of water and gas pipeline flows incorporating distributed and local effects. | |
Shehadeh et al. | Modelling the effect of incompressible leakage patterns on rupture area in pipeline | |
Asada et al. | Leak detection by monitoring pressure to preserve integrity of agricultural pipe | |
Ranawat et al. | Study of the effect of leak location in water pipeline using CFD |