WO2023127490A1 - Inspection device and inspection method - Google Patents
Inspection device and inspection method Download PDFInfo
- Publication number
- WO2023127490A1 WO2023127490A1 PCT/JP2022/045925 JP2022045925W WO2023127490A1 WO 2023127490 A1 WO2023127490 A1 WO 2023127490A1 JP 2022045925 W JP2022045925 W JP 2022045925W WO 2023127490 A1 WO2023127490 A1 WO 2023127490A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- imaging unit
- imaging
- probe card
- substrate
- mounting member
- Prior art date
Links
- 238000007689 inspection Methods 0.000 title claims abstract description 78
- 238000000034 method Methods 0.000 title claims description 13
- 238000003384 imaging method Methods 0.000 claims abstract description 159
- 239000000523 sample Substances 0.000 claims abstract description 124
- 230000007246 mechanism Effects 0.000 claims abstract description 46
- 239000000758 substrate Substances 0.000 claims abstract description 31
- 235000012431 wafers Nutrition 0.000 description 68
- 238000001514 detection method Methods 0.000 description 24
- 239000004065 semiconductor Substances 0.000 description 15
- 230000032258 transport Effects 0.000 description 9
- 230000003287 optical effect Effects 0.000 description 8
- 238000012545 processing Methods 0.000 description 6
- 238000012546 transfer Methods 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 4
- 230000002950 deficient Effects 0.000 description 3
- 230000006837 decompression Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/28—Testing of electronic circuits, e.g. by signal tracer
- G01R31/2851—Testing of integrated circuits [IC]
- G01R31/2886—Features relating to contacting the IC under test, e.g. probe heads; chucks
- G01R31/2891—Features relating to contacting the IC under test, e.g. probe heads; chucks related to sensing or controlling of force, position, temperature
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R1/00—Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
- G01R1/02—General constructional details
- G01R1/06—Measuring leads; Measuring probes
- G01R1/067—Measuring probes
- G01R1/073—Multiple probes
- G01R1/07307—Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card
- G01R1/07314—Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card the body of the probe being perpendicular to test object, e.g. bed of nails or probe with bump contacts on a rigid support
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/28—Testing of electronic circuits, e.g. by signal tracer
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/28—Testing of electronic circuits, e.g. by signal tracer
- G01R31/2851—Testing of integrated circuits [IC]
- G01R31/2886—Features relating to contacting the IC under test, e.g. probe heads; chucks
- G01R31/2887—Features relating to contacting the IC under test, e.g. probe heads; chucks involving moving the probe head or the IC under test; docking stations
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/28—Testing of electronic circuits, e.g. by signal tracer
- G01R31/2851—Testing of integrated circuits [IC]
- G01R31/2886—Features relating to contacting the IC under test, e.g. probe heads; chucks
- G01R31/2889—Interfaces, e.g. between probe and tester
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/68—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L22/00—Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N7/00—Television systems
- H04N7/18—Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
- H04N7/181—Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast for receiving images from a plurality of remote sources
Definitions
- the present disclosure relates to an inspection device and an inspection method.
- Patent Literature 1 discloses an inspection device that moves a wafer placed on an alignment stage to a position where it contacts the probes of a probe card.
- This inspection apparatus includes a step of acquiring card barycentric coordinates of a probe card with a first acquisition unit on the aligner side, and a step of acquiring reference coordinates in a target coordinate system of a reference target provided on a pogo frame with the first acquisition unit. , and execute the process including.
- the inspection apparatus includes a step of acquiring common coordinates between the second acquiring unit and the first acquiring unit on the pogo frame side, a step of acquiring wafer barycentric coordinates in the second acquiring unit, card barycentric coordinates, common coordinates, and moving the aligner with a command including the contact coordinates determined based on the barycentric coordinates of the wafer.
- the technology according to the present disclosure more accurately aligns the substrate and the probes of the probe card in an inspection apparatus that inspects the substrate.
- One aspect of the present disclosure is an inspection apparatus for inspecting a substrate, comprising: a mounting member on which the substrate is mounted; a holding unit that holds a probe card having probes that contact electrodes on the substrate; a moving mechanism for holding and moving a member, a first imaging unit for recognizing the substrate placed on the placing member, and a second imaging unit for recognizing the probe of the probe card held by the holding part.
- the holding section includes Based on the results of imaging by the first imaging unit and the second imaging unit in a state in which the mounting member on which the substrate is placed is located below the held probe card, Alignment is performed between the placed substrate and the probes of the probe card.
- alignment between the substrate and the probes of the probe card can be performed more accurately.
- FIG. 4 is a side cross-sectional view of one sub-area of the inspection area; 3 is a perspective view of a housing of an imaging unit; FIG. FIG. 4 is a cross-sectional view of the periphery of the pogo frame; It is a top view of an imaging part.
- FIG. 5 is a diagram for explaining inspection processing that accompanies contact position determination processing according to the present embodiment;
- a large number of semiconductor devices with predetermined circuit patterns are formed on a substrate such as a semiconductor wafer (hereinafter referred to as "wafer").
- the semiconductor devices thus formed are inspected for electrical characteristics and the like, and sorted into non-defective products and defective products.
- Semiconductor devices are inspected, for example, by using an inspection apparatus in a state of a wafer before being divided into semiconductor devices.
- the inspection device is provided with a probe card having a large number of probes that are needle-shaped contact terminals.
- the wafer and the probe card are brought close to each other, and the probes of the probe card contact each electrode of the semiconductor device formed on the wafer.
- an electrical signal is supplied to the semiconductor device through each probe from a tester provided above the probe card. Based on the electrical signal received by the tester from the semiconductor device via each probe, it is determined whether or not the semiconductor device is defective.
- the inspection apparatus aligns the probes of the probe card and the wafer, more specifically, aligns the probes with the electrodes on the wafer.
- the inspection apparatus 500 has, for example, a pogo frame 502 that holds a probe card 501, a chuck top 503 on which a wafer W is placed, and an aligner 504 that moves the chuck top 503. Also, the inspection apparatus 500 has an upper camera 510 for wafer recognition provided in a region that does not overlap the probe card 501 in plan view, and a lower camera 511 for probe card recognition is fixed to the aligner 504 . In this inspection apparatus 500, for example, the probes 501a of the probe card 501 and the wafer W on the chuck top 503 are aligned based on the following imaging results.
- the above alignment method has room for improvement in terms of time required for alignment and alignment accuracy.
- the technology according to the present disclosure enables a board inspection device to accurately align a board and probes of a probe card in a short time.
- ⁇ Inspection device> 3 and 4 are a cross-sectional view and a vertical cross-sectional view, respectively, showing the outline of the configuration of the inspection apparatus according to this embodiment.
- the inspection apparatus 1 shown in FIGS. 3 and 4 inspects a wafer W as a substrate, and more specifically, inspects the electrical characteristics of semiconductor devices formed on the wafer W as devices to be inspected. be.
- the inspection apparatus 1 has a housing 10 , and the housing 10 is provided with a loading/unloading area 11 , a transport area 12 and an inspection area 13 .
- the loading/unloading area 11 is an area where the wafer W is loaded/unloaded to/from the inspection apparatus 1 .
- the transport area 12 is an area that connects the loading/unloading area 11 and the inspection area 13 .
- the inspection area 13 is an area where the electrical characteristics of the semiconductor devices formed on the wafer W are inspected.
- the loading/unloading area 11 is provided with a port 20 for receiving a cassette C containing a plurality of wafers W, a loader 21 for containing a probe card described later, and a control unit 22 for controlling each component of the inspection apparatus 1.
- the control unit 22 is configured by a computer having a CPU, a memory, etc., and has a storage unit (not shown) that stores various information.
- the storage unit stores, for example, programs including commands for realizing inspection processing and the like.
- the program may be recorded in a computer-readable storage medium and installed in the control unit 22 from the storage medium.
- the storage medium may be temporary or non-temporary. Part or all of the program may be realized by dedicated hardware (circuit board).
- the storage unit is, for example, a storage device such as an HDD, a memory such as a RAM that temporarily stores necessary information related to program operations, or a combination thereof.
- a transfer device 30 that can freely move while holding a wafer W or the like is arranged.
- the transfer device 30 transfers the wafer W between the cassette C in the port 20 of the loading/unloading area 11 and the inspection area 13 .
- the transport device 30 transports probe cards fixed to a pogo frame, which will be described later, in the inspection area 13 and requiring maintenance to the loader 21 in the loading/unloading area 11 . Further, the transport device 30 transports new or maintained probe cards from the loader 21 into the inspection area 13 .
- a plurality of testers 40 are provided in the inspection area 13 .
- the inspection area 13 is divided into three in the vertical direction (the Z direction in the figure) and two in the horizontal direction (the X direction in the figure). is provided with two testers 40 arranged horizontally.
- an aligner 50 as a moving mechanism is provided for each tester 40 in each divided area 13a.
- one imaging unit 60 is provided in each divided area 13a. That is, in each divided area 13a, the imaging section 60 is provided so as to be shared by the testers 40 adjacent in the horizontal direction.
- the number and arrangement of the testers 40, aligners 50, and imaging units 60 can be arbitrarily selected.
- the tester 40 transmits and receives electrical signals to and from the wafer W for electrical characteristic inspection.
- the aligner 50 holds a chuck top 70, which will be described later, and moves in the horizontal direction (the X direction and the Y direction in FIG. 4, the ⁇ direction around the Z axis in FIG. 3) and the vertical direction (the Z direction in FIGS. 3 and 4). ).
- the aligner 50 is also used for alignment between the wafer W placed on the chuck top 70 and probes of a probe card, which will be described later.
- the imaging unit 60 images both the probes of the probe card and the wafer W placed on the chuck top 70 .
- the chuck top 70 is an example of a mounting member, on which the wafer W is mounted.
- the chuck top 70 can hold, for example, the mounted wafer W by suction or the like.
- the transfer apparatus 30 while the transfer apparatus 30 is transferring the wafer W toward one tester 40, the other tester 40 tests the electrical characteristics of the electronic devices formed on the other wafer W. be able to.
- FIG. 5 is a side sectional view of one divided area 13a of the inspection area 13.
- FIG. 6 is a perspective view of a later-described housing of the imaging unit 60.
- FIG. 7 is a cross-sectional view of the periphery of a pogo frame, which will be described later.
- FIG. 8 is a top view of the imaging unit 60.
- Each divided area 13a of the inspection area 13 is provided with the aligner 50 and the imaging unit 60 as described above. Further, as shown in FIG. 5, each divided area 13a is provided with a pogo frame 80 and a probe card 90, which will be described later.
- the aligner 50 has an X stage 51, a Y stage 52 and a Z stage 53, for example.
- the X stage 51 moves along a guide rail 51a extending in the horizontal direction (X direction in the drawing).
- a drive unit (not shown) for driving the movement is provided for the X stage 51 .
- the driving section has, for example, a motor as a driving source that generates a driving force for the movement.
- the X stage 51 is provided with a position detection mechanism (not shown) for detecting the position of the X stage 51 in the X direction, that is, the position of the chuck top 70 in the X direction.
- the position detection mechanism is, for example, a linear encoder.
- the Y stage 52 moves on the X stage 51. Specifically, the Y stage 52 moves along a guide rail 52a extending in the horizontal direction (the Y direction in the drawing).
- a drive unit (not shown) for driving the movement is provided for the Y stage 52 .
- the driving section has, for example, a motor as a driving source that generates a driving force for the movement.
- the Y stage 52 is provided with a position detection mechanism (not shown) for detecting the position of the Y stage 52 in the Y direction, that is, the position of the chuck top 70 in the Y direction.
- the position detection mechanism is, for example, a linear encoder.
- the Z stage 53 moves vertically by means of a telescopic shaft 53a that is telescopic in the vertical direction (the Z direction in the drawing).
- a drive unit (not shown) for driving the movement is provided for the Z stage 53 .
- the driving section has, for example, a motor as a driving source that generates a driving force for the movement.
- the Z stage 53 is provided with a position detection mechanism (not shown) for detecting the position of the Z stage 53 in the Z direction, that is, the position of the chuck top 70 in the Z direction.
- the position detection mechanism is, for example, a linear encoder.
- the chuck top 70 is detachably held by suction on the Z stage 53 .
- the chuck top 70 is held by the Z stage 53 by vacuum suction or the like by a suction holding mechanism (not shown).
- the aligner 50 is controlled by the control unit 22. Specifically, the drive units of the X stage 51 , Y stage 52 and Z stage 53 of the aligner 50 are controlled by the control unit 22 . Position detection results obtained by the above-described position detection mechanisms provided on the X stage 51 , Y stage 52 and Z stage 53 are output to the control unit 22 .
- the imaging unit 60 images both the probes 91 of the probe card 90 and the wafer W placed on the chuck top 70 as described above.
- the imaging unit 60 has a housing 60a. As shown in FIG. 6, both the first imaging unit 61 and the second imaging unit 62 are fixed to the housing 60a. In other words, in the imaging section 60, the first imaging unit 61 and the second imaging unit 62 are fixed to the common housing 60a.
- the first imaging unit 61 is provided in the lower part of the housing 60a, and the second imaging unit 62 is provided in the upper part of the housing 60a.
- the first imaging unit 61 recognizes the wafer W placed on the chuck top 70 . Specifically, the first imaging unit 61 images the wafer W placed on the chuck top 70 in order to recognize the wafer W. As shown in FIG.
