Aida et al., 2003 - Google Patents
A scalable and lightweight QoS monitoring technique combining passive and active approachesAida et al., 2003
View PDF- Document ID
- 14063069168322605407
- Author
- Aida M
- Miyoshi N
- Ishibashi K
- Publication year
- Publication venue
- IEEE INFOCOM 2003. Twenty-second Annual Joint Conference of the IEEE Computer and Communications Societies (IEEE Cat. No. 03CH37428)
External Links
Snippet
To make a scalable and lightweight QoS monitoring system, we have proposed a new QoS monitoring technique, change-of-measure based passive/active monitoring (CoMPACT monitor), which is based on change-of-measure framework and is an active measurement …
- 238000000034 method 0 title abstract description 30
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/02—Details
- H04L12/26—Monitoring arrangements; Testing arrangements
- H04L12/2602—Monitoring arrangements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L43/00—Arrangements for monitoring or testing packet switching networks
- H04L43/08—Monitoring based on specific metrics
- H04L43/0823—Errors
- H04L43/0829—Packet loss
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L43/00—Arrangements for monitoring or testing packet switching networks
- H04L43/08—Monitoring based on specific metrics
- H04L43/0852—Delays
- H04L43/087—Jitter
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L43/00—Arrangements for monitoring or testing packet switching networks
- H04L43/08—Monitoring based on specific metrics
- H04L43/0876—Network utilization
- H04L43/0888—Throughput
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L43/00—Arrangements for monitoring or testing packet switching networks
- H04L43/08—Monitoring based on specific metrics
- H04L43/0852—Delays
- H04L43/0864—Round trip delays
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance or administration or management of packet switching networks
- H04L41/50—Network service management, i.e. ensuring proper service fulfillment according to an agreement or contract between two parties, e.g. between an IT-provider and a customer
- H04L41/5003—Managing service level agreement [SLA] or interaction between SLA and quality of service [QoS]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance or administration or management of packet switching networks
- H04L41/50—Network service management, i.e. ensuring proper service fulfillment according to an agreement or contract between two parties, e.g. between an IT-provider and a customer
- H04L41/5019—Ensuring SLA
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic regulation in packet switching networks
- H04L47/10—Flow control or congestion control
- H04L47/22—Traffic shaping
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L43/00—Arrangements for monitoring or testing packet switching networks
- H04L43/10—Arrangements for monitoring or testing packet switching networks using active monitoring, e.g. heartbeat protocols, polling, ping, trace-route
- H04L43/106—Arrangements for monitoring or testing packet switching networks using active monitoring, e.g. heartbeat protocols, polling, ping, trace-route by adding timestamps to packets
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L43/00—Arrangements for monitoring or testing packet switching networks
- H04L43/06—Report generation
- H04L43/062—Report generation for traffic related reporting
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/54—Store-and-forward switching systems
- H04L12/56—Packet switching systems
- H04L12/5695—Admission control; Resource allocation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L43/00—Arrangements for monitoring or testing packet switching networks
- H04L43/50—Testing arrangements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L43/00—Arrangements for monitoring or testing packet switching networks
- H04L43/16—Arrangements for monitoring or testing packet switching networks using threshold monitoring
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L43/00—Arrangements for monitoring or testing packet switching networks
- H04L43/12—Arrangements for monitoring or testing packet switching networks using dedicated network monitoring probes
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance or administration or management of packet switching networks
- H04L41/14—Arrangements for maintenance or administration or management of packet switching networks involving network analysis or design, e.g. simulation, network model or planning
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L43/00—Arrangements for monitoring or testing packet switching networks
- H04L43/02—Arrangements for monitoring or testing packet switching networks involving a reduction of monitoring data
- H04L43/026—Arrangements for monitoring or testing packet switching networks involving a reduction of monitoring data using flow generation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance or administration or management of packet switching networks
- H04L41/02—Arrangements for maintenance or administration or management of packet switching networks involving integration or standardization
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance or administration or management of packet switching networks
- H04L41/08—Configuration management of network or network elements
- H04L41/0896—Bandwidth or capacity management, i.e. automatically increasing or decreasing capacities, e.g. bandwidth on demand
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance or administration or management of packet switching networks
- H04L41/12—Arrangements for maintenance or administration or management of packet switching networks network topology discovery or management
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L65/00—Network arrangements or protocols for real-time communications
- H04L65/80—QoS aspects
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L45/00—Routing or path finding of packets in data switching networks
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Aida et al. | A scalable and lightweight QoS monitoring technique combining passive and active approaches | |
Sommers et al. | Accurate and efficient SLA compliance monitoring | |
Liu et al. | Using loss pairs to discover network properties | |
Asgari et al. | Scalable monitoring support for resource management and service assurance | |
Lima et al. | Distributed admission control for QoS and SLS management | |
Habib et al. | On detecting service violations and bandwidth theft in QoS network domains | |
Gu et al. | On passive one-way loss measurements using sampled flow statistics | |
Kiwior et al. | PathMon, a methodology for determining available bandwidth over an unknown network | |
JP5052653B2 (en) | TCP communication quality estimation method and TCP communication quality estimation apparatus | |
Schlembach et al. | Design and implementation of scalable admission control | |
Ishibashi et al. | Active/passive combination-type performance measurement method using change-of-measure framework | |
Ma et al. | Adaptive sampling for network performance measurement under voice traffic | |
Aida et al. | CoMPACT-Monitor: Change-of-measure based passive/active monitoring weighted active sampling scheme to infer QoS | |
JP2009296304A (en) | Tcp communication quality estimating method and tcp communication quality estimating device | |
JP2004032377A (en) | Method and system for estimating bottle neck and computer readable recording medium recorded with program of that method | |
KR100943728B1 (en) | The per link available bandwidth measurement method using the total length field in IP packet header and the available bandwidth information of a link management method | |
Scalable et al. | SERIES B: Operations Research | |
Constantinescu et al. | Modeling of one-way transit time in IP routers | |
JP5923914B2 (en) | Network state estimation apparatus and network state estimation program | |
Papadogiannakis et al. | Passive end-to-end packet loss estimation for grid traffic monitoring | |
Mondragon et al. | Analysis, simulation and measurement in large-scale packet networks | |
Cui et al. | SCONE: A tool to estimate shared congestion among Internet paths | |
Chuah et al. | Furies: a scalable framework for traffic policing and admission control | |
Sommers et al. | A framework for multi-objective SLA compliance monitoring | |
Ma et al. | Adaptive sampling methods for network performance metrics measurement and evaluation in MPLS-based IP networks |