Kasperski et al., 2013 - Google Patents

Investigation of thermo-hydraulic performance of concentrated solar air-heater with internal multiple-fin array

Kasperski et al., 2013

View PDF
Document ID
17349470216290200073
Author
Kasperski J
Nemś M
Publication year
Publication venue
Applied Thermal Engineering

External Links

Snippet

This study presents a thermo-hydraulic analysis of a solar air heater with an internal multiple- fin array. A preliminary simple test was carried out to confirm the efficiency enhancement of the proposed arrangement. A mathematical model of heat transfer processes was proposed …
Continue reading at www.academia.edu (PDF) (other versions)

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING ENGINES OR PUMPS
    • F24HEATING; RANGES; VENTILATING
    • F24JPRODUCING OR USE OF HEAT NOT OTHERWISE PROVIDED FOR
    • F24J2/00Use of solar heat, e.g. solar heat collectors
    • F24J2/04Solar heat collectors having working fluid conveyed through collector
    • F24J2/05Solar heat collectors having working fluid conveyed through collector surrounded by a transparent enclosure, e.g. evacuated solar collectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING ENGINES OR PUMPS
    • F24HEATING; RANGES; VENTILATING
    • F24JPRODUCING OR USE OF HEAT NOT OTHERWISE PROVIDED FOR
    • F24J2/00Use of solar heat, e.g. solar heat collectors
    • F24J2/04Solar heat collectors having working fluid conveyed through collector
    • F24J2/24Solar heat collectors having working fluid conveyed through collector the working fluid being conveyed through tubular heat absorbing conduits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy
    • Y02E10/44Heat exchange systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING ENGINES OR PUMPS
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0275Arrangements for coupling heat-pipes together or with other structures, e.g. with base blocks; Heat pipe cores
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING ENGINES OR PUMPS
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • F28F13/12Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by creating turbulence, e.g. by stirring, by increasing the force of circulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING ENGINES OR PUMPS
    • F24HEATING; RANGES; VENTILATING
    • F24JPRODUCING OR USE OF HEAT NOT OTHERWISE PROVIDED FOR
    • F24J2/00Use of solar heat, e.g. solar heat collectors
    • F24J2/04Solar heat collectors having working fluid conveyed through collector
    • F24J2/06Solar heat collectors having working fluid conveyed through collector having concentrating elements
    • F24J2/10Solar heat collectors having working fluid conveyed through collector having concentrating elements having reflectors as concentrating elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING ENGINES OR PUMPS
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular lements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING ENGINES OR PUMPS
    • F24HEATING; RANGES; VENTILATING
    • F24JPRODUCING OR USE OF HEAT NOT OTHERWISE PROVIDED FOR
    • F24J2/00Use of solar heat, e.g. solar heat collectors
    • F24J2/46Component parts, details or accessories of solar heat collectors
    • F24J2/50Transparent coverings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING ENGINES OR PUMPS
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BINDEXING SCHEME RELATING TO CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. INCLUDING HOUSING AND APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING ENGINES OR PUMPS
    • F24HEATING; RANGES; VENTILATING
    • F24JPRODUCING OR USE OF HEAT NOT OTHERWISE PROVIDED FOR
    • F24J3/00Other production or use of heat, not derived from combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING ENGINES OR PUMPS
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for

Similar Documents

Publication Publication Date Title
Kasperski et al. Investigation of thermo-hydraulic performance of concentrated solar air-heater with internal multiple-fin array
Gao et al. Thermal performance and parameter analysis of a U-pipe evacuated solar tube collector
Verma et al. Performance comparison of innovative spiral shaped solar collector design with conventional flat plate solar collector
Ren et al. Assessment of the cost reduction potential of a novel loop-heat-pipe solar photovoltaic/thermal system by employing the distributed parameter model
Liang et al. Comparison of different heat transfer models for parabolic trough solar collectors
Mortazavi et al. Conventional and advanced exergy analysis of solar flat plate air collectors
Brahim et al. Parametric study of photovoltaic/thermal wickless heat pipe solar collector
Ammari A mathematical model of thermal performance of a solar air heater with slats
Mwesigye et al. Thermodynamic optimisation of the performance of a parabolic trough receiver using synthetic oil–Al2O3 nanofluid
Wang et al. High temperature collecting performance of a new all-glass evacuated tubular solar air heater with U-shaped tube heat exchanger
Sharma et al. Performance model of a novel evacuated-tube solar collector based on minichannels
Jaisankar et al. Experimental studies on heat transfer and thermal performance characteristics of thermosyphon solar water heating system with helical and left–right twisted tapes
Gong et al. Straight-through all-glass evacuated tube solar collector for low and medium temperature applications
Lu et al. Nonuniform heat transfer model and performance of parabolic trough solar receiver
Ravi Kumar et al. Effect of porous disc receiver configurations on performance of solar parabolic trough concentrator
Ananth et al. Experimental studies on heat transfer and friction factor characteristics of thermosyphon solar water heating system fitted with regularly spaced twisted tape with rod and spacer
Zhang et al. Thermal performance investigation of modified flat plate solar collector with dual-function
Kaya et al. Numerical investigation of efficiency and economic analysis of an evacuated U-tube solar collector with different nanofluids
Moss et al. Optimal passage size for solar collector microchannel and tube-on-plate absorbers
Şevik et al. Thermal performance of flexible air duct using a new absorber construction in a solar air collector
Dou et al. Numerical investigation on the thermal performance of parabolic trough solar collector with synthetic oil/Cu nanofluids
Jia et al. Influence on thermal performance of spiral solar air heater with longitudinal baffles
M Sultan et al. A case study on effect of inclination angle on performance of photovoltaic solar thermal collector in forced fluid mode
Deng et al. Thermal performance predictions and tests of a novel type of flat plate solar thermal collectors by integrating with a freeze tolerance solution
Khani et al. Bi-objective optimization of photovoltaic-thermal (PV/T) solar collectors according to various weather conditions using genetic algorithm: A numerical modeling