- the first imaging unit 61 has a macro view camera 61a for capturing images at low resolution and a micro view camera 61b for capturing images at high resolution.
- the second imaging unit 62 recognizes the probes 91 of the probe card 90 . Specifically, the second imaging unit 62 images the probe 91 of the probe card 90 in order to recognize the probe 91 .
- the second imaging unit 62 has a macro-view camera 62a for imaging at low resolution and a micro-view camera 62b for imaging at high resolution.
- the first imaging unit 61 and the second imaging unit 62 are provided coaxially. Specifically, as shown in the figure, the optical axes P1a and P2a of the macro-viewing cameras 61a and 62a are coaxial, and the optical axes P1b and P2b of the micro-viewing cameras 61b and 62b are also coaxial.
- the imaging unit 60 is controlled by the control unit 22 . Also, the imaging result of the imaging unit 60 is output to the control unit 22 .
- the imaging unit 60 is configured to be movable in the horizontal direction (XY direction in FIG. 5 etc.) and vertical direction (Z direction in FIG. 5 etc.) by the imaging movement mechanism 100 (see FIG. 8).
- the housing 60 a of the imaging unit 60 is configured to be movable in the horizontal direction and the vertical direction by the imaging movement mechanism 100 .
- the imaging movement mechanism 100 will be described later.
- the tester 40 has a tester motherboard 41 at its bottom, as shown in FIG.
- a plurality of inspection circuit boards (not shown) are mounted on the tester motherboard 41 in an upright state.
- a plurality of electrodes (not shown) are provided on the bottom surface of the tester motherboard 41 .
- a pogo frame 80 is provided below the tester 40 .
- the pogo frame 80 is an example of a holding section and holds the probe card 90 . Also, the pogo frame 80 electrically connects the probe card 90 and the tester 40 . This pogo frame 80 has pogo pins 81 for the electrical connection described above, and more specifically, has a pogo block 82 that holds a large number of pogo pins 81 . A probe card 90 is fixed to the lower surface of the pogo frame 80 while being aligned at a predetermined position.
- the tester motherboard 41 is vacuum-sucked to the pogo frame 80 by an exhaust mechanism (not shown), and the probe card 90 is vacuum-sucked to the pogo frame 80 .
- the lower end of each pogo pin 81 of the pogo frame 80 contacts the corresponding electrode on the upper surface of the card body 92 of the probe card 90, and the upper end of each pogo pin 81 It is pressed against the corresponding electrodes on the underside of the tester motherboard 41 .
- the probe card 90 has a disk-shaped card body 92 with a plurality of electrodes provided on its upper surface.
- a plurality of probes 91 which are needle-like contact terminals extending downward, are provided on the lower surface of the card body 92.
- the plurality of electrodes provided on the upper surface of the card body 92 are electrically connected to corresponding probes 91 respectively.
- the probes 91 are brought into contact with electrodes (not shown) of semiconductor devices formed on the wafer W, respectively. Therefore, during the electrical characteristic inspection, electrical signals for inspection are transmitted and received between the tester mother board 41 and the semiconductor devices on the wafer W via the pogo pins 81, the electrodes provided on the upper surface of the card body 92, and the probes 91. be done.
- the inspection apparatus 1 is provided with a large number of probes 91 so as to cover substantially the entire lower surface of the card body 92 in order to collectively inspect the electrical characteristics of a plurality of semiconductor devices formed on the wafer W.
- a bellows 83 is attached to the lower surface of the pogo frame 80 .
- the bellows 83 is a tubular extendable member that hangs down so as to surround the probe card 90 . Further, the bellows 83 sucks and holds the chuck top 70 at a position below the probe card 90 as indicated by the dotted line in FIG.
- the bellows 83 sucks and holds the chuck top 70 to form a sealed space S surrounded by the pogo frame 80 including the probe card 90 , the bellows 83 and the chuck top 70 .
- the contact state between the wafer W and the probes 91 can be maintained by decompressing the sealed space S by a decompression mechanism (not shown).
- the housing 60a of the imaging unit 60 is configured to be movable in the horizontal direction and the vertical direction by the imaging movement mechanism 100 of FIG.
- the imaging movement mechanism 100 has a pair of guide rails 101 and a pair of movement rails 102 .
- Each of the guide rails 101 is provided so as to extend along the horizontal direction (the X direction in the drawing).
- the guide rail 101 is provided so as to connect the partition wall 10a separating the divided regions 13a having the same height and the side wall of the housing 10 of the inspection device 1 .
- the pair of guide rails 101 are separated from each other so that the chuck top 70 can pass between the guide rails 101 .
- a pair of moving rails 102 are provided so as to extend in a horizontal direction (the Y direction in the figure) orthogonal to the guide rails 101, and support the housing 60a of the image pickup unit 60 so as to extend along the guide rails 102. It is configured to be movable along rails 101 .
- a drive unit (not shown) for driving the movement is provided for the pair of moving rails 102 .
- the driving section has, for example, a motor as a driving source that generates a driving force for the movement.
- a position detection mechanism (not shown) detects the position of the pair of moving rails 102 in the X direction, that is, the position of the housing 60a of the imaging unit 60 in the X direction. is provided.
- the position detection mechanism is, for example, a linear encoder.
- the pair of moving rails 102 supports the housing 60a of the imaging unit 60 so as to be movable along the extending direction of the moving rails 102 (the Y direction in the drawing) and the vertical direction (the Z direction in the drawing).
- a driving unit (not shown) for driving the moving rails 102 in the extending direction and the vertical direction is provided.
- the driving section has, for example, a motor as a driving source that generates a driving force for the movement.
- a position detection mechanism (not shown) for detecting the position of the housing 60a in the direction in which the moving rail 102 extends and in the vertical direction is provided for the housing 60a of the imaging unit 60.
- the position detection mechanism is, for example, a linear encoder.
- the imaging movement mechanism 100 is controlled by the control unit 22 .
- the control unit 22 controls the driving unit for the moving rail 102 and the housing 60a. Further, the position detection result by the above-described position detection mechanism provided on the moving rail 102 and the housing 60 a is output to the control section 22 .
- the contact position is a position in the horizontal direction (X direction and Y direction in FIG. 5 etc.) of the chuck top 70 when the wafer W supported by the chuck top 70 and the probe 91 are brought into contact with each other.
- Step S1 Transport
- the wafer W to be inspected is transferred to the desired tester 40 .
- the transfer device 30 and the like are controlled by the control unit 22, and the wafer W is taken out from the cassette C in the port 20 of the loading/unloading area 11, loaded into the upper divided area 13a, for example, and sent to a desired tester.
- 40 is placed on the chuck top 70 sucked and held by the aligner 50 corresponding to 40 .
- Step S2 Movement of chuck top 70
- the controller 22 controls the aligner 50 to move the chuck top 70 on which the wafer W is placed to a predetermined temporary contact position.
- Step S3 Movement of imaging section 60
- the imaging unit 60 is moved to a position between the probe card 90 and the chuck top 70 below the probe card 90 .
- the imaging moving mechanism 100 is controlled by the control unit 22, and the housing 60a of the imaging unit 60 is moved to the above position. Steps S2 and S3 may be performed at the same time, regardless of the order of steps S2 and S3.
- Step S4 Imaging
- the control unit 22 acquires the representative position of the wafer W using the first imaging unit 61 positioned between the probe card 90 and the chuck top 70, and A representative position of the probe 91 is obtained using the second imaging unit 62 positioned in between.
- the representative position of the wafer W is acquired based on the imaging result of the first imaging unit 61 and the detection result of the position detection mechanism of the imaging movement mechanism 100 . Further, the representative position of the wafer W is, for example, the center-of-gravity position of the electrodes at a plurality of predetermined positions on the wafer W. As shown in FIG. The approximate position of each electrode is obtained based on the images obtained by the macro-view camera 61a. Also, the exact position of each electrode is obtained based on the image obtained by the micro-field camera 61b.
- the accurate position (specifically, the position coordinates) of each electrode can be obtained from the position detection mechanism of the imaging movement mechanism 100 when the center of the electrode is positioned at the center of the image obtained by the micro-view camera 61b. Based on the output, it can be obtained.
- the representative position of the probe 91 is acquired based on the imaging result of the second imaging unit 62 and the detection result of the position detection mechanism of the imaging movement mechanism 100 . Further, the representative position of the probes 91 is, for example, the center-of-gravity positions of the probes 91 at a plurality of predetermined locations on the probe card 90 . The approximate position of each probe 91 is obtained based on the images obtained by the macro-view camera 62a. Also, the exact position of each probe 91 is obtained based on the image obtained by the micro-field camera 62b.
- each probe 91 can be determined by the position detection mechanism of the imaging movement mechanism 100 when the tip of the probe 91 is positioned at the center of the image obtained by the micro-view camera 62b. can be obtained based on the output from
- Step S5 alignment
- the wafer W placed on the chuck top 70 and the probes 91 of the probe card 90 are aligned based on the imaging results of the first imaging unit 61 and the second imaging unit 62 .
- the control unit 22 corrects the temporary contact position based on the imaging results of the first imaging unit 61 and the second imaging unit 62, and determines the corrected temporary contact position as the contact position. be.
- the controller 22 controls the aligner 50 to move the chuck top 70 to the determined contact position.
- Correction of the temporary contact positions is performed based on, for example, the representative positions of the wafer W and the representative positions of the probes 91 acquired in step S4. More specifically, the temporary contact position is corrected so that the positional deviation of the representative position of the wafer W from the representative position of the probe 91 is canceled.
- Step S6 Treatment of imaging section 60
- the housing 60a of the imaging unit 60 is retracted to a region that does not overlap the chuck top 70 in plan view.
- the imaging movement mechanism 100 is controlled by the control unit 22, and portions that can interfere with the casing 60a of the imaging unit 60 and the chuck tops 70 of the imaging movement mechanism 100 are adjacent chuck tops in the same divided area 13a. The area between 70 is saved. Steps S5 and S6 may be performed at the same time, regardless of the order of steps S5 and S6.
- Step S7 Ascent of chuck top 70
- the controller 22 controls the aligner 50 to raise the chuck top 70 . Lifting is performed until the wafer W and the probes 91 come into contact with each other.
- the reference height of the chuck top 70 which serves as a reference for how far the chuck top 70 should be raised, is determined, for example, as follows. That is, for example, when the representative position of the wafer W and the like are acquired in step S4, the height of the wafer W placed on the chuck top 70 (specifically, the height of the electrodes) and the height of the probes 91 are also The control unit 22 determines the reference height of the chuck top 70 from these heights. The height of the wafer W placed on the chuck top 70 is acquired based on the imaging result of the first imaging unit 61 and the detection result of the position detection mechanism regarding the vertical position of the imaging moving mechanism 100. be. Also, the height of the probe 91 is acquired based on the image pickup result of the second image pickup unit 62 and the detection result of the position detection mechanism regarding the vertical position of the image pickup movement mechanism 100 .
- Step S8 Adsorption of chuck top 70
- the chuck top 70 is attracted to the pogo frame 80 under the control of the controller 22 .
- a decompression mechanism (not shown) or the like is controlled and the Z stage 53 of the aligner 50 is lowered, whereby the chuck top 70 is It is separated from the aligner 50 and attached to the pogo frame 80 .
- Step S9 inspection After the chuck top 70 and the aligner 50 are separated, the electrical characteristics of the electronic devices formed on the wafer W are inspected. An electrical signal for electrical characteristic inspection is input from the tester 40 to the electronic device via the pogo pins 81, the probes 91, and the like.
- Step S10 Unloading
- the wafer W after inspection is unloaded.
- the chuck top 70 sucked to the pogo frame 80 is delivered to and held by the aligner 50 .
- the inspected wafer W on the chuck top 70 held by the aligner 50 is unloaded from the inspection area 13 by the transport device 30 and returned to the cassette C in the port 20 of the loading/unloading area 11 .
- the aligner 50 or the like transports the wafer W to be inspected to another tester 40 and recovers the wafer W after the inspection from the other tester 40 .
- the wafer W on the chuck top 503 in the inspection apparatus 500 and the probes 501a of the probe card 501 are aligned with each other in this embodiment. Similar to , the imaging result of the wafer W is used.
- the chuck top 503 is positioned in a region that does not overlap the probe card 501 in plan view when the wafer W is imaged, and the contact position below the probe card 501 is a distance away. be. Therefore, if the frame in which the aligner 504 is installed is distorted, it may not be possible to accurately align the wafer W and the probes 501a in the comparison mode.
- the chuck top 70 is positioned at the contact position below the probe card 90 when the wafer W on the chuck top 70 is imaged. Therefore, even if the housing 10 in which the aligner 50 is installed is distorted, the wafer W and the probes 91 can be brought into contact more appropriately than in the comparative embodiment. That is, according to the present embodiment, alignment between the wafer W and the probes 91 of the probe card 90 can be performed more accurately. Note that the above-described distortion of the housing 10 and the like may occur on the order of ⁇ m due to, for example, expansion or contraction of the housing 10 due to temperature changes, changes in the center of gravity of the plurality of aligners 50 within the housing 10, and the like.
- the chuck top 70 it is not necessary to move the chuck top 70 significantly between the imaging of the wafer W on the chuck top 70 and the imaging of the probe 91, as compared with the comparative embodiment. Therefore, according to this embodiment, it is possible to shorten the time required for alignment between the wafer W and the probes 91 . Also, in the comparison mode, it may be necessary to image a common target with the upper camera 510 and the lower camera 511 . In the present embodiment, such imaging is not necessary, so from this point of view as well, the time required for alignment can be shortened.
