Li et al., 2017 - Google Patents

Modifying emission spectral bandwidth of phosphorescent platinum (II) complexes through synthetic control

Li et al., 2017

Document ID
11983857265305087370
Author
Li G
Wolfe A
Brooks J
Zhu Z
Li J
Publication year
Publication venue
Inorganic chemistry

External Links

Snippet

The design, synthesis, and characterization of a series of tetradentate cyclometalated Pt (II) complexes are reported. The platinum complexes have the general structure Pt (ppz-O- CbPy-R), where a tetradentate cyclometalating ligand is consisting of ppz (3, 5-dimethyl-1 …
Continue reading at pubs.acs.org (other versions)

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; MISCELLANEOUS COMPOSITIONS; MISCELLANEOUS APPLICATIONS OF MATERIALS
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L51/00Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
    • H01L51/0032Selection of organic semiconducting materials, e.g. organic light sensitive or organic light emitting materials
    • H01L51/0077Coordination compounds, e.g. porphyrin
    • H01L51/0084Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H01L51/0085Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising Iridium
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L51/00Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
    • H01L51/0032Selection of organic semiconducting materials, e.g. organic light sensitive or organic light emitting materials
    • H01L51/0077Coordination compounds, e.g. porphyrin
    • H01L51/0084Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H01L51/0087Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising platinum
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic System
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic System compounds of the platinum group
    • C07F15/0033Iridium compounds
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L51/00Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
    • H01L51/50Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for light emission, e.g. organic light emitting diodes [OLED] or polymer light emitting devices [PLED];
    • H01L51/5012Electroluminescent [EL] layer
    • H01L51/5016Triplet emission
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; MISCELLANEOUS COMPOSITIONS; MISCELLANEOUS APPLICATIONS OF MATERIALS
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; MISCELLANEOUS COMPOSITIONS; MISCELLANEOUS APPLICATIONS OF MATERIALS
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/185Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic System
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic System compounds of the platinum group
    • C07F15/0086Platinum compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; MISCELLANEOUS COMPOSITIONS; MISCELLANEOUS APPLICATIONS OF MATERIALS
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L51/00Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
    • H01L51/0032Selection of organic semiconducting materials, e.g. organic light sensitive or organic light emitting materials
    • H01L51/005Macromolecular systems with low molecular weight, e.g. cyanine dyes, coumarine dyes, tetrathiafulvalene
    • H01L51/0062Macromolecular systems with low molecular weight, e.g. cyanine dyes, coumarine dyes, tetrathiafulvalene aromatic compounds comprising a hetero atom, e.g.: N,P,S

Similar Documents

Publication Publication Date Title
Li et al. Modifying emission spectral bandwidth of phosphorescent platinum (II) complexes through synthetic control
Zhao et al. Cyclometalated platinum complexes with aggregation-induced phosphorescence emission behavior and highly efficient electroluminescent ability
Zhang et al. Syntheses, photoluminescence, and electroluminescence of a series of sublimable bipolar cationic cuprous complexes with thermally activated delayed fluorescence
Li et al. Metal-assisted delayed fluorescent Pd (II) complexes and phosphorescent Pt (II) complex based on [1, 2, 4] triazolo [4, 3-a] pyridine-containing ligands: synthesis, characterization, electrochemistry, photophysical studies, and application
Brulatti et al. Luminescent Iridium (III) Complexes with N∧ C∧ N-Coordinated Terdentate Ligands: Dual Tuning of the Emission Energy and Application to Organic Light-Emitting Devices
Fleetham et al. Efficient red-emitting platinum complex with long operational stability
Miao et al. Highly efficient red and white organic light-emitting diodes with external quantum efficiency beyond 20% by employing pyridylimidazole-based metallophosphors
Tang et al. Bipolar gold (III) complexes for solution-processable organic light-emitting devices with a small efficiency roll-off
Chang et al. A new class of sky-blue-emitting Ir (III) phosphors assembled using fluorine-free pyridyl pyrimidine cyclometalates: application toward high-performance sky-blue-and white-emitting OLEDs
Yang et al. Achieving high-performance solution-processed orange OLEDs with the phosphorescent cyclometalated trinuclear Pt (II) complex
Leung et al. Thermally stimulated delayed phosphorescence (TSDP)-based gold (III) complexes of tridentate pyrazine-containing pincer ligand with wide emission color tunability and their application in organic light-emitting devices
Li et al. Rational design and characterization of heteroleptic phosphorescent complexes for highly efficient deep-red organic light-emitting devices
Bae et al. Deep red phosphorescence of cyclometalated iridium complexes by o-carborane substitution
Shavaleev et al. Green phosphorescence and electroluminescence of sulfur pentafluoride-functionalized cationic iridium (III) complexes
Au et al. Functionalized bis-cyclometalated alkynylgold (III) complexes: synthesis, characterization, electrochemistry, photophysics, photochemistry, and electroluminescence studies
Fan et al. High power efficiency yellow phosphorescent OLEDs by using new iridium complexes with halogen-substituted 2-phenylbenzo [d] thiazole ligands
Fuertes et al. Heteroleptic cycloplatinated N-heterocyclic carbene complexes: a new approach to highly efficient blue-light emitters
Yang et al. Pyrimidine-based mononuclear and dinuclear iridium (III) complexes for high performance organic light-emitting diodes
Zhao et al. Phosphorescent iridium (III) complexes bearing fluorinated aromatic sulfonyl group with nearly unity phosphorescent quantum yields and outstanding electroluminescent properties
Wang et al. Near-infrared emission induced by shortened Pt–Pt contact: diplatinum (II) complexes with pyridyl pyrimidinato cyclometalates
Au Organic light-emitting diodes based on luminescent self-assembled materials of copper (I)
Shafikov et al. Unusually fast phosphorescence from Ir (III) complexes via dinuclear molecular design
Hsu et al. Triboluminescence and metal phosphor for organic light-emitting diodes: functional Pt (II) complexes with both 2-pyridylimidazol-2-ylidene and bipyrazolate chelates
Pal et al. Blue-to-green emitting neutral Ir (III) complexes bearing pentafluorosulfanyl groups: a combined experimental and theoretical study
Adamovich et al. Preparation of tris-heteroleptic iridium (III) complexes containing a cyclometalated aryl-N-heterocyclic carbene ligand