Li et al., 2017 - Google Patents
Modifying emission spectral bandwidth of phosphorescent platinum (II) complexes through synthetic controlLi et al., 2017
- Document ID
- 11983857265305087370
- Author
- Li G
- Wolfe A
- Brooks J
- Zhu Z
- Li J
- Publication year
- Publication venue
- Inorganic chemistry
External Links
Snippet
The design, synthesis, and characterization of a series of tetradentate cyclometalated Pt (II) complexes are reported. The platinum complexes have the general structure Pt (ppz-O- CbPy-R), where a tetradentate cyclometalating ligand is consisting of ppz (3, 5-dimethyl-1 …
- HRGDZIGMBDGFTC-UHFFFAOYSA-N platinum(2+)   [Pt+2] 0 title description 50
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; MISCELLANEOUS COMPOSITIONS; MISCELLANEOUS APPLICATIONS OF MATERIALS
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1018—Heterocyclic compounds
- C09K2211/1025—Heterocyclic compounds characterised by ligands
- C09K2211/1044—Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L51/00—Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
- H01L51/0032—Selection of organic semiconducting materials, e.g. organic light sensitive or organic light emitting materials
- H01L51/0077—Coordination compounds, e.g. porphyrin
- H01L51/0084—Transition metal complexes, e.g. Ru(II)polypyridine complexes
- H01L51/0085—Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising Iridium
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L51/00—Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
- H01L51/0032—Selection of organic semiconducting materials, e.g. organic light sensitive or organic light emitting materials
- H01L51/0077—Coordination compounds, e.g. porphyrin
- H01L51/0084—Transition metal complexes, e.g. Ru(II)polypyridine complexes
- H01L51/0087—Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising platinum
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F15/00—Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic System
- C07F15/0006—Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic System compounds of the platinum group
- C07F15/0033—Iridium compounds
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L51/00—Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
- H01L51/50—Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for light emission, e.g. organic light emitting diodes [OLED] or polymer light emitting devices [PLED];
- H01L51/5012—Electroluminescent [EL] layer
- H01L51/5016—Triplet emission
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; MISCELLANEOUS COMPOSITIONS; MISCELLANEOUS APPLICATIONS OF MATERIALS
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1003—Carbocyclic compounds
- C09K2211/1007—Non-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; MISCELLANEOUS COMPOSITIONS; MISCELLANEOUS APPLICATIONS OF MATERIALS
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/18—Metal complexes
- C09K2211/185—Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F15/00—Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic System
- C07F15/0006—Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic System compounds of the platinum group
- C07F15/0086—Platinum compounds
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; MISCELLANEOUS COMPOSITIONS; MISCELLANEOUS APPLICATIONS OF MATERIALS
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/06—Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L51/00—Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
- H01L51/0032—Selection of organic semiconducting materials, e.g. organic light sensitive or organic light emitting materials
- H01L51/005—Macromolecular systems with low molecular weight, e.g. cyanine dyes, coumarine dyes, tetrathiafulvalene
- H01L51/0062—Macromolecular systems with low molecular weight, e.g. cyanine dyes, coumarine dyes, tetrathiafulvalene aromatic compounds comprising a hetero atom, e.g.: N,P,S
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Li et al. | Modifying emission spectral bandwidth of phosphorescent platinum (II) complexes through synthetic control | |
Zhao et al. | Cyclometalated platinum complexes with aggregation-induced phosphorescence emission behavior and highly efficient electroluminescent ability | |
Zhang et al. | Syntheses, photoluminescence, and electroluminescence of a series of sublimable bipolar cationic cuprous complexes with thermally activated delayed fluorescence | |
Li et al. | Metal-assisted delayed fluorescent Pd (II) complexes and phosphorescent Pt (II) complex based on [1, 2, 4] triazolo [4, 3-a] pyridine-containing ligands: synthesis, characterization, electrochemistry, photophysical studies, and application | |
Brulatti et al. | Luminescent Iridium (III) Complexes with N∧ C∧ N-Coordinated Terdentate Ligands: Dual Tuning of the Emission Energy and Application to Organic Light-Emitting Devices | |
Fleetham et al. | Efficient red-emitting platinum complex with long operational stability | |
Miao et al. | Highly efficient red and white organic light-emitting diodes with external quantum efficiency beyond 20% by employing pyridylimidazole-based metallophosphors | |
Tang et al. | Bipolar gold (III) complexes for solution-processable organic light-emitting devices with a small efficiency roll-off | |
Chang et al. | A new class of sky-blue-emitting Ir (III) phosphors assembled using fluorine-free pyridyl pyrimidine cyclometalates: application toward high-performance sky-blue-and white-emitting OLEDs | |
Yang et al. | Achieving high-performance solution-processed orange OLEDs with the phosphorescent cyclometalated trinuclear Pt (II) complex | |
Leung et al. | Thermally stimulated delayed phosphorescence (TSDP)-based gold (III) complexes of tridentate pyrazine-containing pincer ligand with wide emission color tunability and their application in organic light-emitting devices | |
Li et al. | Rational design and characterization of heteroleptic phosphorescent complexes for highly efficient deep-red organic light-emitting devices | |
Bae et al. | Deep red phosphorescence of cyclometalated iridium complexes by o-carborane substitution | |
Shavaleev et al. | Green phosphorescence and electroluminescence of sulfur pentafluoride-functionalized cationic iridium (III) complexes | |
Au et al. | Functionalized bis-cyclometalated alkynylgold (III) complexes: synthesis, characterization, electrochemistry, photophysics, photochemistry, and electroluminescence studies | |
Fan et al. | High power efficiency yellow phosphorescent OLEDs by using new iridium complexes with halogen-substituted 2-phenylbenzo [d] thiazole ligands | |
Fuertes et al. | Heteroleptic cycloplatinated N-heterocyclic carbene complexes: a new approach to highly efficient blue-light emitters | |
Yang et al. | Pyrimidine-based mononuclear and dinuclear iridium (III) complexes for high performance organic light-emitting diodes | |
Zhao et al. | Phosphorescent iridium (III) complexes bearing fluorinated aromatic sulfonyl group with nearly unity phosphorescent quantum yields and outstanding electroluminescent properties | |
Wang et al. | Near-infrared emission induced by shortened Pt–Pt contact: diplatinum (II) complexes with pyridyl pyrimidinato cyclometalates | |
Au | Organic light-emitting diodes based on luminescent self-assembled materials of copper (I) | |
Shafikov et al. | Unusually fast phosphorescence from Ir (III) complexes via dinuclear molecular design | |
Hsu et al. | Triboluminescence and metal phosphor for organic light-emitting diodes: functional Pt (II) complexes with both 2-pyridylimidazol-2-ylidene and bipyrazolate chelates | |
Pal et al. | Blue-to-green emitting neutral Ir (III) complexes bearing pentafluorosulfanyl groups: a combined experimental and theoretical study | |
Adamovich et al. | Preparation of tris-heteroleptic iridium (III) complexes containing a cyclometalated aryl-N-heterocyclic carbene ligand |