- the imaging unit 60 is provided so as to be shared among the plurality of testers 40 arranged in the horizontal direction, that is, among the pogo frames 80 . Specifically, the imaging unit 60 is provided so as to be shared between the horizontally adjacent testers 40 , that is, between the pogo frames 80 . Therefore, the cost can be reduced and the footprint of the inspection apparatus 1 can be reduced compared to the case where the imaging unit 60 is provided for each tester 40 , that is, for each pogo frame 80 .
- the first imaging unit 61 and the second imaging unit 62 are provided coaxially, but the optical axis of the first imaging unit 61 and the optical axis of the second imaging unit 62 may be shifted.
- the contact position is determined, for example, as follows. That is, the temporary contact position after being corrected based on the imaging results of the first imaging unit 61 and the second imaging unit 62 is the positional relationship between the optical axis of the first imaging unit 61 and the optical axis of the second imaging unit 62. and the corrected and calibrated provisional contact position is determined as the contact position.
- inspection device 50 aligner 60 imaging unit 60a housing 61 first imaging unit 62 second imaging unit 70 chuck top 80 pogo frame 90 probe card 91 probe 100 imaging movement mechanism W wafer
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
- General Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Power Engineering (AREA)
- Signal Processing (AREA)
- Multimedia (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
- Tests Of Electronic Circuits (AREA)
- Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
Abstract
An inspection device for inspecting a substrate is provided, comprising: a mounting member on which a substrate is mounted; a holding unit that holds a probe card having a probe that contacts an electrode on the substrate; a moving mechanism that holds and moves the mounting member; an imaging unit including a first imaging unit that recognizes the substrate mounted on the mounting member, and a second imaging unit that recognizes the probe of the probe card being held by the holding unit, the first imaging unit and the second imaging unit being fixed to a common housing; and an imaging moving mechanism that moves the housing of the imaging unit. The positions of the substrate mounted on the mounting member and the probe of the probe card are aligned on the basis of the result of imaging performed by the first imaging unit and the second imaging unit in a state in which the mounting member with the substrate mounted thereon is positioned under the probe card being held by the holding unit.
Description
本開示は、検査装置及び検査方法に関する。
The present disclosure relates to an inspection device and an inspection method.
特許文献1には、アライメントステージの上に載置されたウェハをプローブカードのプローブに接触させる位置に移動させる検査装置が開示されている。この検査装置は、アライナ側の第1取得部でプローブカードのカード重心座標を取得する工程と、ポゴフレームに設けられた基準ターゲットのターゲット座標系における基準座標を第1取得部で取得する工程と、を含む処理を実行する。また、検査装置は、ポゴフレーム側の第2取得部と第1取得部との共通座標を取得する工程と、第2取得部でウェハ重心座標を取得する工程と、カード重心座標、共通座標、及びウェハ重心座標に基づいて求まるコンタクト座標を含むコマンドでアライナを移動させる工程とを含む処理を実行する。
Patent Literature 1 discloses an inspection device that moves a wafer placed on an alignment stage to a position where it contacts the probes of a probe card. This inspection apparatus includes a step of acquiring card barycentric coordinates of a probe card with a first acquisition unit on the aligner side, and a step of acquiring reference coordinates in a target coordinate system of a reference target provided on a pogo frame with the first acquisition unit. , and execute the process including. In addition, the inspection apparatus includes a step of acquiring common coordinates between the second acquiring unit and the first acquiring unit on the pogo frame side, a step of acquiring wafer barycentric coordinates in the second acquiring unit, card barycentric coordinates, common coordinates, and moving the aligner with a command including the contact coordinates determined based on the barycentric coordinates of the wafer.
本開示にかかる技術は、基板を検査する検査装置において、基板とプローブカードのプローブとの位置合わせをより正確に行う。
The technology according to the present disclosure more accurately aligns the substrate and the probes of the probe card in an inspection apparatus that inspects the substrate.
本開示の一態様は、基板を検査する検査装置であって、基板が載置される載置部材と、基板上の電極に接触するプローブを有するプローブカードを保持する保持部と、前記載置部材を保持し移動させる移動機構と、前記載置部材に載置された基板を認識する第1撮像ユニットと、前記保持部に保持された前記プローブカードの前記プローブを認識する第2撮像ユニットとを有し、前記第1撮像ユニットと前記第2撮像ユニットが共通の筐体に固定された撮像部と、前記撮像部の前記筐体を移動させる撮像移動機構と、を備え、前記保持部に保持された前記プローブカードの下方に基板が載置された前記載置部材が位置する状態での、前記第1撮像ユニット及び前記第2撮像ユニットによる撮像結果に基づいて、前記載置部材に載置された基板と前記プローブカードの前記プローブとの位置合わせを行う。
One aspect of the present disclosure is an inspection apparatus for inspecting a substrate, comprising: a mounting member on which the substrate is mounted; a holding unit that holds a probe card having probes that contact electrodes on the substrate; a moving mechanism for holding and moving a member, a first imaging unit for recognizing the substrate placed on the placing member, and a second imaging unit for recognizing the probe of the probe card held by the holding part. and an imaging section in which the first imaging unit and the second imaging unit are fixed to a common housing, and an imaging moving mechanism for moving the housing of the imaging section, wherein the holding section includes Based on the results of imaging by the first imaging unit and the second imaging unit in a state in which the mounting member on which the substrate is placed is located below the held probe card, Alignment is performed between the placed substrate and the probes of the probe card.
本開示によれば、基板を検査する検査装置において、基板とプローブカードのプローブとの位置合わせをより正確に行うことができる。
According to the present disclosure, in an inspection apparatus that inspects a substrate, alignment between the substrate and the probes of the probe card can be performed more accurately.
半導体製造プロセスでは、半導体ウェハ(以下、「ウェハ」という。)等の基板上に所定の回路パターンを持つ多数の半導体デバイスが形成される。形成された半導体デバイスは、電気的特性等の検査が行われ、良品と不良品とに選別される。半導体デバイスの検査は、例えば、各半導体デバイスに分割される前のウェハの状態で、検査装置を用いて行われる。
In the semiconductor manufacturing process, a large number of semiconductor devices with predetermined circuit patterns are formed on a substrate such as a semiconductor wafer (hereinafter referred to as "wafer"). The semiconductor devices thus formed are inspected for electrical characteristics and the like, and sorted into non-defective products and defective products. Semiconductor devices are inspected, for example, by using an inspection apparatus in a state of a wafer before being divided into semiconductor devices.
検査装置には、多数の針状の接触端子であるプローブを多数有するプローブカードが設けられている。電気的特性の検査の際はまず、ウェハとプローブカードとが近づけられ、ウェハに形成されている半導体デバイスの各電極にプローブカードのプローブが接触する。この状態で、プローブカードの上方に設けられたテスタから各プローブを介して半導体デバイスに電気信号が供給される。そして、各プローブを介して半導体デバイスからテスタが受信した電気信号に基づいて、当該半導体デバイスが不良品か否か判別される。
The inspection device is provided with a probe card having a large number of probes that are needle-shaped contact terminals. When inspecting the electrical characteristics, first, the wafer and the probe card are brought close to each other, and the probes of the probe card contact each electrode of the semiconductor device formed on the wafer. In this state, an electrical signal is supplied to the semiconductor device through each probe from a tester provided above the probe card. Based on the electrical signal received by the tester from the semiconductor device via each probe, it is determined whether or not the semiconductor device is defective.
このような電気的特性検査が適切に行われるよう、検査装置では、プローブカードのプローブとウェハとの位置合わせ、具体的には、プローブとウェハ上の電極との位置合わせが行われている。
In order to properly perform such electrical property inspection, the inspection apparatus aligns the probes of the probe card and the wafer, more specifically, aligns the probes with the electrodes on the wafer.
図1に示すように、検査装置500は、例えば、プローブカード501を保持するポゴフレーム502と、ウェハWが載置されるチャックトップ503と、チャックトップ503を移動させるアライナ504と、を有する。また、検査装置500は、プローブカード501と平面視で重ならない領域にウェハ認識用の上カメラ510が設けられ、且つ、プローブカード認識用の下カメラ511がアライナ504に固定されている。この検査装置500では、例えば、以下の撮像結果に基づいて、プローブカード501のプローブ501aとチャックトップ503上のウェハWとの位置合わせを行う。
・図1に示すようにプローブカード501の下方に下カメラ511を移動させた状態での、下カメラ511によるプローブカード501の撮像結果
・図2に示すようにプローブカード501とは平面視で重ならない領域に位置する上カメラ510の下方にチャックトップ503を移動させた状態での、上カメラ510によるチャックトップ503上のウェハWの撮像結果 As shown in FIG. 1, theinspection apparatus 500 has, for example, a pogo frame 502 that holds a probe card 501, a chuck top 503 on which a wafer W is placed, and an aligner 504 that moves the chuck top 503. Also, the inspection apparatus 500 has an upper camera 510 for wafer recognition provided in a region that does not overlap the probe card 501 in plan view, and a lower camera 511 for probe card recognition is fixed to the aligner 504 . In this inspection apparatus 500, for example, the probes 501a of the probe card 501 and the wafer W on the chuck top 503 are aligned based on the following imaging results.
・Results of imaging of theprobe card 501 by the lower camera 511 when the lower camera 511 is moved below the probe card 501 as shown in FIG. 1 ・As shown in FIG. Imaging result of wafer W on chuck top 503 by upper camera 510 in a state where chuck top 503 is moved below upper camera 510 located in an area where
・図1に示すようにプローブカード501の下方に下カメラ511を移動させた状態での、下カメラ511によるプローブカード501の撮像結果
・図2に示すようにプローブカード501とは平面視で重ならない領域に位置する上カメラ510の下方にチャックトップ503を移動させた状態での、上カメラ510によるチャックトップ503上のウェハWの撮像結果 As shown in FIG. 1, the
・Results of imaging of the
しかし、上述の位置合わせ方法は、位置合わせに要する時間及び位置合わせ精度の点で改善の余地がある。
However, the above alignment method has room for improvement in terms of time required for alignment and alignment accuracy.
本開示にかかる技術は、基板の検査装置において、基板とプローブカードのプローブとの位置合わせを短時間で正確に行うことを可能にする。
The technology according to the present disclosure enables a board inspection device to accurately align a board and probes of a probe card in a short time.
以下、本実施形態にかかる検査装置及び検査方法について、図面を参照しながら説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する要素においては、同一の符号を付することにより重複説明を省略する。
The inspection apparatus and inspection method according to this embodiment will be described below with reference to the drawings. In the present specification and drawings, elements having substantially the same functional configuration are denoted by the same reference numerals, thereby omitting redundant description.
<検査装置>
図3及び図4はそれぞれ、本実施形態にかかる検査装置の構成の概略を示す横断面図及び縦断面図である。 <Inspection device>
3 and 4 are a cross-sectional view and a vertical cross-sectional view, respectively, showing the outline of the configuration of the inspection apparatus according to this embodiment.
図3及び図4はそれぞれ、本実施形態にかかる検査装置の構成の概略を示す横断面図及び縦断面図である。 <Inspection device>
3 and 4 are a cross-sectional view and a vertical cross-sectional view, respectively, showing the outline of the configuration of the inspection apparatus according to this embodiment.
図3及び図4の検査装置1は、基板としてのウェハWを検査するものであり、具体的には、ウェハWに形成された検査対象デバイスとしての半導体デバイスの電気的特性検査を行うものである。検査装置1は、筐体10を有し、該筐体10には、搬入出領域11、搬送領域12、検査領域13が設けられている。搬入出領域11は、検査装置1に対してウェハWの搬入出が行われる領域である。搬送領域12は、搬入出領域11と検査領域13とを接続する領域である。また、検査領域13は、ウェハWに形成された半導体デバイスの電気的特性検査が行われる領域である。
The inspection apparatus 1 shown in FIGS. 3 and 4 inspects a wafer W as a substrate, and more specifically, inspects the electrical characteristics of semiconductor devices formed on the wafer W as devices to be inspected. be. The inspection apparatus 1 has a housing 10 , and the housing 10 is provided with a loading/unloading area 11 , a transport area 12 and an inspection area 13 . The loading/unloading area 11 is an area where the wafer W is loaded/unloaded to/from the inspection apparatus 1 . The transport area 12 is an area that connects the loading/unloading area 11 and the inspection area 13 . Also, the inspection area 13 is an area where the electrical characteristics of the semiconductor devices formed on the wafer W are inspected.
搬入出領域11には、複数のウェハWを収容したカセットCを受け入れるポート20、後述のプローブカードを収容するローダ21、検査装置1の各構成要素の制御等を行う制御部22が設けられている。制御部22は、例えばCPUやメモリ等を備えたコンピュータにより構成され、各種情報を記憶する記憶部(図示せず)を有している。記憶部には、例えば、検査処理等を実現する指令を含むプログラムが格納されている。なお、上記プログラムは、コンピュータに読み取り可能な記憶媒体に記録されていたものであって、当該記憶媒体から上記制御部22にインストールされたものであってもよい。上記記憶媒体は一時的なものであっても非一時的なものであってもよい。なお、プログラムの一部または全ては専用ハードウェア(回路基板)で実現してもよい。また、上記記憶部は、例えばHDD等のストレージデバイス、プログラムの演算に係る一時的に必要な情報を記憶するRAM等のメモリ、またはこれらの組み合わせである。
The loading/unloading area 11 is provided with a port 20 for receiving a cassette C containing a plurality of wafers W, a loader 21 for containing a probe card described later, and a control unit 22 for controlling each component of the inspection apparatus 1. there is The control unit 22 is configured by a computer having a CPU, a memory, etc., and has a storage unit (not shown) that stores various information. The storage unit stores, for example, programs including commands for realizing inspection processing and the like. The program may be recorded in a computer-readable storage medium and installed in the control unit 22 from the storage medium. The storage medium may be temporary or non-temporary. Part or all of the program may be realized by dedicated hardware (circuit board). The storage unit is, for example, a storage device such as an HDD, a memory such as a RAM that temporarily stores necessary information related to program operations, or a combination thereof.
搬送領域12には、ウェハW等を保持した状態で自在に移動可能な搬送装置30が配置されている。この搬送装置30は、搬入出領域11のポート20内のカセットCと、検査領域13との間でウェハWの搬送を行う。また、搬送装置30は、検査領域13内の後述のポゴフレームに固定されたプローブカードのうちメンテナンスを必要とするものを搬入出領域11のローダ21へ搬送する。さらに、搬送装置30は、新規な又はメンテナンス済みのプローブカードをローダ21から検査領域13内へ搬送する。
In the transfer area 12, a transfer device 30 that can freely move while holding a wafer W or the like is arranged. The transfer device 30 transfers the wafer W between the cassette C in the port 20 of the loading/unloading area 11 and the inspection area 13 . Further, the transport device 30 transports probe cards fixed to a pogo frame, which will be described later, in the inspection area 13 and requiring maintenance to the loader 21 in the loading/unloading area 11 . Further, the transport device 30 transports new or maintained probe cards from the loader 21 into the inspection area 13 .
検査領域13は、テスタ40が複数設けられている。具体的には、検査領域13は、例えば、図4に示すように、上下方向(図のZ方向)に3つ、水平方向(図のX方向)2つに分割され、各分割領域13aには、水平方向に配列された2つのテスタ40が設けられている。また、各分割領域13aには、例えばテスタ40毎に移動機構としてのアライナ50が設けられている。さらに、各分割領域13aには、1つの撮像部60が設けられている。すなわち、各分割領域13aでは、撮像部60が、水平方向に隣接するテスタ40間で共用されるように設けられている。
なお、テスタ40、アライナ50、撮像部60の数や配置は任意に選択できる。 A plurality oftesters 40 are provided in the inspection area 13 . Specifically, for example, as shown in FIG. 4, the inspection area 13 is divided into three in the vertical direction (the Z direction in the figure) and two in the horizontal direction (the X direction in the figure). is provided with two testers 40 arranged horizontally. Further, an aligner 50 as a moving mechanism is provided for each tester 40 in each divided area 13a. Furthermore, one imaging unit 60 is provided in each divided area 13a. That is, in each divided area 13a, the imaging section 60 is provided so as to be shared by the testers 40 adjacent in the horizontal direction.
The number and arrangement of thetesters 40, aligners 50, and imaging units 60 can be arbitrarily selected.
なお、テスタ40、アライナ50、撮像部60の数や配置は任意に選択できる。 A plurality of
The number and arrangement of the
テスタ40は、電気的特性検査用の電気信号をウェハWとの間で送受するものである。
アライナ50は、後述のチャックトップ70を保持して、水平方向(図4のX方向及びY方向、図3のZ軸を中心としたθ方向)及び上下方向(図3及び図4のZ方向)に移動させることが可能に構成されている。また、このアライナ50は、チャックトップ70に載置されたウェハWと後述のプローブカードのプローブとの位置合わせに用いられる。 Thetester 40 transmits and receives electrical signals to and from the wafer W for electrical characteristic inspection.
Thealigner 50 holds a chuck top 70, which will be described later, and moves in the horizontal direction (the X direction and the Y direction in FIG. 4, the θ direction around the Z axis in FIG. 3) and the vertical direction (the Z direction in FIGS. 3 and 4). ). The aligner 50 is also used for alignment between the wafer W placed on the chuck top 70 and probes of a probe card, which will be described later.
アライナ50は、後述のチャックトップ70を保持して、水平方向(図4のX方向及びY方向、図3のZ軸を中心としたθ方向)及び上下方向(図3及び図4のZ方向)に移動させることが可能に構成されている。また、このアライナ50は、チャックトップ70に載置されたウェハWと後述のプローブカードのプローブとの位置合わせに用いられる。 The
The
撮像部60は、プローブカードのプローブとチャックトップ70に載置されたウェハWとの両方を撮像する。
The imaging unit 60 images both the probes of the probe card and the wafer W placed on the chuck top 70 .
チャックトップ70は、載置部材の一例であり、ウェハWが載置される。チャックトップ70は、例えば、載置されたウェハWを吸着等により保持することができる。
The chuck top 70 is an example of a mounting member, on which the wafer W is mounted. The chuck top 70 can hold, for example, the mounted wafer W by suction or the like.
この検査装置1では、搬送装置30が一のテスタ40へ向けてウェハWを搬送している間に、他のテスタ40は他のウェハWに形成された電子デバイスの電気的特性の検査を行うことができる。
In this inspection apparatus 1, while the transfer apparatus 30 is transferring the wafer W toward one tester 40, the other tester 40 tests the electrical characteristics of the electronic devices formed on the other wafer W. be able to.
<検査領域>
続いて、図5~図8を用いて、検査領域13のより詳細な構成について説明する。図5は、検査領域13の一の分割領域13aの側断面図である。図6は、撮像部60の後述の筐体の斜視図である。図7は、後述のポゴフレームの周辺の断面図である。図8は、撮像部60の上面図である。 <Inspection area>
Next, a more detailed configuration of theinspection area 13 will be described with reference to FIGS. 5 to 8. FIG. FIG. 5 is a side sectional view of one divided area 13a of the inspection area 13. As shown in FIG. FIG. 6 is a perspective view of a later-described housing of the imaging unit 60. As shown in FIG. FIG. 7 is a cross-sectional view of the periphery of a pogo frame, which will be described later. FIG. 8 is a top view of the imaging unit 60. FIG.
続いて、図5~図8を用いて、検査領域13のより詳細な構成について説明する。図5は、検査領域13の一の分割領域13aの側断面図である。図6は、撮像部60の後述の筐体の斜視図である。図7は、後述のポゴフレームの周辺の断面図である。図8は、撮像部60の上面図である。 <Inspection area>
Next, a more detailed configuration of the
検査領域13の各分割領域13aには、前述のように、アライナ50と撮像部60が設けられている。また、図5に示すように、各分割領域13aには、後述のポゴフレーム80及びプローブカード90が設けられている。
Each divided area 13a of the inspection area 13 is provided with the aligner 50 and the imaging unit 60 as described above. Further, as shown in FIG. 5, each divided area 13a is provided with a pogo frame 80 and a probe card 90, which will be described later.
アライナ50は、例えばXステージ51、Yステージ52及びZステージ53を有する。
The aligner 50 has an X stage 51, a Y stage 52 and a Z stage 53, for example.
Xステージ51は、水平方向(図のX方向)に延びるガイドレール51aに沿って移動する。このXステージ51に対しては、上記移動を駆動する駆動部(図示せず)が設けられている。上記駆動部は、上記移動のための駆動力を発生する駆動源として例えばモータを有する。また、Xステージ51に対しては、当該Xステージ51のX方向にかかる位置、すなわちチャックトップ70のX方向にかかる位置を検出する位置検出機構(図示せず)が設けられている。上記位置検出機構は、例えばリニアエンコーダである。
The X stage 51 moves along a guide rail 51a extending in the horizontal direction (X direction in the drawing). A drive unit (not shown) for driving the movement is provided for the X stage 51 . The driving section has, for example, a motor as a driving source that generates a driving force for the movement. Further, the X stage 51 is provided with a position detection mechanism (not shown) for detecting the position of the X stage 51 in the X direction, that is, the position of the chuck top 70 in the X direction. The position detection mechanism is, for example, a linear encoder.
Yステージ52は、Xステージ51上を移動する。具体的には、Yステージ52は水平方向(図のY方向)に延びるガイドレール52aに沿って移動する。このYステージ52に対しては、上記移動を駆動する駆動部(図示せず)が設けられている。上記駆動部は、上記移動のための駆動力を発生する駆動源として例えばモータを有する。また、Yステージ52に対しては、当該Yステージ52のY方向にかかる位置、すなわちチャックトップ70のY方向にかかる位置を検出する位置検出機構(図示せず)が設けられている。上記位置検出機構は、例えばリニアエンコーダである。
The Y stage 52 moves on the X stage 51. Specifically, the Y stage 52 moves along a guide rail 52a extending in the horizontal direction (the Y direction in the drawing). A drive unit (not shown) for driving the movement is provided for the Y stage 52 . The driving section has, for example, a motor as a driving source that generates a driving force for the movement. Further, the Y stage 52 is provided with a position detection mechanism (not shown) for detecting the position of the Y stage 52 in the Y direction, that is, the position of the chuck top 70 in the Y direction. The position detection mechanism is, for example, a linear encoder.
Zステージ53は、上下方向(図のZ方向)に伸縮自在な伸縮軸53aにより、上下方向に移動する。このZステージ53に対しては、上記移動を駆動する駆動部(図示せず)が設けられている。上記駆動部は、上記移動のための駆動力を発生する駆動源として例えばモータを有する。また、Zステージ53に対しては、当該Zステージ53のZ方向にかかる位置、すなわちチャックトップ70のZ方向にかかる位置を検出する位置検出機構(図示せず)が設けられている。上記位置検出機構は、例えばリニアエンコーダである。
The Z stage 53 moves vertically by means of a telescopic shaft 53a that is telescopic in the vertical direction (the Z direction in the drawing). A drive unit (not shown) for driving the movement is provided for the Z stage 53 . The driving section has, for example, a motor as a driving source that generates a driving force for the movement. Further, the Z stage 53 is provided with a position detection mechanism (not shown) for detecting the position of the Z stage 53 in the Z direction, that is, the position of the chuck top 70 in the Z direction. The position detection mechanism is, for example, a linear encoder.
また、Zステージ53上にチャックトップ70が着脱自在に吸着保持される。Zステージ53によるチャックトップ70の吸着保持は、吸着保持機構(図示せず)による真空吸着等により行われる。
Also, the chuck top 70 is detachably held by suction on the Z stage 53 . The chuck top 70 is held by the Z stage 53 by vacuum suction or the like by a suction holding mechanism (not shown).
なお、アライナ50は制御部22により制御される。具体的には、アライナ50の、Xステージ51、Yステージ52及びZステージ53の前述の駆動部は制御部22により制御される。また、Xステージ51、Yステージ52及びZステージ53に設けられた前述の位置検出機構による位置検出結果は制御部22に出力される。
The aligner 50 is controlled by the control unit 22. Specifically, the drive units of the X stage 51 , Y stage 52 and Z stage 53 of the aligner 50 are controlled by the control unit 22 . Position detection results obtained by the above-described position detection mechanisms provided on the X stage 51 , Y stage 52 and Z stage 53 are output to the control unit 22 .
撮像部60は、前述のようにプローブカード90のプローブ91とチャックトップ70に載置されたウェハWとの両方を撮像する。この撮像部60は筐体60aを有する。筐体60aには、図6に示すように、第1撮像ユニット61と第2撮像ユニット62の両方が固定されている。言い換えると、撮像部60では、第1撮像ユニット61及び第2撮像ユニット62が共通の筐体60aに固定されている。第1撮像ユニット61は、筐体60aの下部に設けられ、第2撮像ユニット62は筐体60aの上部に設けられている。
The imaging unit 60 images both the probes 91 of the probe card 90 and the wafer W placed on the chuck top 70 as described above. The imaging unit 60 has a housing 60a. As shown in FIG. 6, both the first imaging unit 61 and the second imaging unit 62 are fixed to the housing 60a. In other words, in the imaging section 60, the first imaging unit 61 and the second imaging unit 62 are fixed to the common housing 60a. The first imaging unit 61 is provided in the lower part of the housing 60a, and the second imaging unit 62 is provided in the upper part of the housing 60a.
第1撮像ユニット61は、チャックトップ70に載置されたウェハWを認識する。具体的には、第1撮像ユニット61は、チャックトップ70に載置されたウェハWを認識するために、当該ウェハWを撮像する。第1撮像ユニット61は、低解像度で撮像するマクロ視野カメラ61aと、高解像度で撮像するマイクロ視野カメラ61bとを有する。
The first imaging unit 61 recognizes the wafer W placed on the chuck top 70 . Specifically, the first imaging unit 61 images the wafer W placed on the chuck top 70 in order to recognize the wafer W. As shown in FIG. The first imaging unit 61 has a macro view camera 61a for capturing images at low resolution and a micro view camera 61b for capturing images at high resolution.
第2撮像ユニット62は、プローブカード90のプローブ91を認識する。具体的には、第2撮像ユニット62は、プローブカード90のプローブ91を認識するために、当該プローブ91を撮像する。第2撮像ユニット62は、低解像度で撮像するマクロ視野カメラ62aと、高解像度で撮像するマイクロ視野カメラ62bとを有する。
The second imaging unit 62 recognizes the probes 91 of the probe card 90 . Specifically, the second imaging unit 62 images the probe 91 of the probe card 90 in order to recognize the probe 91 . The second imaging unit 62 has a macro-view camera 62a for imaging at low resolution and a micro-view camera 62b for imaging at high resolution.
撮像部60において、第1撮像ユニット61及び第2撮像ユニット62は同軸上に設けられている。具体的には、図示するように、マクロ視野カメラ61a、62aの光軸P1a、P2aは同軸となっており、また、マイクロ視野カメラ61b、62bの光軸P1b、P2bも同軸となっている。
In the imaging section 60, the first imaging unit 61 and the second imaging unit 62 are provided coaxially. Specifically, as shown in the figure, the optical axes P1a and P2a of the macro-viewing cameras 61a and 62a are coaxial, and the optical axes P1b and P2b of the micro-viewing cameras 61b and 62b are also coaxial.
なお、撮像部60は制御部22により制御される。また、撮像部60による撮像結果は制御部22に出力される。
Note that the imaging unit 60 is controlled by the control unit 22 . Also, the imaging result of the imaging unit 60 is output to the control unit 22 .
さらに、撮像部60は、撮像移動機構100(図8参照)により、水平方向(図5等のXY方向)及び上下方向(図5等のZ方向)に移動可能に構成されている。具体的には、撮像部60の筐体60aは、撮像移動機構100により、水平方向及び上下方向に移動可能に構成されている。撮像移動機構100については後述する。
Furthermore, the imaging unit 60 is configured to be movable in the horizontal direction (XY direction in FIG. 5 etc.) and vertical direction (Z direction in FIG. 5 etc.) by the imaging movement mechanism 100 (see FIG. 8). Specifically, the housing 60 a of the imaging unit 60 is configured to be movable in the horizontal direction and the vertical direction by the imaging movement mechanism 100 . The imaging movement mechanism 100 will be described later.
テスタ40は、図7に示すように、テスタマザーボード41を底部に有する。テスタマザーボード41には、複数の検査回路基板(図示せず)が立設状態で装着されている。また、テスタマザーボード41の底面には複数の電極(図示せず)が設けられている。
さらに、テスタ40の下方には、ポゴフレーム80が設けられている。 Thetester 40 has a tester motherboard 41 at its bottom, as shown in FIG. A plurality of inspection circuit boards (not shown) are mounted on the tester motherboard 41 in an upright state. A plurality of electrodes (not shown) are provided on the bottom surface of the tester motherboard 41 .
Furthermore, apogo frame 80 is provided below the tester 40 .
さらに、テスタ40の下方には、ポゴフレーム80が設けられている。 The
Furthermore, a
ポゴフレーム80は、保持部の一例であり、プローブカード90を保持する。また、ポゴフレーム80は、プローブカード90とテスタ40とを電気的に接続する。このポゴフレーム80は、上述の電気的な接続のために、ポゴピン81を有し、具体的には、多数のポゴピン81を保持するポゴブロック82を有する。
ポゴフレーム80の下面には、プローブカード90が、所定の位置に位置合わせされた状態で固定される。 Thepogo frame 80 is an example of a holding section and holds the probe card 90 . Also, the pogo frame 80 electrically connects the probe card 90 and the tester 40 . This pogo frame 80 has pogo pins 81 for the electrical connection described above, and more specifically, has a pogo block 82 that holds a large number of pogo pins 81 .
Aprobe card 90 is fixed to the lower surface of the pogo frame 80 while being aligned at a predetermined position.
ポゴフレーム80の下面には、プローブカード90が、所定の位置に位置合わせされた状態で固定される。 The
A
なお、排気機構(図示せず)によって、テスタマザーボード41はポゴフレーム80に真空吸着され、プローブカード90は、ポゴフレーム80に真空吸着される。これら真空吸着を行うための真空吸引力により、ポゴフレーム80の各ポゴピン81の下端は、プローブカード90の後述のカード本体92の上面における、対応する電極に接触し、各ポゴピン81の上端は、テスタマザーボード41の下面の対応する電極に押し付けられる。
The tester motherboard 41 is vacuum-sucked to the pogo frame 80 by an exhaust mechanism (not shown), and the probe card 90 is vacuum-sucked to the pogo frame 80 . The lower end of each pogo pin 81 of the pogo frame 80 contacts the corresponding electrode on the upper surface of the card body 92 of the probe card 90, and the upper end of each pogo pin 81 It is pressed against the corresponding electrodes on the underside of the tester motherboard 41 .
プローブカード90は、複数の電極が上面に設けられた円板状のカード本体92を有する。カード本体92の下面には、下方へ向けて延びる針状の接触端子であるプローブ91が複数設けられている。
カード本体92の上面に設けられた上述の複数の電極はそれぞれ対応するプローブ91と電気的に接続されている。また、検査時には、プローブ91はそれぞれ、ウェハWに形成された半導体デバイスの電極(図示せず)と接触する。したがって、電気的特性検査時には、ポゴピン81、カード本体92の上面に設けられた電極及びプローブ91を介して、テスタマザーボード41とウェハW上の半導体デバイスとの間で、検査にかかる電気信号が送受される。 Theprobe card 90 has a disk-shaped card body 92 with a plurality of electrodes provided on its upper surface. A plurality of probes 91, which are needle-like contact terminals extending downward, are provided on the lower surface of the card body 92. As shown in FIG.
The plurality of electrodes provided on the upper surface of thecard body 92 are electrically connected to corresponding probes 91 respectively. During inspection, the probes 91 are brought into contact with electrodes (not shown) of semiconductor devices formed on the wafer W, respectively. Therefore, during the electrical characteristic inspection, electrical signals for inspection are transmitted and received between the tester mother board 41 and the semiconductor devices on the wafer W via the pogo pins 81, the electrodes provided on the upper surface of the card body 92, and the probes 91. be done.
カード本体92の上面に設けられた上述の複数の電極はそれぞれ対応するプローブ91と電気的に接続されている。また、検査時には、プローブ91はそれぞれ、ウェハWに形成された半導体デバイスの電極(図示せず)と接触する。したがって、電気的特性検査時には、ポゴピン81、カード本体92の上面に設けられた電極及びプローブ91を介して、テスタマザーボード41とウェハW上の半導体デバイスとの間で、検査にかかる電気信号が送受される。 The
The plurality of electrodes provided on the upper surface of the
なお、検査装置1は、ウェハWに形成された複数の半導体デバイスの電気的特性検査を一括で行うために、プローブ91は、カード本体92の下面略全体を覆うように多数設けられている。
Note that the inspection apparatus 1 is provided with a large number of probes 91 so as to cover substantially the entire lower surface of the card body 92 in order to collectively inspect the electrical characteristics of a plurality of semiconductor devices formed on the wafer W.
また、ポゴフレーム80の下面には、ベローズ83が取り付けられている。ベローズ83は、プローブカード90を囲繞するように垂下する筒状の伸縮自在な部材である。また、ベローズ83は、図7において点線で示すように、プローブカード90の下方の位置にチャックトップ70を吸着保持する。
A bellows 83 is attached to the lower surface of the pogo frame 80 . The bellows 83 is a tubular extendable member that hangs down so as to surround the probe card 90 . Further, the bellows 83 sucks and holds the chuck top 70 at a position below the probe card 90 as indicated by the dotted line in FIG.
このベローズ83は、チャックトップ70を吸着保持することにより、プローブカード90を含むポゴフレーム80、ベローズ83及びチャックトップ70で囲まれる密閉空間Sを形成する。密閉空間Sを減圧機構(図示せず)により減圧することで、ウェハWとプローブ91との接触状態を維持することができる。
The bellows 83 sucks and holds the chuck top 70 to form a sealed space S surrounded by the pogo frame 80 including the probe card 90 , the bellows 83 and the chuck top 70 . The contact state between the wafer W and the probes 91 can be maintained by decompressing the sealed space S by a decompression mechanism (not shown).
前述のように、撮像部60の筐体60aは、図8の撮像移動機構100により、水平方向及び上下方向に移動可能に構成されている。
As described above, the housing 60a of the imaging unit 60 is configured to be movable in the horizontal direction and the vertical direction by the imaging movement mechanism 100 of FIG.
撮像移動機構100は、一対のガイドレール101と、一対の移動レール102と、を有する。
The imaging movement mechanism 100 has a pair of guide rails 101 and a pair of movement rails 102 .
ガイドレール101はそれぞれ、水平方向(図のX方向)に沿って延びるように設けられている。一実施形態において、ガイドレール101は、同じ高さの分割領域13a間を隔てる隔壁10aと、検査装置1の筐体10の側壁と、を接続するように、設けられている。また、ガイドレール101間をチャックトップ70が通過できるように、一対のガイドレール101は互いに離間している。
Each of the guide rails 101 is provided so as to extend along the horizontal direction (the X direction in the drawing). In one embodiment, the guide rail 101 is provided so as to connect the partition wall 10a separating the divided regions 13a having the same height and the side wall of the housing 10 of the inspection device 1 . Also, the pair of guide rails 101 are separated from each other so that the chuck top 70 can pass between the guide rails 101 .
一対の移動レール102は、水平方向であってガイドレール101と直交する方向(図のY方向)に沿って延びるように設けられ、また、撮像部60の筐体60aを支持した状態で、ガイドレール101に沿って移動可能に構成されている。この一対の移動レール102に対しては、上記移動を駆動する駆動部(図示せず)が設けられている。上記駆動部は、上記移動のための駆動力を発生する駆動源として例えばモータを有する。また、一対の移動レール102に対しては、当該一対の移動レール102のX方向にかかる位置、すなわち撮像部60の筐体60aのX方向にかかる位置を検出する位置検出機構(図示せず)が設けられている。上記位置検出機構は、例えばリニアエンコーダである。
A pair of moving rails 102 are provided so as to extend in a horizontal direction (the Y direction in the figure) orthogonal to the guide rails 101, and support the housing 60a of the image pickup unit 60 so as to extend along the guide rails 102. It is configured to be movable along rails 101 . A drive unit (not shown) for driving the movement is provided for the pair of moving rails 102 . The driving section has, for example, a motor as a driving source that generates a driving force for the movement. A position detection mechanism (not shown) detects the position of the pair of moving rails 102 in the X direction, that is, the position of the housing 60a of the imaging unit 60 in the X direction. is provided. The position detection mechanism is, for example, a linear encoder.
さらに一対の移動レール102は、撮像部60の筐体60aを当該移動レール102の延在する方向(図のY方向)及び上下方向(図のZ方向)に沿って移動可能に支持する。撮像部60の筐体60aと一対の移動レール102との間には、上述の移動レール102の延在する方向及び上下方向への移動を駆動する駆動部(図示せず)が設けられている。上記駆動部は、上記移動のための駆動力を発生する駆動源として例えばモータを有する。また、撮像部60の筐体60aに対しては、移動レール102の延在する方向及び上下方向にかかる筐体60aの位置を検出する位置検出機構(図示せず)が設けられている。上記位置検出機構は、例えばリニアエンコーダである。
Further, the pair of moving rails 102 supports the housing 60a of the imaging unit 60 so as to be movable along the extending direction of the moving rails 102 (the Y direction in the drawing) and the vertical direction (the Z direction in the drawing). Between the housing 60a of the imaging unit 60 and the pair of moving rails 102, a driving unit (not shown) for driving the moving rails 102 in the extending direction and the vertical direction is provided. . The driving section has, for example, a motor as a driving source that generates a driving force for the movement. Further, a position detection mechanism (not shown) for detecting the position of the housing 60a in the direction in which the moving rail 102 extends and in the vertical direction is provided for the housing 60a of the imaging unit 60. FIG. The position detection mechanism is, for example, a linear encoder.
なお、撮像移動機構100は制御部22により制御される。具体的には、移動レール102及び筐体60aに対する前述の駆動部は制御部22により制御される。また、移動レール102及び筐体60aに設けられた前述の位置検出機構による位置検出結果は制御部22に出力される。
Note that the imaging movement mechanism 100 is controlled by the control unit 22 . Specifically, the control unit 22 controls the driving unit for the moving rail 102 and the housing 60a. Further, the position detection result by the above-described position detection mechanism provided on the moving rail 102 and the housing 60 a is output to the control section 22 .
<検査装置1を用いた検査処理>
続いて、検査装置1を用いた、接触位置の決定処理を伴う検査処理について、図9を用いて説明する。接触位置とは、チャックトップ70に支持されたウェハWとプローブ91とを接触させる時のチャックトップ70の水平方向(図5等のX方向及びY方向)にかかる位置である。 <Inspection processing usinginspection device 1>
Next, inspection processing involving contact position determination processing using theinspection apparatus 1 will be described with reference to FIG. 9 . The contact position is a position in the horizontal direction (X direction and Y direction in FIG. 5 etc.) of the chuck top 70 when the wafer W supported by the chuck top 70 and the probe 91 are brought into contact with each other.
続いて、検査装置1を用いた、接触位置の決定処理を伴う検査処理について、図9を用いて説明する。接触位置とは、チャックトップ70に支持されたウェハWとプローブ91とを接触させる時のチャックトップ70の水平方向(図5等のX方向及びY方向)にかかる位置である。 <Inspection processing using
Next, inspection processing involving contact position determination processing using the
(ステップS1:搬送)
まず、所望のテスタ40に対する検査対象のウェハWの搬送が行われる。
具体的には、搬送装置30等が制御部22により制御され、搬入出領域11のポート20内のカセットCからウェハWが取り出されて、例えば上段の分割領域13a内に搬入され、所望のテスタ40に対応するアライナ50に吸着保持されたチャックトップ70上に載置される。 (Step S1: Transport)
First, the wafer W to be inspected is transferred to the desiredtester 40 .
Specifically, thetransfer device 30 and the like are controlled by the control unit 22, and the wafer W is taken out from the cassette C in the port 20 of the loading/unloading area 11, loaded into the upper divided area 13a, for example, and sent to a desired tester. 40 is placed on the chuck top 70 sucked and held by the aligner 50 corresponding to 40 .
まず、所望のテスタ40に対する検査対象のウェハWの搬送が行われる。
具体的には、搬送装置30等が制御部22により制御され、搬入出領域11のポート20内のカセットCからウェハWが取り出されて、例えば上段の分割領域13a内に搬入され、所望のテスタ40に対応するアライナ50に吸着保持されたチャックトップ70上に載置される。 (Step S1: Transport)
First, the wafer W to be inspected is transferred to the desired
Specifically, the
(ステップS2:チャックトップ70の移動)
次いで、図9に示すように、ウェハWが載置されたチャックトップ70が、プローブカード90の下方に移動される。
具体的には、制御部22によりアライナ50が制御され、ウェハWが載置されたチャックトップ70が、予め定められた仮の接触位置に移動される。 (Step S2: Movement of chuck top 70)
Next, as shown in FIG. 9, thechuck top 70 with the wafer W mounted thereon is moved below the probe card 90 .
Specifically, thecontroller 22 controls the aligner 50 to move the chuck top 70 on which the wafer W is placed to a predetermined temporary contact position.
次いで、図9に示すように、ウェハWが載置されたチャックトップ70が、プローブカード90の下方に移動される。
具体的には、制御部22によりアライナ50が制御され、ウェハWが載置されたチャックトップ70が、予め定められた仮の接触位置に移動される。 (Step S2: Movement of chuck top 70)
Next, as shown in FIG. 9, the
Specifically, the
(ステップS3:撮像部60の移動)
また、プローブカード90と、プローブカード90の下方のチャックトップ70との間となる位置に、撮像部60が移動される。
具体的には、制御部22により撮像移動機構100が制御され、上記の位置に、撮像部60の筐体60aが移動される。
ステップS2及びステップS3の順番は問わず、ステップS2とステップS3が同時に行われてもよい。 (Step S3: Movement of imaging section 60)
Also, theimaging unit 60 is moved to a position between the probe card 90 and the chuck top 70 below the probe card 90 .
Specifically, theimaging moving mechanism 100 is controlled by the control unit 22, and the housing 60a of the imaging unit 60 is moved to the above position.
Steps S2 and S3 may be performed at the same time, regardless of the order of steps S2 and S3.
また、プローブカード90と、プローブカード90の下方のチャックトップ70との間となる位置に、撮像部60が移動される。
具体的には、制御部22により撮像移動機構100が制御され、上記の位置に、撮像部60の筐体60aが移動される。
ステップS2及びステップS3の順番は問わず、ステップS2とステップS3が同時に行われてもよい。 (Step S3: Movement of imaging section 60)
Also, the
Specifically, the
Steps S2 and S3 may be performed at the same time, regardless of the order of steps S2 and S3.
(ステップS4:撮像)
その後、プローブカード90とチャックトップ70との間から、第1撮像ユニット61及び第2撮像ユニット62による撮像が行われる。言い換えると、制御部22により、プローブカード90とチャックトップ70との間に位置する第1撮像ユニット61を用いて、ウェハWの代表位置が取得され、且つ、プローブカード90とチャックトップ70との間に位置する第2撮像ユニット62を用いて、プローブ91の代表位置が取得される。 (Step S4: Imaging)
After that, images are captured by thefirst imaging unit 61 and the second imaging unit 62 from between the probe card 90 and the chuck top 70 . In other words, the control unit 22 acquires the representative position of the wafer W using the first imaging unit 61 positioned between the probe card 90 and the chuck top 70, and A representative position of the probe 91 is obtained using the second imaging unit 62 positioned in between.
その後、プローブカード90とチャックトップ70との間から、第1撮像ユニット61及び第2撮像ユニット62による撮像が行われる。言い換えると、制御部22により、プローブカード90とチャックトップ70との間に位置する第1撮像ユニット61を用いて、ウェハWの代表位置が取得され、且つ、プローブカード90とチャックトップ70との間に位置する第2撮像ユニット62を用いて、プローブ91の代表位置が取得される。 (Step S4: Imaging)
After that, images are captured by the
ウェハWの代表位置は、具体的には、第1撮像ユニット61の撮像結果と撮像移動機構100の位置検出機構の検出結果とに基づいて取得される。
また、ウェハWの代表位置とは、例えばウェハW上の予め定められた複数箇所の電極の重心位置である。各電極のおおよその位置は、マクロ視野カメラ61aにより得られた画像に基づいて取得される。また、各電極の正確な位置は、マイクロ視野カメラ61bにより得られた画像に基づいて取得される。例えば、各電極の正確な位置(具体的には位置座標)は、マイクロ視野カメラ61bにより得られた画像の中心に当該電極の中心が位置する時の、撮像移動機構100の位置検出機構からの出力に基づいて、取得することができる。 Specifically, the representative position of the wafer W is acquired based on the imaging result of thefirst imaging unit 61 and the detection result of the position detection mechanism of the imaging movement mechanism 100 .
Further, the representative position of the wafer W is, for example, the center-of-gravity position of the electrodes at a plurality of predetermined positions on the wafer W. As shown in FIG. The approximate position of each electrode is obtained based on the images obtained by themacro-view camera 61a. Also, the exact position of each electrode is obtained based on the image obtained by the micro-field camera 61b. For example, the accurate position (specifically, the position coordinates) of each electrode can be obtained from the position detection mechanism of the imaging movement mechanism 100 when the center of the electrode is positioned at the center of the image obtained by the micro-view camera 61b. Based on the output, it can be obtained.
また、ウェハWの代表位置とは、例えばウェハW上の予め定められた複数箇所の電極の重心位置である。各電極のおおよその位置は、マクロ視野カメラ61aにより得られた画像に基づいて取得される。また、各電極の正確な位置は、マイクロ視野カメラ61bにより得られた画像に基づいて取得される。例えば、各電極の正確な位置(具体的には位置座標)は、マイクロ視野カメラ61bにより得られた画像の中心に当該電極の中心が位置する時の、撮像移動機構100の位置検出機構からの出力に基づいて、取得することができる。 Specifically, the representative position of the wafer W is acquired based on the imaging result of the
Further, the representative position of the wafer W is, for example, the center-of-gravity position of the electrodes at a plurality of predetermined positions on the wafer W. As shown in FIG. The approximate position of each electrode is obtained based on the images obtained by the
プローブ91の代表位置は、具体的には、第2撮像ユニット62の撮像結果と撮像移動機構100の位置検出機構の検出結果とに基づいて取得される。
また、プローブ91の代表位置とは、例えばプローブカード90の予め定められた複数箇所のプローブ91の重心位置である。各プローブ91のおおよその位置は、マクロ視野カメラ62aにより得られた画像に基づいて取得される。また、各プローブ91の正確な位置は、マイクロ視野カメラ62bにより得られた画像に基づいて取得される。例えば、各プローブ91の正確な位置(具体的には位置座標)は、マイクロ視野カメラ62bにより得られた画像の中心に当該プローブ91の先端が位置する時の、撮像移動機構100の位置検出機構からの出力に基づいて、取得することができる。 Specifically, the representative position of theprobe 91 is acquired based on the imaging result of the second imaging unit 62 and the detection result of the position detection mechanism of the imaging movement mechanism 100 .
Further, the representative position of theprobes 91 is, for example, the center-of-gravity positions of the probes 91 at a plurality of predetermined locations on the probe card 90 . The approximate position of each probe 91 is obtained based on the images obtained by the macro-view camera 62a. Also, the exact position of each probe 91 is obtained based on the image obtained by the micro-field camera 62b. For example, the exact position (specifically, the position coordinates) of each probe 91 can be determined by the position detection mechanism of the imaging movement mechanism 100 when the tip of the probe 91 is positioned at the center of the image obtained by the micro-view camera 62b. can be obtained based on the output from
また、プローブ91の代表位置とは、例えばプローブカード90の予め定められた複数箇所のプローブ91の重心位置である。各プローブ91のおおよその位置は、マクロ視野カメラ62aにより得られた画像に基づいて取得される。また、各プローブ91の正確な位置は、マイクロ視野カメラ62bにより得られた画像に基づいて取得される。例えば、各プローブ91の正確な位置(具体的には位置座標)は、マイクロ視野カメラ62bにより得られた画像の中心に当該プローブ91の先端が位置する時の、撮像移動機構100の位置検出機構からの出力に基づいて、取得することができる。 Specifically, the representative position of the
Further, the representative position of the
(ステップS5:位置合わせ)
次いで、第1撮像ユニット61及び第2撮像ユニット62による撮像結果に基づいて、チャックトップ70に載置されたウェハWとプローブカード90のプローブ91との位置合わせが行われる。具体的には、制御部22により、第1撮像ユニット61及び第2撮像ユニット62による撮像結果に基づいて、仮の接触位置が補正され、補正後の仮の接触位置が、接触位置に決定される。そして、制御部22によりアライナ50が制御され、チャックトップ70が、決定された接触位置に移動される。 (Step S5: alignment)
Next, the wafer W placed on thechuck top 70 and the probes 91 of the probe card 90 are aligned based on the imaging results of the first imaging unit 61 and the second imaging unit 62 . Specifically, the control unit 22 corrects the temporary contact position based on the imaging results of the first imaging unit 61 and the second imaging unit 62, and determines the corrected temporary contact position as the contact position. be. Then, the controller 22 controls the aligner 50 to move the chuck top 70 to the determined contact position.
次いで、第1撮像ユニット61及び第2撮像ユニット62による撮像結果に基づいて、チャックトップ70に載置されたウェハWとプローブカード90のプローブ91との位置合わせが行われる。具体的には、制御部22により、第1撮像ユニット61及び第2撮像ユニット62による撮像結果に基づいて、仮の接触位置が補正され、補正後の仮の接触位置が、接触位置に決定される。そして、制御部22によりアライナ50が制御され、チャックトップ70が、決定された接触位置に移動される。 (Step S5: alignment)
Next, the wafer W placed on the
仮の接触位置の補正は、例えば、ステップS4で取得されたウェハWの代表位置及びプローブ91の代表位置と、に基づいて行われる。より具体的には、仮の接触位置は、プローブ91の代表位置からのウェハWの代表位置の位置ずれが相殺されるように補正される。
Correction of the temporary contact positions is performed based on, for example, the representative positions of the wafer W and the representative positions of the probes 91 acquired in step S4. More specifically, the temporary contact position is corrected so that the positional deviation of the representative position of the wafer W from the representative position of the probe 91 is canceled.
(ステップS6:撮像部60の退避)
また、撮像部60の筐体60aが、平面視でチャックトップ70と重ならない領域に退避される。具体的には、制御部22により撮像移動機構100が制御され、撮像部60の筐体60a及び撮像移動機構100のチャックトップ70と干渉し得る部分が、同じ分割領域13a内の隣り合うチャックトップ70の間の領域に、退避される。
ステップS5及びステップS6の順番は問わず、ステップS5とステップS6が同時に行われてもよい。 (Step S6: Retreat of imaging section 60)
Further, thehousing 60a of the imaging unit 60 is retracted to a region that does not overlap the chuck top 70 in plan view. Specifically, the imaging movement mechanism 100 is controlled by the control unit 22, and portions that can interfere with the casing 60a of the imaging unit 60 and the chuck tops 70 of the imaging movement mechanism 100 are adjacent chuck tops in the same divided area 13a. The area between 70 is saved.
Steps S5 and S6 may be performed at the same time, regardless of the order of steps S5 and S6.
また、撮像部60の筐体60aが、平面視でチャックトップ70と重ならない領域に退避される。具体的には、制御部22により撮像移動機構100が制御され、撮像部60の筐体60a及び撮像移動機構100のチャックトップ70と干渉し得る部分が、同じ分割領域13a内の隣り合うチャックトップ70の間の領域に、退避される。
ステップS5及びステップS6の順番は問わず、ステップS5とステップS6が同時に行われてもよい。 (Step S6: Retreat of imaging section 60)
Further, the
Steps S5 and S6 may be performed at the same time, regardless of the order of steps S5 and S6.
(ステップS7:チャックトップ70の上昇)
その後、制御部22によりアライナ50が制御され、チャックトップ70が上昇される。上昇は、ウェハWとプローブ91とが接触するまで行われる。 (Step S7: Ascent of chuck top 70)
After that, thecontroller 22 controls the aligner 50 to raise the chuck top 70 . Lifting is performed until the wafer W and the probes 91 come into contact with each other.
その後、制御部22によりアライナ50が制御され、チャックトップ70が上昇される。上昇は、ウェハWとプローブ91とが接触するまで行われる。 (Step S7: Ascent of chuck top 70)
After that, the
このときにチャックトップ70をどこまで上昇させるかの基準となるチャックトップ70の基準高さは例えば以下のように決定される。
すなわち、例えば、ステップS4においてウェハWの代表位置等が取得される際に、チャックトップ70に載置されたウェハWの高さ(具体的には電極の高さ)と、プローブ91の高さも取得されるようにし、これらの高さから、制御部22により、チャックトップ70の基準高さが決定される。
チャックトップ70に載置されたウェハWの高さは、第1撮像ユニット61の撮像結果と、撮像移動機構100の上下方向の位置にかかる位置検出機構の検出結果と、に基づいて、取得される。
また、プローブ91の高さは、第2撮像ユニット62の撮像結果と、撮像移動機構100の上下方向の位置にかかる位置検出機構の検出結果と、に基づいて、取得される。 At this time, the reference height of thechuck top 70, which serves as a reference for how far the chuck top 70 should be raised, is determined, for example, as follows.
That is, for example, when the representative position of the wafer W and the like are acquired in step S4, the height of the wafer W placed on the chuck top 70 (specifically, the height of the electrodes) and the height of theprobes 91 are also The control unit 22 determines the reference height of the chuck top 70 from these heights.
The height of the wafer W placed on thechuck top 70 is acquired based on the imaging result of the first imaging unit 61 and the detection result of the position detection mechanism regarding the vertical position of the imaging moving mechanism 100. be.
Also, the height of theprobe 91 is acquired based on the image pickup result of the second image pickup unit 62 and the detection result of the position detection mechanism regarding the vertical position of the image pickup movement mechanism 100 .
すなわち、例えば、ステップS4においてウェハWの代表位置等が取得される際に、チャックトップ70に載置されたウェハWの高さ(具体的には電極の高さ)と、プローブ91の高さも取得されるようにし、これらの高さから、制御部22により、チャックトップ70の基準高さが決定される。
チャックトップ70に載置されたウェハWの高さは、第1撮像ユニット61の撮像結果と、撮像移動機構100の上下方向の位置にかかる位置検出機構の検出結果と、に基づいて、取得される。
また、プローブ91の高さは、第2撮像ユニット62の撮像結果と、撮像移動機構100の上下方向の位置にかかる位置検出機構の検出結果と、に基づいて、取得される。 At this time, the reference height of the
That is, for example, when the representative position of the wafer W and the like are acquired in step S4, the height of the wafer W placed on the chuck top 70 (specifically, the height of the electrodes) and the height of the
The height of the wafer W placed on the
Also, the height of the
(ステップS8:チャックトップ70の吸着)
その後、制御部22の制御の下、チャックトップ70がポゴフレーム80に吸着される。
具体的には、ウェハWとプローブ91とが接触している状態で、減圧機構(図示せず)等が制御されると共にアライナ50のZステージ53が下降され、これにより、チャックトップ70が、アライナ50から分離されポゴフレーム80に吸着される。 (Step S8: Adsorption of chuck top 70)
After that, thechuck top 70 is attracted to the pogo frame 80 under the control of the controller 22 .
Specifically, while the wafer W and theprobes 91 are in contact with each other, a decompression mechanism (not shown) or the like is controlled and the Z stage 53 of the aligner 50 is lowered, whereby the chuck top 70 is It is separated from the aligner 50 and attached to the pogo frame 80 .
その後、制御部22の制御の下、チャックトップ70がポゴフレーム80に吸着される。
具体的には、ウェハWとプローブ91とが接触している状態で、減圧機構(図示せず)等が制御されると共にアライナ50のZステージ53が下降され、これにより、チャックトップ70が、アライナ50から分離されポゴフレーム80に吸着される。 (Step S8: Adsorption of chuck top 70)
After that, the
Specifically, while the wafer W and the
(ステップS9:検査)
チャックトップ70とアライナ50との切り離し後、ウェハWに形成された電子デバイスの電気的特性検査が行われる。
電気的特性検査用の電気信号は、テスタ40からポゴピン81やプローブ91等を介して電子デバイスに入力される。 (Step S9: inspection)
After thechuck top 70 and the aligner 50 are separated, the electrical characteristics of the electronic devices formed on the wafer W are inspected.
An electrical signal for electrical characteristic inspection is input from thetester 40 to the electronic device via the pogo pins 81, the probes 91, and the like.
チャックトップ70とアライナ50との切り離し後、ウェハWに形成された電子デバイスの電気的特性検査が行われる。
電気的特性検査用の電気信号は、テスタ40からポゴピン81やプローブ91等を介して電子デバイスに入力される。 (Step S9: inspection)
After the
An electrical signal for electrical characteristic inspection is input from the
(ステップS10:搬出)
その後、検査後のウェハWが搬出される。
具体的には、ポゴフレーム80に吸着されていたチャックトップ70がアライナ50に受け渡され保持される。また、アライナ50に保持されたチャックトップ70上の検査後のウェハWが、搬送装置30によって、検査領域13から搬出され、搬入出領域11のポート20内のカセットCに戻される。
なお、一のテスタ40での検査中、アライナ50等によって、他のテスタ40への検査対象のウェハWの搬送や他のテスタ40からの検査後のウェハWの回収が行われる。 (Step S10: Unloading)
Thereafter, the wafer W after inspection is unloaded.
Specifically, thechuck top 70 sucked to the pogo frame 80 is delivered to and held by the aligner 50 . Also, the inspected wafer W on the chuck top 70 held by the aligner 50 is unloaded from the inspection area 13 by the transport device 30 and returned to the cassette C in the port 20 of the loading/unloading area 11 .
During the inspection by onetester 40 , the aligner 50 or the like transports the wafer W to be inspected to another tester 40 and recovers the wafer W after the inspection from the other tester 40 .
その後、検査後のウェハWが搬出される。
具体的には、ポゴフレーム80に吸着されていたチャックトップ70がアライナ50に受け渡され保持される。また、アライナ50に保持されたチャックトップ70上の検査後のウェハWが、搬送装置30によって、検査領域13から搬出され、搬入出領域11のポート20内のカセットCに戻される。
なお、一のテスタ40での検査中、アライナ50等によって、他のテスタ40への検査対象のウェハWの搬送や他のテスタ40からの検査後のウェハWの回収が行われる。 (Step S10: Unloading)
Thereafter, the wafer W after inspection is unloaded.
Specifically, the
During the inspection by one
<本実施形態の主な効果>
図1及び図2を用いて説明した形態(以下、比較の形態という。)では、検査装置500でのチャックトップ503上のウェハWとプローブカード501のプローブ501aとの位置合わせに、本実施形態と同様、ウェハWの撮像結果を用いている。しかし、比較の形態では、本実施形態と異なり、ウェハWの撮像の際、チャックトップ503は、プローブカード501と平面視では重ならない領域に位置し、プローブカード501の下方の接触位置まで距離がある。したがって、アライナ504が設置されたフレームに歪みがあると、比較の形態では、ウェハWとプローブ501aとの位置合わせを正確に行うことができない場合がある。それに対し、本実施形態では、チャックトップ70上のウェハWの撮像の際、チャックトップ70はプローブカード90の下方の接触位置に位置する。したがって、アライナ50が設置された筐体10に歪みが生じていたとしても、比較の形態に比べて、ウェハWとプローブ91とをより適切に接触させることができる。つまり、本実施形態によれば、ウェハWとプローブカード90のプローブ91との位置合わせをより正確に行うことができる。なお、上述の筐体10等の歪みは、例えば、当該筐体10の温度変化による膨張または収縮や、当該筐体10内における複数のアライナ50の重心変化等により、μmオーダーで生じ得る。 <Main effects of the present embodiment>
1 and 2 (hereinafter referred to as a comparative embodiment), the wafer W on thechuck top 503 in the inspection apparatus 500 and the probes 501a of the probe card 501 are aligned with each other in this embodiment. Similar to , the imaging result of the wafer W is used. However, in the comparative form, unlike the present embodiment, the chuck top 503 is positioned in a region that does not overlap the probe card 501 in plan view when the wafer W is imaged, and the contact position below the probe card 501 is a distance away. be. Therefore, if the frame in which the aligner 504 is installed is distorted, it may not be possible to accurately align the wafer W and the probes 501a in the comparison mode. In contrast, in this embodiment, the chuck top 70 is positioned at the contact position below the probe card 90 when the wafer W on the chuck top 70 is imaged. Therefore, even if the housing 10 in which the aligner 50 is installed is distorted, the wafer W and the probes 91 can be brought into contact more appropriately than in the comparative embodiment. That is, according to the present embodiment, alignment between the wafer W and the probes 91 of the probe card 90 can be performed more accurately. Note that the above-described distortion of the housing 10 and the like may occur on the order of μm due to, for example, expansion or contraction of the housing 10 due to temperature changes, changes in the center of gravity of the plurality of aligners 50 within the housing 10, and the like.
図1及び図2を用いて説明した形態(以下、比較の形態という。)では、検査装置500でのチャックトップ503上のウェハWとプローブカード501のプローブ501aとの位置合わせに、本実施形態と同様、ウェハWの撮像結果を用いている。しかし、比較の形態では、本実施形態と異なり、ウェハWの撮像の際、チャックトップ503は、プローブカード501と平面視では重ならない領域に位置し、プローブカード501の下方の接触位置まで距離がある。したがって、アライナ504が設置されたフレームに歪みがあると、比較の形態では、ウェハWとプローブ501aとの位置合わせを正確に行うことができない場合がある。それに対し、本実施形態では、チャックトップ70上のウェハWの撮像の際、チャックトップ70はプローブカード90の下方の接触位置に位置する。したがって、アライナ50が設置された筐体10に歪みが生じていたとしても、比較の形態に比べて、ウェハWとプローブ91とをより適切に接触させることができる。つまり、本実施形態によれば、ウェハWとプローブカード90のプローブ91との位置合わせをより正確に行うことができる。なお、上述の筐体10等の歪みは、例えば、当該筐体10の温度変化による膨張または収縮や、当該筐体10内における複数のアライナ50の重心変化等により、μmオーダーで生じ得る。 <Main effects of the present embodiment>
1 and 2 (hereinafter referred to as a comparative embodiment), the wafer W on the
また、比較の形態に比べて、本実施形態では、チャックトップ70上のウェハWの撮像と、プローブ91の撮像との間に、チャックトップ70を大きく移動させる必要がない。したがって、本実施形態によれば、ウェハWとプローブ91との位置合わせに要する時間を短縮することができる。また、比較の形態では、上カメラ510と下カメラ511とで共通のターゲットを撮像する必要がある場合がある。本実施形態では、このような撮像は不要であるため、この観点からも、位置合わせに要する時間を短縮することができる。
Also, in this embodiment, it is not necessary to move the chuck top 70 significantly between the imaging of the wafer W on the chuck top 70 and the imaging of the probe 91, as compared with the comparative embodiment. Therefore, according to this embodiment, it is possible to shorten the time required for alignment between the wafer W and the probes 91 . Also, in the comparison mode, it may be necessary to image a common target with the upper camera 510 and the lower camera 511 . In the present embodiment, such imaging is not necessary, so from this point of view as well, the time required for alignment can be shortened.
さらに、本実施形態では、撮像部60が、水平方向に並ぶ複数のテスタ40の間すなわちポゴフレーム80の間で共用されるように設けられている。具体的には、撮像部60が、水平方向に隣接するテスタ40間すなわちポゴフレーム80間で共用されるように設けられている。したがって、撮像部60をテスタ40毎すなわちポゴフレーム80毎に設ける場合に比べて、コストを削減することができ、且つ、検査装置1のフットプリントを縮小することができる。
Furthermore, in the present embodiment, the imaging unit 60 is provided so as to be shared among the plurality of testers 40 arranged in the horizontal direction, that is, among the pogo frames 80 . Specifically, the imaging unit 60 is provided so as to be shared between the horizontally adjacent testers 40 , that is, between the pogo frames 80 . Therefore, the cost can be reduced and the footprint of the inspection apparatus 1 can be reduced compared to the case where the imaging unit 60 is provided for each tester 40 , that is, for each pogo frame 80 .
<変形例>
以上の例では、第1撮像ユニット61及び第2撮像ユニット62は同軸上に設けられていたが、第1撮像ユニット61の光軸と第2撮像ユニット62の光軸はずれていてもよい。この場合、接触位置は、例えば、以下のようにして決定される。すなわち、第1撮像ユニット61及び第2撮像ユニット62の撮像結果に基づいて補正された後の仮の接触位置が、第1撮像ユニット61の光軸と第2撮像ユニット62の光軸の位置関係に基づいて較正され、補正後且つ較正後の仮の接触位置が、接触位置に決定される。
ただし、ずれている場合の第1撮像ユニット61の光軸と第2撮像ユニット62の光軸の位置関係は、正確に把握することは難しく、また、温度の影響による筐体10の歪み等によって変化する。したがって、第1撮像ユニット61及び第2撮像ユニット62は同軸上に設けられている方が、上述のような較正が不要であり、適切な接触位置をより確実に取得することができ、すなわち適切な位置合わせをより確実に行うことができる。 <Modification>
In the above example, thefirst imaging unit 61 and the second imaging unit 62 are provided coaxially, but the optical axis of the first imaging unit 61 and the optical axis of the second imaging unit 62 may be shifted. In this case, the contact position is determined, for example, as follows. That is, the temporary contact position after being corrected based on the imaging results of the first imaging unit 61 and the second imaging unit 62 is the positional relationship between the optical axis of the first imaging unit 61 and the optical axis of the second imaging unit 62. and the corrected and calibrated provisional contact position is determined as the contact position.
However, it is difficult to accurately grasp the positional relationship between the optical axis of thefirst imaging unit 61 and the optical axis of the second imaging unit 62 when they are misaligned. Change. Therefore, if the first imaging unit 61 and the second imaging unit 62 are provided coaxially, the calibration as described above is unnecessary, and the appropriate contact position can be obtained more reliably. alignment can be performed more reliably.
以上の例では、第1撮像ユニット61及び第2撮像ユニット62は同軸上に設けられていたが、第1撮像ユニット61の光軸と第2撮像ユニット62の光軸はずれていてもよい。この場合、接触位置は、例えば、以下のようにして決定される。すなわち、第1撮像ユニット61及び第2撮像ユニット62の撮像結果に基づいて補正された後の仮の接触位置が、第1撮像ユニット61の光軸と第2撮像ユニット62の光軸の位置関係に基づいて較正され、補正後且つ較正後の仮の接触位置が、接触位置に決定される。
ただし、ずれている場合の第1撮像ユニット61の光軸と第2撮像ユニット62の光軸の位置関係は、正確に把握することは難しく、また、温度の影響による筐体10の歪み等によって変化する。したがって、第1撮像ユニット61及び第2撮像ユニット62は同軸上に設けられている方が、上述のような較正が不要であり、適切な接触位置をより確実に取得することができ、すなわち適切な位置合わせをより確実に行うことができる。 <Modification>
In the above example, the
However, it is difficult to accurately grasp the positional relationship between the optical axis of the
今回開示された実施形態はすべての点で例示であって制限的なものではないと考えられるべきである。上記の実施形態は、添付の請求の範囲及びその主旨を逸脱することなく、様々な形態で省略、置換、変更されてもよい。
The embodiments disclosed this time should be considered illustrative in all respects and not restrictive. The embodiments described above may be omitted, substituted, or modified in various ways without departing from the scope and spirit of the appended claims.
1 検査装置
50 アライナ
60 撮像部
60a 筐体
61 第1撮像ユニット
62 第2撮像ユニット
70 チャックトップ
80 ポゴフレーム
90 プローブカード
91 プローブ
100 撮像移動機構
W ウェハ 1inspection device 50 aligner 60 imaging unit 60a housing 61 first imaging unit 62 second imaging unit 70 chuck top 80 pogo frame 90 probe card 91 probe 100 imaging movement mechanism W wafer
50 アライナ
60 撮像部
60a 筐体
61 第1撮像ユニット
62 第2撮像ユニット
70 チャックトップ
80 ポゴフレーム
90 プローブカード
91 プローブ
100 撮像移動機構
W ウェハ 1
Claims (10)
- 基板を検査する検査装置であって、
基板が載置される載置部材と、
基板上の電極に接触するプローブを有するプローブカードを保持する保持部と、
前記載置部材を保持し移動させる移動機構と、
前記載置部材に載置された基板を認識する第1撮像ユニットと、前記保持部に保持された前記プローブカードの前記プローブを認識する第2撮像ユニットとを有し、前記第1撮像ユニットと前記第2撮像ユニットが共通の筐体に固定された撮像部と、
前記撮像部の前記筐体を移動させる撮像移動機構と、を備え、
前記保持部に保持された前記プローブカードの下方に基板が載置された前記載置部材が位置する状態での、前記第1撮像ユニット及び前記第2撮像ユニットによる撮像結果に基づいて、前記載置部材に載置された基板と前記プローブカードの前記プローブとの位置合わせを行う、検査装置。 An inspection device for inspecting a substrate,
a mounting member on which the substrate is mounted;
a holder that holds a probe card having probes that contact electrodes on the substrate;
a moving mechanism that holds and moves the placement member;
a first imaging unit for recognizing the substrate placed on the mounting member; and a second imaging unit for recognizing the probe of the probe card held by the holding part, wherein the first imaging unit and an imaging unit in which the second imaging unit is fixed to a common housing;
an imaging movement mechanism for moving the housing of the imaging unit,
Based on the imaging result by the first imaging unit and the second imaging unit in a state where the mounting member on which the substrate is mounted is positioned below the probe card held by the holding part, An inspection apparatus that aligns a substrate placed on a placement member and the probes of the probe card. - 前記第1撮像ユニット及び前記第2撮像ユニットは同軸上に設けられている、請求項1に記載の検査装置。 2. The inspection apparatus according to claim 1, wherein said first imaging unit and said second imaging unit are provided coaxially.
- 前記保持部が水平方向に複数並べられており、
前記撮像部は、水平方向に並ぶ複数の前記保持部間で共用されるように設けられている、請求項1または2に記載の検査装置。 A plurality of the holding portions are arranged in a horizontal direction,
3. The inspection apparatus according to claim 1, wherein said imaging section is provided so as to be shared among a plurality of said holding sections arranged in the horizontal direction. - 前記撮像移動機構は、前記撮像部の前記筐体を水平方向及び上下方向に移動させる、請求項1~3のいずれか1項に記載の検査装置。 4. The inspection apparatus according to any one of claims 1 to 3, wherein said imaging movement mechanism moves said housing of said imaging unit in horizontal and vertical directions.
- 前記第1撮像ユニットは、低解像度で撮像するカメラと、高解像度で撮像するカメラと、を有する、請求項1~4のいずれか1項に記載の検査装置。 5. The inspection apparatus according to any one of claims 1 to 4, wherein said first imaging unit has a camera for imaging at low resolution and a camera for imaging at high resolution.
- 前記第2撮像ユニットは、低解像度で撮像するカメラと、高解像度で撮像するカメラと、を有する、請求項1~5のいずれか1項に記載の検査装置。 6. The inspection apparatus according to any one of claims 1 to 5, wherein said second imaging unit has a camera for imaging at low resolution and a camera for imaging at high resolution.
- 検査装置により基板を検査する検査方法であって、
検査装置は、
基板が載置される載置部材と、
基板上の電極に接触するプローブを有するプローブカードを保持する保持部と、
前記載置部材に載置された基板を認識する第1撮像ユニットと、前記保持部に保持された前記プローブカードの前記プローブを認識する第2撮像ユニットとを有し、前記第1撮像ユニットと前記第2撮像ユニットが共通の筐体に固定された撮像部と、を備え、
前記保持部に保持された前記プローブカードの下方に基板が載置された前記載置部材を移動させる工程と、
その後、前記プローブカードと前記載置部材との間から、前記第1撮像ユニット及び前記第2撮像ユニットによる撮像を行う工程と、
その後、前記第1撮像ユニット及び前記第2撮像ユニットによる撮像結果に基づいて、前記載置部材に載置された基板と前記プローブカードの前記プローブとの位置合わせを行う工程と、を含む、検査方法。 An inspection method for inspecting a substrate with an inspection device,
The inspection device
a mounting member on which the substrate is mounted;
a holder that holds a probe card having probes that contact electrodes on the substrate;
a first imaging unit for recognizing the substrate placed on the mounting member; and a second imaging unit for recognizing the probe of the probe card held by the holding part, wherein the first imaging unit and an imaging unit in which the second imaging unit is fixed to a common housing,
a step of moving the mounting member on which the substrate is mounted below the probe card held by the holding portion;
Thereafter, a step of performing imaging by the first imaging unit and the second imaging unit from between the probe card and the mounting member;
and then performing alignment between the substrate placed on the placement member and the probes of the probe card based on the results of imaging by the first imaging unit and the second imaging unit. Method. - 前記位置合わせを行う工程は、前記第1撮像ユニット及び前記第2撮像ユニットによる撮像結果に基づいて、前記載置部材に載置された基板と前記プローブとを接触させるときの前記載置部材の位置である接触位置を補正する工程を含む、請求項7に記載の検査方法。 In the step of aligning, the position of the mounting member when the substrate mounted on the mounting member and the probe are brought into contact with each other based on the imaging results of the first imaging unit and the second imaging unit. 8. The inspection method according to claim 7, comprising the step of correcting the contact position, which is the position.
- 前記位置合わせ後、前記載置部材を上昇させる工程をさらに含む、請求項7または8に記載の検査方法。 9. The inspection method according to claim 7, further comprising the step of raising said mounting member after said alignment.
- 前記撮像を行う工程と、前記載置部材を上昇させる工程との間に、前記撮像部の筐体を平面視で前記載置部材と重ならない領域に退避させる工程を含む、請求項9に記載の検査方法。 10. The method according to claim 9, further comprising, between the step of taking the image and the step of raising the mounting member, the step of retracting the housing of the imaging unit to a region that does not overlap with the mounting member in plan view. inspection method.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202280083417.1A CN118402050A (en) | 2021-12-27 | 2022-12-13 | Inspection apparatus and inspection method |
KR1020247023782A KR20240124986A (en) | 2021-12-27 | 2022-12-13 | Inspection device and inspection method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021-213140 | 2021-12-27 | ||
JP2021213140A JP2023097019A (en) | 2021-12-27 | 2021-12-27 | Inspection device and inspection method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023127490A1 true WO2023127490A1 (en) | 2023-07-06 |
Family
ID=86998805
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/045925 WO2023127490A1 (en) | 2021-12-27 | 2022-12-13 | Inspection device and inspection method |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP2023097019A (en) |
KR (1) | KR20240124986A (en) |
CN (1) | CN118402050A (en) |
WO (1) | WO2023127490A1 (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05326675A (en) * | 1992-03-23 | 1993-12-10 | Tokyo Electron Ltd | Probe device |
JP2010034482A (en) * | 2008-07-31 | 2010-02-12 | Tokyo Electron Ltd | Inspection device |
JP2010161171A (en) * | 2009-01-07 | 2010-07-22 | Tokyo Electron Ltd | Probe device |
JP2014106216A (en) * | 2012-11-30 | 2014-06-09 | Yoshiyuki Bessho | Camera for aligning probe tip with electrode of body to be inspected |
JP2015190942A (en) * | 2014-03-28 | 2015-11-02 | 株式会社ソシオネクスト | Inspection device, inspection method, and probe card |
WO2019017050A1 (en) * | 2017-07-19 | 2019-01-24 | 東京エレクトロン株式会社 | Inspection system |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7382888B2 (en) | 2020-04-06 | 2023-11-17 | 東京エレクトロン株式会社 | Inspection device and method of controlling the inspection device |
-
2021
- 2021-12-27 JP JP2021213140A patent/JP2023097019A/en active Pending
-
2022
- 2022-12-13 WO PCT/JP2022/045925 patent/WO2023127490A1/en active Application Filing
- 2022-12-13 KR KR1020247023782A patent/KR20240124986A/en unknown
- 2022-12-13 CN CN202280083417.1A patent/CN118402050A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05326675A (en) * | 1992-03-23 | 1993-12-10 | Tokyo Electron Ltd | Probe device |
JP2010034482A (en) * | 2008-07-31 | 2010-02-12 | Tokyo Electron Ltd | Inspection device |
JP2010161171A (en) * | 2009-01-07 | 2010-07-22 | Tokyo Electron Ltd | Probe device |
JP2014106216A (en) * | 2012-11-30 | 2014-06-09 | Yoshiyuki Bessho | Camera for aligning probe tip with electrode of body to be inspected |
JP2015190942A (en) * | 2014-03-28 | 2015-11-02 | 株式会社ソシオネクスト | Inspection device, inspection method, and probe card |
WO2019017050A1 (en) * | 2017-07-19 | 2019-01-24 | 東京エレクトロン株式会社 | Inspection system |
Also Published As
Publication number | Publication date |
---|---|
KR20240124986A (en) | 2024-08-19 |
JP2023097019A (en) | 2023-07-07 |
CN118402050A (en) | 2024-07-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111742399B (en) | Contact precision assurance method, contact precision assurance mechanism, and inspection apparatus | |
TWI442509B (en) | Check the device | |
KR101563013B1 (en) | Probe device | |
JP6401113B2 (en) | Electronic component handling device and electronic component testing device | |
KR20190103957A (en) | Inspection system | |
JP7153556B2 (en) | Temperature measurement member, inspection device and temperature measurement method | |
CN113874693A (en) | Mounting table, inspection apparatus, and temperature correction method | |
US20080059095A1 (en) | Electronic Device Handling Apparatus and Defective Terminal Determination Method | |
US11933839B2 (en) | Inspection apparatus and inspection method | |
WO2023127490A1 (en) | Inspection device and inspection method | |
US20190187180A1 (en) | Prober | |
US11119122B2 (en) | Position correction method, inspection apparatus, and probe card | |
US11221350B2 (en) | Probe device for improving transfer accuracy of needle traces of probes and needle trace transcription method therefor | |
KR100809600B1 (en) | Apparatus for inspecting wafer | |
CN111446183A (en) | Chuck top, inspection device and method for recovering chuck top | |
WO2023053968A1 (en) | Inspection device and inspection method | |
WO2023189676A1 (en) | Inspection method and inspection device | |
JP3303968B2 (en) | Wafer and contact positioning system | |
JPH04312939A (en) | Probe device | |
JP3202577B2 (en) | Probe method | |
JP2023152601A (en) | Inspection method and inspection device | |
JPH0541423A (en) | Probe apparatus | |
CN118974901A (en) | Inspection method and inspection device | |
JP7558038B2 (en) | Contact releasing method for inspection device and inspection device | |
KR20100032329A (en) | Probe apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22915714 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280083417.1 Country of ref document: CN |
|
ENP | Entry into the national phase |
Ref document number: 20247023782 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |