WO2023092050A1 - Beneficial combinations with recombinant bacillus cells expressing a serine protease - Google Patents
Beneficial combinations with recombinant bacillus cells expressing a serine protease Download PDFInfo
- Publication number
- WO2023092050A1 WO2023092050A1 PCT/US2022/080101 US2022080101W WO2023092050A1 WO 2023092050 A1 WO2023092050 A1 WO 2023092050A1 US 2022080101 W US2022080101 W US 2022080101W WO 2023092050 A1 WO2023092050 A1 WO 2023092050A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- spp
- exosporium
- seq
- plant
- identity
- Prior art date
Links
- 108010022999 Serine Proteases Proteins 0.000 title claims abstract description 100
- 102000012479 Serine Proteases Human genes 0.000 title claims abstract description 100
- 241000193830 Bacillus <bacterium> Species 0.000 title description 115
- 230000009286 beneficial effect Effects 0.000 title description 6
- 241000654838 Exosporium Species 0.000 claims abstract description 321
- 241000196324 Embryophyta Species 0.000 claims abstract description 308
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 241
- 239000000203 mixture Substances 0.000 claims abstract description 227
- 102000004169 proteins and genes Human genes 0.000 claims abstract description 180
- 108020001507 fusion proteins Proteins 0.000 claims abstract description 175
- 102000037865 fusion proteins Human genes 0.000 claims abstract description 175
- 230000008685 targeting Effects 0.000 claims abstract description 154
- 241000193755 Bacillus cereus Species 0.000 claims abstract description 136
- 239000012634 fragment Substances 0.000 claims abstract description 127
- 239000002917 insecticide Substances 0.000 claims abstract description 105
- 102000004190 Enzymes Human genes 0.000 claims abstract description 88
- 108090000790 Enzymes Proteins 0.000 claims abstract description 88
- 230000000694 effects Effects 0.000 claims abstract description 85
- 238000000034 method Methods 0.000 claims abstract description 74
- 230000008635 plant growth Effects 0.000 claims abstract description 49
- 241000244206 Nematoda Species 0.000 claims abstract description 39
- 230000036541 health Effects 0.000 claims abstract description 23
- 230000001737 promoting effect Effects 0.000 claims abstract description 17
- 239000007952 growth promoter Substances 0.000 claims abstract 3
- 150000001413 amino acids Chemical group 0.000 claims description 359
- 235000001014 amino acid Nutrition 0.000 claims description 256
- 229940024606 amino acid Drugs 0.000 claims description 253
- 235000018102 proteins Nutrition 0.000 claims description 178
- -1 heptanophos Chemical compound 0.000 claims description 49
- 241000193388 Bacillus thuringiensis Species 0.000 claims description 41
- 229940097012 bacillus thuringiensis Drugs 0.000 claims description 40
- 230000035772 mutation Effects 0.000 claims description 35
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 claims description 18
- 241000193747 Bacillus firmus Species 0.000 claims description 17
- 229940005348 bacillus firmus Drugs 0.000 claims description 16
- 239000001963 growth medium Substances 0.000 claims description 16
- 239000005783 Fluopyram Substances 0.000 claims description 14
- KVDJTXBXMWJJEF-UHFFFAOYSA-N fluopyram Chemical compound ClC1=CC(C(F)(F)F)=CN=C1CCNC(=O)C1=CC=CC=C1C(F)(F)F KVDJTXBXMWJJEF-UHFFFAOYSA-N 0.000 claims description 14
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 claims description 12
- 230000004936 stimulating effect Effects 0.000 claims description 11
- 239000005888 Clothianidin Substances 0.000 claims description 10
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 claims description 10
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 claims description 9
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 claims description 9
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 claims description 9
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 claims description 9
- 239000004473 Threonine Substances 0.000 claims description 9
- 229960000310 isoleucine Drugs 0.000 claims description 9
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 claims description 9
- ZOCSXAVNDGMNBV-UHFFFAOYSA-N 5-amino-1-[2,6-dichloro-4-(trifluoromethyl)phenyl]-4-[(trifluoromethyl)sulfinyl]-1H-pyrazole-3-carbonitrile Chemical compound NC1=C(S(=O)C(F)(F)F)C(C#N)=NN1C1=C(Cl)C=C(C(F)(F)F)C=C1Cl ZOCSXAVNDGMNBV-UHFFFAOYSA-N 0.000 claims description 8
- 239000005899 Fipronil Substances 0.000 claims description 8
- 239000005906 Imidacloprid Substances 0.000 claims description 8
- 239000005951 Methiocarb Substances 0.000 claims description 8
- 235000004279 alanine Nutrition 0.000 claims description 8
- 229940013764 fipronil Drugs 0.000 claims description 8
- 229940056881 imidacloprid Drugs 0.000 claims description 8
- YWTYJOPNNQFBPC-UHFFFAOYSA-N imidacloprid Chemical compound [O-][N+](=O)\N=C1/NCCN1CC1=CC=C(Cl)N=C1 YWTYJOPNNQFBPC-UHFFFAOYSA-N 0.000 claims description 8
- YFBPRJGDJKVWAH-UHFFFAOYSA-N methiocarb Chemical compound CNC(=O)OC1=CC(C)=C(SC)C(C)=C1 YFBPRJGDJKVWAH-UHFFFAOYSA-N 0.000 claims description 8
- BAKXBZPQTXCKRR-UHFFFAOYSA-N thiodicarb Chemical compound CSC(C)=NOC(=O)NSNC(=O)ON=C(C)SC BAKXBZPQTXCKRR-UHFFFAOYSA-N 0.000 claims description 8
- PGOOBECODWQEAB-UHFFFAOYSA-N (E)-clothianidin Chemical compound [O-][N+](=O)\N=C(/NC)NCC1=CN=C(Cl)S1 PGOOBECODWQEAB-UHFFFAOYSA-N 0.000 claims description 7
- 239000005946 Cypermethrin Substances 0.000 claims description 7
- FNELVJVBIYMIMC-UHFFFAOYSA-N Ethiprole Chemical compound N1=C(C#N)C(S(=O)CC)=C(N)N1C1=C(Cl)C=C(C(F)(F)F)C=C1Cl FNELVJVBIYMIMC-UHFFFAOYSA-N 0.000 claims description 7
- 239000005902 Flupyradifurone Substances 0.000 claims description 7
- KAATUXNTWXVJKI-UHFFFAOYSA-N cypermethrin Chemical compound CC1(C)C(C=C(Cl)Cl)C1C(=O)OC(C#N)C1=CC=CC(OC=2C=CC=CC=2)=C1 KAATUXNTWXVJKI-UHFFFAOYSA-N 0.000 claims description 7
- 229960005424 cypermethrin Drugs 0.000 claims description 7
- QOIYTRGFOFZNKF-UHFFFAOYSA-N flupyradifurone Chemical compound C=1C(=O)OCC=1N(CC(F)F)CC1=CC=C(Cl)N=C1 QOIYTRGFOFZNKF-UHFFFAOYSA-N 0.000 claims description 7
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 claims description 7
- COLNVLDHVKWLRT-QMMMGPOBSA-N phenylalanine group Chemical group N[C@@H](CC1=CC=CC=C1)C(=O)O COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 claims description 7
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 claims description 6
- 239000004471 Glycine Substances 0.000 claims description 6
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 claims description 6
- 241001465752 Purpureocillium lilacinum Species 0.000 claims description 6
- 229930182817 methionine Natural products 0.000 claims description 6
- WCXDHFDTOYPNIE-RIYZIHGNSA-N (E)-acetamiprid Chemical compound N#C/N=C(\C)N(C)CC1=CC=C(Cl)N=C1 WCXDHFDTOYPNIE-RIYZIHGNSA-N 0.000 claims description 5
- HOKKPVIRMVDYPB-UVTDQMKNSA-N (Z)-thiacloprid Chemical compound C1=NC(Cl)=CC=C1CN1C(=N/C#N)/SCC1 HOKKPVIRMVDYPB-UVTDQMKNSA-N 0.000 claims description 5
- 239000005875 Acetamiprid Substances 0.000 claims description 5
- 239000005884 Beta-Cyfluthrin Substances 0.000 claims description 5
- 239000005892 Deltamethrin Substances 0.000 claims description 5
- 239000005961 Ethoprophos Substances 0.000 claims description 5
- 239000005958 Fenamiphos (aka phenamiphos) Substances 0.000 claims description 5
- PNVJTZOFSHSLTO-UHFFFAOYSA-N Fenthion Chemical compound COP(=S)(OC)OC1=CC=C(SC)C(C)=C1 PNVJTZOFSHSLTO-UHFFFAOYSA-N 0.000 claims description 5
- 239000005901 Flubendiamide Substances 0.000 claims description 5
- 239000005948 Formetanate Substances 0.000 claims description 5
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 claims description 5
- 239000005916 Methomyl Substances 0.000 claims description 5
- 239000005664 Spirodiclofen Substances 0.000 claims description 5
- 239000005665 Spiromesifen Substances 0.000 claims description 5
- 239000005931 Spirotetramat Substances 0.000 claims description 5
- 239000005940 Thiacloprid Substances 0.000 claims description 5
- 239000005942 Triflumuron Substances 0.000 claims description 5
- QQODLKZGRKWIFG-RUTXASTPSA-N [(R)-cyano-(4-fluoro-3-phenoxyphenyl)methyl] (1S)-3-(2,2-dichloroethenyl)-2,2-dimethylcyclopropane-1-carboxylate Chemical compound CC1(C)C(C=C(Cl)Cl)[C@@H]1C(=O)O[C@@H](C#N)C1=CC=C(F)C(OC=2C=CC=CC=2)=C1 QQODLKZGRKWIFG-RUTXASTPSA-N 0.000 claims description 5
- QGLZXHRNAYXIBU-WEVVVXLNSA-N aldicarb Chemical compound CNC(=O)O\N=C\C(C)(C)SC QGLZXHRNAYXIBU-WEVVVXLNSA-N 0.000 claims description 5
- 229960002587 amitraz Drugs 0.000 claims description 5
- QXAITBQSYVNQDR-ZIOPAAQOSA-N amitraz Chemical compound C=1C=C(C)C=C(C)C=1/N=C/N(C)\C=N\C1=CC=C(C)C=C1C QXAITBQSYVNQDR-ZIOPAAQOSA-N 0.000 claims description 5
- 229960005286 carbaryl Drugs 0.000 claims description 5
- CVXBEEMKQHEXEN-UHFFFAOYSA-N carbaryl Chemical compound C1=CC=C2C(OC(=O)NC)=CC=CC2=C1 CVXBEEMKQHEXEN-UHFFFAOYSA-N 0.000 claims description 5
- 229960001591 cyfluthrin Drugs 0.000 claims description 5
- QQODLKZGRKWIFG-QSFXBCCZSA-N cyfluthrin Chemical compound CC1(C)[C@@H](C=C(Cl)Cl)[C@H]1C(=O)O[C@@H](C#N)C1=CC=C(F)C(OC=2C=CC=CC=2)=C1 QQODLKZGRKWIFG-QSFXBCCZSA-N 0.000 claims description 5
- 229960002483 decamethrin Drugs 0.000 claims description 5
- OWZREIFADZCYQD-NSHGMRRFSA-N deltamethrin Chemical compound CC1(C)[C@@H](C=C(Br)Br)[C@H]1C(=O)O[C@H](C#N)C1=CC=CC(OC=2C=CC=CC=2)=C1 OWZREIFADZCYQD-NSHGMRRFSA-N 0.000 claims description 5
- RDYMFSUJUZBWLH-SVWSLYAFSA-N endosulfan Chemical compound C([C@@H]12)OS(=O)OC[C@@H]1[C@]1(Cl)C(Cl)=C(Cl)[C@@]2(Cl)C1(Cl)Cl RDYMFSUJUZBWLH-SVWSLYAFSA-N 0.000 claims description 5
- RIZMRRKBZQXFOY-UHFFFAOYSA-N ethion Chemical compound CCOP(=S)(OCC)SCSP(=S)(OCC)OCC RIZMRRKBZQXFOY-UHFFFAOYSA-N 0.000 claims description 5
- VJYFKVYYMZPMAB-UHFFFAOYSA-N ethoprophos Chemical compound CCCSP(=O)(OCC)SCCC VJYFKVYYMZPMAB-UHFFFAOYSA-N 0.000 claims description 5
- ZCJPOPBZHLUFHF-UHFFFAOYSA-N fenamiphos Chemical compound CCOP(=O)(NC(C)C)OC1=CC=C(SC)C(C)=C1 ZCJPOPBZHLUFHF-UHFFFAOYSA-N 0.000 claims description 5
- DIRFUJHNVNOBMY-UHFFFAOYSA-N fenobucarb Chemical compound CCC(C)C1=CC=CC=C1OC(=O)NC DIRFUJHNVNOBMY-UHFFFAOYSA-N 0.000 claims description 5
- ZGNITFSDLCMLGI-UHFFFAOYSA-N flubendiamide Chemical compound CC1=CC(C(F)(C(F)(F)F)C(F)(F)F)=CC=C1NC(=O)C1=CC=CC(I)=C1C(=O)NC(C)(C)CS(C)(=O)=O ZGNITFSDLCMLGI-UHFFFAOYSA-N 0.000 claims description 5
- RMFNNCGOSPBBAD-MDWZMJQESA-N formetanate Chemical compound CNC(=O)OC1=CC=CC(\N=C\N(C)C)=C1 RMFNNCGOSPBBAD-MDWZMJQESA-N 0.000 claims description 5
- NNKVPIKMPCQWCG-UHFFFAOYSA-N methamidophos Chemical compound COP(N)(=O)SC NNKVPIKMPCQWCG-UHFFFAOYSA-N 0.000 claims description 5
- UHXUZOCRWCRNSJ-QPJJXVBHSA-N methomyl Chemical compound CNC(=O)O\N=C(/C)SC UHXUZOCRWCRNSJ-QPJJXVBHSA-N 0.000 claims description 5
- PMCVMORKVPSKHZ-UHFFFAOYSA-N oxydemeton-methyl Chemical compound CCS(=O)CCSP(=O)(OC)OC PMCVMORKVPSKHZ-UHFFFAOYSA-N 0.000 claims description 5
- IOUNQDKNJZEDEP-UHFFFAOYSA-N phosalone Chemical compound C1=C(Cl)C=C2OC(=O)N(CSP(=S)(OCC)OCC)C2=C1 IOUNQDKNJZEDEP-UHFFFAOYSA-N 0.000 claims description 5
- HPYNBECUCCGGPA-UHFFFAOYSA-N silafluofen Chemical compound C1=CC(OCC)=CC=C1[Si](C)(C)CCCC1=CC=C(F)C(OC=2C=CC=CC=2)=C1 HPYNBECUCCGGPA-UHFFFAOYSA-N 0.000 claims description 5
- DTDSAWVUFPGDMX-UHFFFAOYSA-N spirodiclofen Chemical compound CCC(C)(C)C(=O)OC1=C(C=2C(=CC(Cl)=CC=2)Cl)C(=O)OC11CCCCC1 DTDSAWVUFPGDMX-UHFFFAOYSA-N 0.000 claims description 5
- GOLXNESZZPUPJE-UHFFFAOYSA-N spiromesifen Chemical compound CC1=CC(C)=CC(C)=C1C(C(O1)=O)=C(OC(=O)CC(C)(C)C)C11CCCC1 GOLXNESZZPUPJE-UHFFFAOYSA-N 0.000 claims description 5
- CLSVJBIHYWPGQY-GGYDESQDSA-N spirotetramat Chemical compound CCOC(=O)OC1=C(C=2C(=CC=C(C)C=2)C)C(=O)N[C@@]11CC[C@H](OC)CC1 CLSVJBIHYWPGQY-GGYDESQDSA-N 0.000 claims description 5
- YWSCPYYRJXKUDB-KAKFPZCNSA-N tralomethrin Chemical compound CC1(C)[C@@H](C(Br)C(Br)(Br)Br)[C@H]1C(=O)O[C@H](C#N)C1=CC=CC(OC=2C=CC=CC=2)=C1 YWSCPYYRJXKUDB-KAKFPZCNSA-N 0.000 claims description 5
- AMFGTOFWMRQMEM-UHFFFAOYSA-N triazophos Chemical compound N1=C(OP(=S)(OCC)OCC)N=CN1C1=CC=CC=C1 AMFGTOFWMRQMEM-UHFFFAOYSA-N 0.000 claims description 5
- XAIPTRIXGHTTNT-UHFFFAOYSA-N triflumuron Chemical compound C1=CC(OC(F)(F)F)=CC=C1NC(=O)NC(=O)C1=CC=CC=C1Cl XAIPTRIXGHTTNT-UHFFFAOYSA-N 0.000 claims description 5
- LESVOLZBIFDZGS-UHFFFAOYSA-N vamidothion Chemical compound CNC(=O)C(C)SCCSP(=O)(OC)OC LESVOLZBIFDZGS-UHFFFAOYSA-N 0.000 claims description 5
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 claims description 4
- 125000001909 leucine group Chemical group [H]N(*)C(C(*)=O)C([H])([H])C(C([H])([H])[H])C([H])([H])[H] 0.000 claims description 4
- RJMUSRYZPJIFPJ-UHFFFAOYSA-N niclosamide Chemical compound OC1=CC=C(Cl)C=C1C(=O)NC1=CC=C([N+]([O-])=O)C=C1Cl RJMUSRYZPJIFPJ-UHFFFAOYSA-N 0.000 claims description 4
- 229960001920 niclosamide Drugs 0.000 claims description 4
- PGOOBECODWQEAB-FIBGUPNXSA-N 2-[(2-chloro-1,3-thiazol-5-yl)methyl]-1-nitro-3-(trideuteriomethyl)guanidine Chemical group [2H]C([2H])([2H])NC(N[N+]([O-])=O)=NCC1=CN=C(Cl)S1 PGOOBECODWQEAB-FIBGUPNXSA-N 0.000 claims description 3
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 claims description 3
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 claims description 3
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 claims description 3
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 claims description 3
- 229960001230 asparagine Drugs 0.000 claims description 3
- 235000009582 asparagine Nutrition 0.000 claims description 3
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 claims description 3
- 125000003630 glycyl group Chemical group [H]N([H])C([H])([H])C(*)=O 0.000 claims description 3
- 108010054442 polyalanine Proteins 0.000 claims description 3
- 125000001500 prolyl group Chemical group [H]N1C([H])(C(=O)[*])C([H])([H])C([H])([H])C1([H])[H] 0.000 claims description 3
- 125000000341 threoninyl group Chemical group [H]OC([H])(C([H])([H])[H])C([H])(N([H])[H])C(*)=O 0.000 claims description 3
- 239000004474 valine Substances 0.000 claims description 3
- 108010094020 polyglycine Proteins 0.000 claims description 2
- 229920000232 polyglycine polymer Polymers 0.000 claims description 2
- 230000006378 damage Effects 0.000 abstract description 10
- 230000002708 enhancing effect Effects 0.000 abstract description 5
- 125000003275 alpha amino acid group Chemical group 0.000 abstract 2
- 210000004027 cell Anatomy 0.000 description 122
- 229940088598 enzyme Drugs 0.000 description 81
- 210000004215 spore Anatomy 0.000 description 79
- 238000009472 formulation Methods 0.000 description 67
- 230000014509 gene expression Effects 0.000 description 39
- 238000011282 treatment Methods 0.000 description 37
- 230000001965 increasing effect Effects 0.000 description 36
- 239000013612 plasmid Substances 0.000 description 36
- 239000000417 fungicide Substances 0.000 description 34
- 239000000047 product Substances 0.000 description 33
- 241000894006 Bacteria Species 0.000 description 32
- 108090000765 processed proteins & peptides Proteins 0.000 description 32
- 230000000855 fungicidal effect Effects 0.000 description 31
- 239000000126 substance Substances 0.000 description 30
- 230000001976 improved effect Effects 0.000 description 28
- 239000002689 soil Substances 0.000 description 27
- 241000607479 Yersinia pestis Species 0.000 description 25
- 150000001875 compounds Chemical class 0.000 description 25
- 238000000855 fermentation Methods 0.000 description 25
- 230000004151 fermentation Effects 0.000 description 25
- 241000238631 Hexapoda Species 0.000 description 23
- 239000004480 active ingredient Substances 0.000 description 22
- 102000004196 processed proteins & peptides Human genes 0.000 description 20
- 241000238876 Acari Species 0.000 description 19
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 19
- 241000194106 Bacillus mycoides Species 0.000 description 18
- 235000013399 edible fruits Nutrition 0.000 description 18
- 229920001184 polypeptide Polymers 0.000 description 18
- 150000007523 nucleic acids Chemical class 0.000 description 17
- 108020004414 DNA Proteins 0.000 description 16
- 108091028043 Nucleic acid sequence Proteins 0.000 description 16
- 244000005700 microbiome Species 0.000 description 16
- 238000002360 preparation method Methods 0.000 description 16
- 108010076504 Protein Sorting Signals Proteins 0.000 description 15
- 150000003839 salts Chemical class 0.000 description 15
- 230000028070 sporulation Effects 0.000 description 15
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 14
- 239000000969 carrier Substances 0.000 description 13
- 235000014113 dietary fatty acids Nutrition 0.000 description 13
- 239000000194 fatty acid Substances 0.000 description 13
- 229930195729 fatty acid Natural products 0.000 description 13
- 239000003337 fertilizer Substances 0.000 description 13
- 230000002195 synergetic effect Effects 0.000 description 13
- 239000002270 dispersing agent Substances 0.000 description 12
- 150000004665 fatty acids Chemical class 0.000 description 12
- 235000015097 nutrients Nutrition 0.000 description 12
- 239000002904 solvent Substances 0.000 description 12
- 241000239290 Araneae Species 0.000 description 11
- 230000035784 germination Effects 0.000 description 11
- 230000012010 growth Effects 0.000 description 11
- 239000003112 inhibitor Substances 0.000 description 11
- 244000063299 Bacillus subtilis Species 0.000 description 10
- 235000014469 Bacillus subtilis Nutrition 0.000 description 10
- 239000004606 Fillers/Extenders Substances 0.000 description 10
- 241001646398 Pseudomonas chlororaphis Species 0.000 description 10
- 238000005119 centrifugation Methods 0.000 description 10
- 239000003795 chemical substances by application Substances 0.000 description 10
- 230000002068 genetic effect Effects 0.000 description 10
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 10
- 239000000575 pesticide Substances 0.000 description 10
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 10
- 230000002829 reductive effect Effects 0.000 description 10
- 239000013598 vector Substances 0.000 description 10
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 9
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 9
- 241000233866 Fungi Species 0.000 description 9
- 239000012141 concentrate Substances 0.000 description 9
- 150000002148 esters Chemical class 0.000 description 9
- 230000002779 inactivation Effects 0.000 description 9
- 230000001069 nematicidal effect Effects 0.000 description 9
- 239000002773 nucleotide Substances 0.000 description 9
- 125000003729 nucleotide group Chemical group 0.000 description 9
- 108010070880 sigma K Proteins 0.000 description 9
- 235000013311 vegetables Nutrition 0.000 description 9
- 241000193744 Bacillus amyloliquefaciens Species 0.000 description 8
- 238000009631 Broth culture Methods 0.000 description 8
- ULGZDMOVFRHVEP-RWJQBGPGSA-N Erythromycin Chemical compound O([C@@H]1[C@@H](C)C(=O)O[C@@H]([C@@]([C@H](O)[C@@H](C)C(=O)[C@H](C)C[C@@](C)(O)[C@H](O[C@H]2[C@@H]([C@H](C[C@@H](C)O2)N(C)C)O)[C@H]1C)(C)O)CC)[C@H]1C[C@@](C)(OC)[C@@H](O)[C@H](C)O1 ULGZDMOVFRHVEP-RWJQBGPGSA-N 0.000 description 8
- 239000002671 adjuvant Substances 0.000 description 8
- 229910052500 inorganic mineral Inorganic materials 0.000 description 8
- 239000007788 liquid Substances 0.000 description 8
- 230000009261 transgenic effect Effects 0.000 description 8
- 102000035195 Peptidases Human genes 0.000 description 7
- 108091005804 Peptidases Proteins 0.000 description 7
- 239000004365 Protease Substances 0.000 description 7
- 239000004098 Tetracycline Substances 0.000 description 7
- 210000004899 c-terminal region Anatomy 0.000 description 7
- 238000011161 development Methods 0.000 description 7
- 238000001035 drying Methods 0.000 description 7
- 239000003995 emulsifying agent Substances 0.000 description 7
- IXORZMNAPKEEDV-OBDJNFEBSA-N gibberellin A3 Chemical compound C([C@@]1(O)C(=C)C[C@@]2(C1)[C@H]1C(O)=O)C[C@H]2[C@]2(C=C[C@@H]3O)[C@H]1[C@]3(C)C(=O)O2 IXORZMNAPKEEDV-OBDJNFEBSA-N 0.000 description 7
- 230000000749 insecticidal effect Effects 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 7
- 229960002180 tetracycline Drugs 0.000 description 7
- 229930101283 tetracycline Natural products 0.000 description 7
- 235000019364 tetracycline Nutrition 0.000 description 7
- 150000003522 tetracyclines Chemical class 0.000 description 7
- 239000002562 thickening agent Substances 0.000 description 7
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 6
- 241000193738 Bacillus anthracis Species 0.000 description 6
- 240000002791 Brassica napus Species 0.000 description 6
- 235000006008 Brassica napus var napus Nutrition 0.000 description 6
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 6
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 6
- 241001465754 Metazoa Species 0.000 description 6
- 102000019315 Nicotinic acetylcholine receptors Human genes 0.000 description 6
- 108050006807 Nicotinic acetylcholine receptors Proteins 0.000 description 6
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 6
- 235000013339 cereals Nutrition 0.000 description 6
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 6
- 238000012217 deletion Methods 0.000 description 6
- 230000037430 deletion Effects 0.000 description 6
- 230000018109 developmental process Effects 0.000 description 6
- 235000013601 eggs Nutrition 0.000 description 6
- 150000002170 ethers Chemical class 0.000 description 6
- 238000001914 filtration Methods 0.000 description 6
- 235000012055 fruits and vegetables Nutrition 0.000 description 6
- 239000008187 granular material Substances 0.000 description 6
- 238000003306 harvesting Methods 0.000 description 6
- XMGQYMWWDOXHJM-UHFFFAOYSA-N limonene Chemical compound CC(=C)C1CCC(C)=CC1 XMGQYMWWDOXHJM-UHFFFAOYSA-N 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 6
- 238000003860 storage Methods 0.000 description 6
- 239000000725 suspension Substances 0.000 description 6
- 230000017260 vegetative to reproductive phase transition of meristem Effects 0.000 description 6
- 241000751139 Beauveria bassiana Species 0.000 description 5
- 229920000742 Cotton Polymers 0.000 description 5
- 102000053602 DNA Human genes 0.000 description 5
- 241000588724 Escherichia coli Species 0.000 description 5
- 244000299507 Gossypium hirsutum Species 0.000 description 5
- 206010021929 Infertility male Diseases 0.000 description 5
- 208000007466 Male Infertility Diseases 0.000 description 5
- 240000008042 Zea mays Species 0.000 description 5
- 235000016383 Zea mays subsp huehuetenangensis Nutrition 0.000 description 5
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 5
- 230000000895 acaricidal effect Effects 0.000 description 5
- 239000000654 additive Substances 0.000 description 5
- 239000003905 agrochemical Substances 0.000 description 5
- 125000003295 alanine group Chemical group N[C@@H](C)C(=O)* 0.000 description 5
- 230000004071 biological effect Effects 0.000 description 5
- 239000012620 biological material Substances 0.000 description 5
- 239000003086 colorant Substances 0.000 description 5
- ZNJFBWYDHIGLCU-HWKXXFMVSA-N jasmonic acid Chemical compound CC\C=C/C[C@@H]1[C@@H](CC(O)=O)CCC1=O ZNJFBWYDHIGLCU-HWKXXFMVSA-N 0.000 description 5
- 230000014759 maintenance of location Effects 0.000 description 5
- 235000009973 maize Nutrition 0.000 description 5
- 239000003550 marker Substances 0.000 description 5
- 239000011707 mineral Substances 0.000 description 5
- HFPZCAJZSCWRBC-UHFFFAOYSA-N p-cymene Chemical compound CC(C)C1=CC=C(C)C=C1 HFPZCAJZSCWRBC-UHFFFAOYSA-N 0.000 description 5
- 244000052769 pathogen Species 0.000 description 5
- 230000003032 phytopathogenic effect Effects 0.000 description 5
- 238000003752 polymerase chain reaction Methods 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 239000011814 protection agent Substances 0.000 description 5
- 230000010076 replication Effects 0.000 description 5
- 230000002786 root growth Effects 0.000 description 5
- 241000894007 species Species 0.000 description 5
- 239000007921 spray Substances 0.000 description 5
- 150000003505 terpenes Chemical class 0.000 description 5
- 235000007586 terpenes Nutrition 0.000 description 5
- 239000004562 water dispersible granule Substances 0.000 description 5
- 235000007319 Avena orientalis Nutrition 0.000 description 4
- 244000075850 Avena orientalis Species 0.000 description 4
- 241001219268 Bacillus gaemokensis Species 0.000 description 4
- 241000906059 Bacillus pseudomycoides Species 0.000 description 4
- 241000964241 Bacillus samanii Species 0.000 description 4
- 235000016068 Berberis vulgaris Nutrition 0.000 description 4
- 241000335053 Beta vulgaris Species 0.000 description 4
- 241000219198 Brassica Species 0.000 description 4
- 235000004977 Brassica sinapistrum Nutrition 0.000 description 4
- 241000696812 Burkholderia rinojensis Species 0.000 description 4
- 235000013162 Cocos nucifera Nutrition 0.000 description 4
- 244000060011 Cocos nucifera Species 0.000 description 4
- 240000008067 Cucumis sativus Species 0.000 description 4
- 229930191978 Gibberellin Natural products 0.000 description 4
- 244000068988 Glycine max Species 0.000 description 4
- 241000498254 Heterodera glycines Species 0.000 description 4
- 240000005979 Hordeum vulgare Species 0.000 description 4
- 235000007340 Hordeum vulgare Nutrition 0.000 description 4
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 4
- 206010061217 Infestation Diseases 0.000 description 4
- 241000223250 Metarhizium anisopliae Species 0.000 description 4
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 4
- 240000007594 Oryza sativa Species 0.000 description 4
- 235000007164 Oryza sativa Nutrition 0.000 description 4
- 235000010627 Phaseolus vulgaris Nutrition 0.000 description 4
- 244000046052 Phaseolus vulgaris Species 0.000 description 4
- 235000007238 Secale cereale Nutrition 0.000 description 4
- 244000082988 Secale cereale Species 0.000 description 4
- 108091081024 Start codon Proteins 0.000 description 4
- 241000894120 Trichoderma atroviride Species 0.000 description 4
- 235000021307 Triticum Nutrition 0.000 description 4
- 241000209140 Triticum Species 0.000 description 4
- 241000700605 Viruses Species 0.000 description 4
- 239000000642 acaricide Substances 0.000 description 4
- 230000009471 action Effects 0.000 description 4
- 150000001298 alcohols Chemical class 0.000 description 4
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 4
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- 125000000129 anionic group Chemical group 0.000 description 4
- 229940065181 bacillus anthracis Drugs 0.000 description 4
- 230000003115 biocidal effect Effects 0.000 description 4
- 230000000443 biocontrol Effects 0.000 description 4
- 229940041514 candida albicans extract Drugs 0.000 description 4
- 230000003247 decreasing effect Effects 0.000 description 4
- 238000000151 deposition Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 230000007613 environmental effect Effects 0.000 description 4
- 229960003276 erythromycin Drugs 0.000 description 4
- 230000004077 genetic alteration Effects 0.000 description 4
- 231100000118 genetic alteration Toxicity 0.000 description 4
- 239000003448 gibberellin Substances 0.000 description 4
- 102000034238 globular proteins Human genes 0.000 description 4
- 108091005896 globular proteins Proteins 0.000 description 4
- 239000002207 metabolite Substances 0.000 description 4
- 230000000813 microbial effect Effects 0.000 description 4
- 239000013586 microbial product Substances 0.000 description 4
- 239000002480 mineral oil Substances 0.000 description 4
- 230000002438 mitochondrial effect Effects 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- LWGJTAZLEJHCPA-UHFFFAOYSA-N n-(2-chloroethyl)-n-nitrosomorpholine-4-carboxamide Chemical compound ClCCN(N=O)C(=O)N1CCOCC1 LWGJTAZLEJHCPA-UHFFFAOYSA-N 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 230000024121 nodulation Effects 0.000 description 4
- 239000003921 oil Substances 0.000 description 4
- 235000019198 oils Nutrition 0.000 description 4
- 210000000056 organ Anatomy 0.000 description 4
- 230000000361 pesticidal effect Effects 0.000 description 4
- 239000000049 pigment Substances 0.000 description 4
- 238000000746 purification Methods 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- 235000009566 rice Nutrition 0.000 description 4
- 230000035882 stress Effects 0.000 description 4
- 239000003053 toxin Substances 0.000 description 4
- 231100000765 toxin Toxicity 0.000 description 4
- 238000011144 upstream manufacturing Methods 0.000 description 4
- 235000015112 vegetable and seed oil Nutrition 0.000 description 4
- 239000008158 vegetable oil Substances 0.000 description 4
- 239000012138 yeast extract Substances 0.000 description 4
- JLIDBLDQVAYHNE-YKALOCIXSA-N (+)-Abscisic acid Chemical compound OC(=O)/C=C(/C)\C=C\[C@@]1(O)C(C)=CC(=O)CC1(C)C JLIDBLDQVAYHNE-YKALOCIXSA-N 0.000 description 3
- ZCVAOQKBXKSDMS-PVAVHDDUSA-N (+)-trans-(S)-allethrin Chemical compound CC1(C)[C@H](C=C(C)C)[C@H]1C(=O)O[C@@H]1C(C)=C(CC=C)C(=O)C1 ZCVAOQKBXKSDMS-PVAVHDDUSA-N 0.000 description 3
- OBKXEAXTFZPCHS-UHFFFAOYSA-N 4-phenylbutyric acid Chemical compound OC(=O)CCCC1=CC=CC=C1 OBKXEAXTFZPCHS-UHFFFAOYSA-N 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 3
- 241000239223 Arachnida Species 0.000 description 3
- 241000006378 Bacillus cereus group Species 0.000 description 3
- 241000680734 Bacillus firmus DS1 Species 0.000 description 3
- 241000194103 Bacillus pumilus Species 0.000 description 3
- 241001147758 Bacillus thuringiensis serovar kurstaki Species 0.000 description 3
- WVDDGKGOMKODPV-UHFFFAOYSA-N Benzyl alcohol Chemical compound OCC1=CC=CC=C1 WVDDGKGOMKODPV-UHFFFAOYSA-N 0.000 description 3
- 241000219310 Beta vulgaris subsp. vulgaris Species 0.000 description 3
- 241000219495 Betulaceae Species 0.000 description 3
- 235000014698 Brassica juncea var multisecta Nutrition 0.000 description 3
- 240000000385 Brassica napus var. napus Species 0.000 description 3
- 235000006618 Brassica rapa subsp oleifera Nutrition 0.000 description 3
- 244000025254 Cannabis sativa Species 0.000 description 3
- 229920002101 Chitin Polymers 0.000 description 3
- 229920001661 Chitosan Polymers 0.000 description 3
- 235000007542 Cichorium intybus Nutrition 0.000 description 3
- 244000298479 Cichorium intybus Species 0.000 description 3
- 235000010799 Cucumis sativus var sativus Nutrition 0.000 description 3
- 241000489973 Diabrotica undecimpunctata Species 0.000 description 3
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- 239000005980 Gibberellic acid Substances 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 235000010469 Glycine max Nutrition 0.000 description 3
- 108010043121 Green Fluorescent Proteins Proteins 0.000 description 3
- 102000004144 Green Fluorescent Proteins Human genes 0.000 description 3
- 235000003222 Helianthus annuus Nutrition 0.000 description 3
- 244000070406 Malus silvestris Species 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- OVRNDRQMDRJTHS-RTRLPJTCSA-N N-acetyl-D-glucosamine Chemical group CC(=O)N[C@H]1C(O)O[C@H](CO)[C@@H](O)[C@@H]1O OVRNDRQMDRJTHS-RTRLPJTCSA-N 0.000 description 3
- 235000002637 Nicotiana tabacum Nutrition 0.000 description 3
- 244000061176 Nicotiana tabacum Species 0.000 description 3
- 241001149249 Paraphelenchus Species 0.000 description 3
- 241001668579 Pasteuria Species 0.000 description 3
- 235000006040 Prunus persica var persica Nutrition 0.000 description 3
- 241000220324 Pyrus Species 0.000 description 3
- 235000019484 Rapeseed oil Nutrition 0.000 description 3
- 244000062793 Sorghum vulgare Species 0.000 description 3
- 241000256248 Spodoptera Species 0.000 description 3
- 230000036579 abiotic stress Effects 0.000 description 3
- 239000012868 active agrochemical ingredient Substances 0.000 description 3
- 150000001412 amines Chemical class 0.000 description 3
- 229960000723 ampicillin Drugs 0.000 description 3
- 239000003242 anti bacterial agent Substances 0.000 description 3
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 3
- 230000001580 bacterial effect Effects 0.000 description 3
- 210000004556 brain Anatomy 0.000 description 3
- 230000001332 colony forming effect Effects 0.000 description 3
- 208000031513 cyst Diseases 0.000 description 3
- 230000007123 defense Effects 0.000 description 3
- 230000029087 digestion Effects 0.000 description 3
- 238000010790 dilution Methods 0.000 description 3
- 239000012895 dilution Substances 0.000 description 3
- 229960001760 dimethyl sulfoxide Drugs 0.000 description 3
- 201000010099 disease Diseases 0.000 description 3
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 3
- 239000000975 dye Substances 0.000 description 3
- 238000004520 electroporation Methods 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- NYPJDWWKZLNGGM-UHFFFAOYSA-N fenvalerate Aalpha Natural products C=1C=C(Cl)C=CC=1C(C(C)C)C(=O)OC(C#N)C(C=1)=CC=CC=1OC1=CC=CC=C1 NYPJDWWKZLNGGM-UHFFFAOYSA-N 0.000 description 3
- 230000035558 fertility Effects 0.000 description 3
- 239000000706 filtrate Substances 0.000 description 3
- 238000010353 genetic engineering Methods 0.000 description 3
- IXORZMNAPKEEDV-UHFFFAOYSA-N gibberellic acid GA3 Natural products OC(=O)C1C2(C3)CC(=C)C3(O)CCC2C2(C=CC3O)C1C3(C)C(=O)O2 IXORZMNAPKEEDV-UHFFFAOYSA-N 0.000 description 3
- 239000005090 green fluorescent protein Substances 0.000 description 3
- 239000004009 herbicide Substances 0.000 description 3
- 230000000415 inactivating effect Effects 0.000 description 3
- 230000001939 inductive effect Effects 0.000 description 3
- 238000001802 infusion Methods 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- ZNJFBWYDHIGLCU-UHFFFAOYSA-N jasmonic acid Natural products CCC=CCC1C(CC(O)=O)CCC1=O ZNJFBWYDHIGLCU-UHFFFAOYSA-N 0.000 description 3
- 230000000366 juvenile effect Effects 0.000 description 3
- 150000002576 ketones Chemical class 0.000 description 3
- 235000001510 limonene Nutrition 0.000 description 3
- 229940087305 limonene Drugs 0.000 description 3
- 238000012423 maintenance Methods 0.000 description 3
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 description 3
- 238000009629 microbiological culture Methods 0.000 description 3
- 230000001937 non-anti-biotic effect Effects 0.000 description 3
- 235000016709 nutrition Nutrition 0.000 description 3
- 230000000243 photosynthetic effect Effects 0.000 description 3
- 244000000003 plant pathogen Species 0.000 description 3
- 229920000151 polyglycol Polymers 0.000 description 3
- 239000010695 polyglycol Substances 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 239000003755 preservative agent Substances 0.000 description 3
- 229920006395 saturated elastomer Polymers 0.000 description 3
- 238000002864 sequence alignment Methods 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 238000009331 sowing Methods 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- 239000003381 stabilizer Substances 0.000 description 3
- 239000006228 supernatant Substances 0.000 description 3
- 210000001519 tissue Anatomy 0.000 description 3
- 230000009466 transformation Effects 0.000 description 3
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 description 3
- YHQGMYUVUMAZJR-UHFFFAOYSA-N α-terpinene Chemical compound CC(C)C1=CC=C(C)CC1 YHQGMYUVUMAZJR-UHFFFAOYSA-N 0.000 description 3
- KAATUXNTWXVJKI-NSHGMRRFSA-N (1R)-cis-(alphaS)-cypermethrin Chemical compound CC1(C)[C@@H](C=C(Cl)Cl)[C@H]1C(=O)O[C@H](C#N)C1=CC=CC(OC=2C=CC=CC=2)=C1 KAATUXNTWXVJKI-NSHGMRRFSA-N 0.000 description 2
- OXLXSOPFNVKUMU-UHFFFAOYSA-N 1,4-dioctoxy-1,4-dioxobutane-2-sulfonic acid Chemical compound CCCCCCCCOC(=O)CC(S(O)(=O)=O)C(=O)OCCCCCCCC OXLXSOPFNVKUMU-UHFFFAOYSA-N 0.000 description 2
- SWBHWUYHHJCADA-UHFFFAOYSA-N 3-(2-chlorophenyl)-6-(2,6-difluorophenyl)-1,2,4,5-tetrazine Chemical compound FC1=CC=CC(F)=C1C1=NN=C(C=2C(=CC=CC=2)Cl)N=N1 SWBHWUYHHJCADA-UHFFFAOYSA-N 0.000 description 2
- 239000005660 Abamectin Substances 0.000 description 2
- 241001143309 Acanthoscelides obtectus Species 0.000 description 2
- 102000012440 Acetylcholinesterase Human genes 0.000 description 2
- 108010022752 Acetylcholinesterase Proteins 0.000 description 2
- 241000526180 Acizzia Species 0.000 description 2
- 241000079319 Aculops lycopersici Species 0.000 description 2
- 241000702957 Aglenchus Species 0.000 description 2
- 241001103808 Albifimbria verrucaria Species 0.000 description 2
- 244000291564 Allium cepa Species 0.000 description 2
- 235000002732 Allium cepa var. cepa Nutrition 0.000 description 2
- 244000144730 Amygdalus persica Species 0.000 description 2
- 244000099147 Ananas comosus Species 0.000 description 2
- 235000007119 Ananas comosus Nutrition 0.000 description 2
- 241000380490 Anguina Species 0.000 description 2
- 241000294569 Aphelenchoides Species 0.000 description 2
- 235000010591 Appio Nutrition 0.000 description 2
- 244000105624 Arachis hypogaea Species 0.000 description 2
- 241000034280 Bacillus anthracis str. Sterne Species 0.000 description 2
- 241001037822 Bacillus bacterium Species 0.000 description 2
- 241000194108 Bacillus licheniformis Species 0.000 description 2
- 241000193363 Bacillus thuringiensis serovar aizawai Species 0.000 description 2
- 241000193365 Bacillus thuringiensis serovar israelensis Species 0.000 description 2
- 239000005883 Beauveria bassiana strains ATCC 74040 and GHA Substances 0.000 description 2
- 241000580217 Belonolaimus Species 0.000 description 2
- KXDAEFPNCMNJSK-UHFFFAOYSA-N Benzamide Chemical compound NC(=O)C1=CC=CC=C1 KXDAEFPNCMNJSK-UHFFFAOYSA-N 0.000 description 2
- 235000011331 Brassica Nutrition 0.000 description 2
- 235000011299 Brassica oleracea var botrytis Nutrition 0.000 description 2
- 235000011301 Brassica oleracea var capitata Nutrition 0.000 description 2
- 240000003259 Brassica oleracea var. botrytis Species 0.000 description 2
- 244000178937 Brassica oleracea var. capitata Species 0.000 description 2
- 244000221633 Brassica rapa subsp chinensis Species 0.000 description 2
- 235000010149 Brassica rapa subsp chinensis Nutrition 0.000 description 2
- 241000193417 Brevibacillus laterosporus Species 0.000 description 2
- 241000398201 Bryobia praetiosa Species 0.000 description 2
- 241000243770 Bursaphelenchus Species 0.000 description 2
- 241000257163 Calliphora vicina Species 0.000 description 2
- 235000002566 Capsicum Nutrition 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- 241000207199 Citrus Species 0.000 description 2
- 240000007154 Coffea arabica Species 0.000 description 2
- 241000254173 Coleoptera Species 0.000 description 2
- 241001266001 Cordyceps confragosa Species 0.000 description 2
- 235000007466 Corylus avellana Nutrition 0.000 description 2
- 240000007582 Corylus avellana Species 0.000 description 2
- 241001267662 Criconemoides Species 0.000 description 2
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 2
- 244000000626 Daucus carota Species 0.000 description 2
- 235000002767 Daucus carota Nutrition 0.000 description 2
- 241001529600 Diabrotica balteata Species 0.000 description 2
- 241000489947 Diabrotica virgifera virgifera Species 0.000 description 2
- 241000399934 Ditylenchus Species 0.000 description 2
- 241000932610 Dolichodorus Species 0.000 description 2
- 241000060469 Eupoecilia ambiguella Species 0.000 description 2
- 241000851181 Eutetranychus orientalis Species 0.000 description 2
- 241001442498 Globodera Species 0.000 description 2
- SXRSQZLOMIGNAQ-UHFFFAOYSA-N Glutaraldehyde Chemical compound O=CCCCC=O SXRSQZLOMIGNAQ-UHFFFAOYSA-N 0.000 description 2
- 244000020551 Helianthus annuus Species 0.000 description 2
- 241001148481 Helicotylenchus Species 0.000 description 2
- 241001148478 Hemicriconemoides Species 0.000 description 2
- 241001267658 Hemicycliophora Species 0.000 description 2
- 241001480224 Heterodera Species 0.000 description 2
- 241001540513 Hoplolaimus Species 0.000 description 2
- 241000257303 Hymenoptera Species 0.000 description 2
- 241000500891 Insecta Species 0.000 description 2
- 244000017020 Ipomoea batatas Species 0.000 description 2
- 235000002678 Ipomoea batatas Nutrition 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- GEWDNTWNSAZUDX-UHFFFAOYSA-N Jasmonic Acid Methyl Ester Chemical compound CCC=CCC1C(CC(=O)OC)CCC1=O GEWDNTWNSAZUDX-UHFFFAOYSA-N 0.000 description 2
- 235000003228 Lactuca sativa Nutrition 0.000 description 2
- 240000008415 Lactuca sativa Species 0.000 description 2
- 241000828880 Leucoptera <angiosperm> Species 0.000 description 2
- 241000208202 Linaceae Species 0.000 description 2
- 241001220360 Longidorus Species 0.000 description 2
- 235000007688 Lycopersicon esculentum Nutrition 0.000 description 2
- 241001414826 Lygus Species 0.000 description 2
- 241000193386 Lysinibacillus sphaericus Species 0.000 description 2
- 241001143352 Meloidogyne Species 0.000 description 2
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 2
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 2
- 241000237852 Mollusca Species 0.000 description 2
- 241000201433 Nacobbus Species 0.000 description 2
- 241001445080 Neotylenchus Species 0.000 description 2
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 2
- 240000007817 Olea europaea Species 0.000 description 2
- 241000238814 Orthoptera Species 0.000 description 2
- 241001310339 Paenibacillus popilliae Species 0.000 description 2
- 241001220391 Paratrichodorus Species 0.000 description 2
- 241001668578 Pasteuria penetrans Species 0.000 description 2
- 241000228143 Penicillium Species 0.000 description 2
- 241000364057 Peoria Species 0.000 description 2
- 244000025272 Persea americana Species 0.000 description 2
- 235000008673 Persea americana Nutrition 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Chemical compound P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 description 2
- 241000497192 Phyllocoptruta oleivora Species 0.000 description 2
- 241001640279 Phyllophaga Species 0.000 description 2
- 241001396980 Phytonemus pallidus Species 0.000 description 2
- 235000010582 Pisum sativum Nutrition 0.000 description 2
- 240000004713 Pisum sativum Species 0.000 description 2
- 241000952063 Polyphagotarsonemus latus Species 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- 241000193943 Pratylenchus Species 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- 241000589516 Pseudomonas Species 0.000 description 2
- 241001148522 Psilenchus Species 0.000 description 2
- 241000040495 Punctodera Species 0.000 description 2
- 235000014443 Pyrus communis Nutrition 0.000 description 2
- 241000327778 Quinisulcius Species 0.000 description 2
- 241000201377 Radopholus Species 0.000 description 2
- 241001481703 Rhipicephalus <genus> Species 0.000 description 2
- 241001540480 Rotylenchulus Species 0.000 description 2
- 241000855013 Rotylenchus Species 0.000 description 2
- 240000000111 Saccharum officinarum Species 0.000 description 2
- 235000007201 Saccharum officinarum Nutrition 0.000 description 2
- 241000332476 Scutellonema Species 0.000 description 2
- 229920002125 Sokalan® Polymers 0.000 description 2
- 240000003768 Solanum lycopersicum Species 0.000 description 2
- 235000002595 Solanum tuberosum Nutrition 0.000 description 2
- 244000061456 Solanum tuberosum Species 0.000 description 2
- 241000218483 Streptomyces lydicus Species 0.000 description 2
- 241000196660 Subanguina Species 0.000 description 2
- 235000021536 Sugar beet Nutrition 0.000 description 2
- 241000488533 Tetranychus viennensis Species 0.000 description 2
- 241001122767 Theaceae Species 0.000 description 2
- 241000028626 Thermobia domestica Species 0.000 description 2
- 241001414989 Thysanoptera Species 0.000 description 2
- 241001460073 Trichoderma asperellum Species 0.000 description 2
- 241001220308 Trichodorus Species 0.000 description 2
- 235000019714 Triticale Nutrition 0.000 description 2
- 241000855019 Tylenchorhynchus Species 0.000 description 2
- 241001267618 Tylenchulus Species 0.000 description 2
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical class ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 2
- 235000009754 Vitis X bourquina Nutrition 0.000 description 2
- 235000012333 Vitis X labruscana Nutrition 0.000 description 2
- 240000006365 Vitis vinifera Species 0.000 description 2
- 235000014787 Vitis vinifera Nutrition 0.000 description 2
- 241000201423 Xiphinema Species 0.000 description 2
- 241001414985 Zygentoma Species 0.000 description 2
- 229940022698 acetylcholinesterase Drugs 0.000 description 2
- 150000001350 alkyl halides Chemical class 0.000 description 2
- POJWUDADGALRAB-UHFFFAOYSA-N allantoin Chemical compound NC(=O)NC1NC(=O)NC1=O POJWUDADGALRAB-UHFFFAOYSA-N 0.000 description 2
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 2
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 2
- 239000001166 ammonium sulphate Substances 0.000 description 2
- 235000011130 ammonium sulphate Nutrition 0.000 description 2
- 238000003556 assay Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- VEMKTZHHVJILDY-UXHICEINSA-N bioresmethrin Chemical compound CC1(C)[C@H](C=C(C)C)[C@H]1C(=O)OCC1=COC(CC=2C=CC=CC=2)=C1 VEMKTZHHVJILDY-UXHICEINSA-N 0.000 description 2
- 230000004790 biotic stress Effects 0.000 description 2
- 239000007844 bleaching agent Substances 0.000 description 2
- GZUXJHMPEANEGY-UHFFFAOYSA-N bromomethane Chemical compound BrC GZUXJHMPEANEGY-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 235000005487 catechin Nutrition 0.000 description 2
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 description 2
- 150000008422 chlorobenzenes Chemical class 0.000 description 2
- 229930002875 chlorophyll Natural products 0.000 description 2
- 235000019804 chlorophyll Nutrition 0.000 description 2
- ATNHDLDRLWWWCB-AENOIHSZSA-M chlorophyll a Chemical compound C1([C@@H](C(=O)OC)C(=O)C2=C3C)=C2N2C3=CC(C(CC)=C3C)=[N+]4C3=CC3=C(C=C)C(C)=C5N3[Mg-2]42[N+]2=C1[C@@H](CCC(=O)OC\C=C(/C)CCC[C@H](C)CCC[C@H](C)CCCC(C)C)[C@H](C)C2=C5 ATNHDLDRLWWWCB-AENOIHSZSA-M 0.000 description 2
- 239000013611 chromosomal DNA Substances 0.000 description 2
- 210000000349 chromosome Anatomy 0.000 description 2
- 235000020971 citrus fruits Nutrition 0.000 description 2
- 238000010367 cloning Methods 0.000 description 2
- 235000016213 coffee Nutrition 0.000 description 2
- 235000013353 coffee beverage Nutrition 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 244000038559 crop plants Species 0.000 description 2
- MWKFXSUHUHTGQN-UHFFFAOYSA-N decan-1-ol Chemical compound CCCCCCCCCCO MWKFXSUHUHTGQN-UHFFFAOYSA-N 0.000 description 2
- WEBQKRLKWNIYKK-UHFFFAOYSA-N demeton-S-methyl Chemical compound CCSCCSP(=O)(OC)OC WEBQKRLKWNIYKK-UHFFFAOYSA-N 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- FCRACOPGPMPSHN-UHFFFAOYSA-N desoxyabscisic acid Natural products OC(=O)C=C(C)C=CC1C(C)=CC(=O)CC1(C)C FCRACOPGPMPSHN-UHFFFAOYSA-N 0.000 description 2
- MNNHAPBLZZVQHP-UHFFFAOYSA-N diammonium hydrogen phosphate Chemical compound [NH4+].[NH4+].OP([O-])([O-])=O MNNHAPBLZZVQHP-UHFFFAOYSA-N 0.000 description 2
- 229910000388 diammonium phosphate Inorganic materials 0.000 description 2
- 235000019838 diammonium phosphate Nutrition 0.000 description 2
- OEBRKCOSUFCWJD-UHFFFAOYSA-N dichlorvos Chemical compound COP(=O)(OC)OC=C(Cl)Cl OEBRKCOSUFCWJD-UHFFFAOYSA-N 0.000 description 2
- 239000004495 emulsifiable concentrate Substances 0.000 description 2
- 239000000839 emulsion Substances 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 150000002190 fatty acyls Chemical group 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- YYJNOYZRYGDPNH-MFKUBSTISA-N fenpyroximate Chemical compound C=1C=C(C(=O)OC(C)(C)C)C=CC=1CO/N=C/C=1C(C)=NN(C)C=1OC1=CC=CC=C1 YYJNOYZRYGDPNH-MFKUBSTISA-N 0.000 description 2
- 239000013020 final formulation Substances 0.000 description 2
- 239000006260 foam Substances 0.000 description 2
- 235000013305 food Nutrition 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- 150000002333 glycines Chemical class 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 229910001385 heavy metal Inorganic materials 0.000 description 2
- 230000002363 herbicidal effect Effects 0.000 description 2
- 238000003898 horticulture Methods 0.000 description 2
- 239000003906 humectant Substances 0.000 description 2
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000011534 incubation Methods 0.000 description 2
- SEOVTRFCIGRIMH-UHFFFAOYSA-N indole-3-acetic acid Chemical compound C1=CC=C2C(CC(=O)O)=CNC2=C1 SEOVTRFCIGRIMH-UHFFFAOYSA-N 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 230000000968 intestinal effect Effects 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 150000002596 lactones Chemical class 0.000 description 2
- 230000007775 late Effects 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 230000004807 localization Effects 0.000 description 2
- 230000028744 lysogeny Effects 0.000 description 2
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 2
- 230000035800 maturation Effects 0.000 description 2
- 235000012054 meals Nutrition 0.000 description 2
- 239000002609 medium Substances 0.000 description 2
- 150000004702 methyl esters Chemical class 0.000 description 2
- OSWPMRLSEDHDFF-UHFFFAOYSA-N methyl salicylate Chemical compound COC(=O)C1=CC=CC=C1O OSWPMRLSEDHDFF-UHFFFAOYSA-N 0.000 description 2
- ZLBGSRMUSVULIE-GSMJGMFJSA-N milbemycin A3 Chemical class O1[C@H](C)[C@@H](C)CC[C@@]11O[C@H](C\C=C(C)\C[C@@H](C)\C=C\C=C/2[C@]3([C@H](C(=O)O4)C=C(C)[C@@H](O)[C@H]3OC\2)O)C[C@H]4C1 ZLBGSRMUSVULIE-GSMJGMFJSA-N 0.000 description 2
- 235000019713 millet Nutrition 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- UWKQSUQMFIRFMM-UHFFFAOYSA-N n-[2-(tert-butylcarbamoyl)-4-chloro-6-methylphenyl]-2-(3-chloropyridin-2-yl)-5-(fluoromethoxy)pyrazole-3-carboxamide Chemical compound CC1=CC(Cl)=CC(C(=O)NC(C)(C)C)=C1NC(=O)C1=CC(OCF)=NN1C1=NC=CC=C1Cl UWKQSUQMFIRFMM-UHFFFAOYSA-N 0.000 description 2
- 210000004897 n-terminal region Anatomy 0.000 description 2
- 239000005645 nematicide Substances 0.000 description 2
- 108020004707 nucleic acids Proteins 0.000 description 2
- 102000039446 nucleic acids Human genes 0.000 description 2
- 235000014571 nuts Nutrition 0.000 description 2
- 230000036961 partial effect Effects 0.000 description 2
- 230000001717 pathogenic effect Effects 0.000 description 2
- 235000020232 peanut Nutrition 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 239000004477 pesticide formulation type Substances 0.000 description 2
- 239000003208 petroleum Substances 0.000 description 2
- 150000002989 phenols Chemical class 0.000 description 2
- 229950009215 phenylbutanoic acid Drugs 0.000 description 2
- 108010073128 phosphatidylcholine-specific phospholipase C Proteins 0.000 description 2
- 150000004714 phosphonium salts Chemical class 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- 239000002798 polar solvent Substances 0.000 description 2
- 239000004584 polyacrylic acid Substances 0.000 description 2
- 229920005862 polyol Polymers 0.000 description 2
- 150000003077 polyols Chemical class 0.000 description 2
- 229920002689 polyvinyl acetate Polymers 0.000 description 2
- 239000011118 polyvinyl acetate Substances 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 235000012015 potatoes Nutrition 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- KIDHWZJUCRJVML-UHFFFAOYSA-N putrescine Chemical compound NCCCCN KIDHWZJUCRJVML-UHFFFAOYSA-N 0.000 description 2
- MVILWLLYYQVYNH-UHFFFAOYSA-N pyridine-2-carboxamide Chemical compound NC(=O)C1=CC=CC=N1.NC(=O)C1=CC=CC=N1 MVILWLLYYQVYNH-UHFFFAOYSA-N 0.000 description 2
- 239000000018 receptor agonist Substances 0.000 description 2
- 229940044601 receptor agonist Drugs 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000003362 replicative effect Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- JUVIOZPCNVVQFO-UHFFFAOYSA-N rotenone Natural products O1C2=C3CC(C(C)=C)OC3=CC=C2C(=O)C2C1COC1=C2C=C(OC)C(OC)=C1 JUVIOZPCNVVQFO-UHFFFAOYSA-N 0.000 description 2
- YGSDEFSMJLZEOE-UHFFFAOYSA-N salicylic acid Chemical compound OC(=O)C1=CC=CC=C1O YGSDEFSMJLZEOE-UHFFFAOYSA-N 0.000 description 2
- FSYKKLYZXJSNPZ-UHFFFAOYSA-N sarcosine Chemical compound C[NH2+]CC([O-])=O FSYKKLYZXJSNPZ-UHFFFAOYSA-N 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 239000003195 sodium channel blocking agent Substances 0.000 description 2
- DEWVPZYHFVYXMZ-QCILGFJPSA-M sodium;(3ar,4as,8ar,8bs)-2,2,7,7-tetramethyl-4a,5,8a,8b-tetrahydro-[1,3]dioxolo[3,4]furo[1,3-d][1,3]dioxine-3a-carboxylate Chemical compound [Na+].O([C@H]12)C(C)(C)OC[C@@H]1O[C@]1(C([O-])=O)[C@H]2OC(C)(C)O1 DEWVPZYHFVYXMZ-QCILGFJPSA-M 0.000 description 2
- 235000012424 soybean oil Nutrition 0.000 description 2
- 239000003549 soybean oil Substances 0.000 description 2
- ATHGHQPFGPMSJY-UHFFFAOYSA-N spermidine Chemical compound NCCCCNCCCN ATHGHQPFGPMSJY-UHFFFAOYSA-N 0.000 description 2
- PFNFFQXMRSDOHW-UHFFFAOYSA-N spermine Chemical compound NCCCNCCCCNCCCN PFNFFQXMRSDOHW-UHFFFAOYSA-N 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 238000005728 strengthening Methods 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 125000000475 sulfinyl group Chemical group [*:2]S([*:1])=O 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- XLNZEKHULJKQBA-UHFFFAOYSA-N terbufos Chemical compound CCOP(=S)(OCC)SCSC(C)(C)C XLNZEKHULJKQBA-UHFFFAOYSA-N 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- IHNSIFFSNUQGQN-UHFFFAOYSA-N tioxazafen Chemical compound C1=CSC(C=2ON=C(N=2)C=2C=CC=CC=2)=C1 IHNSIFFSNUQGQN-UHFFFAOYSA-N 0.000 description 2
- 231100000419 toxicity Toxicity 0.000 description 2
- 230000001988 toxicity Effects 0.000 description 2
- REZQBEBOWJAQKS-UHFFFAOYSA-N triacontan-1-ol Chemical compound CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCO REZQBEBOWJAQKS-UHFFFAOYSA-N 0.000 description 2
- 238000012800 visualization Methods 0.000 description 2
- 241000228158 x Triticosecale Species 0.000 description 2
- 239000008096 xylene Substances 0.000 description 2
- PFTAWBLQPZVEMU-DZGCQCFKSA-N (+)-catechin Chemical compound C1([C@H]2OC3=CC(O)=CC(O)=C3C[C@@H]2O)=CC=C(O)C(O)=C1 PFTAWBLQPZVEMU-DZGCQCFKSA-N 0.000 description 1
- ZCVAOQKBXKSDMS-AQYZNVCMSA-N (+)-trans-allethrin Chemical compound CC1(C)[C@H](C=C(C)C)[C@H]1C(=O)OC1C(C)=C(CC=C)C(=O)C1 ZCVAOQKBXKSDMS-AQYZNVCMSA-N 0.000 description 1
- SNICXCGAKADSCV-JTQLQIEISA-N (-)-Nicotine Chemical compound CN1CCC[C@H]1C1=CC=CN=C1 SNICXCGAKADSCV-JTQLQIEISA-N 0.000 description 1
- PFTAWBLQPZVEMU-HIFRSBDPSA-N (-)-catechin Chemical compound C1([C@@H]2OC3=CC(O)=CC(O)=C3C[C@H]2O)=CC=C(O)C(O)=C1 PFTAWBLQPZVEMU-HIFRSBDPSA-N 0.000 description 1
- CXBMCYHAMVGWJQ-CABCVRRESA-N (1,3-dioxo-4,5,6,7-tetrahydroisoindol-2-yl)methyl (1r,3r)-2,2-dimethyl-3-(2-methylprop-1-enyl)cyclopropane-1-carboxylate Chemical compound CC1(C)[C@H](C=C(C)C)[C@H]1C(=O)OCN1C(=O)C(CCCC2)=C2C1=O CXBMCYHAMVGWJQ-CABCVRRESA-N 0.000 description 1
- YNWVFADWVLCOPU-MDWZMJQESA-N (1E)-1-(4-chlorophenyl)-4,4-dimethyl-2-(1H-1,2,4-triazol-1-yl)pent-1-en-3-ol Chemical compound C1=NC=NN1/C(C(O)C(C)(C)C)=C/C1=CC=C(Cl)C=C1 YNWVFADWVLCOPU-MDWZMJQESA-N 0.000 description 1
- CXBMCYHAMVGWJQ-LOACHALJSA-N (1R)-tetramethrin Chemical compound CC1(C)C(C=C(C)C)[C@H]1C(=O)OCN1C(=O)C(CCCC2)=C2C1=O CXBMCYHAMVGWJQ-LOACHALJSA-N 0.000 description 1
- KAATUXNTWXVJKI-GGPKGHCWSA-N (1R)-trans-(alphaS)-cypermethrin Chemical compound CC1(C)[C@H](C=C(Cl)Cl)[C@H]1C(=O)O[C@H](C#N)C1=CC=CC(OC=2C=CC=CC=2)=C1 KAATUXNTWXVJKI-GGPKGHCWSA-N 0.000 description 1
- FJDPATXIBIBRIM-QFMSAKRMSA-N (1R)-trans-cyphenothrin Chemical compound CC1(C)[C@H](C=C(C)C)[C@H]1C(=O)OC(C#N)C1=CC=CC(OC=2C=CC=CC=2)=C1 FJDPATXIBIBRIM-QFMSAKRMSA-N 0.000 description 1
- SBNFWQZLDJGRLK-RTWAWAEBSA-N (1R)-trans-phenothrin Chemical compound CC1(C)[C@H](C=C(C)C)[C@H]1C(=O)OCC1=CC=CC(OC=2C=CC=CC=2)=C1 SBNFWQZLDJGRLK-RTWAWAEBSA-N 0.000 description 1
- ZXQYGBMAQZUVMI-RDDWSQKMSA-N (1S)-cis-(alphaR)-cyhalothrin Chemical compound CC1(C)[C@H](\C=C(/Cl)C(F)(F)F)[C@@H]1C(=O)O[C@@H](C#N)C1=CC=CC(OC=2C=CC=CC=2)=C1 ZXQYGBMAQZUVMI-RDDWSQKMSA-N 0.000 description 1
- GXEKYRXVRROBEV-FBXFSONDSA-N (1r,2s,3r,4s)-7-oxabicyclo[2.2.1]heptane-2,3-dicarboxylic acid Chemical compound C1C[C@@H]2[C@@H](C(O)=O)[C@@H](C(=O)O)[C@H]1O2 GXEKYRXVRROBEV-FBXFSONDSA-N 0.000 description 1
- UDPGUMQDCGORJQ-UHFFFAOYSA-N (2-chloroethyl)phosphonic acid Chemical compound OP(O)(=O)CCCl UDPGUMQDCGORJQ-UHFFFAOYSA-N 0.000 description 1
- FWYMRCLEYOTUEU-UHFFFAOYSA-N (2-hexoxy-2-oxoethyl) 2-aminooxy-3-methylbut-2-enoate Chemical compound C(CCCCC)OC(COC(C(ON)=C(C)C)=O)=O FWYMRCLEYOTUEU-UHFFFAOYSA-N 0.000 description 1
- RPGLJGQKRRFSFG-UHFFFAOYSA-N (2-methoxy-2-oxoethyl) 2-aminooxy-3-methylbut-2-enoate Chemical compound COC(=O)COC(=O)C(ON)=C(C)C RPGLJGQKRRFSFG-UHFFFAOYSA-N 0.000 description 1
- ZILDXEXUJWPSEV-YIORLJKJSA-N (2E,4E)-5-(1-hydroxy-2,6,6-trimethyl-4-oxocyclohex-2-en-1-yl)-3-(trifluoromethyl)penta-2,4-dienoic acid Chemical compound CC1=CC(=O)CC(C)(C)C1(O)\C=C\C(=C/C(O)=O)\C(F)(F)F ZILDXEXUJWPSEV-YIORLJKJSA-N 0.000 description 1
- MUNXLKSMKBJOIQ-VEQVDCDKSA-N (2z,4e)-5-(6-ethynyl-1-hydroxy-2,6-dimethyl-4-oxocyclohex-2-en-1-yl)-3-methylpenta-2,4-dienoic acid Chemical compound OC(=O)/C=C(/C)\C=C\C1(O)C(C)=CC(=O)CC1(C)C#C MUNXLKSMKBJOIQ-VEQVDCDKSA-N 0.000 description 1
- XHSDUVBUZOUAOQ-WJQMYRPNSA-N (3e,3ar,8bs)-3-[[(2r)-4-methyl-5-oxo-2h-furan-2-yl]oxymethylidene]-4,8b-dihydro-3ah-indeno[1,2-b]furan-2-one Chemical compound O1C(=O)C(C)=C[C@@H]1O\C=C/1C(=O)O[C@@H]2C3=CC=CC=C3C[C@@H]2\1 XHSDUVBUZOUAOQ-WJQMYRPNSA-N 0.000 description 1
- XUNYDVLIZWUPAW-UHFFFAOYSA-N (4-chlorophenyl) n-(4-methylphenyl)sulfonylcarbamate Chemical compound C1=CC(C)=CC=C1S(=O)(=O)NC(=O)OC1=CC=C(Cl)C=C1 XUNYDVLIZWUPAW-UHFFFAOYSA-N 0.000 description 1
- 239000001178 (E)-dec-3-en-2-one Substances 0.000 description 1
- CFRPSFYHXJZSBI-DHZHZOJOSA-N (E)-nitenpyram Chemical compound [O-][N+](=O)/C=C(\NC)N(CC)CC1=CC=C(Cl)N=C1 CFRPSFYHXJZSBI-DHZHZOJOSA-N 0.000 description 1
- FZRBKIRIBLNOAM-UHFFFAOYSA-N (E,E)-2-propynyl 3,7,11-trimethyl-2,4-dodecadienoate Chemical compound CC(C)CCCC(C)CC=CC(C)=CC(=O)OCC#C FZRBKIRIBLNOAM-UHFFFAOYSA-N 0.000 description 1
- IQVNEKKDSLOHHK-FNCQTZNRSA-N (E,E)-hydramethylnon Chemical compound N1CC(C)(C)CNC1=NN=C(/C=C/C=1C=CC(=CC=1)C(F)(F)F)\C=C\C1=CC=C(C(F)(F)F)C=C1 IQVNEKKDSLOHHK-FNCQTZNRSA-N 0.000 description 1
- DSSYKIVIOFKYAU-XCBNKYQSSA-N (R)-camphor Chemical compound C1C[C@@]2(C)C(=O)C[C@@H]1C2(C)C DSSYKIVIOFKYAU-XCBNKYQSSA-N 0.000 description 1
- GBFKIHJZPMECCF-BXUZGUMPSA-N (R,R)-cyclobutrifluram Chemical compound FC(F)(F)C1=NC=CC=C1C(=O)N[C@H]1[C@@H](C=2C(=CC(Cl)=CC=2)Cl)CC1 GBFKIHJZPMECCF-BXUZGUMPSA-N 0.000 description 1
- XGWIJUOSCAQSSV-XHDPSFHLSA-N (S,S)-hexythiazox Chemical compound S([C@H]([C@@H]1C)C=2C=CC(Cl)=CC=2)C(=O)N1C(=O)NC1CCCCC1 XGWIJUOSCAQSSV-XHDPSFHLSA-N 0.000 description 1
- RMOGWMIKYWRTKW-UONOGXRCSA-N (S,S)-paclobutrazol Chemical compound C([C@@H]([C@@H](O)C(C)(C)C)N1N=CN=C1)C1=CC=C(Cl)C=C1 RMOGWMIKYWRTKW-UONOGXRCSA-N 0.000 description 1
- ZFHGXWPMULPQSE-SZGBIDFHSA-N (Z)-(1S)-cis-tefluthrin Chemical compound FC1=C(F)C(C)=C(F)C(F)=C1COC(=O)[C@@H]1C(C)(C)[C@@H]1\C=C(/Cl)C(F)(F)F ZFHGXWPMULPQSE-SZGBIDFHSA-N 0.000 description 1
- DARPYRSDRJYGIF-PTNGSMBKSA-N (Z)-3-ethoxy-2-naphthalen-2-ylsulfonylprop-2-enenitrile Chemical compound C1=CC=CC2=CC(S(=O)(=O)C(\C#N)=C/OCC)=CC=C21 DARPYRSDRJYGIF-PTNGSMBKSA-N 0.000 description 1
- PCKNFPQPGUWFHO-SXBRIOAWSA-N (Z)-flucycloxuron Chemical compound FC1=CC=CC(F)=C1C(=O)NC(=O)NC(C=C1)=CC=C1CO\N=C(C=1C=CC(Cl)=CC=1)\C1CC1 PCKNFPQPGUWFHO-SXBRIOAWSA-N 0.000 description 1
- NQRKYASMKDDGHT-UHFFFAOYSA-N (aminooxy)acetic acid Chemical compound NOCC(O)=O NQRKYASMKDDGHT-UHFFFAOYSA-N 0.000 description 1
- JRPDANVNRUIUAB-CMDGGOBGSA-N (e)-dec-3-en-2-one Chemical compound CCCCCC\C=C\C(C)=O JRPDANVNRUIUAB-CMDGGOBGSA-N 0.000 description 1
- IAKOZHOLGAGEJT-UHFFFAOYSA-N 1,1,1-trichloro-2,2-bis(p-methoxyphenyl)-Ethane Chemical compound C1=CC(OC)=CC=C1C(C(Cl)(Cl)Cl)C1=CC=C(OC)C=C1 IAKOZHOLGAGEJT-UHFFFAOYSA-N 0.000 description 1
- ZQMAFHIMPLLGDW-UHFFFAOYSA-N 1,1-dimethylpiperidin-1-ium (7-oxido-2,4,6,8,9-pentaoxa-1,3,5,7-tetraborabicyclo[3.3.1]nonan-3-yl)oxy-oxoborane Chemical compound C[N+]1(C)CCCCC1.[O-]B1OB2OB(OB=O)OB(O1)O2 ZQMAFHIMPLLGDW-UHFFFAOYSA-N 0.000 description 1
- ULERLVZDMYNWNA-UHFFFAOYSA-N 1-(4-chloro-3-fluorophenyl)-n-[(2-methyl-3-phenylphenyl)methoxy]-2-methylsulfanylethanimine Chemical compound C=1C=C(Cl)C(F)=CC=1C(CSC)=NOCC(C=1C)=CC=CC=1C1=CC=CC=C1 ULERLVZDMYNWNA-UHFFFAOYSA-N 0.000 description 1
- 239000005969 1-Methyl-cyclopropene Substances 0.000 description 1
- HVQHXBNMBZJPLK-UHFFFAOYSA-N 1-[2,6-dichloro-4-(trifluoromethyl)phenyl]-5-[(2-methylprop-2-en-1-yl)amino]-4-[(trifluoromethyl)sulfinyl]-1H-pyrazole-3-carbonitrile Chemical compound CC(=C)CNC1=C([S+]([O-])C(F)(F)F)C(C#N)=NN1C1=C(Cl)C=C(C(F)(F)F)C=C1Cl HVQHXBNMBZJPLK-UHFFFAOYSA-N 0.000 description 1
- FLEFKKUZMDEUIP-QFIPXVFZSA-N 1-[6-[(5s)-5-(3,5-dichloro-4-fluorophenyl)-5-(trifluoromethyl)-4h-1,2-oxazol-3-yl]spiro[1h-2-benzofuran-3,3'-azetidine]-1'-yl]-2-methylsulfonylethanone Chemical compound C1N(C(=O)CS(=O)(=O)C)CC21C1=CC=C(C=3C[C@](ON=3)(C=3C=C(Cl)C(F)=C(Cl)C=3)C(F)(F)F)C=C1CO2 FLEFKKUZMDEUIP-QFIPXVFZSA-N 0.000 description 1
- XZXSSWDGVSHUNZ-UHFFFAOYSA-N 1-[[2-(4-cyano-3-cyclopropylphenyl)acetyl]amino]cyclohexane-1-carboxylic acid Chemical compound C1C(C2=C(C#N)C=CC(CC(=O)NC3(CCCCC3)C(=O)O)=C2)C1 XZXSSWDGVSHUNZ-UHFFFAOYSA-N 0.000 description 1
- PAJPWUMXBYXFCZ-UHFFFAOYSA-N 1-aminocyclopropanecarboxylic acid Chemical compound OC(=O)C1(N)CC1 PAJPWUMXBYXFCZ-UHFFFAOYSA-N 0.000 description 1
- QHFUTZLUZYEBIN-UHFFFAOYSA-N 1-ethylcyclopropene Chemical compound CCC1=CC1 QHFUTZLUZYEBIN-UHFFFAOYSA-N 0.000 description 1
- SHDPRTQPPWIEJG-UHFFFAOYSA-N 1-methylcyclopropene Chemical compound CC1=CC1 SHDPRTQPPWIEJG-UHFFFAOYSA-N 0.000 description 1
- NFGXHKASABOEEW-UHFFFAOYSA-N 1-methylethyl 11-methoxy-3,7,11-trimethyl-2,4-dodecadienoate Chemical compound COC(C)(C)CCCC(C)CC=CC(C)=CC(=O)OC(C)C NFGXHKASABOEEW-UHFFFAOYSA-N 0.000 description 1
- XFNJVKMNNVCYEK-UHFFFAOYSA-N 1-naphthaleneacetamide Chemical compound C1=CC=C2C(CC(=O)N)=CC=CC2=C1 XFNJVKMNNVCYEK-UHFFFAOYSA-N 0.000 description 1
- PRPINYUDVPFIRX-UHFFFAOYSA-N 1-naphthaleneacetic acid Chemical compound C1=CC=C2C(CC(=O)O)=CC=CC2=C1 PRPINYUDVPFIRX-UHFFFAOYSA-N 0.000 description 1
- 239000005971 1-naphthylacetic acid Substances 0.000 description 1
- WTNKNGDMXNJRPB-UHFFFAOYSA-N 1-propylcyclopropene Chemical compound CCCC1=CC1 WTNKNGDMXNJRPB-UHFFFAOYSA-N 0.000 description 1
- FMTFEIJHMMQUJI-NJAFHUGGSA-N 102130-98-3 Natural products CC=CCC1=C(C)[C@H](CC1=O)OC(=O)[C@@H]1[C@@H](C=C(C)C)C1(C)C FMTFEIJHMMQUJI-NJAFHUGGSA-N 0.000 description 1
- KBLAMUYRMZPYLS-UHFFFAOYSA-N 2,3-bis(2-methylpropyl)naphthalene-1-sulfonic acid Chemical class C1=CC=C2C(S(O)(=O)=O)=C(CC(C)C)C(CC(C)C)=CC2=C1 KBLAMUYRMZPYLS-UHFFFAOYSA-N 0.000 description 1
- UJVZXCWQMZWYKI-UHFFFAOYSA-N 2-(2-methoxyethenylamino)acetic acid Chemical compound COC=CNCC(O)=O UJVZXCWQMZWYKI-UHFFFAOYSA-N 0.000 description 1
- YNTJKQDWYXUTLZ-UHFFFAOYSA-N 2-(3-chlorophenoxy)propanoic acid Chemical compound OC(=O)C(C)OC1=CC=CC(Cl)=C1 YNTJKQDWYXUTLZ-UHFFFAOYSA-N 0.000 description 1
- NGLCOYIAJMJYQI-UHFFFAOYSA-N 2-(4-methoxyiminocyclohexyl)-2-(3,3,3-trifluoropropylsulfonyl)acetonitrile Chemical compound CON=C1CCC(C(C#N)S(=O)(=O)CCC(F)(F)F)CC1 NGLCOYIAJMJYQI-UHFFFAOYSA-N 0.000 description 1
- DSUPUOGOCIFZBG-UHFFFAOYSA-N 2-(phenylcarbamoyl)benzoic acid Chemical compound OC(=O)C1=CC=CC=C1C(=O)NC1=CC=CC=C1 DSUPUOGOCIFZBG-UHFFFAOYSA-N 0.000 description 1
- YEKNJVQWXXDDQO-UHFFFAOYSA-N 2-[2-(2-aminoethoxy)ethenylamino]acetic acid Chemical compound NCCOC=CNCC(O)=O YEKNJVQWXXDDQO-UHFFFAOYSA-N 0.000 description 1
- BOTNFCTYKJBUMU-UHFFFAOYSA-N 2-[4-(2-methylpropyl)piperazin-4-ium-1-yl]-2-oxoacetate Chemical compound CC(C)C[NH+]1CCN(C(=O)C([O-])=O)CC1 BOTNFCTYKJBUMU-UHFFFAOYSA-N 0.000 description 1
- ZYRIHXSCTIMQLP-OWOJBTEDSA-N 2-chloro-n-[2-[1-[(e)-3-(4-chlorophenyl)prop-2-enyl]piperidin-4-yl]-4-(trifluoromethyl)phenyl]pyridine-4-carboxamide Chemical compound C1CN(C\C=C\C=2C=CC(Cl)=CC=2)CCC1C1=CC(C(F)(F)F)=CC=C1NC(=O)C1=CC=NC(Cl)=C1 ZYRIHXSCTIMQLP-OWOJBTEDSA-N 0.000 description 1
- IULJSGIJJZZUMF-UHFFFAOYSA-N 2-hydroxybenzenesulfonic acid Chemical class OC1=CC=CC=C1S(O)(=O)=O IULJSGIJJZZUMF-UHFFFAOYSA-N 0.000 description 1
- AWSZRJQNBMEZOI-UHFFFAOYSA-N 2-methoxyethyl 2-(4-tert-butylphenyl)-2-cyano-3-oxo-3-[2-(trifluoromethyl)phenyl]propanoate Chemical compound C=1C=C(C(C)(C)C)C=CC=1C(C#N)(C(=O)OCCOC)C(=O)C1=CC=CC=C1C(F)(F)F AWSZRJQNBMEZOI-UHFFFAOYSA-N 0.000 description 1
- RZCJYMOBWVJQGV-UHFFFAOYSA-N 2-naphthyloxyacetic acid Chemical compound C1=CC=CC2=CC(OCC(=O)O)=CC=C21 RZCJYMOBWVJQGV-UHFFFAOYSA-N 0.000 description 1
- ACNUVXZPCIABEX-UHFFFAOYSA-N 3',6'-diaminospiro[2-benzofuran-3,9'-xanthene]-1-one Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(N)C=C1OC1=CC(N)=CC=C21 ACNUVXZPCIABEX-UHFFFAOYSA-N 0.000 description 1
- AUQAUAIUNJIIEP-UHFFFAOYSA-N 3,4,5-trimethylphenyl methylcarbamate Chemical compound CNC(=O)OC1=CC(C)=C(C)C(C)=C1 AUQAUAIUNJIIEP-UHFFFAOYSA-N 0.000 description 1
- PIJRTJAKUMDAKQ-UHFFFAOYSA-N 3-(cyclopropen-1-yl)propanoic acid Chemical compound OC(=O)CCC1=CC1 PIJRTJAKUMDAKQ-UHFFFAOYSA-N 0.000 description 1
- RAMUASXTSSXCMB-UHFFFAOYSA-N 3-bromo-N-{2-bromo-4-chloro-6-[(1-cyclopropylethyl)carbamoyl]phenyl}-1-(3-chloropyridin-2-yl)-1H-pyrazole-5-carboxamide Chemical compound C1CC1C(C)NC(=O)C1=CC(Cl)=CC(Br)=C1NC(=O)C1=CC(Br)=NN1C1=NC=CC=C1Cl RAMUASXTSSXCMB-UHFFFAOYSA-N 0.000 description 1
- RUXHWBMJNBBYNL-UHFFFAOYSA-N 3-hydroxy-1,2-dihydropyrrol-5-one Chemical class OC1=CC(=O)NC1 RUXHWBMJNBBYNL-UHFFFAOYSA-N 0.000 description 1
- FAPGNCCCFGCZKP-UHFFFAOYSA-N 3-methylcyclopropene Chemical compound CC1C=C1 FAPGNCCCFGCZKP-UHFFFAOYSA-N 0.000 description 1
- ZXVONLUNISGICL-UHFFFAOYSA-N 4,6-dinitro-o-cresol Chemical compound CC1=CC([N+]([O-])=O)=CC([N+]([O-])=O)=C1O ZXVONLUNISGICL-UHFFFAOYSA-N 0.000 description 1
- HTXMJCHSFOPGME-UHFFFAOYSA-N 4,7-dimethoxy-1,3-benzodioxole Chemical compound COC1=CC=C(OC)C2=C1OCO2 HTXMJCHSFOPGME-UHFFFAOYSA-N 0.000 description 1
- XFYYQDHEDOXWGA-UHFFFAOYSA-N 4-[(5-bromopyridin-2-yl)amino]-4-oxobutanoic acid Chemical compound OC(=O)CCC(=O)NC1=CC=C(Br)C=N1 XFYYQDHEDOXWGA-UHFFFAOYSA-N 0.000 description 1
- BPFUIWLQXNPZHI-UHFFFAOYSA-N 4-[5-(3,5-dichlorophenyl)-5-(trifluoromethyl)-4,5-dihydro-1,2-oxazol-3-yl]-N-[(methoxyamino)methylidene]-2-methylbenzamide Chemical compound C1=C(C)C(C(=O)N\C=N/OC)=CC=C1C1=NOC(C(F)(F)F)(C=2C=C(Cl)C=C(Cl)C=2)C1 BPFUIWLQXNPZHI-UHFFFAOYSA-N 0.000 description 1
- OXDDDHGGRFRLEE-UHFFFAOYSA-N 4-[5-[3-chloro-5-(trifluoromethyl)phenyl]-5-(trifluoromethyl)-4h-1,2-oxazol-3-yl]-n-[2-oxo-2-(2,2,2-trifluoroethylamino)ethyl]naphthalene-1-carboxamide Chemical compound C12=CC=CC=C2C(C(=O)NCC(=O)NCC(F)(F)F)=CC=C1C(C1)=NOC1(C(F)(F)F)C1=CC(Cl)=CC(C(F)(F)F)=C1 OXDDDHGGRFRLEE-UHFFFAOYSA-N 0.000 description 1
- XVSSMEWAXFOWCI-UHFFFAOYSA-N 4-but-2-ynoxy-6-(3,5-dimethylpiperidin-1-yl)-5-fluoropyrimidine Chemical compound CC#CCOC1=NC=NC(N2CC(C)CC(C)C2)=C1F XVSSMEWAXFOWCI-UHFFFAOYSA-N 0.000 description 1
- WGIPLRRVYPSUCT-UHFFFAOYSA-N 4-but-2-ynoxy-6-(3-chlorophenyl)pyrimidine Chemical compound C1=NC(OCC#CC)=CC(C=2C=C(Cl)C=CC=2)=N1 WGIPLRRVYPSUCT-UHFFFAOYSA-N 0.000 description 1
- PGYDGBCATBINCB-UHFFFAOYSA-N 4-diethoxyphosphoryl-n,n-dimethylaniline Chemical compound CCOP(=O)(OCC)C1=CC=C(N(C)C)C=C1 PGYDGBCATBINCB-UHFFFAOYSA-N 0.000 description 1
- LHZOTJOOBRODLL-UHFFFAOYSA-N 4-oxo-1-(pyrimidin-5-ylmethyl)-3-[3-(trifluoromethyl)phenyl]pyrido[1,2-a]pyrimidin-5-ium-2-olate Chemical compound O=C1[N+]2=CC=CC=C2N(CC=2C=NC=NC=2)C([O-])=C1C1=CC=CC(C(F)(F)F)=C1 LHZOTJOOBRODLL-UHFFFAOYSA-N 0.000 description 1
- ZMYKITJYWFYRFJ-UHFFFAOYSA-N 4-oxo-4-(2-phenylethylamino)butanoic acid Chemical compound OC(=O)CCC(=O)NCCC1=CC=CC=C1 ZMYKITJYWFYRFJ-UHFFFAOYSA-N 0.000 description 1
- PWVXXGRKLHYWKM-UHFFFAOYSA-N 5-[2-(benzenesulfonyl)ethyl]-3-[(1-methylpyrrolidin-2-yl)methyl]-1h-indole Chemical compound CN1CCCC1CC(C1=C2)=CNC1=CC=C2CCS(=O)(=O)C1=CC=CC=C1 PWVXXGRKLHYWKM-UHFFFAOYSA-N 0.000 description 1
- IVJKCSCRNVMPNG-OWOJBTEDSA-N 5-[[(E)-3-chloroprop-2-enyl]amino]-1-[2,6-dichloro-4-(trifluoromethyl)phenyl]-4-(trifluoromethylsulfinyl)pyrazole-3-carbonitrile Chemical compound Cl/C=C/CNC1=C(C(=NN1C1=C(C=C(C=C1Cl)C(F)(F)F)Cl)C#N)S(=O)C(F)(F)F IVJKCSCRNVMPNG-OWOJBTEDSA-N 0.000 description 1
- ONILAONOGQYBHW-UHFFFAOYSA-N 5-bromo-n-[2,4-dichloro-6-(methylcarbamoyl)phenyl]-2-(3,5-dichloropyridin-2-yl)pyrazole-3-carboxamide Chemical compound CNC(=O)C1=CC(Cl)=CC(Cl)=C1NC(=O)C1=CC(Br)=NN1C1=NC=C(Cl)C=C1Cl ONILAONOGQYBHW-UHFFFAOYSA-N 0.000 description 1
- XJFIKRXIJXAJGH-UHFFFAOYSA-N 5-chloro-1,3-dihydroimidazo[4,5-b]pyridin-2-one Chemical group ClC1=CC=C2NC(=O)NC2=N1 XJFIKRXIJXAJGH-UHFFFAOYSA-N 0.000 description 1
- IBSREHMXUMOFBB-JFUDTMANSA-N 5u8924t11h Chemical compound O1[C@@H](C)[C@H](O)[C@@H](OC)C[C@@H]1O[C@@H]1[C@@H](OC)C[C@H](O[C@@H]2C(=C/C[C@@H]3C[C@@H](C[C@@]4(O3)C=C[C@H](C)[C@@H](C(C)C)O4)OC(=O)[C@@H]3C=C(C)[C@@H](O)[C@H]4OC\C([C@@]34O)=C/C=C/[C@@H]2C)/C)O[C@H]1C.C1=C[C@H](C)[C@@H]([C@@H](C)CC)O[C@]11O[C@H](C\C=C(C)\[C@@H](O[C@@H]2O[C@@H](C)[C@H](O[C@@H]3O[C@@H](C)[C@H](O)[C@@H](OC)C3)[C@@H](OC)C2)[C@@H](C)\C=C\C=C/2[C@]3([C@H](C(=O)O4)C=C(C)[C@@H](O)[C@H]3OC\2)O)C[C@H]4C1 IBSREHMXUMOFBB-JFUDTMANSA-N 0.000 description 1
- VSVKOUBCDZYAQY-UHFFFAOYSA-N 7-chloro-1,2-benzothiazole Chemical compound ClC1=CC=CC2=C1SN=C2 VSVKOUBCDZYAQY-UHFFFAOYSA-N 0.000 description 1
- ZGXJTSGNIOSYLO-UHFFFAOYSA-N 88755TAZ87 Chemical compound NCC(=O)CCC(O)=O ZGXJTSGNIOSYLO-UHFFFAOYSA-N 0.000 description 1
- GJCOSYZMQJWQCA-UHFFFAOYSA-N 9H-xanthene Chemical compound C1=CC=C2CC3=CC=CC=C3OC2=C1 GJCOSYZMQJWQCA-UHFFFAOYSA-N 0.000 description 1
- 240000004507 Abelmoschus esculentus Species 0.000 description 1
- 244000215068 Acacia senegal Species 0.000 description 1
- 241000916767 Acalymma vittatum Species 0.000 description 1
- 241000967305 Acaphylla theavagrans Species 0.000 description 1
- 241000934067 Acarus Species 0.000 description 1
- 239000005651 Acequinocyl Substances 0.000 description 1
- 241000208140 Acer Species 0.000 description 1
- 241001558864 Aceria Species 0.000 description 1
- 241000824209 Aceria tosichella Species 0.000 description 1
- 102000000452 Acetyl-CoA carboxylase Human genes 0.000 description 1
- 108010016219 Acetyl-CoA carboxylase Proteins 0.000 description 1
- 241000238818 Acheta domesticus Species 0.000 description 1
- 241001351288 Achroia grisella Species 0.000 description 1
- 239000005964 Acibenzolar-S-methyl Substances 0.000 description 1
- 241000526190 Acizzia uncatoides Species 0.000 description 1
- 241000896073 Acrida turrita Species 0.000 description 1
- 239000005652 Acrinathrin Substances 0.000 description 1
- 241001614182 Acrogonia Species 0.000 description 1
- 241000908424 Acromyrmex Species 0.000 description 1
- 241000819811 Acronicta major Species 0.000 description 1
- 241001506009 Aculops Species 0.000 description 1
- 241001159389 Aculops pelekassi Species 0.000 description 1
- 241001506414 Aculus Species 0.000 description 1
- 241001227264 Adoretus Species 0.000 description 1
- 241001672675 Adoxophyes Species 0.000 description 1
- 241000256111 Aedes <genus> Species 0.000 description 1
- 241000484420 Aedia leucomelas Species 0.000 description 1
- 241001164222 Aeneolamia Species 0.000 description 1
- 241000157282 Aesculus Species 0.000 description 1
- 229920001817 Agar Polymers 0.000 description 1
- 235000001674 Agaricus brunnescens Nutrition 0.000 description 1
- 241000902874 Agelastica alni Species 0.000 description 1
- 241000902467 Agonoscena Species 0.000 description 1
- 241001136265 Agriotes Species 0.000 description 1
- 241000993143 Agromyza Species 0.000 description 1
- 241000218473 Agrotis Species 0.000 description 1
- 241000218475 Agrotis segetum Species 0.000 description 1
- 108010088751 Albumins Proteins 0.000 description 1
- 102000009027 Albumins Human genes 0.000 description 1
- 241001155864 Aleurolobus barodensis Species 0.000 description 1
- 241000307865 Aleurothrixus floccosus Species 0.000 description 1
- 241000107983 Aleyrodes proletella Species 0.000 description 1
- RGCKGOZRHPZPFP-UHFFFAOYSA-N Alizarin Natural products C1=CC=C2C(=O)C3=C(O)C(O)=CC=C3C(=O)C2=C1 RGCKGOZRHPZPFP-UHFFFAOYSA-N 0.000 description 1
- POJWUDADGALRAB-PVQJCKRUSA-N Allantoin Natural products NC(=O)N[C@@H]1NC(=O)NC1=O POJWUDADGALRAB-PVQJCKRUSA-N 0.000 description 1
- 241000123646 Allioideae Species 0.000 description 1
- 235000005254 Allium ampeloprasum Nutrition 0.000 description 1
- 240000006108 Allium ampeloprasum Species 0.000 description 1
- 239000005877 Alpha-Cypermethrin Substances 0.000 description 1
- 241001124203 Alphitobius diaperinus Species 0.000 description 1
- 239000005952 Aluminium phosphide Substances 0.000 description 1
- 241000238679 Amblyomma Species 0.000 description 1
- 241000143060 Americamysis bahia Species 0.000 description 1
- 241001398046 Amphimallon solstitiale Species 0.000 description 1
- 241000839189 Amrasca Species 0.000 description 1
- 241001259789 Amyelois transitella Species 0.000 description 1
- 244000144725 Amygdalus communis Species 0.000 description 1
- 241000208223 Anacardiaceae Species 0.000 description 1
- 241001673643 Anaphothrips obscurus Species 0.000 description 1
- 241001198492 Anarsia Species 0.000 description 1
- 241000663922 Anasa tristis Species 0.000 description 1
- 241001136523 Anastrepha Species 0.000 description 1
- 241001147657 Ancylostoma Species 0.000 description 1
- 241000520197 Ancylostoma ceylanicum Species 0.000 description 1
- 241000498253 Ancylostoma duodenale Species 0.000 description 1
- 241000411449 Anobium punctatum Species 0.000 description 1
- 241000256186 Anopheles <genus> Species 0.000 description 1
- 241000027431 Anoplophora Species 0.000 description 1
- 241000693245 Antestiopsis Species 0.000 description 1
- 241000254177 Anthonomus Species 0.000 description 1
- 241001640910 Anthrenus Species 0.000 description 1
- 241000625753 Anticarsia Species 0.000 description 1
- 241000625764 Anticarsia gemmatalis Species 0.000 description 1
- 241001414827 Aonidiella Species 0.000 description 1
- 241001600407 Aphis <genus> Species 0.000 description 1
- 241000208173 Apiaceae Species 0.000 description 1
- 241000533363 Apion Species 0.000 description 1
- 240000007087 Apium graveolens Species 0.000 description 1
- 235000015849 Apium graveolens Dulce Group Nutrition 0.000 description 1
- 241001227591 Apogonia Species 0.000 description 1
- 244000153885 Appio Species 0.000 description 1
- 241000838579 Arboridia Species 0.000 description 1
- 241000233788 Arecaceae Species 0.000 description 1
- 241001480748 Argas Species 0.000 description 1
- 241001574902 Argyroploce Species 0.000 description 1
- 241000237518 Arion Species 0.000 description 1
- 241000722809 Armadillidium vulgare Species 0.000 description 1
- 235000011330 Armoracia rusticana Nutrition 0.000 description 1
- 240000003291 Armoracia rusticana Species 0.000 description 1
- 241000238421 Arthropoda Species 0.000 description 1
- 241000776678 Arytainilla Species 0.000 description 1
- 241000244186 Ascaris Species 0.000 description 1
- 241000123643 Asparagaceae Species 0.000 description 1
- 244000003416 Asparagus officinalis Species 0.000 description 1
- 235000005340 Asparagus officinalis Nutrition 0.000 description 1
- 241001664281 Asphondylia Species 0.000 description 1
- 241000668391 Aspidiella Species 0.000 description 1
- 241000387313 Aspidiotus Species 0.000 description 1
- 241000208838 Asteraceae Species 0.000 description 1
- 241001503479 Athalia Species 0.000 description 1
- 241001174347 Atomaria Species 0.000 description 1
- 241000726103 Atta Species 0.000 description 1
- 241000131286 Attagenus Species 0.000 description 1
- 241001166626 Aulacorthum solani Species 0.000 description 1
- 235000000832 Ayote Nutrition 0.000 description 1
- 239000005878 Azadirachtin Substances 0.000 description 1
- 241000589938 Azospirillum brasilense Species 0.000 description 1
- 241000589939 Azospirillum lipoferum Species 0.000 description 1
- 241000589149 Azotobacter vinelandii Species 0.000 description 1
- 239000005731 Bacillus amyloliquefaciens MBI 600 Substances 0.000 description 1
- 241000194107 Bacillus megaterium Species 0.000 description 1
- 241001249117 Bacillus mojavensis Species 0.000 description 1
- 241000893637 Bacillus nematocida Species 0.000 description 1
- 241000194110 Bacillus sp. (in: Bacteria) Species 0.000 description 1
- 241001124183 Bactrocera <genus> Species 0.000 description 1
- 241001490249 Bactrocera oleae Species 0.000 description 1
- 101710183938 Barstar Proteins 0.000 description 1
- 235000021537 Beetroot Nutrition 0.000 description 1
- 241000254127 Bemisia tabaci Species 0.000 description 1
- 241001142392 Bibio Species 0.000 description 1
- 239000005653 Bifenazate Substances 0.000 description 1
- 239000005874 Bifenthrin Substances 0.000 description 1
- 241000237359 Biomphalaria Species 0.000 description 1
- 108010018763 Biotin carboxylase Proteins 0.000 description 1
- 241000237519 Bivalvia Species 0.000 description 1
- 241001573716 Blaniulus guttulatus Species 0.000 description 1
- 241000526194 Blastopsylla occidentalis Species 0.000 description 1
- 241000238662 Blatta orientalis Species 0.000 description 1
- 241001631693 Blattella asahinai Species 0.000 description 1
- 241000238657 Blattella germanica Species 0.000 description 1
- 241001674044 Blattodea Species 0.000 description 1
- 241000929635 Blissus Species 0.000 description 1
- 241001516760 Boisea Species 0.000 description 1
- 241001622619 Borbo cinnara Species 0.000 description 1
- 241000526183 Boreioglycaspis melaleucae Species 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 241000167854 Bourreria succulenta Species 0.000 description 1
- 241000320720 Bouteloua dactyloides Species 0.000 description 1
- 241000273318 Brachycaudus cardui Species 0.000 description 1
- 241000310266 Brachycaudus helichrysi Species 0.000 description 1
- 241001088081 Brachycolus Species 0.000 description 1
- 241000589174 Bradyrhizobium japonicum Species 0.000 description 1
- 235000005156 Brassica carinata Nutrition 0.000 description 1
- 244000257790 Brassica carinata Species 0.000 description 1
- 235000003351 Brassica cretica Nutrition 0.000 description 1
- 244000178993 Brassica juncea Species 0.000 description 1
- 235000011293 Brassica napus Nutrition 0.000 description 1
- 235000004221 Brassica oleracea var gemmifera Nutrition 0.000 description 1
- 235000017647 Brassica oleracea var italica Nutrition 0.000 description 1
- 244000308368 Brassica oleracea var. gemmifera Species 0.000 description 1
- 244000304217 Brassica oleracea var. gongylodes Species 0.000 description 1
- 240000008100 Brassica rapa Species 0.000 description 1
- 235000011292 Brassica rapa Nutrition 0.000 description 1
- 235000000536 Brassica rapa subsp pekinensis Nutrition 0.000 description 1
- 235000003343 Brassica rupestris Nutrition 0.000 description 1
- 241000219193 Brassicaceae Species 0.000 description 1
- 241001444260 Brassicogethes aeneus Species 0.000 description 1
- IXVMHGVQKLDRKH-VRESXRICSA-N Brassinolide Natural products O=C1OC[C@@H]2[C@@H]3[C@@](C)([C@H]([C@@H]([C@@H](O)[C@H](O)[C@H](C(C)C)C)C)CC3)CC[C@@H]2[C@]2(C)[C@@H]1C[C@H](O)[C@H](O)C2 IXVMHGVQKLDRKH-VRESXRICSA-N 0.000 description 1
- 241000982105 Brevicoryne brassicae Species 0.000 description 1
- 241001643374 Brevipalpus Species 0.000 description 1
- 241000987201 Brevipalpus californicus Species 0.000 description 1
- 241001034435 Brevipalpus obovatus Species 0.000 description 1
- 235000004936 Bromus mango Nutrition 0.000 description 1
- 241001325378 Bruchus Species 0.000 description 1
- 241000244038 Brugia malayi Species 0.000 description 1
- 241000143302 Brugia timori Species 0.000 description 1
- 241000488564 Bryobia Species 0.000 description 1
- 241001055897 Bryobia rubrioculus Species 0.000 description 1
- 241001517925 Bucculatrix Species 0.000 description 1
- 241000041029 Bulinus Species 0.000 description 1
- 241000931178 Bunostomum Species 0.000 description 1
- 241001491790 Bupalus piniaria Species 0.000 description 1
- 239000005885 Buprofezin Substances 0.000 description 1
- 241001453380 Burkholderia Species 0.000 description 1
- 241000661267 Busseola Species 0.000 description 1
- DZGJYZRGHITTMM-UHFFFAOYSA-N C(C)(=O)OC1=CC1.[Na] Chemical compound C(C)(=O)OC1=CC1.[Na] DZGJYZRGHITTMM-UHFFFAOYSA-N 0.000 description 1
- WLHSDSOCJVGOGT-UHFFFAOYSA-N C(C)(=O)OC1C=C1.[Na] Chemical compound C(C)(=O)OC1C=C1.[Na] WLHSDSOCJVGOGT-UHFFFAOYSA-N 0.000 description 1
- JFLRKDZMHNBDQS-UCQUSYKYSA-N CC[C@H]1CCC[C@@H]([C@H](C(=O)C2=C[C@H]3[C@@H]4C[C@@H](C[C@H]4C(=C[C@H]3[C@@H]2CC(=O)O1)C)O[C@H]5[C@@H]([C@@H]([C@H]([C@@H](O5)C)OC)OC)OC)C)O[C@H]6CC[C@@H]([C@H](O6)C)N(C)C.CC[C@H]1CCC[C@@H]([C@H](C(=O)C2=C[C@H]3[C@@H]4C[C@@H](C[C@H]4C=C[C@H]3C2CC(=O)O1)O[C@H]5[C@@H]([C@@H]([C@H]([C@@H](O5)C)OC)OC)OC)C)O[C@H]6CC[C@@H]([C@H](O6)C)N(C)C Chemical compound CC[C@H]1CCC[C@@H]([C@H](C(=O)C2=C[C@H]3[C@@H]4C[C@@H](C[C@H]4C(=C[C@H]3[C@@H]2CC(=O)O1)C)O[C@H]5[C@@H]([C@@H]([C@H]([C@@H](O5)C)OC)OC)OC)C)O[C@H]6CC[C@@H]([C@H](O6)C)N(C)C.CC[C@H]1CCC[C@@H]([C@H](C(=O)C2=C[C@H]3[C@@H]4C[C@@H](C[C@H]4C=C[C@H]3C2CC(=O)O1)O[C@H]5[C@@H]([C@@H]([C@H]([C@@H](O5)C)OC)OC)OC)C)O[C@H]6CC[C@@H]([C@H](O6)C)N(C)C JFLRKDZMHNBDQS-UCQUSYKYSA-N 0.000 description 1
- LJSVEVMXBDRYAW-XGHSRDQLSA-N CC\C(/C=C/C(C(C)(C)C1)(C(C)=CC1=O)O)=C\C(O)=O Chemical compound CC\C(/C=C/C(C(C)(C)C1)(C(C)=CC1=O)O)=C\C(O)=O LJSVEVMXBDRYAW-XGHSRDQLSA-N 0.000 description 1
- 241001212014 Cacoecia Species 0.000 description 1
- 241000526185 Cacopsylla Species 0.000 description 1
- 241000700294 Calacarus carinatus Species 0.000 description 1
- 229910021532 Calcite Inorganic materials 0.000 description 1
- 239000006009 Calcium phosphide Substances 0.000 description 1
- 241000906761 Calocoris Species 0.000 description 1
- 241001184747 Caloptilia theivora Species 0.000 description 1
- 241000613201 Campylomma livida Species 0.000 description 1
- 241000572575 Candidatus Pasteuria usgae Species 0.000 description 1
- 235000012766 Cannabis sativa ssp. sativa var. sativa Nutrition 0.000 description 1
- 235000012765 Cannabis sativa ssp. sativa var. spontanea Nutrition 0.000 description 1
- 240000008574 Capsicum frutescens Species 0.000 description 1
- 101710132601 Capsid protein Proteins 0.000 description 1
- 241001350371 Capua Species 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- 241001347511 Carposina sasakii Species 0.000 description 1
- 235000009025 Carya illinoensis Nutrition 0.000 description 1
- 244000068645 Carya illinoensis Species 0.000 description 1
- 108010076119 Caseins Proteins 0.000 description 1
- 241000162408 Cassida Species 0.000 description 1
- 241000781521 Cavelerius Species 0.000 description 1
- 241001427143 Cavelerius excavatus Species 0.000 description 1
- 241000488605 Cenopalpus pulcher Species 0.000 description 1
- 241000239327 Centruroides Species 0.000 description 1
- 241000255579 Ceratitis capitata Species 0.000 description 1
- 241001098608 Ceratophyllus Species 0.000 description 1
- 241000134979 Ceratovacuna lanigera Species 0.000 description 1
- 241001414824 Cercopidae Species 0.000 description 1
- 241001450758 Ceroplastes Species 0.000 description 1
- 241001124201 Cerotoma trifurcata Species 0.000 description 1
- 241001156313 Ceutorhynchus Species 0.000 description 1
- 241000893172 Chabertia Species 0.000 description 1
- 241000902406 Chaetocnema Species 0.000 description 1
- 241001094931 Chaetosiphon fragaefolii Species 0.000 description 1
- 241000604356 Chamaepsila rosae Species 0.000 description 1
- 108091006146 Channels Proteins 0.000 description 1
- 235000021538 Chard Nutrition 0.000 description 1
- 241000497205 Cheiracus sulcatus Species 0.000 description 1
- 241000871189 Chenopodiaceae Species 0.000 description 1
- 241000426499 Chilo Species 0.000 description 1
- 241000258920 Chilopoda Species 0.000 description 1
- 241000668556 Chionaspis Species 0.000 description 1
- 241000256128 Chironomus <genus> Species 0.000 description 1
- 239000005886 Chlorantraniliprole Substances 0.000 description 1
- 229940127437 Chloride Channel Antagonists Drugs 0.000 description 1
- 239000005944 Chlorpyrifos Substances 0.000 description 1
- 239000005945 Chlorpyrifos-methyl Substances 0.000 description 1
- 241001076191 Chondracris rosea Species 0.000 description 1
- 241000359266 Chorioptes Species 0.000 description 1
- 241000255945 Choristoneura Species 0.000 description 1
- 239000005887 Chromafenozide Substances 0.000 description 1
- 241000118402 Chromaphis juglandicola Species 0.000 description 1
- 241001332334 Chromobacterium subtsugae Species 0.000 description 1
- 241001367803 Chrysodeixis includens Species 0.000 description 1
- 241000669069 Chrysomphalus aonidum Species 0.000 description 1
- 241001124179 Chrysops Species 0.000 description 1
- 241001097338 Cicadulina Species 0.000 description 1
- 235000010521 Cicer Nutrition 0.000 description 1
- 241000220455 Cicer Species 0.000 description 1
- 240000006740 Cichorium endivia Species 0.000 description 1
- 241001414836 Cimex Species 0.000 description 1
- 241000723346 Cinnamomum camphora Species 0.000 description 1
- 244000223760 Cinnamomum zeylanicum Species 0.000 description 1
- 244000241235 Citrullus lanatus Species 0.000 description 1
- 235000012828 Citrullus lanatus var citroides Nutrition 0.000 description 1
- 235000005979 Citrus limon Nutrition 0.000 description 1
- 244000131522 Citrus pyriformis Species 0.000 description 1
- 241001672694 Citrus reticulata Species 0.000 description 1
- 240000000560 Citrus x paradisi Species 0.000 description 1
- DHQKLWKZSFCKTA-UHFFFAOYSA-N ClC1=CC=C(C=N1)CN1C(C=CC=C1)=NC(C(F)(F)F)=O Chemical compound ClC1=CC=C(C=N1)CN1C(C=CC=C1)=NC(C(F)(F)F)=O DHQKLWKZSFCKTA-UHFFFAOYSA-N 0.000 description 1
- 241000186650 Clavibacter Species 0.000 description 1
- 241001152840 Cleonus Species 0.000 description 1
- 239000005654 Clofentezine Substances 0.000 description 1
- 241001327942 Clonorchis Species 0.000 description 1
- 241000193469 Clostridium pasteurianum Species 0.000 description 1
- 241000098277 Cnaphalocrocis Species 0.000 description 1
- 241000098289 Cnaphalocrocis medinalis Species 0.000 description 1
- 241001350387 Cnephasia Species 0.000 description 1
- 101710094648 Coat protein Proteins 0.000 description 1
- 241001478240 Coccus Species 0.000 description 1
- 241000933851 Cochliomyia Species 0.000 description 1
- 108091026890 Coding region Proteins 0.000 description 1
- 102000008186 Collagen Human genes 0.000 description 1
- 108010035532 Collagen Proteins 0.000 description 1
- 241000478483 Collaria <Myxogastria> Species 0.000 description 1
- 241001427559 Collembola Species 0.000 description 1
- 235000006481 Colocasia esculenta Nutrition 0.000 description 1
- 244000205754 Colocasia esculenta Species 0.000 description 1
- 241000683561 Conoderus Species 0.000 description 1
- 241001476526 Conopomorpha Species 0.000 description 1
- 241000532667 Conotrachelus Species 0.000 description 1
- 108091035707 Consensus sequence Proteins 0.000 description 1
- 241001663470 Contarinia <gall midge> Species 0.000 description 1
- 241001126268 Cooperia Species 0.000 description 1
- 241000582510 Copitarsia Species 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 241001509964 Coptotermes Species 0.000 description 1
- 240000004792 Corchorus capsularis Species 0.000 description 1
- 241000248757 Cordyceps brongniartii Species 0.000 description 1
- 241000304165 Cordylobia anthropophaga Species 0.000 description 1
- 241000422839 Cornitermes cumulans Species 0.000 description 1
- 235000001543 Corylus americana Nutrition 0.000 description 1
- 241001212536 Cosmopolites Species 0.000 description 1
- 241000500845 Costelytra zealandica Species 0.000 description 1
- 241000720929 Creontiades dilutus Species 0.000 description 1
- 235000005983 Crescentia cujete Nutrition 0.000 description 1
- 241001658072 Cricotopus sylvestris Species 0.000 description 1
- 241000567786 Cryptolestes Species 0.000 description 1
- 241001094916 Cryptomyzus ribis Species 0.000 description 1
- 241000871899 Cryptoneossa Species 0.000 description 1
- 241001152745 Cryptorhynchus lapathi Species 0.000 description 1
- 241000866584 Cryptotermes Species 0.000 description 1
- 241000526128 Ctenarytaina Species 0.000 description 1
- 241000242268 Ctenicera Species 0.000 description 1
- 241000258922 Ctenocephalides Species 0.000 description 1
- 241001124552 Ctenolepisma Species 0.000 description 1
- 241000219112 Cucumis Species 0.000 description 1
- 235000009075 Cucumis anguria Nutrition 0.000 description 1
- 235000015510 Cucumis melo subsp melo Nutrition 0.000 description 1
- 235000009849 Cucumis sativus Nutrition 0.000 description 1
- 241000219122 Cucurbita Species 0.000 description 1
- 235000009854 Cucurbita moschata Nutrition 0.000 description 1
- 235000009804 Cucurbita pepo subsp pepo Nutrition 0.000 description 1
- 241000219104 Cucurbitaceae Species 0.000 description 1
- 241000256054 Culex <genus> Species 0.000 description 1
- 241000134316 Culicoides <genus> Species 0.000 description 1
- 241000732108 Culiseta Species 0.000 description 1
- 241000721021 Curculio Species 0.000 description 1
- 241000692095 Cuterebra Species 0.000 description 1
- XFXPMWWXUTWYJX-UHFFFAOYSA-N Cyanide Chemical compound N#[C-] XFXPMWWXUTWYJX-UHFFFAOYSA-N 0.000 description 1
- 239000005889 Cyantraniliprole Substances 0.000 description 1
- BZKFMUIJRXWWQK-UHFFFAOYSA-N Cyclopentenone Chemical compound O=C1CCC=C1 BZKFMUIJRXWWQK-UHFFFAOYSA-N 0.000 description 1
- 241001634817 Cydia Species 0.000 description 1
- 241001635274 Cydia pomonella Species 0.000 description 1
- 239000005655 Cyflumetofen Substances 0.000 description 1
- 241001183634 Cylindrocopturus Species 0.000 description 1
- 244000019459 Cynara cardunculus Species 0.000 description 1
- 235000019106 Cynara scolymus Nutrition 0.000 description 1
- 244000052363 Cynodon dactylon Species 0.000 description 1
- 239000005891 Cyromazine Substances 0.000 description 1
- 201000003808 Cystic echinococcosis Diseases 0.000 description 1
- YVGGHNCTFXOJCH-UHFFFAOYSA-N DDT Chemical compound C1=CC(Cl)=CC=C1C(C(Cl)(Cl)Cl)C1=CC=C(Cl)C=C1 YVGGHNCTFXOJCH-UHFFFAOYSA-N 0.000 description 1
- 238000001712 DNA sequencing Methods 0.000 description 1
- 241000801939 Dalaca Species 0.000 description 1
- 241001260003 Dalbulus Species 0.000 description 1
- 241000268912 Damalinia Species 0.000 description 1
- NOQGZXFMHARMLW-UHFFFAOYSA-N Daminozide Chemical compound CN(C)NC(=O)CCC(O)=O NOQGZXFMHARMLW-UHFFFAOYSA-N 0.000 description 1
- 239000005975 Daminozide Substances 0.000 description 1
- 239000005644 Dazomet Substances 0.000 description 1
- 241001600125 Delftia acidovorans Species 0.000 description 1
- 241001414890 Delia Species 0.000 description 1
- 208000006558 Dental Calculus Diseases 0.000 description 1
- 241001480824 Dermacentor Species 0.000 description 1
- 241001481695 Dermanyssus gallinae Species 0.000 description 1
- 241000202828 Dermatobia hominis Species 0.000 description 1
- 241000238713 Dermatophagoides farinae Species 0.000 description 1
- 241000238740 Dermatophagoides pteronyssinus Species 0.000 description 1
- 241001641895 Dermestes Species 0.000 description 1
- 241001300085 Deroceras Species 0.000 description 1
- 244000147058 Derris elliptica Species 0.000 description 1
- 241000489975 Diabrotica Species 0.000 description 1
- 241000489972 Diabrotica barberi Species 0.000 description 1
- 241000489976 Diabrotica undecimpunctata howardi Species 0.000 description 1
- 241000489977 Diabrotica virgifera Species 0.000 description 1
- 241001205778 Dialeurodes citri Species 0.000 description 1
- 241000832201 Diaphania Species 0.000 description 1
- 241000526125 Diaphorina citri Species 0.000 description 1
- 241000643949 Diaspis <angiosperm> Species 0.000 description 1
- 241000122106 Diatraea saccharalis Species 0.000 description 1
- 241001549096 Dichelops furcatus Species 0.000 description 1
- MDNWOSOZYLHTCG-UHFFFAOYSA-N Dichlorophen Chemical compound OC1=CC=C(Cl)C=C1CC1=CC(Cl)=CC=C1O MDNWOSOZYLHTCG-UHFFFAOYSA-N 0.000 description 1
- 241001573484 Dichocrocis Species 0.000 description 1
- 241001295638 Dichroplus Species 0.000 description 1
- 241000162400 Dicladispa armigera Species 0.000 description 1
- 241000577452 Dicrocoelium Species 0.000 description 1
- 241000180412 Dictyocaulus filaria Species 0.000 description 1
- 239000005893 Diflubenzuron Substances 0.000 description 1
- 239000005947 Dimethoate Substances 0.000 description 1
- 241000866683 Diphyllobothrium latum Species 0.000 description 1
- 241000258963 Diplopoda Species 0.000 description 1
- 241000511318 Diprion Species 0.000 description 1
- 241000255925 Diptera Species 0.000 description 1
- 241001319090 Dracunculus medinensis Species 0.000 description 1
- 241000193907 Dreissena Species 0.000 description 1
- 241001595884 Drosicha Species 0.000 description 1
- 241000255581 Drosophila <fruit fly, genus> Species 0.000 description 1
- 241001581005 Dysaphis Species 0.000 description 1
- 241001425477 Dysdercus Species 0.000 description 1
- 241001516600 Dysmicoccus Species 0.000 description 1
- AIGRXSNSLVJMEA-UHFFFAOYSA-N EPN Chemical compound C=1C=CC=CC=1P(=S)(OCC)OC1=CC=C([N+]([O-])=O)C=C1 AIGRXSNSLVJMEA-UHFFFAOYSA-N 0.000 description 1
- 241000241133 Earias Species 0.000 description 1
- 241001575036 Ecdytolopha Species 0.000 description 1
- 241001183635 Echinocnemus Species 0.000 description 1
- 241000244170 Echinococcus granulosus Species 0.000 description 1
- 241000244163 Echinococcus multilocularis Species 0.000 description 1
- 235000001950 Elaeis guineensis Nutrition 0.000 description 1
- 244000127993 Elaeis melanococca Species 0.000 description 1
- 241000400698 Elasmopalpus lignosellus Species 0.000 description 1
- 241000661278 Eldana saccharina Species 0.000 description 1
- 102000015782 Electron Transport Complex III Human genes 0.000 description 1
- 108010024882 Electron Transport Complex III Proteins 0.000 description 1
- YUGWDVYLFSETPE-JLHYYAGUSA-N Empenthrin Chemical compound CC\C=C(/C)C(C#C)OC(=O)C1C(C=C(C)C)C1(C)C YUGWDVYLFSETPE-JLHYYAGUSA-N 0.000 description 1
- 241000995023 Empoasca Species 0.000 description 1
- 241001222563 Empoasca onukii Species 0.000 description 1
- 241000498255 Enterobius vermicularis Species 0.000 description 1
- 241000488562 Eotetranychus Species 0.000 description 1
- 241000488563 Eotetranychus carpini Species 0.000 description 1
- 241001515281 Eotetranychus lewisi Species 0.000 description 1
- 241000630736 Ephestia Species 0.000 description 1
- 241001301805 Epilachna Species 0.000 description 1
- 241001147395 Epinotia Species 0.000 description 1
- 241000918644 Epiphyas postvittana Species 0.000 description 1
- 241000079320 Epitrimerus Species 0.000 description 1
- 241000303278 Epitrix Species 0.000 description 1
- 241001558857 Eriophyes Species 0.000 description 1
- 241000917109 Eriosoma Species 0.000 description 1
- 241001515686 Erythroneura Species 0.000 description 1
- 239000005895 Esfenvalerate Substances 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005976 Ethephon Substances 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- 241001486247 Etiella Species 0.000 description 1
- 239000005896 Etofenprox Substances 0.000 description 1
- 239000005897 Etoxazole Substances 0.000 description 1
- 241001520643 Eucalyptolyma Species 0.000 description 1
- 241001201696 Eulia Species 0.000 description 1
- 241000008702 Euphyllura Species 0.000 description 1
- 241001331999 Euproctis Species 0.000 description 1
- 241000515838 Eurygaster Species 0.000 description 1
- 241000239245 Euscelis Species 0.000 description 1
- 241000098297 Euschistus Species 0.000 description 1
- 241001034432 Eutetranychus banksi Species 0.000 description 1
- 241001585293 Euxoa Species 0.000 description 1
- 101710108755 Extracellular serine protease Proteins 0.000 description 1
- 241000220485 Fabaceae Species 0.000 description 1
- 241000219428 Fagaceae Species 0.000 description 1
- 241000371383 Fannia Species 0.000 description 1
- 241000324412 Faustina Species 0.000 description 1
- 241000233488 Feltia Species 0.000 description 1
- 239000005656 Fenazaquin Substances 0.000 description 1
- 239000005898 Fenoxycarb Substances 0.000 description 1
- 239000005657 Fenpyroximate Substances 0.000 description 1
- 241000259097 Ferrisia Species 0.000 description 1
- 239000005900 Flonicamid Substances 0.000 description 1
- 239000005978 Flumetralin Substances 0.000 description 1
- PWNAWOCHVWERAR-UHFFFAOYSA-N Flumetralin Chemical compound [O-][N+](=O)C=1C=C(C(F)(F)F)C=C([N+]([O-])=O)C=1N(CC)CC1=C(F)C=CC=C1Cl PWNAWOCHVWERAR-UHFFFAOYSA-N 0.000 description 1
- GXAMYUGOODKVRM-UHFFFAOYSA-N Flurecol Chemical compound C1=CC=C2C(C(=O)O)(O)C3=CC=CC=C3C2=C1 GXAMYUGOODKVRM-UHFFFAOYSA-N 0.000 description 1
- AJKQZRAAQMBNKM-UHFFFAOYSA-N Flurenol methyl ester Chemical group C1=CC=C2C(C(=O)OC)(O)C3=CC=CC=C3C2=C1 AJKQZRAAQMBNKM-UHFFFAOYSA-N 0.000 description 1
- VEVZCONIUDBCDC-UHFFFAOYSA-N Flurprimidol Chemical compound C=1N=CN=CC=1C(O)(C(C)C)C1=CC=C(OC(F)(F)F)C=C1 VEVZCONIUDBCDC-UHFFFAOYSA-N 0.000 description 1
- 239000005979 Forchlorfenuron Substances 0.000 description 1
- 239000005959 Fosthiazate Substances 0.000 description 1
- 240000009088 Fragaria x ananassa Species 0.000 description 1
- 241000189565 Frankliniella Species 0.000 description 1
- 241000585112 Galba Species 0.000 description 1
- 241000255896 Galleria mellonella Species 0.000 description 1
- 241000982383 Gametis jucunda Species 0.000 description 1
- 239000005903 Gamma-cyhalothrin Substances 0.000 description 1
- 241001660203 Gasterophilus Species 0.000 description 1
- 241000237858 Gastropoda Species 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 108700039691 Genetic Promoter Regions Proteins 0.000 description 1
- 241001057692 Geococcus coffeae Species 0.000 description 1
- 241000248126 Geophilus Species 0.000 description 1
- 241001043186 Gibbium Species 0.000 description 1
- 244000230012 Gleditsia triacanthos Species 0.000 description 1
- 235000013813 Gleditsia triacanthos Nutrition 0.000 description 1
- 241000896533 Gliocladium Species 0.000 description 1
- 241000235503 Glomus Species 0.000 description 1
- 241000257324 Glossina <genus> Species 0.000 description 1
- 241000526126 Glycaspis Species 0.000 description 1
- 102000003886 Glycoproteins Human genes 0.000 description 1
- 108090000288 Glycoproteins Proteins 0.000 description 1
- 241001510515 Glycyphagus domesticus Species 0.000 description 1
- 241001163576 Gnathocerus cornutus Species 0.000 description 1
- 102100021181 Golgi phosphoprotein 3 Human genes 0.000 description 1
- 241001579964 Gracillaria Species 0.000 description 1
- 241001441330 Grapholita molesta Species 0.000 description 1
- 241000659076 Grapholitha Species 0.000 description 1
- 241001243091 Gryllotalpa Species 0.000 description 1
- 229920000084 Gum arabic Polymers 0.000 description 1
- 241000790933 Haematopinus Species 0.000 description 1
- 241000562576 Haematopota Species 0.000 description 1
- 241000775881 Haematopota pluvialis Species 0.000 description 1
- 241000243976 Haemonchus Species 0.000 description 1
- 241000208818 Helianthus Species 0.000 description 1
- 241000255990 Helicoverpa Species 0.000 description 1
- 241000256257 Heliothis Species 0.000 description 1
- 241000339323 Heliothrips Species 0.000 description 1
- 241001581044 Hellula undalis Species 0.000 description 1
- 241000258937 Hemiptera Species 0.000 description 1
- 241001659688 Hercinothrips femoralis Species 0.000 description 1
- 241000920462 Heterakis Species 0.000 description 1
- 241001176496 Heteronychus arator Species 0.000 description 1
- 241001458247 Heteronyx Species 0.000 description 1
- 241000526136 Heteropsylla Species 0.000 description 1
- 241000526137 Heteropsylla cubana Species 0.000 description 1
- 241001466007 Heteroptera Species 0.000 description 1
- 239000005661 Hexythiazox Substances 0.000 description 1
- 241000771999 Hippobosca Species 0.000 description 1
- 241001201623 Hofmannophila pseudospretella Species 0.000 description 1
- 241001288674 Holotrichia consanguinea Species 0.000 description 1
- 241001503238 Homalodisca vitripennis Species 0.000 description 1
- 101000964562 Homo sapiens Zinc finger FYVE domain-containing protein 9 Proteins 0.000 description 1
- 241000526466 Homoeosoma Species 0.000 description 1
- 241000679711 Homona Species 0.000 description 1
- 241001417351 Hoplocampa Species 0.000 description 1
- 241001480803 Hyalomma Species 0.000 description 1
- 241001251909 Hyalopterus pruni Species 0.000 description 1
- 241000319560 Hydrellia Species 0.000 description 1
- 241001483218 Hydrellia griseola Species 0.000 description 1
- 241000115042 Hylamorpha elegans Species 0.000 description 1
- 241001351188 Hylemya Species 0.000 description 1
- 241000832180 Hylotrupes bajulus Species 0.000 description 1
- 241001464384 Hymenolepis nana Species 0.000 description 1
- 241001508566 Hypera postica Species 0.000 description 1
- 241000257176 Hypoderma <fly> Species 0.000 description 1
- 241000577499 Hypothenemus Species 0.000 description 1
- 241001595209 Idiocerus Species 0.000 description 1
- 241000761334 Idioscopus Species 0.000 description 1
- PPCUNNLZTNMXFO-ACCUITESSA-N Imicyafos Chemical compound CCCSP(=O)(OCC)N1CCN(CC)\C1=N/C#N PPCUNNLZTNMXFO-ACCUITESSA-N 0.000 description 1
- PFDCOZXELJAUTR-UHFFFAOYSA-N Inabenfide Chemical compound C=1C(Cl)=CC=C(NC(=O)C=2C=CN=CC=2)C=1C(O)C1=CC=CC=C1 PFDCOZXELJAUTR-UHFFFAOYSA-N 0.000 description 1
- 241000204026 Incisitermes Species 0.000 description 1
- 239000005907 Indoxacarb Substances 0.000 description 1
- 239000005867 Iprodione Substances 0.000 description 1
- 241000188153 Isaria fumosorosea Species 0.000 description 1
- 241001149911 Isopoda Species 0.000 description 1
- 241000256602 Isoptera Species 0.000 description 1
- 241000238681 Ixodes Species 0.000 description 1
- XMLSXPIVAXONDL-PLNGDYQASA-N Jasmone Chemical compound CC\C=C/CC1=C(C)CCC1=O XMLSXPIVAXONDL-PLNGDYQASA-N 0.000 description 1
- 241000397365 Javesella pellucida Species 0.000 description 1
- 241000758791 Juglandaceae Species 0.000 description 1
- 240000007049 Juglans regia Species 0.000 description 1
- 235000009496 Juglans regia Nutrition 0.000 description 1
- 239000005909 Kieselgur Substances 0.000 description 1
- FQPGMQABJNQLLF-VKHMYHEASA-N L-canaline Chemical compound NOCC[C@H](N)C(O)=O FQPGMQABJNQLLF-VKHMYHEASA-N 0.000 description 1
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 1
- 241000186610 Lactobacillus sp. Species 0.000 description 1
- 240000007741 Lagenaria siceraria Species 0.000 description 1
- 235000009797 Lagenaria vulgaris Nutrition 0.000 description 1
- 241001470017 Laodelphax striatella Species 0.000 description 1
- 241001177117 Lasioderma serricorne Species 0.000 description 1
- 241000256686 Lasius <genus> Species 0.000 description 1
- 241001163604 Latheticus oryzae Species 0.000 description 1
- 241000041773 Latridius Species 0.000 description 1
- 241000238867 Latrodectus Species 0.000 description 1
- 241000218195 Lauraceae Species 0.000 description 1
- 240000004322 Lens culinaris Species 0.000 description 1
- 235000014647 Lens culinaris subsp culinaris Nutrition 0.000 description 1
- 235000007849 Lepidium sativum Nutrition 0.000 description 1
- 244000211187 Lepidium sativum Species 0.000 description 1
- 241000255777 Lepidoptera Species 0.000 description 1
- 241000669027 Lepidosaphes Species 0.000 description 1
- 241000500881 Lepisma Species 0.000 description 1
- 241000258916 Leptinotarsa decemlineata Species 0.000 description 1
- 241000661345 Leptocorisa Species 0.000 description 1
- 241000661348 Leptocorisa acuta Species 0.000 description 1
- 241000560153 Leptoglossus phyllopus Species 0.000 description 1
- 241000086074 Leucinodes orbonalis Species 0.000 description 1
- 229920001732 Lignosulfonate Polymers 0.000 description 1
- 239000004117 Lignosulphonate Substances 0.000 description 1
- 241000234280 Liliaceae Species 0.000 description 1
- 241001113970 Linognathus Species 0.000 description 1
- OYHQOLUKZRVURQ-HZJYTTRNSA-N Linoleic acid Chemical compound CCCCC\C=C/C\C=C/CCCCCCCC(O)=O OYHQOLUKZRVURQ-HZJYTTRNSA-N 0.000 description 1
- 235000004431 Linum usitatissimum Nutrition 0.000 description 1
- 241000272317 Lipaphis erysimi Species 0.000 description 1
- 239000004367 Lipase Substances 0.000 description 1
- 102000004882 Lipase Human genes 0.000 description 1
- 108090001060 Lipase Proteins 0.000 description 1
- 241000322707 Liposcelis Species 0.000 description 1
- 241000594036 Liriomyza Species 0.000 description 1
- 241000966204 Lissorhoptrus oryzophilus Species 0.000 description 1
- 241000004742 Lithophane antennata Species 0.000 description 1
- 241000532753 Lixus Species 0.000 description 1
- 241001261102 Lobesia Species 0.000 description 1
- 241000254023 Locusta Species 0.000 description 1
- 241000238864 Loxosceles Species 0.000 description 1
- 241000257162 Lucilia <blowfly> Species 0.000 description 1
- 239000006142 Luria-Bertani Agar Substances 0.000 description 1
- 241000255134 Lutzomyia <genus> Species 0.000 description 1
- 241001177134 Lyctus Species 0.000 description 1
- 241000721696 Lymantria Species 0.000 description 1
- 241000237354 Lymnaea Species 0.000 description 1
- 241001190211 Lyonetia Species 0.000 description 1
- 241000721715 Macrosiphum Species 0.000 description 1
- 241001414659 Macrosteles Species 0.000 description 1
- 241001164204 Mahanarva Species 0.000 description 1
- 101710125418 Major capsid protein Proteins 0.000 description 1
- 241000255685 Malacosoma neustria Species 0.000 description 1
- 239000005949 Malathion Substances 0.000 description 1
- 239000005983 Maleic hydrazide Substances 0.000 description 1
- BGRDGMRNKXEXQD-UHFFFAOYSA-N Maleic hydrazide Chemical compound OC1=CC=C(O)N=N1 BGRDGMRNKXEXQD-UHFFFAOYSA-N 0.000 description 1
- 241000219071 Malvaceae Species 0.000 description 1
- 241000555303 Mamestra brassicae Species 0.000 description 1
- 235000014826 Mangifera indica Nutrition 0.000 description 1
- 240000007228 Mangifera indica Species 0.000 description 1
- 241001354481 Mansonia <mosquito genus> Species 0.000 description 1
- 241001232130 Maruca testulalis Species 0.000 description 1
- 240000004658 Medicago sativa Species 0.000 description 1
- 235000017587 Medicago sativa ssp. sativa Nutrition 0.000 description 1
- 241000902265 Megascelis Species 0.000 description 1
- 241001179564 Melanaphis sacchari Species 0.000 description 1
- 241000590505 Melanitis leda Species 0.000 description 1
- 241001415013 Melanoplus Species 0.000 description 1
- 241001062280 Melanotus <basidiomycete fungus> Species 0.000 description 1
- 241000243786 Meloidogyne incognita Species 0.000 description 1
- 241000254071 Melolontha Species 0.000 description 1
- 241000970829 Mesorhizobium Species 0.000 description 1
- 239000005914 Metaflumizone Substances 0.000 description 1
- MIFOMMKAVSCNKQ-HWIUFGAZSA-N Metaflumizone Chemical compound C1=CC(OC(F)(F)F)=CC=C1NC(=O)N\N=C(C=1C=C(C=CC=1)C(F)(F)F)\CC1=CC=C(C#N)C=C1 MIFOMMKAVSCNKQ-HWIUFGAZSA-N 0.000 description 1
- 241000131592 Metcalfiella Species 0.000 description 1
- 239000005917 Methoxyfenozide Substances 0.000 description 1
- 241000168713 Metopolophium dirhodum Species 0.000 description 1
- 241000333575 Microtermes obesi Species 0.000 description 1
- 241001497122 Migdolus Species 0.000 description 1
- 239000005918 Milbemectin Substances 0.000 description 1
- 241001414825 Miridae Species 0.000 description 1
- 102000013379 Mitochondrial Proton-Translocating ATPases Human genes 0.000 description 1
- 108010026155 Mitochondrial Proton-Translocating ATPases Proteins 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 241001094463 Monellia Species 0.000 description 1
- 241001094800 Monelliopsis Species 0.000 description 1
- SOWBFZRMHSNYGE-UHFFFAOYSA-N Monoamide-Oxalic acid Natural products NC(=O)C(O)=O SOWBFZRMHSNYGE-UHFFFAOYSA-N 0.000 description 1
- 241001442208 Monochamus Species 0.000 description 1
- 241000952627 Monomorium pharaonis Species 0.000 description 1
- 241001198179 Monopis obviella Species 0.000 description 1
- 241000218231 Moraceae Species 0.000 description 1
- MSFSPUZXLOGKHJ-UHFFFAOYSA-N Muraminsaeure Natural products OC(=O)C(C)OC1C(N)C(O)OC(CO)C1O MSFSPUZXLOGKHJ-UHFFFAOYSA-N 0.000 description 1
- 240000005561 Musa balbisiana Species 0.000 description 1
- 235000018290 Musa x paradisiaca Nutrition 0.000 description 1
- 241000234615 Musaceae Species 0.000 description 1
- 241000257229 Musca <genus> Species 0.000 description 1
- 241000036208 Mysis Species 0.000 description 1
- 241001477928 Mythimna Species 0.000 description 1
- 241000409991 Mythimna separata Species 0.000 description 1
- 241001477931 Mythimna unipuncta Species 0.000 description 1
- 241000721623 Myzus Species 0.000 description 1
- OVRNDRQMDRJTHS-FMDGEEDCSA-N N-acetyl-beta-D-glucosamine Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O OVRNDRQMDRJTHS-FMDGEEDCSA-N 0.000 description 1
- NWBJYWHLCVSVIJ-UHFFFAOYSA-N N-benzyladenine Chemical compound N=1C=NC=2NC=NC=2C=1NCC1=CC=CC=C1 NWBJYWHLCVSVIJ-UHFFFAOYSA-N 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- 241000133263 Nasonovia ribisnigri Species 0.000 description 1
- 241000196499 Naupactus xanthographus Species 0.000 description 1
- 241000041821 Necrobia Species 0.000 description 1
- 241001340913 Nemapogon Species 0.000 description 1
- 241001137882 Nematodirus Species 0.000 description 1
- 244000183278 Nephelium litchi Species 0.000 description 1
- 241000359016 Nephotettix Species 0.000 description 1
- 241001671714 Nezara Species 0.000 description 1
- 241001556089 Nilaparvata lugens Species 0.000 description 1
- 241001385056 Niptus hololeucus Species 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- 241000256259 Noctuidae Species 0.000 description 1
- 101710141454 Nucleoprotein Proteins 0.000 description 1
- 241001338708 Nymphula Species 0.000 description 1
- VRVKPNNAJBVDIW-BXROQLSZSA-N OC1(C(=CC(CC1(C)C)=O)C)/C=C/C(=C\C(=O)OC)/C(F)(F)F Chemical compound OC1(C(=CC(CC1(C)C)=O)C)/C=C/C(=C\C(=O)OC)/C(F)(F)F VRVKPNNAJBVDIW-BXROQLSZSA-N 0.000 description 1
- 241000866537 Odontotermes Species 0.000 description 1
- 241001102020 Oebalus Species 0.000 description 1
- 241000510960 Oesophagostomum Species 0.000 description 1
- 241001157094 Oiketicus Species 0.000 description 1
- 235000002725 Olea europaea Nutrition 0.000 description 1
- 241000207834 Oleaceae Species 0.000 description 1
- 241000488557 Oligonychus Species 0.000 description 1
- 241001236489 Oligonychus coffeae Species 0.000 description 1
- 241000168120 Oligonychus ilicis Species 0.000 description 1
- 241000608383 Oligonychus punicae Species 0.000 description 1
- 241000488584 Oligonychus ununguis Species 0.000 description 1
- 241000243985 Onchocerca volvulus Species 0.000 description 1
- 241000565675 Oncomelania Species 0.000 description 1
- 241000777573 Oncometopia Species 0.000 description 1
- 241000384103 Oniscus asellus Species 0.000 description 1
- 241000963703 Onychiurus armatus Species 0.000 description 1
- 241000233654 Oomycetes Species 0.000 description 1
- 241001491877 Operophtera brumata Species 0.000 description 1
- 241000242716 Opisthorchis Species 0.000 description 1
- 241000238887 Ornithodoros Species 0.000 description 1
- 241000273340 Ornithonyssus Species 0.000 description 1
- 241000319573 Orthaga Species 0.000 description 1
- 241001446191 Orthezia Species 0.000 description 1
- 241001250072 Oryctes rhinoceros Species 0.000 description 1
- 101000708283 Oryza sativa subsp. indica Protein Rf1, mitochondrial Proteins 0.000 description 1
- 241000131101 Oryzaephilus surinamensis Species 0.000 description 1
- 241000975417 Oscinella frit Species 0.000 description 1
- 241000243795 Ostertagia Species 0.000 description 1
- 241001147397 Ostrinia Species 0.000 description 1
- 241001147398 Ostrinia nubilalis Species 0.000 description 1
- 241001570894 Oulema oryzae Species 0.000 description 1
- 240000007019 Oxalis corniculata Species 0.000 description 1
- 235000016499 Oxalis corniculata Nutrition 0.000 description 1
- 239000005950 Oxamyl Substances 0.000 description 1
- 241000382923 Oxya chinensis Species 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 238000012408 PCR amplification Methods 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 241001516564 Pachypsylla Species 0.000 description 1
- 239000005985 Paclobutrazol Substances 0.000 description 1
- 241000194105 Paenibacillus polymyxa Species 0.000 description 1
- 241001510250 Panchlora Species 0.000 description 1
- 241000486438 Panolis flammea Species 0.000 description 1
- 241000488585 Panonychus Species 0.000 description 1
- 241000488581 Panonychus citri Species 0.000 description 1
- 241000488583 Panonychus ulmi Species 0.000 description 1
- 235000008753 Papaver somniferum Nutrition 0.000 description 1
- 240000001090 Papaver somniferum Species 0.000 description 1
- 241000218180 Papaveraceae Species 0.000 description 1
- 241001480233 Paragonimus Species 0.000 description 1
- 241001059642 Paralauterborniella Species 0.000 description 1
- 241001130174 Paralongidorus Species 0.000 description 1
- 241001633066 Paratanytarsus Species 0.000 description 1
- 241001516563 Paratrioza Species 0.000 description 1
- 241001523676 Parcoblatta Species 0.000 description 1
- 241001130603 Parlatoria <angiosperm> Species 0.000 description 1
- 241001622647 Parnara Species 0.000 description 1
- 241001242657 Pasteuria nishizawae Species 0.000 description 1
- 241000721452 Pectinophora Species 0.000 description 1
- 241000517325 Pediculus Species 0.000 description 1
- 241000721454 Pemphigus Species 0.000 description 1
- 108010013639 Peptidoglycan Proteins 0.000 description 1
- 241000256682 Peregrinus maidis Species 0.000 description 1
- 241000238661 Periplaneta Species 0.000 description 1
- 241000218196 Persea Species 0.000 description 1
- 241000316608 Petrobia latens Species 0.000 description 1
- 244000062780 Petroselinum sativum Species 0.000 description 1
- 241001608567 Phaedon cochleariae Species 0.000 description 1
- 241001058119 Phenacoccus Species 0.000 description 1
- 241000219998 Philenoptera violacea Species 0.000 description 1
- 241000722350 Phlebotomus <genus> Species 0.000 description 1
- 241000916808 Phloeomyzus passerinii Species 0.000 description 1
- 241000257149 Phormia Species 0.000 description 1
- 241001401861 Phorodon humuli Species 0.000 description 1
- 239000005921 Phosmet Substances 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 241001674048 Phthiraptera Species 0.000 description 1
- 241001439020 Phthorimaea Species 0.000 description 1
- 241001525654 Phyllocnistis citrella Species 0.000 description 1
- 241001558871 Phyllocoptes gracilis Species 0.000 description 1
- 241000720470 Phyllonorycter Species 0.000 description 1
- 241000275067 Phyllotreta Species 0.000 description 1
- 241001516577 Phylloxera Species 0.000 description 1
- 241000255972 Pieris <butterfly> Species 0.000 description 1
- 241000690748 Piesma Species 0.000 description 1
- 241000940371 Piezodorus Species 0.000 description 1
- 241000669426 Pinnaspis aspidistrae Species 0.000 description 1
- 235000008331 Pinus X rigitaeda Nutrition 0.000 description 1
- 235000011613 Pinus brutia Nutrition 0.000 description 1
- 241000018646 Pinus brutia Species 0.000 description 1
- 241001437281 Piophila casei Species 0.000 description 1
- 241000758706 Piperaceae Species 0.000 description 1
- 239000005923 Pirimicarb Substances 0.000 description 1
- 239000005924 Pirimiphos-methyl Substances 0.000 description 1
- 241000242594 Platyhelminthes Species 0.000 description 1
- 241001456328 Platynota stultana Species 0.000 description 1
- 241000595629 Plodia interpunctella Species 0.000 description 1
- 241001363501 Plusia Species 0.000 description 1
- 241000500437 Plutella xylostella Species 0.000 description 1
- RVGRUAULSDPKGF-UHFFFAOYSA-N Poloxamer Chemical compound C1CO1.CC1CO1 RVGRUAULSDPKGF-UHFFFAOYSA-N 0.000 description 1
- 241001251227 Pomacea Species 0.000 description 1
- 241000254101 Popillia japonica Species 0.000 description 1
- 241000908127 Porcellio scaber Species 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 241001201614 Prays Species 0.000 description 1
- 101710083689 Probable capsid protein Proteins 0.000 description 1
- 241001647214 Prodiplosis Species 0.000 description 1
- 239000005986 Prohexadione Substances 0.000 description 1
- IPDFPNNPBMREIF-CHWSQXEVSA-N Prohydrojasmon Chemical compound CCCCC[C@@H]1[C@@H](CC(=O)OCCC)CCC1=O IPDFPNNPBMREIF-CHWSQXEVSA-N 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-N Propionic acid Chemical compound CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 1
- 241001459653 Prostephanus truncatus Species 0.000 description 1
- 108010009736 Protein Hydrolysates Proteins 0.000 description 1
- 241001483625 Protopulvinaria pyriformis Species 0.000 description 1
- 235000009827 Prunus armeniaca Nutrition 0.000 description 1
- 244000018633 Prunus armeniaca Species 0.000 description 1
- 235000005805 Prunus cerasus Nutrition 0.000 description 1
- 240000005809 Prunus persica Species 0.000 description 1
- 241000914631 Psallus Species 0.000 description 1
- 241001274600 Pseudacysta Species 0.000 description 1
- 241000669298 Pseudaulacaspis pentagona Species 0.000 description 1
- 241000722234 Pseudococcus Species 0.000 description 1
- 241000589517 Pseudomonas aeruginosa Species 0.000 description 1
- 241001415024 Psocoptera Species 0.000 description 1
- 241001649229 Psoroptes Species 0.000 description 1
- 241000526145 Psylla Species 0.000 description 1
- 241001160824 Psylliodes Species 0.000 description 1
- 241001366294 Psyllopsis Species 0.000 description 1
- 241001454908 Pteromalus Species 0.000 description 1
- 241001105129 Ptinus Species 0.000 description 1
- 241000221535 Pucciniales Species 0.000 description 1
- 241000718000 Pulex irritans Species 0.000 description 1
- 244000294611 Punica granatum Species 0.000 description 1
- 235000014360 Punica granatum Nutrition 0.000 description 1
- 239000005700 Putrescine Substances 0.000 description 1
- 239000005925 Pymetrozine Substances 0.000 description 1
- 239000005663 Pyridaben Substances 0.000 description 1
- 239000005926 Pyridalyl Substances 0.000 description 1
- 241000932787 Pyrilla Species 0.000 description 1
- CZPWVGJYEJSRLH-UHFFFAOYSA-N Pyrimidine Chemical compound C1=CN=CN=C1 CZPWVGJYEJSRLH-UHFFFAOYSA-N 0.000 description 1
- 239000005927 Pyriproxyfen Substances 0.000 description 1
- 241000233639 Pythium Species 0.000 description 1
- 241000131360 Pythium oligandrum Species 0.000 description 1
- 241000918584 Pythium ultimum Species 0.000 description 1
- 241000944747 Quesada gigas Species 0.000 description 1
- 241001456339 Rachiplusia nu Species 0.000 description 1
- 244000088415 Raphanus sativus Species 0.000 description 1
- 235000006140 Raphanus sativus var sativus Nutrition 0.000 description 1
- 241000549289 Rastrococcus Species 0.000 description 1
- 108020004511 Recombinant DNA Proteins 0.000 description 1
- 241001509970 Reticulitermes <genus> Species 0.000 description 1
- 241001136852 Rhagoletis Species 0.000 description 1
- 235000011552 Rhamnus crocea Nutrition 0.000 description 1
- 241000298314 Rhipiphorothrips cruentatus Species 0.000 description 1
- 241000589157 Rhizobiales Species 0.000 description 1
- 241000589180 Rhizobium Species 0.000 description 1
- 241001617044 Rhizoglyphus Species 0.000 description 1
- ISRUGXGCCGIOQO-UHFFFAOYSA-N Rhoden Chemical compound CNC(=O)OC1=CC=CC=C1OC(C)C ISRUGXGCCGIOQO-UHFFFAOYSA-N 0.000 description 1
- 241000722251 Rhodnius Species 0.000 description 1
- 241000208422 Rhododendron Species 0.000 description 1
- 241000125162 Rhopalosiphum Species 0.000 description 1
- 241001510236 Rhyparobia maderae Species 0.000 description 1
- 241000318997 Rhyzopertha dominica Species 0.000 description 1
- 235000002357 Ribes grossularia Nutrition 0.000 description 1
- 244000171263 Ribes grossularia Species 0.000 description 1
- 240000001890 Ribes hudsonianum Species 0.000 description 1
- 235000016954 Ribes hudsonianum Nutrition 0.000 description 1
- 235000001466 Ribes nigrum Nutrition 0.000 description 1
- 244000281247 Ribes rubrum Species 0.000 description 1
- 235000016911 Ribes sativum Nutrition 0.000 description 1
- 235000002355 Ribes spicatum Nutrition 0.000 description 1
- 235000016897 Ribes triste Nutrition 0.000 description 1
- 101710141795 Ribonuclease inhibitor Proteins 0.000 description 1
- 229940122208 Ribonuclease inhibitor Drugs 0.000 description 1
- 102100037968 Ribonuclease inhibitor Human genes 0.000 description 1
- 102000006382 Ribonucleases Human genes 0.000 description 1
- 108010083644 Ribonucleases Proteins 0.000 description 1
- 241000109365 Rosa arkansana Species 0.000 description 1
- 235000005066 Rosa arkansana Nutrition 0.000 description 1
- 235000004789 Rosa xanthina Nutrition 0.000 description 1
- 241000220222 Rosaceae Species 0.000 description 1
- 241001107098 Rubiaceae Species 0.000 description 1
- 240000007651 Rubus glaucus Species 0.000 description 1
- 241001093501 Rutaceae Species 0.000 description 1
- 102000001424 Ryanodine receptors Human genes 0.000 description 1
- ZJUKTBDSGOFHSH-WFMPWKQPSA-N S-Adenosylhomocysteine Chemical compound O[C@@H]1[C@H](O)[C@@H](CSCC[C@H](N)C(O)=O)O[C@H]1N1C2=NC=NC(N)=C2N=C1 ZJUKTBDSGOFHSH-WFMPWKQPSA-N 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- 240000004155 Saccharum barberi Species 0.000 description 1
- 241000914334 Sahlbergella singularis Species 0.000 description 1
- 241001450655 Saissetia Species 0.000 description 1
- 241000257190 Sarcophaga <genus> Species 0.000 description 1
- 241000509416 Sarcoptes Species 0.000 description 1
- 108010077895 Sarcosine Proteins 0.000 description 1
- 241000170989 Scaphoideus titanus Species 0.000 description 1
- 241000726725 Scaptocoris castanea Species 0.000 description 1
- 241000253973 Schistocerca gregaria Species 0.000 description 1
- 241000722027 Schizaphis graminum Species 0.000 description 1
- 241000851142 Schizotetranychus asparagi Species 0.000 description 1
- 241001275922 Schizotetranychus baltazari Species 0.000 description 1
- 241001579307 Schoenobius Species 0.000 description 1
- 241000296425 Sciothrips cardamomi Species 0.000 description 1
- 241001249127 Scirpophaga Species 0.000 description 1
- 241001249129 Scirpophaga incertulas Species 0.000 description 1
- 241000098281 Scirpophaga innotata Species 0.000 description 1
- 241000365762 Scirtothrips Species 0.000 description 1
- 241000522594 Scorpio maurus Species 0.000 description 1
- 241001157779 Scutigera Species 0.000 description 1
- 241000883293 Scutigerella Species 0.000 description 1
- 241000669326 Selenaspidus articulatus Species 0.000 description 1
- 239000004113 Sepiolite Substances 0.000 description 1
- 241000607720 Serratia Species 0.000 description 1
- 241000931987 Sesamia Species 0.000 description 1
- 241000563489 Sesamia inferens Species 0.000 description 1
- 240000002751 Sideroxylon obovatum Species 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 241000256108 Simulium <genus> Species 0.000 description 1
- 241000589196 Sinorhizobium meliloti Species 0.000 description 1
- 241000258242 Siphonaptera Species 0.000 description 1
- 241000254168 Siphoninus phillyreae Species 0.000 description 1
- 241001508555 Sirex Species 0.000 description 1
- 241000254181 Sitophilus Species 0.000 description 1
- 241000254152 Sitophilus oryzae Species 0.000 description 1
- 108010052164 Sodium Channels Proteins 0.000 description 1
- 102000018674 Sodium Channels Human genes 0.000 description 1
- 241000336929 Sogata Species 0.000 description 1
- 241000176086 Sogatella furcifera Species 0.000 description 1
- 241000208292 Solanaceae Species 0.000 description 1
- 244000061458 Solanum melongena Species 0.000 description 1
- 241000736128 Solenopsis invicta Species 0.000 description 1
- 235000011684 Sorghum saccharatum Nutrition 0.000 description 1
- 235000019764 Soybean Meal Nutrition 0.000 description 1
- 241001341014 Sparganothis Species 0.000 description 1
- 241000532885 Sphenophorus Species 0.000 description 1
- 235000009337 Spinacia oleracea Nutrition 0.000 description 1
- 244000300264 Spinacia oleracea Species 0.000 description 1
- 239000005929 Spinetoram Substances 0.000 description 1
- GOENIMGKWNZVDA-OAMCMWGQSA-N Spinetoram Chemical compound CO[C@@H]1[C@H](OCC)[C@@H](OC)[C@H](C)O[C@H]1OC1C[C@H]2[C@@H]3C=C4C(=O)[C@H](C)[C@@H](O[C@@H]5O[C@H](C)[C@H](CC5)N(C)C)CCC[C@H](CC)OC(=O)CC4[C@@H]3CC[C@@H]2C1 GOENIMGKWNZVDA-OAMCMWGQSA-N 0.000 description 1
- 239000005930 Spinosad Substances 0.000 description 1
- 241001414853 Spissistilus festinus Species 0.000 description 1
- 241000931706 Spodoptera praefica Species 0.000 description 1
- 235000009184 Spondias indica Nutrition 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 241001338640 Stathmopoda Species 0.000 description 1
- 241001177161 Stegobium paniceum Species 0.000 description 1
- 241001161749 Stenchaetothrips biformis Species 0.000 description 1
- 241000349644 Steneotarsonemus Species 0.000 description 1
- 241000349647 Steneotarsonemus spinki Species 0.000 description 1
- 241000122973 Stenotrophomonas maltophilia Species 0.000 description 1
- 241000283614 Stephanitis nashi Species 0.000 description 1
- 241000950030 Sternechus Species 0.000 description 1
- 244000228451 Stevia rebaudiana Species 0.000 description 1
- 235000006092 Stevia rebaudiana Nutrition 0.000 description 1
- 241000063073 Stomopteryx Species 0.000 description 1
- 241001494139 Stomoxys Species 0.000 description 1
- 241000970858 Streptomyces saraceticus Species 0.000 description 1
- 241001655322 Streptomycetales Species 0.000 description 1
- 241000098292 Striacosta albicosta Species 0.000 description 1
- 241000180126 Strongyloides fuelleborni Species 0.000 description 1
- 241000244177 Strongyloides stercoralis Species 0.000 description 1
- 241001301282 Succinea Species 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 239000005934 Sulfoxaflor Substances 0.000 description 1
- 239000005935 Sulfuryl fluoride Substances 0.000 description 1
- 235000019486 Sunflower oil Nutrition 0.000 description 1
- 241001649248 Supella longipalpa Species 0.000 description 1
- 241000883295 Symphyla Species 0.000 description 1
- 241001528589 Synanthedon Species 0.000 description 1
- 241000255626 Tabanus <genus> Species 0.000 description 1
- 241000244159 Taenia saginata Species 0.000 description 1
- 241000244157 Taenia solium Species 0.000 description 1
- 241000228343 Talaromyces flavus Species 0.000 description 1
- 240000004460 Tanacetum coccineum Species 0.000 description 1
- 241000532791 Tanymecus Species 0.000 description 1
- 241001157792 Tapinoma Species 0.000 description 1
- 239000005937 Tebufenozide Substances 0.000 description 1
- 239000005658 Tebufenpyrad Substances 0.000 description 1
- 241000913276 Tecia solanivora Species 0.000 description 1
- 239000005938 Teflubenzuron Substances 0.000 description 1
- 239000005939 Tefluthrin Substances 0.000 description 1
- 241000254109 Tenebrio molitor Species 0.000 description 1
- 241000787015 Tetanops Species 0.000 description 1
- 241001454294 Tetranychus Species 0.000 description 1
- 241000344246 Tetranychus cinnabarinus Species 0.000 description 1
- 241000488530 Tetranychus pacificus Species 0.000 description 1
- 241000916142 Tetranychus turkestani Species 0.000 description 1
- 241001454293 Tetranychus urticae Species 0.000 description 1
- 229920002359 Tetronic® Polymers 0.000 description 1
- 101100325840 Thauera aromatica bclA gene Proteins 0.000 description 1
- 244000299461 Theobroma cacao Species 0.000 description 1
- 235000009470 Theobroma cacao Nutrition 0.000 description 1
- 239000005941 Thiamethoxam Substances 0.000 description 1
- HFCYZXMHUIHAQI-UHFFFAOYSA-N Thidiazuron Chemical compound C=1C=CC=CC=1NC(=O)NC1=CN=NS1 HFCYZXMHUIHAQI-UHFFFAOYSA-N 0.000 description 1
- 241000130764 Tinea Species 0.000 description 1
- 208000002474 Tinea Diseases 0.000 description 1
- 241000130771 Tinea pellionella Species 0.000 description 1
- 241000333690 Tineola bisselliella Species 0.000 description 1
- 241001519477 Tinocallis Species 0.000 description 1
- 241000131345 Tipula <genus> Species 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 241001432111 Tomaspis Species 0.000 description 1
- 241001238452 Tortrix Species 0.000 description 1
- 241000271862 Toxoptera Species 0.000 description 1
- 241000018137 Trialeurodes vaporariorum Species 0.000 description 1
- 241001414833 Triatoma Species 0.000 description 1
- 241000254086 Tribolium <beetle> Species 0.000 description 1
- 241000243774 Trichinella Species 0.000 description 1
- 241000194297 Trichinella britovi Species 0.000 description 1
- 241000243776 Trichinella nativa Species 0.000 description 1
- 241000243779 Trichinella nelsoni Species 0.000 description 1
- 241000243777 Trichinella spiralis Species 0.000 description 1
- 241001259047 Trichodectes Species 0.000 description 1
- 241000223259 Trichoderma Species 0.000 description 1
- 239000005855 Trichoderma harzianum strains T-22 and ITEM 908 Substances 0.000 description 1
- 241001149558 Trichoderma virens Species 0.000 description 1
- 241000223261 Trichoderma viride Species 0.000 description 1
- 241000539634 Trichophaga tapetzella Species 0.000 description 1
- 241000255985 Trichoplusia Species 0.000 description 1
- 241001489151 Trichuris Species 0.000 description 1
- 239000005994 Trinexapac Substances 0.000 description 1
- 241001414858 Trioza Species 0.000 description 1
- 235000007218 Tripsacum dactyloides Nutrition 0.000 description 1
- 241000267823 Trogoderma Species 0.000 description 1
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 1
- 241001584775 Tunga penetrans Species 0.000 description 1
- 241001168740 Tychius Species 0.000 description 1
- 241000841223 Typhlocyba Species 0.000 description 1
- 241000261594 Tyrophagus longior Species 0.000 description 1
- 241000669245 Unaspis Species 0.000 description 1
- 241000254199 Urocerus Species 0.000 description 1
- 240000000851 Vaccinium corymbosum Species 0.000 description 1
- 235000003095 Vaccinium corymbosum Nutrition 0.000 description 1
- 235000017537 Vaccinium myrtillus Nutrition 0.000 description 1
- 241001466100 Vaejovis Species 0.000 description 1
- 241000358549 Velifer Species 0.000 description 1
- 241000759263 Ventia crocea Species 0.000 description 1
- 241001123669 Verticillium albo-atrum Species 0.000 description 1
- 241001123668 Verticillium dahliae Species 0.000 description 1
- 235000010749 Vicia faba Nutrition 0.000 description 1
- 240000006677 Vicia faba Species 0.000 description 1
- 235000002098 Vicia faba var. major Nutrition 0.000 description 1
- 241000726445 Viroids Species 0.000 description 1
- 241000219094 Vitaceae Species 0.000 description 1
- 241001274787 Viteus Species 0.000 description 1
- 241000244005 Wuchereria bancrofti Species 0.000 description 1
- CVQODEWAPZVVBU-UHFFFAOYSA-N XMC Chemical compound CNC(=O)OC1=CC(C)=CC(C)=C1 CVQODEWAPZVVBU-UHFFFAOYSA-N 0.000 description 1
- 241000353224 Xenopsylla Species 0.000 description 1
- 241000949975 Xeris Species 0.000 description 1
- 241001604425 Xylotrechus Species 0.000 description 1
- 241000885034 Xyphon Species 0.000 description 1
- 241001466337 Yponomeuta Species 0.000 description 1
- 241001035865 Zabrus Species 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 102100040801 Zinc finger FYVE domain-containing protein 9 Human genes 0.000 description 1
- 239000006011 Zinc phosphide Substances 0.000 description 1
- 241000839659 Zygina Species 0.000 description 1
- GBAWQJNHVWMTLU-RQJHMYQMSA-N [(1R,5S)-7-chloro-6-bicyclo[3.2.0]hepta-2,6-dienyl] dimethyl phosphate Chemical compound C1=CC[C@@H]2C(OP(=O)(OC)OC)=C(Cl)[C@@H]21 GBAWQJNHVWMTLU-RQJHMYQMSA-N 0.000 description 1
- FZSVSABTBYGOQH-XFFZJAGNSA-N [(e)-(3,3-dimethyl-1-methylsulfanylbutan-2-ylidene)amino] n-methylcarbamate Chemical compound CNC(=O)O\N=C(C(C)(C)C)\CSC FZSVSABTBYGOQH-XFFZJAGNSA-N 0.000 description 1
- CTJBHIROCMPUKL-WEVVVXLNSA-N [(e)-3-methylsulfonylbutan-2-ylideneamino] n-methylcarbamate Chemical compound CNC(=O)O\N=C(/C)C(C)S(C)(=O)=O CTJBHIROCMPUKL-WEVVVXLNSA-N 0.000 description 1
- BZMIHNKNQJJVRO-LVZFUZTISA-N [(e)-c-(3-chloro-2,6-dimethoxyphenyl)-n-ethoxycarbonimidoyl] benzoate Chemical compound COC=1C=CC(Cl)=C(OC)C=1C(=N/OCC)\OC(=O)C1=CC=CC=C1 BZMIHNKNQJJVRO-LVZFUZTISA-N 0.000 description 1
- KAATUXNTWXVJKI-QPIRBTGLSA-N [(s)-cyano-(3-phenoxyphenyl)methyl] 3-(2,2-dichloroethenyl)-2,2-dimethylcyclopropane-1-carboxylate Chemical compound CC1(C)C(C=C(Cl)Cl)C1C(=O)O[C@H](C#N)C1=CC=CC(OC=2C=CC=CC=2)=C1 KAATUXNTWXVJKI-QPIRBTGLSA-N 0.000 description 1
- FSAVDKDHPDSCTO-WQLSENKSSA-N [(z)-2-chloro-1-(2,4-dichlorophenyl)ethenyl] diethyl phosphate Chemical compound CCOP(=O)(OCC)O\C(=C/Cl)C1=CC=C(Cl)C=C1Cl FSAVDKDHPDSCTO-WQLSENKSSA-N 0.000 description 1
- QSGNQELHULIMSJ-POHAHGRESA-N [(z)-2-chloro-1-(2,4-dichlorophenyl)ethenyl] dimethyl phosphate Chemical compound COP(=O)(OC)O\C(=C/Cl)C1=CC=C(Cl)C=C1Cl QSGNQELHULIMSJ-POHAHGRESA-N 0.000 description 1
- DPJITPZADZSLBP-PIPQINALSA-N [2,3,5,6-tetrafluoro-4-(methoxymethyl)phenyl]methyl (1r,3r)-3-[(e)-2-cyanoprop-1-enyl]-2,2-dimethylcyclopropane-1-carboxylate Chemical compound FC1=C(F)C(COC)=C(F)C(F)=C1COC(=O)[C@H]1C(C)(C)[C@@H]1\C=C(/C)C#N DPJITPZADZSLBP-PIPQINALSA-N 0.000 description 1
- MWFQAAWRPDRKDG-KOLCDFICSA-N [2,3,5,6-tetrafluoro-4-(methoxymethyl)phenyl]methyl (1r,3s)-3-(2,2-dichloroethenyl)-2,2-dimethylcyclopropane-1-carboxylate Chemical compound FC1=C(F)C(COC)=C(F)C(F)=C1COC(=O)[C@H]1C(C)(C)[C@@H]1C=C(Cl)Cl MWFQAAWRPDRKDG-KOLCDFICSA-N 0.000 description 1
- APEPLROGLDYWBS-UHFFFAOYSA-N [2,3,5,6-tetrafluoro-4-(methoxymethyl)phenyl]methyl 2,2,3,3-tetramethylcyclopropane-1-carboxylate Chemical compound FC1=C(F)C(COC)=C(F)C(F)=C1COC(=O)C1C(C)(C)C1(C)C APEPLROGLDYWBS-UHFFFAOYSA-N 0.000 description 1
- FMPFURNXXAKYNE-UHFFFAOYSA-N [2-ethyl-3,7-dimethyl-6-[4-(trifluoromethoxy)phenoxy]quinolin-4-yl] methyl carbonate Chemical compound C1=C2C(OC(=O)OC)=C(C)C(CC)=NC2=CC(C)=C1OC1=CC=C(OC(F)(F)F)C=C1 FMPFURNXXAKYNE-UHFFFAOYSA-N 0.000 description 1
- ROVGZAWFACYCSP-MQBLHHJJSA-N [2-methyl-4-oxo-3-[(2z)-penta-2,4-dienyl]cyclopent-2-en-1-yl] (1r,3r)-2,2-dimethyl-3-(2-methylprop-1-enyl)cyclopropane-1-carboxylate Chemical compound CC1(C)[C@H](C=C(C)C)[C@H]1C(=O)OC1C(C)=C(C\C=C/C=C)C(=O)C1 ROVGZAWFACYCSP-MQBLHHJJSA-N 0.000 description 1
- YXWCBRDRVXHABN-JCMHNJIXSA-N [cyano-(4-fluoro-3-phenoxyphenyl)methyl] 3-[(z)-2-chloro-2-(4-chlorophenyl)ethenyl]-2,2-dimethylcyclopropane-1-carboxylate Chemical compound C=1C=C(F)C(OC=2C=CC=CC=2)=CC=1C(C#N)OC(=O)C1C(C)(C)C1\C=C(/Cl)C1=CC=C(Cl)C=C1 YXWCBRDRVXHABN-JCMHNJIXSA-N 0.000 description 1
- ZVQOOHYFBIDMTQ-UHFFFAOYSA-N [methyl(oxido){1-[6-(trifluoromethyl)pyridin-3-yl]ethyl}-lambda(6)-sulfanylidene]cyanamide Chemical compound N#CN=S(C)(=O)C(C)C1=CC=C(C(F)(F)F)N=C1 ZVQOOHYFBIDMTQ-UHFFFAOYSA-N 0.000 description 1
- 229950008167 abamectin Drugs 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 239000000205 acacia gum Substances 0.000 description 1
- 235000010489 acacia gum Nutrition 0.000 description 1
- YASYVMFAVPKPKE-UHFFFAOYSA-N acephate Chemical compound COP(=O)(SC)NC(C)=O YASYVMFAVPKPKE-UHFFFAOYSA-N 0.000 description 1
- QDRXWCAVUNHOGA-UHFFFAOYSA-N acequinocyl Chemical group C1=CC=C2C(=O)C(CCCCCCCCCCCC)=C(OC(C)=O)C(=O)C2=C1 QDRXWCAVUNHOGA-UHFFFAOYSA-N 0.000 description 1
- 125000000738 acetamido group Chemical group [H]C([H])([H])C(=O)N([H])[*] 0.000 description 1
- CGIHPACLZJDCBQ-UHFFFAOYSA-N acibenzolar Chemical compound SC(=O)C1=CC=CC2=C1SN=N2 CGIHPACLZJDCBQ-UHFFFAOYSA-N 0.000 description 1
- UELITFHSCLAHKR-UHFFFAOYSA-N acibenzolar-S-methyl Chemical group CSC(=O)C1=CC=CC2=C1SN=N2 UELITFHSCLAHKR-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- YLFSVIMMRPNPFK-WEQBUNFVSA-N acrinathrin Chemical compound CC1(C)[C@@H](\C=C/C(=O)OC(C(F)(F)F)C(F)(F)F)[C@H]1C(=O)O[C@H](C#N)C1=CC=CC(OC=2C=CC=CC=2)=C1 YLFSVIMMRPNPFK-WEQBUNFVSA-N 0.000 description 1
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000001261 affinity purification Methods 0.000 description 1
- LRZWFURXIMFONG-HRSIRGMGSA-N afidopyropen Chemical compound C([C@@]1(C)[C@H]2[C@]([C@H]3[C@@H](O)C=4C(=O)OC(=CC=4O[C@]3(C)[C@@H](O)C2)C=2C=NC=CC=2)(C)CC[C@@H]1OC(=O)C1CC1)OC(=O)C1CC1 LRZWFURXIMFONG-HRSIRGMGSA-N 0.000 description 1
- 229960000982 afoxolaner Drugs 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 238000000246 agarose gel electrophoresis Methods 0.000 description 1
- 239000000556 agonist Substances 0.000 description 1
- GMAUQNJOSOMMHI-JXAWBTAJSA-N alanycarb Chemical compound CSC(\C)=N/OC(=O)N(C)SN(CCC(=O)OCC)CC1=CC=CC=C1 GMAUQNJOSOMMHI-JXAWBTAJSA-N 0.000 description 1
- HFVAFDPGUJEFBQ-UHFFFAOYSA-M alizarin red S Chemical compound [Na+].O=C1C2=CC=CC=C2C(=O)C2=C1C=C(S([O-])(=O)=O)C(O)=C2O HFVAFDPGUJEFBQ-UHFFFAOYSA-M 0.000 description 1
- 125000002877 alkyl aryl group Chemical group 0.000 description 1
- 150000004996 alkyl benzenes Chemical class 0.000 description 1
- 125000005907 alkyl ester group Chemical group 0.000 description 1
- 125000005376 alkyl siloxane group Chemical group 0.000 description 1
- 229960000458 allantoin Drugs 0.000 description 1
- ZCVAOQKBXKSDMS-UHFFFAOYSA-N allethrin Chemical compound CC1(C)C(C=C(C)C)C1C(=O)OC1C(C)=C(CC=C)C(=O)C1 ZCVAOQKBXKSDMS-UHFFFAOYSA-N 0.000 description 1
- 229940024113 allethrin Drugs 0.000 description 1
- 230000003281 allosteric effect Effects 0.000 description 1
- 235000020224 almond Nutrition 0.000 description 1
- DTOSIQBPPRVQHS-PDBXOOCHSA-N alpha-linolenic acid Chemical compound CC\C=C/C\C=C/C\C=C/CCCCCCCC(O)=O DTOSIQBPPRVQHS-PDBXOOCHSA-N 0.000 description 1
- 235000020661 alpha-linolenic acid Nutrition 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- PPNXXZIBFHTHDM-UHFFFAOYSA-N aluminium phosphide Chemical compound P#[Al] PPNXXZIBFHTHDM-UHFFFAOYSA-N 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 229960002749 aminolevulinic acid Drugs 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 230000003698 anagen phase Effects 0.000 description 1
- HUTDUHSNJYTCAR-UHFFFAOYSA-N ancymidol Chemical compound C1=CC(OC)=CC=C1C(O)(C=1C=NC=NC=1)C1CC1 HUTDUHSNJYTCAR-UHFFFAOYSA-N 0.000 description 1
- 230000003042 antagnostic effect Effects 0.000 description 1
- 230000000843 anti-fungal effect Effects 0.000 description 1
- 230000000433 anti-nutritional effect Effects 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 229940121375 antifungal agent Drugs 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 235000006708 antioxidants Nutrition 0.000 description 1
- 235000021016 apples Nutrition 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 235000016520 artichoke thistle Nutrition 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 229960000892 attapulgite Drugs 0.000 description 1
- VEHPJKVTJQSSKL-UHFFFAOYSA-N azadirachtin Natural products O1C2(C)C(C3(C=COC3O3)O)CC3C21C1(C)C(O)C(OCC2(OC(C)=O)C(CC3OC(=O)C(C)=CC)OC(C)=O)C2C32COC(C(=O)OC)(O)C12 VEHPJKVTJQSSKL-UHFFFAOYSA-N 0.000 description 1
- FTNJWQUOZFUQQJ-NDAWSKJSSA-N azadirachtin A Chemical compound C([C@@H]([C@]1(C=CO[C@H]1O1)O)[C@]2(C)O3)[C@H]1[C@]23[C@]1(C)[C@H](O)[C@H](OC[C@@]2([C@@H](C[C@@H]3OC(=O)C(\C)=C\C)OC(C)=O)C(=O)OC)[C@@H]2[C@]32CO[C@@](C(=O)OC)(O)[C@@H]12 FTNJWQUOZFUQQJ-NDAWSKJSSA-N 0.000 description 1
- FTNJWQUOZFUQQJ-IRYYUVNJSA-N azadirachtin A Natural products C([C@@H]([C@]1(C=CO[C@H]1O1)O)[C@]2(C)O3)[C@H]1[C@]23[C@]1(C)[C@H](O)[C@H](OC[C@@]2([C@@H](C[C@@H]3OC(=O)C(\C)=C/C)OC(C)=O)C(=O)OC)[C@@H]2[C@]32CO[C@@](C(=O)OC)(O)[C@@H]12 FTNJWQUOZFUQQJ-IRYYUVNJSA-N 0.000 description 1
- VNKBTWQZTQIWDV-UHFFFAOYSA-N azamethiphos Chemical compound C1=C(Cl)C=C2OC(=O)N(CSP(=O)(OC)OC)C2=N1 VNKBTWQZTQIWDV-UHFFFAOYSA-N 0.000 description 1
- RQVGAIADHNPSME-UHFFFAOYSA-N azinphos-ethyl Chemical group C1=CC=C2C(=O)N(CSP(=S)(OCC)OCC)N=NC2=C1 RQVGAIADHNPSME-UHFFFAOYSA-N 0.000 description 1
- CJJOSEISRRTUQB-UHFFFAOYSA-N azinphos-methyl Chemical group C1=CC=C2C(=O)N(CSP(=S)(OC)OC)N=NC2=C1 CJJOSEISRRTUQB-UHFFFAOYSA-N 0.000 description 1
- 239000000987 azo dye Substances 0.000 description 1
- ONHBDDJJTDTLIR-UHFFFAOYSA-N azocyclotin Chemical compound C1CCCCC1[Sn](N1N=CN=C1)(C1CCCCC1)C1CCCCC1 ONHBDDJJTDTLIR-UHFFFAOYSA-N 0.000 description 1
- 210000004666 bacterial spore Anatomy 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- XEGGRYVFLWGFHI-UHFFFAOYSA-N bendiocarb Chemical compound CNC(=O)OC1=CC=CC2=C1OC(C)(C)O2 XEGGRYVFLWGFHI-UHFFFAOYSA-N 0.000 description 1
- FYZBOYWSHKHDMT-UHFFFAOYSA-N benfuracarb Chemical compound CCOC(=O)CCN(C(C)C)SN(C)C(=O)OC1=CC=CC2=C1OC(C)(C)C2 FYZBOYWSHKHDMT-UHFFFAOYSA-N 0.000 description 1
- YFXPPSKYMBTNAV-UHFFFAOYSA-N bensultap Chemical compound C=1C=CC=CC=1S(=O)(=O)SCC(N(C)C)CSS(=O)(=O)C1=CC=CC=C1 YFXPPSKYMBTNAV-UHFFFAOYSA-N 0.000 description 1
- 235000019445 benzyl alcohol Nutrition 0.000 description 1
- 235000021028 berry Nutrition 0.000 description 1
- 239000003782 beta lactam antibiotic agent Substances 0.000 description 1
- VHLKTXFWDRXILV-UHFFFAOYSA-N bifenazate Chemical compound C1=C(NNC(=O)OC(C)C)C(OC)=CC=C1C1=CC=CC=C1 VHLKTXFWDRXILV-UHFFFAOYSA-N 0.000 description 1
- OMFRMAHOUUJSGP-IRHGGOMRSA-N bifenthrin Chemical compound C1=CC=C(C=2C=CC=CC=2)C(C)=C1COC(=O)[C@@H]1[C@H](\C=C(/Cl)C(F)(F)F)C1(C)C OMFRMAHOUUJSGP-IRHGGOMRSA-N 0.000 description 1
- 229960001901 bioallethrin Drugs 0.000 description 1
- 239000003139 biocide Substances 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 239000012472 biological sample Substances 0.000 description 1
- 229950002373 bioresmethrin Drugs 0.000 description 1
- 238000010352 biotechnological method Methods 0.000 description 1
- QKSKPIVNLNLAAV-UHFFFAOYSA-N bis(2-chloroethyl) sulfide Chemical compound ClCCSCCCl QKSKPIVNLNLAAV-UHFFFAOYSA-N 0.000 description 1
- 235000021014 blueberries Nutrition 0.000 description 1
- 229910021538 borax Inorganic materials 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- IXVMHGVQKLDRKH-KNBKMWSGSA-N brassinolide Chemical compound C1OC(=O)[C@H]2C[C@H](O)[C@H](O)C[C@]2(C)[C@H]2CC[C@]3(C)[C@@H]([C@H](C)[C@@H](O)[C@H](O)[C@@H](C)C(C)C)CC[C@H]3[C@@H]21 IXVMHGVQKLDRKH-KNBKMWSGSA-N 0.000 description 1
- 238000009395 breeding Methods 0.000 description 1
- QSLZKWPYTWEWHC-UHFFFAOYSA-N broflanilide Chemical compound C=1C=CC(C(=O)NC=2C(=CC(=CC=2Br)C(F)(C(F)(F)F)C(F)(F)F)C(F)(F)F)=C(F)C=1N(C)C(=O)C1=CC=CC=C1 QSLZKWPYTWEWHC-UHFFFAOYSA-N 0.000 description 1
- FOANIXZHAMJWOI-UHFFFAOYSA-N bromopropylate Chemical compound C=1C=C(Br)C=CC=1C(O)(C(=O)OC(C)C)C1=CC=C(Br)C=C1 FOANIXZHAMJWOI-UHFFFAOYSA-N 0.000 description 1
- PRLVTUNWOQKEAI-VKAVYKQESA-N buprofezin Chemical compound O=C1N(C(C)C)\C(=N\C(C)(C)C)SCN1C1=CC=CC=C1 PRLVTUNWOQKEAI-VKAVYKQESA-N 0.000 description 1
- RHDGNLCLDBVESU-UHFFFAOYSA-N but-3-en-4-olide Chemical compound O=C1CC=CO1 RHDGNLCLDBVESU-UHFFFAOYSA-N 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- SFNPDDSJBGRXLW-UITAMQMPSA-N butocarboxim Chemical compound CNC(=O)O\N=C(\C)C(C)SC SFNPDDSJBGRXLW-UITAMQMPSA-N 0.000 description 1
- PSGPXWYGJGGEEG-UHFFFAOYSA-N butyl 9-hydroxyfluorene-9-carboxylate Chemical group C1=CC=C2C(C(=O)OCCCC)(O)C3=CC=CC=C3C2=C1 PSGPXWYGJGGEEG-UHFFFAOYSA-N 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- KXRPCFINVWWFHQ-UHFFFAOYSA-N cadusafos Chemical compound CCC(C)SP(=O)(OCC)SC(C)CC KXRPCFINVWWFHQ-UHFFFAOYSA-N 0.000 description 1
- NLKUPINTOLSSLD-UHFFFAOYSA-L calcium;4-(1-oxidopropylidene)-3,5-dioxocyclohexane-1-carboxylate Chemical compound [Ca+2].CCC([O-])=C1C(=O)CC(C([O-])=O)CC1=O NLKUPINTOLSSLD-UHFFFAOYSA-L 0.000 description 1
- 235000009120 camo Nutrition 0.000 description 1
- 229960000846 camphor Drugs 0.000 description 1
- 229930008380 camphor Natural products 0.000 description 1
- 239000001390 capsicum minimum Substances 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 150000004657 carbamic acid derivatives Chemical class 0.000 description 1
- DUEPRVBVGDRKAG-UHFFFAOYSA-N carbofuran Chemical compound CNC(=O)OC1=CC=CC2=C1OC(C)(C)C2 DUEPRVBVGDRKAG-UHFFFAOYSA-N 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- JLQUFIHWVLZVTJ-UHFFFAOYSA-N carbosulfan Chemical compound CCCCN(CCCC)SN(C)C(=O)OC1=CC=CC2=C1OC(C)(C)C2 JLQUFIHWVLZVTJ-UHFFFAOYSA-N 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 239000005018 casein Substances 0.000 description 1
- BECPQYXYKAMYBN-UHFFFAOYSA-N casein, tech. Chemical compound NCCCCC(C(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(CC(C)C)N=C(O)C(CCC(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(C(C)O)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(COP(O)(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(N)CC1=CC=CC=C1 BECPQYXYKAMYBN-UHFFFAOYSA-N 0.000 description 1
- 235000021240 caseins Nutrition 0.000 description 1
- ADRVNXBAWSRFAJ-UHFFFAOYSA-N catechin Natural products OC1Cc2cc(O)cc(O)c2OC1c3ccc(O)c(O)c3 ADRVNXBAWSRFAJ-UHFFFAOYSA-N 0.000 description 1
- 125000004403 catechin group Chemical group 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 235000005607 chanvre indien Nutrition 0.000 description 1
- ALLOLPOYFRLCCX-UHFFFAOYSA-N chembl1986529 Chemical compound COC1=CC=CC=C1N=NC1=C(O)C=CC2=CC=CC=C12 ALLOLPOYFRLCCX-UHFFFAOYSA-N 0.000 description 1
- NDHXMRFNYMNBKO-PWSUYJOCSA-N chembl2227757 Chemical compound [O-][N+](=O)C([C@H]1CC[C@H](O1)N1CC2)=C1N2CC1=CC=C(Cl)N=C1 NDHXMRFNYMNBKO-PWSUYJOCSA-N 0.000 description 1
- 235000019693 cherries Nutrition 0.000 description 1
- 235000003733 chicria Nutrition 0.000 description 1
- FLASNYPZGWUPSU-SICDJOISSA-N chitosan Chemical compound O([C@@H]1[C@@H](CO)O[C@H]([C@@H]([C@H]1O)N)O[C@@H]1[C@@H](CO)O[C@H]([C@@H]([C@H]1O)N)O[C@@H]1[C@@H](CO)O[C@H]([C@@H]([C@H]1O)N)O[C@@H]1[C@@H](CO)O[C@H]([C@@H]([C@H]1O)N)O[C@@H]1[C@@H](CO)O[C@H]([C@@H]([C@H]1O)N)O[C@H]1[C@H](O)[C@H]([C@@H](O[C@@H]1CO)O[C@@H]1[C@H](O[C@@H](O[C@@H]2[C@H](O[C@@H](O)[C@H](N)[C@H]2O)CO)[C@H](N)[C@H]1O)CO)NC(=O)OC)[C@@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1N FLASNYPZGWUPSU-SICDJOISSA-N 0.000 description 1
- 108010089807 chitosanase Proteins 0.000 description 1
- BIWJNBZANLAXMG-YQELWRJZSA-N chloordaan Chemical compound ClC1=C(Cl)[C@@]2(Cl)C3CC(Cl)C(Cl)C3[C@]1(Cl)C2(Cl)Cl BIWJNBZANLAXMG-YQELWRJZSA-N 0.000 description 1
- PSOVNZZNOMJUBI-UHFFFAOYSA-N chlorantraniliprole Chemical compound CNC(=O)C1=CC(Cl)=CC(C)=C1NC(=O)C1=CC(Br)=NN1C1=NC=CC=C1Cl PSOVNZZNOMJUBI-UHFFFAOYSA-N 0.000 description 1
- XFDJMIHUAHSGKG-UHFFFAOYSA-N chlorethoxyfos Chemical compound CCOP(=S)(OCC)OC(Cl)C(Cl)(Cl)Cl XFDJMIHUAHSGKG-UHFFFAOYSA-N 0.000 description 1
- CWFOCCVIPCEQCK-UHFFFAOYSA-N chlorfenapyr Chemical compound BrC1=C(C(F)(F)F)N(COCC)C(C=2C=CC(Cl)=CC=2)=C1C#N CWFOCCVIPCEQCK-UHFFFAOYSA-N 0.000 description 1
- UISUNVFOGSJSKD-UHFFFAOYSA-N chlorfluazuron Chemical compound FC1=CC=CC(F)=C1C(=O)NC(=O)NC(C=C1Cl)=CC(Cl)=C1OC1=NC=C(C(F)(F)F)C=C1Cl UISUNVFOGSJSKD-UHFFFAOYSA-N 0.000 description 1
- 239000003467 chloride channel stimulating agent Substances 0.000 description 1
- QGTYWWGEWOBMAK-UHFFFAOYSA-N chlormephos Chemical compound CCOP(=S)(OCC)SCCl QGTYWWGEWOBMAK-UHFFFAOYSA-N 0.000 description 1
- LFHISGNCFUNFFM-UHFFFAOYSA-N chloropicrin Chemical compound [O-][N+](=O)C(Cl)(Cl)Cl LFHISGNCFUNFFM-UHFFFAOYSA-N 0.000 description 1
- SBPBAQFWLVIOKP-UHFFFAOYSA-N chlorpyrifos Chemical compound CCOP(=S)(OCC)OC1=NC(Cl)=C(Cl)C=C1Cl SBPBAQFWLVIOKP-UHFFFAOYSA-N 0.000 description 1
- HPNSNYBUADCFDR-UHFFFAOYSA-N chromafenozide Chemical compound CC1=CC(C)=CC(C(=O)N(NC(=O)C=2C(=C3CCCOC3=CC=2)C)C(C)(C)C)=C1 HPNSNYBUADCFDR-UHFFFAOYSA-N 0.000 description 1
- 229950001002 cianidanol Drugs 0.000 description 1
- 235000017803 cinnamon Nutrition 0.000 description 1
- IVLCENBZDYVJPA-ARJAWSKDSA-N cis-Jasmone Natural products C\C=C/CC1=C(C)CCC1=O IVLCENBZDYVJPA-ARJAWSKDSA-N 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- UXADOQPNKNTIHB-UHFFFAOYSA-N clofentezine Chemical compound ClC1=CC=CC=C1C1=NN=C(C=2C(=CC=CC=2)Cl)N=N1 UXADOQPNKNTIHB-UHFFFAOYSA-N 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 239000008199 coating composition Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 229920001436 collagen Polymers 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 239000008139 complexing agent Substances 0.000 description 1
- 239000002361 compost Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- BXNANOICGRISHX-UHFFFAOYSA-N coumaphos Chemical compound CC1=C(Cl)C(=O)OC2=CC(OP(=S)(OCC)OCC)=CC=C21 BXNANOICGRISHX-UHFFFAOYSA-N 0.000 description 1
- 238000009295 crossflow filtration Methods 0.000 description 1
- 229910001610 cryolite Inorganic materials 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- SCKHCCSZFPSHGR-UHFFFAOYSA-N cyanophos Chemical compound COP(=S)(OC)OC1=CC=C(C#N)C=C1 SCKHCCSZFPSHGR-UHFFFAOYSA-N 0.000 description 1
- DVBUIBGJRQBEDP-UHFFFAOYSA-N cyantraniliprole Chemical compound CNC(=O)C1=CC(C#N)=CC(C)=C1NC(=O)C1=CC(Br)=NN1C1=NC=CC=C1Cl DVBUIBGJRQBEDP-UHFFFAOYSA-N 0.000 description 1
- GLWWLNJJJCTFMZ-UHFFFAOYSA-N cyclanilide Chemical compound C=1C=C(Cl)C=C(Cl)C=1NC(=O)C1(C(=O)O)CC1 GLWWLNJJJCTFMZ-UHFFFAOYSA-N 0.000 description 1
- FNIATMYXUPOJRW-UHFFFAOYSA-N cyclohexylidene Chemical group [C]1CCCCC1 FNIATMYXUPOJRW-UHFFFAOYSA-N 0.000 description 1
- CXKXKAHHMPBRPT-UHFFFAOYSA-N cyclopropen-1-ylmethanol Chemical compound OCC1=CC1 CXKXKAHHMPBRPT-UHFFFAOYSA-N 0.000 description 1
- LSFUGNKKPMBOMG-UHFFFAOYSA-N cycloprothrin Chemical compound ClC1(Cl)CC1(C=1C=CC=CC=1)C(=O)OC(C#N)C1=CC=CC(OC=2C=CC=CC=2)=C1 LSFUGNKKPMBOMG-UHFFFAOYSA-N 0.000 description 1
- APJLTUBHYCOZJI-VZCXRCSSSA-N cyenopyrafen Chemical compound CC1=NN(C)C(\C(OC(=O)C(C)(C)C)=C(/C#N)C=2C=CC(=CC=2)C(C)(C)C)=C1C APJLTUBHYCOZJI-VZCXRCSSSA-N 0.000 description 1
- NNRSYETYEADPBW-UHFFFAOYSA-N cyhalodiamide Chemical compound CC1=CC(C(F)(C(F)(F)F)C(F)(F)F)=CC=C1NC(=O)C1=CC=CC(Cl)=C1C(=O)NC(C)(C)C#N NNRSYETYEADPBW-UHFFFAOYSA-N 0.000 description 1
- ZXQYGBMAQZUVMI-UNOMPAQXSA-N cyhalothrin Chemical compound CC1(C)C(\C=C(/Cl)C(F)(F)F)C1C(=O)OC(C#N)C1=CC=CC(OC=2C=CC=CC=2)=C1 ZXQYGBMAQZUVMI-UNOMPAQXSA-N 0.000 description 1
- WCMMILVIRZAPLE-UHFFFAOYSA-M cyhexatin Chemical compound C1CCCCC1[Sn](C1CCCCC1)(O)C1CCCCC1 WCMMILVIRZAPLE-UHFFFAOYSA-M 0.000 description 1
- LVQDKIWDGQRHTE-UHFFFAOYSA-N cyromazine Chemical compound NC1=NC(N)=NC(NC2CC2)=N1 LVQDKIWDGQRHTE-UHFFFAOYSA-N 0.000 description 1
- 229950000775 cyromazine Drugs 0.000 description 1
- 210000000805 cytoplasm Anatomy 0.000 description 1
- 230000001086 cytosolic effect Effects 0.000 description 1
- 229940008203 d-transallethrin Drugs 0.000 description 1
- QAYICIQNSGETAS-UHFFFAOYSA-N dazomet Chemical compound CN1CSC(=S)N(C)C1 QAYICIQNSGETAS-UHFFFAOYSA-N 0.000 description 1
- NDYULEPTCXJCJM-UHFFFAOYSA-N dazomet, sodium salt Chemical compound [Na+].CN1CN(C)C(=S)S[CH-]1 NDYULEPTCXJCJM-UHFFFAOYSA-N 0.000 description 1
- UUFCANMFJXBATG-UHFFFAOYSA-N dec-3-en-4-yl ethyl carbonate Chemical compound CCCCCCC(=CCC)OC(=O)OCC UUFCANMFJXBATG-UHFFFAOYSA-N 0.000 description 1
- 238000005034 decoration Methods 0.000 description 1
- 230000023753 dehiscence Effects 0.000 description 1
- 238000011118 depth filtration Methods 0.000 description 1
- 230000001687 destabilization Effects 0.000 description 1
- WOWBFOBYOAGEEA-UHFFFAOYSA-N diafenthiuron Chemical compound CC(C)C1=C(NC(=S)NC(C)(C)C)C(C(C)C)=CC(OC=2C=CC=CC=2)=C1 WOWBFOBYOAGEEA-UHFFFAOYSA-N 0.000 description 1
- 238000011026 diafiltration Methods 0.000 description 1
- GUJOJGAPFQRJSV-UHFFFAOYSA-N dialuminum;dioxosilane;oxygen(2-);hydrate Chemical compound O.[O-2].[O-2].[O-2].[Al+3].[Al+3].O=[Si]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O GUJOJGAPFQRJSV-UHFFFAOYSA-N 0.000 description 1
- 150000001470 diamides Chemical class 0.000 description 1
- FHIVAFMUCKRCQO-UHFFFAOYSA-N diazinon Chemical compound CCOP(=S)(OCC)OC1=CC(C)=NC(C(C)C)=N1 FHIVAFMUCKRCQO-UHFFFAOYSA-N 0.000 description 1
- 229960003887 dichlorophen Drugs 0.000 description 1
- 229950001327 dichlorvos Drugs 0.000 description 1
- PVDQXPBKBSCNJZ-UHFFFAOYSA-N dicloromezotiaz Chemical compound CC1=CC=C[N+](C(C(C=2C=C(Cl)C=C(Cl)C=2)=C2[O-])=O)=C1N2CC1=CN=C(Cl)S1 PVDQXPBKBSCNJZ-UHFFFAOYSA-N 0.000 description 1
- UOAMTSKGCBMZTC-UHFFFAOYSA-N dicofol Chemical compound C=1C=C(Cl)C=CC=1C(C(Cl)(Cl)Cl)(O)C1=CC=C(Cl)C=C1 UOAMTSKGCBMZTC-UHFFFAOYSA-N 0.000 description 1
- VEENJGZXVHKXNB-VOTSOKGWSA-N dicrotophos Chemical compound COP(=O)(OC)O\C(C)=C\C(=O)N(C)C VEENJGZXVHKXNB-VOTSOKGWSA-N 0.000 description 1
- 235000005911 diet Nutrition 0.000 description 1
- 230000037213 diet Effects 0.000 description 1
- JXSJBGJIGXNWCI-UHFFFAOYSA-N diethyl 2-[(dimethoxyphosphorothioyl)thio]succinate Chemical compound CCOC(=O)CC(SP(=S)(OC)OC)C(=O)OCC JXSJBGJIGXNWCI-UHFFFAOYSA-N 0.000 description 1
- 229940019503 diflubenzuron Drugs 0.000 description 1
- FWCBATIDXGJRMF-UHFFFAOYSA-N dikegulac Natural products C12OC(C)(C)OCC2OC2(C(O)=O)C1OC(C)(C)O2 FWCBATIDXGJRMF-UHFFFAOYSA-N 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- MCWXGJITAZMZEV-UHFFFAOYSA-N dimethoate Chemical compound CNC(=O)CSP(=S)(OC)OC MCWXGJITAZMZEV-UHFFFAOYSA-N 0.000 description 1
- YKBZOVFACRVRJN-UHFFFAOYSA-N dinotefuran Chemical compound [O-][N+](=O)\N=C(/NC)NCC1CCOC1 YKBZOVFACRVRJN-UHFFFAOYSA-N 0.000 description 1
- ZPZKADHMBHMAES-PXYBLNDHSA-L dipotassium;(1s,2r,3s,4r)-7-oxabicyclo[2.2.1]heptane-2,3-dicarboxylate Chemical compound [K+].[K+].C1C[C@@H]2[C@@H](C([O-])=O)[C@@H](C(=O)[O-])[C@H]1O2 ZPZKADHMBHMAES-PXYBLNDHSA-L 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- XRHVZWWRFMCBAZ-PXYBLNDHSA-L disodium;(1s,2r,3s,4r)-7-oxabicyclo[2.2.1]heptane-2,3-dicarboxylate Chemical compound [Na+].[Na+].C1C[C@@H]2[C@@H](C([O-])=O)[C@@H](C(=O)[O-])[C@H]1O2 XRHVZWWRFMCBAZ-PXYBLNDHSA-L 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- DOFZAZXDOSGAJZ-UHFFFAOYSA-N disulfoton Chemical compound CCOP(=S)(OCC)SCCSCC DOFZAZXDOSGAJZ-UHFFFAOYSA-N 0.000 description 1
- 239000010459 dolomite Substances 0.000 description 1
- 229910000514 dolomite Inorganic materials 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 238000002036 drum drying Methods 0.000 description 1
- 238000010981 drying operation Methods 0.000 description 1
- GCKZANITAMOIAR-XWVCPFKXSA-N dsstox_cid_14566 Chemical compound [O-]C(=O)C1=CC=CC=C1.C1=C[C@H](C)[C@@H]([C@@H](C)CC)O[C@]11O[C@H](C\C=C(C)\[C@@H](O[C@@H]2O[C@@H](C)[C@H](O[C@@H]3O[C@@H](C)[C@H]([NH2+]C)[C@@H](OC)C3)[C@@H](OC)C2)[C@@H](C)\C=C\C=C/2[C@]3([C@H](C(=O)O4)C=C(C)[C@@H](O)[C@H]3OC\2)O)C[C@H]4C1 GCKZANITAMOIAR-XWVCPFKXSA-N 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000010410 dusting Methods 0.000 description 1
- 108010057988 ecdysone receptor Proteins 0.000 description 1
- 244000078703 ectoparasite Species 0.000 description 1
- 239000002895 emetic Substances 0.000 description 1
- 230000006353 environmental stress Effects 0.000 description 1
- NYPJDWWKZLNGGM-RPWUZVMVSA-N esfenvalerate Chemical compound C=1C([C@@H](C#N)OC(=O)[C@@H](C(C)C)C=2C=CC(Cl)=CC=2)=CC=CC=1OC1=CC=CC=C1 NYPJDWWKZLNGGM-RPWUZVMVSA-N 0.000 description 1
- 230000012173 estrus Effects 0.000 description 1
- HEZNVIYQEUHLNI-UHFFFAOYSA-N ethiofencarb Chemical compound CCSCC1=CC=CC=C1OC(=O)NC HEZNVIYQEUHLNI-UHFFFAOYSA-N 0.000 description 1
- FPIQZBQZKBKLEI-UHFFFAOYSA-N ethyl 1-[[2-chloroethyl(nitroso)carbamoyl]amino]cyclohexane-1-carboxylate Chemical compound ClCCN(N=O)C(=O)NC1(C(=O)OCC)CCCCC1 FPIQZBQZKBKLEI-UHFFFAOYSA-N 0.000 description 1
- 125000000219 ethylidene group Chemical group [H]C(=[*])C([H])([H])[H] 0.000 description 1
- YREQHYQNNWYQCJ-UHFFFAOYSA-N etofenprox Chemical compound C1=CC(OCC)=CC=C1C(C)(C)COCC1=CC=CC(OC=2C=CC=CC=2)=C1 YREQHYQNNWYQCJ-UHFFFAOYSA-N 0.000 description 1
- 229950005085 etofenprox Drugs 0.000 description 1
- IXSZQYVWNJNRAL-UHFFFAOYSA-N etoxazole Chemical compound CCOC1=CC(C(C)(C)C)=CC=C1C1N=C(C=2C(=CC=CC=2F)F)OC1 IXSZQYVWNJNRAL-UHFFFAOYSA-N 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- JISACBWYRJHSMG-UHFFFAOYSA-N famphur Chemical compound COP(=S)(OC)OC1=CC=C(S(=O)(=O)N(C)C)C=C1 JISACBWYRJHSMG-UHFFFAOYSA-N 0.000 description 1
- 239000003925 fat Substances 0.000 description 1
- 235000019197 fats Nutrition 0.000 description 1
- 150000002191 fatty alcohols Chemical class 0.000 description 1
- DMYHGDXADUDKCQ-UHFFFAOYSA-N fenazaquin Chemical compound C1=CC(C(C)(C)C)=CC=C1CCOC1=NC=NC2=CC=CC=C12 DMYHGDXADUDKCQ-UHFFFAOYSA-N 0.000 description 1
- ZNOLGFHPUIJIMJ-UHFFFAOYSA-N fenitrothion Chemical compound COP(=S)(OC)OC1=CC=C([N+]([O-])=O)C(C)=C1 ZNOLGFHPUIJIMJ-UHFFFAOYSA-N 0.000 description 1
- HJUFTIJOISQSKQ-UHFFFAOYSA-N fenoxycarb Chemical compound C1=CC(OCCNC(=O)OCC)=CC=C1OC1=CC=CC=C1 HJUFTIJOISQSKQ-UHFFFAOYSA-N 0.000 description 1
- XQUXKZZNEFRCAW-UHFFFAOYSA-N fenpropathrin Chemical compound CC1(C)C(C)(C)C1C(=O)OC(C#N)C1=CC=CC(OC=2C=CC=CC=2)=C1 XQUXKZZNEFRCAW-UHFFFAOYSA-N 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000007888 film coating Substances 0.000 description 1
- 238000009501 film coating Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- RLQJEEJISHYWON-UHFFFAOYSA-N flonicamid Chemical compound FC(F)(F)C1=CC=NC=C1C(=O)NCC#N RLQJEEJISHYWON-UHFFFAOYSA-N 0.000 description 1
- MXWAGQASUDSFBG-RVDMUPIBSA-N fluacrypyrim Chemical compound CO\C=C(\C(=O)OC)C1=CC=CC=C1COC1=CC(C(F)(F)F)=NC(OC(C)C)=N1 MXWAGQASUDSFBG-RVDMUPIBSA-N 0.000 description 1
- PHCCDUCBMCYSNQ-UHFFFAOYSA-N fluazaindolizine Chemical compound COC1=CC=C(Cl)C(S(=O)(=O)NC(=O)C=2N=C3C(Cl)=CC(=CN3C=2)C(F)(F)F)=C1 PHCCDUCBMCYSNQ-UHFFFAOYSA-N 0.000 description 1
- GBIHOLCMZGAKNG-CGAIIQECSA-N flucythrinate Chemical compound O=C([C@@H](C(C)C)C=1C=CC(OC(F)F)=CC=1)OC(C#N)C(C=1)=CC=CC=1OC1=CC=CC=C1 GBIHOLCMZGAKNG-CGAIIQECSA-N 0.000 description 1
- XSNMWAPKHUGZGQ-UHFFFAOYSA-N fluensulfone Chemical compound FC(F)=C(F)CCS(=O)(=O)C1=NC=C(Cl)S1 XSNMWAPKHUGZGQ-UHFFFAOYSA-N 0.000 description 1
- GJEREQYJIQASAW-UHFFFAOYSA-N flufenerim Chemical compound CC(F)C1=NC=NC(NCCC=2C=CC(OC(F)(F)F)=CC=2)=C1Cl GJEREQYJIQASAW-UHFFFAOYSA-N 0.000 description 1
- RYLHNOVXKPXDIP-UHFFFAOYSA-N flufenoxuron Chemical compound C=1C=C(NC(=O)NC(=O)C=2C(=CC=CC=2F)F)C(F)=CC=1OC1=CC=C(C(F)(F)F)C=C1Cl RYLHNOVXKPXDIP-UHFFFAOYSA-N 0.000 description 1
- MBHXIQDIVCJZTD-RVDMUPIBSA-N flufenoxystrobin Chemical compound CO\C=C(\C(=O)OC)C1=CC=CC=C1COC1=CC=C(C(F)(F)F)C=C1Cl MBHXIQDIVCJZTD-RVDMUPIBSA-N 0.000 description 1
- 108091006047 fluorescent proteins Proteins 0.000 description 1
- 102000034287 fluorescent proteins Human genes 0.000 description 1
- MLBZKOGAMRTSKP-UHFFFAOYSA-N fluralaner Chemical compound C1=C(C(=O)NCC(=O)NCC(F)(F)F)C(C)=CC(C=2CC(ON=2)(C=2C=C(Cl)C=C(Cl)C=2)C(F)(F)F)=C1 MLBZKOGAMRTSKP-UHFFFAOYSA-N 0.000 description 1
- 229960004498 fluralaner Drugs 0.000 description 1
- 238000005187 foaming Methods 0.000 description 1
- GPXLRLUVLMHHIK-UHFFFAOYSA-N forchlorfenuron Chemical compound C1=NC(Cl)=CC(NC(=O)NC=2C=CC=CC=2)=C1 GPXLRLUVLMHHIK-UHFFFAOYSA-N 0.000 description 1
- DUFVKSUJRWYZQP-UHFFFAOYSA-N fosthiazate Chemical compound CCC(C)SP(=O)(OCC)N1CCSC1=O DUFVKSUJRWYZQP-UHFFFAOYSA-N 0.000 description 1
- 239000003205 fragrance Substances 0.000 description 1
- 238000004108 freeze drying Methods 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 230000002538 fungal effect Effects 0.000 description 1
- 244000000004 fungal plant pathogen Species 0.000 description 1
- HAWJXYBZNNRMNO-UHFFFAOYSA-N furathiocarb Chemical compound CCCCOC(=O)N(C)SN(C)C(=O)OC1=CC=CC2=C1OC(C)(C)C2 HAWJXYBZNNRMNO-UHFFFAOYSA-N 0.000 description 1
- ZXQYGBMAQZUVMI-GCMPRSNUSA-N gamma-cyhalothrin Chemical compound CC1(C)[C@@H](\C=C(/Cl)C(F)(F)F)[C@H]1C(=O)O[C@H](C#N)C1=CC=CC(OC=2C=CC=CC=2)=C1 ZXQYGBMAQZUVMI-GCMPRSNUSA-N 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 238000012239 gene modification Methods 0.000 description 1
- 230000005017 genetic modification Effects 0.000 description 1
- 235000013617 genetically modified food Nutrition 0.000 description 1
- 238000010362 genome editing Methods 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 238000005469 granulation Methods 0.000 description 1
- 230000003179 granulation Effects 0.000 description 1
- 235000021021 grapes Nutrition 0.000 description 1
- 239000003673 groundwater Substances 0.000 description 1
- 239000003966 growth inhibitor Substances 0.000 description 1
- WIFXJBMOTMKRMM-UHFFFAOYSA-N halfenprox Chemical compound C=1C=C(OC(F)(F)Br)C=CC=1C(C)(C)COCC(C=1)=CC=CC=1OC1=CC=CC=C1 WIFXJBMOTMKRMM-UHFFFAOYSA-N 0.000 description 1
- 150000008282 halocarbons Chemical class 0.000 description 1
- CNKHSLKYRMDDNQ-UHFFFAOYSA-N halofenozide Chemical compound C=1C=CC=CC=1C(=O)N(C(C)(C)C)NC(=O)C1=CC=C(Cl)C=C1 CNKHSLKYRMDDNQ-UHFFFAOYSA-N 0.000 description 1
- 230000005802 health problem Effects 0.000 description 1
- 244000000013 helminth Species 0.000 description 1
- 239000011487 hemp Substances 0.000 description 1
- BKACAEJQMLLGAV-PLNGDYQASA-N heptafluthrin Chemical compound FC1=C(F)C(COC)=C(F)C(F)=C1COC(=O)C1C(C)(C)C1\C=C/C(F)(F)F BKACAEJQMLLGAV-PLNGDYQASA-N 0.000 description 1
- RGNPBRKPHBKNKX-UHFFFAOYSA-N hexaflumuron Chemical compound C1=C(Cl)C(OC(F)(F)C(F)F)=C(Cl)C=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F RGNPBRKPHBKNKX-UHFFFAOYSA-N 0.000 description 1
- 238000002744 homologous recombination Methods 0.000 description 1
- 230000006801 homologous recombination Effects 0.000 description 1
- 235000010181 horse chestnut Nutrition 0.000 description 1
- 239000010903 husk Substances 0.000 description 1
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 1
- FYQGBXGJFWXIPP-UHFFFAOYSA-N hydroprene Chemical compound CCOC(=O)C=C(C)C=CCC(C)CCCC(C)C FYQGBXGJFWXIPP-UHFFFAOYSA-N 0.000 description 1
- 229930000073 hydroprene Natural products 0.000 description 1
- HICUREFSAIZXFQ-JOWPUVSESA-N i9z29i000j Chemical compound C1C[C@H](C)[C@@H](CC)O[C@@]21O[C@H](C\C=C(C)\[C@H](OC(=O)C(=N/OC)\C=1C=CC=CC=1)[C@@H](C)\C=C\C=C/1[C@]3([C@H](C(=O)O4)C=C(C)[C@@H](O)[C@H]3OC\1)O)C[C@H]4C2 HICUREFSAIZXFQ-JOWPUVSESA-N 0.000 description 1
- VPRAQYXPZIFIOH-UHFFFAOYSA-N imiprothrin Chemical compound CC1(C)C(C=C(C)C)C1C(=O)OCN1C(=O)N(CC#C)CC1=O VPRAQYXPZIFIOH-UHFFFAOYSA-N 0.000 description 1
- JTEDVYBZBROSJT-UHFFFAOYSA-N indole-3-butyric acid Chemical compound C1=CC=C2C(CCCC(=O)O)=CNC2=C1 JTEDVYBZBROSJT-UHFFFAOYSA-N 0.000 description 1
- VBCVPMMZEGZULK-NRFANRHFSA-N indoxacarb Chemical compound C([C@@]1(OC2)C(=O)OC)C3=CC(Cl)=CC=C3C1=NN2C(=O)N(C(=O)OC)C1=CC=C(OC(F)(F)F)C=C1 VBCVPMMZEGZULK-NRFANRHFSA-N 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 239000001023 inorganic pigment Substances 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- ONUFESLQCSAYKA-UHFFFAOYSA-N iprodione Chemical compound O=C1N(C(=O)NC(C)C)CC(=O)N1C1=CC(Cl)=CC(Cl)=C1 ONUFESLQCSAYKA-UHFFFAOYSA-N 0.000 description 1
- DCYOBGZUOMKFPA-UHFFFAOYSA-N iron(2+);iron(3+);octadecacyanide Chemical compound [Fe+2].[Fe+2].[Fe+2].[Fe+3].[Fe+3].[Fe+3].[Fe+3].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-] DCYOBGZUOMKFPA-UHFFFAOYSA-N 0.000 description 1
- YFVOXLJXJBQDEF-UHFFFAOYSA-N isocarbophos Chemical compound COP(N)(=S)OC1=CC=CC=C1C(=O)OC(C)C YFVOXLJXJBQDEF-UHFFFAOYSA-N 0.000 description 1
- HOQADATXFBOEGG-UHFFFAOYSA-N isofenphos Chemical compound CCOP(=S)(NC(C)C)OC1=CC=CC=C1C(=O)OC(C)C HOQADATXFBOEGG-UHFFFAOYSA-N 0.000 description 1
- QBSJMKIUCUGGNG-UHFFFAOYSA-N isoprocarb Chemical compound CNC(=O)OC1=CC=CC=C1C(C)C QBSJMKIUCUGGNG-UHFFFAOYSA-N 0.000 description 1
- UFHLMYOGRXOCSL-UHFFFAOYSA-N isoprothiolane Chemical compound CC(C)OC(=O)C(C(=O)OC(C)C)=C1SCCS1 UFHLMYOGRXOCSL-UHFFFAOYSA-N 0.000 description 1
- SDMSCIWHRZJSRN-UHFFFAOYSA-N isoxathion Chemical compound O1N=C(OP(=S)(OCC)OCC)C=C1C1=CC=CC=C1 SDMSCIWHRZJSRN-UHFFFAOYSA-N 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 229930014550 juvenile hormone Natural products 0.000 description 1
- 239000002949 juvenile hormone Substances 0.000 description 1
- 150000003633 juvenile hormone derivatives Chemical class 0.000 description 1
- UGWALRUNBSBTGI-ZKMZRDRYSA-N kadethrin Chemical compound C(/[C@@H]1C([C@@H]1C(=O)OCC=1C=C(CC=2C=CC=CC=2)OC=1)(C)C)=C1/CCSC1=O UGWALRUNBSBTGI-ZKMZRDRYSA-N 0.000 description 1
- 230000002147 killing effect Effects 0.000 description 1
- 229930001540 kinoprene Natural products 0.000 description 1
- 150000003951 lactams Chemical class 0.000 description 1
- 239000005910 lambda-Cyhalothrin Substances 0.000 description 1
- 239000004816 latex Substances 0.000 description 1
- 229920000126 latex Polymers 0.000 description 1
- 230000014634 leaf senescence Effects 0.000 description 1
- 239000000787 lecithin Substances 0.000 description 1
- 235000010445 lecithin Nutrition 0.000 description 1
- 235000021374 legumes Nutrition 0.000 description 1
- 239000004611 light stabiliser Substances 0.000 description 1
- 235000019357 lignosulphonate Nutrition 0.000 description 1
- 235000020778 linoleic acid Nutrition 0.000 description 1
- OYHQOLUKZRVURQ-IXWMQOLASA-N linoleic acid Natural products CCCCC\C=C/C\C=C\CCCCCCCC(O)=O OYHQOLUKZRVURQ-IXWMQOLASA-N 0.000 description 1
- 229960004488 linolenic acid Drugs 0.000 description 1
- KQQKGWQCNNTQJW-UHFFFAOYSA-N linolenic acid Natural products CC=CCCC=CCC=CCCCCCCCC(O)=O KQQKGWQCNNTQJW-UHFFFAOYSA-N 0.000 description 1
- 235000019421 lipase Nutrition 0.000 description 1
- 108010056929 lyticase Proteins 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- 229960000453 malathion Drugs 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical class [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 239000004579 marble Substances 0.000 description 1
- 240000004308 marijuana Species 0.000 description 1
- KLGMSAOQDHLCOS-UHFFFAOYSA-N mecarbam Chemical compound CCOC(=O)N(C)C(=O)CSP(=S)(OCC)OCC KLGMSAOQDHLCOS-UHFFFAOYSA-N 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- HNQIVZYLYMDVSB-UHFFFAOYSA-N methanesulfonimidic acid Chemical compound CS(N)(=O)=O HNQIVZYLYMDVSB-UHFFFAOYSA-N 0.000 description 1
- MEBQXILRKZHVCX-UHFFFAOYSA-N methidathion Chemical compound COC1=NN(CSP(=S)(OC)OC)C(=O)S1 MEBQXILRKZHVCX-UHFFFAOYSA-N 0.000 description 1
- 125000001360 methionine group Chemical group N[C@@H](CCSC)C(=O)* 0.000 description 1
- 229930002897 methoprene Natural products 0.000 description 1
- 229950003442 methoprene Drugs 0.000 description 1
- 125000001160 methoxycarbonyl group Chemical group [H]C([H])([H])OC(*)=O 0.000 description 1
- QCAWEPFNJXQPAN-UHFFFAOYSA-N methoxyfenozide Chemical compound COC1=CC=CC(C(=O)NN(C(=O)C=2C=C(C)C=C(C)C=2)C(C)(C)C)=C1C QCAWEPFNJXQPAN-UHFFFAOYSA-N 0.000 description 1
- AIBVECHZVPKHDS-GHYOLMRSSA-N methyl (2z,4e)-5-(6-ethynyl-1-hydroxy-2,6-dimethyl-4-oxocyclohex-2-en-1-yl)-3-methylpenta-2,4-dienoate Chemical compound COC(=O)\C=C(\C)/C=C/C1(O)C(C)=CC(=O)CC1(C)C#C AIBVECHZVPKHDS-GHYOLMRSSA-N 0.000 description 1
- GEPDYQSQVLXLEU-AATRIKPKSA-N methyl (e)-3-dimethoxyphosphoryloxybut-2-enoate Chemical compound COC(=O)\C=C(/C)OP(=O)(OC)OC GEPDYQSQVLXLEU-AATRIKPKSA-N 0.000 description 1
- BFBPISPWJZMWJN-UHFFFAOYSA-N methyl 2-[(7-hydroxy-3,7-dimethyloctylidene)amino]benzoate Chemical compound COC(=O)C1=CC=CC=C1N=CCC(C)CCCC(C)(C)O BFBPISPWJZMWJN-UHFFFAOYSA-N 0.000 description 1
- 229940102396 methyl bromide Drugs 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- YLGXILFCIXHCMC-JHGZEJCSSA-N methyl cellulose Chemical compound COC1C(OC)C(OC)C(COC)O[C@H]1O[C@H]1C(OC)C(OC)C(OC)OC1COC YLGXILFCIXHCMC-JHGZEJCSSA-N 0.000 description 1
- BUWGBZCHNOCVQV-UHFFFAOYSA-N methyl n-[[2-[[5-bromo-2-(3-chloropyridin-2-yl)pyrazole-3-carbonyl]amino]-5-chloro-3-methylbenzoyl]-methylamino]carbamate Chemical compound COC(=O)NN(C)C(=O)C1=CC(Cl)=CC(C)=C1NC(=O)C1=CC(Br)=NN1C1=NC=CC=C1Cl BUWGBZCHNOCVQV-UHFFFAOYSA-N 0.000 description 1
- GQLDWOULGGRGHU-UHFFFAOYSA-N methyl n-[[2-[[5-bromo-2-(3-chloropyridin-2-yl)pyrazole-3-carbonyl]amino]-5-cyano-3-methylbenzoyl]-ethylamino]carbamate Chemical compound COC(=O)NN(CC)C(=O)C1=CC(C#N)=CC(C)=C1NC(=O)C1=CC(Br)=NN1C1=NC=CC=C1Cl GQLDWOULGGRGHU-UHFFFAOYSA-N 0.000 description 1
- STJZZCQBEGTJMG-UHFFFAOYSA-N methyl n-[[2-[[5-bromo-2-(3-chloropyridin-2-yl)pyrazole-3-carbonyl]amino]-5-cyano-3-methylbenzoyl]-methylamino]carbamate Chemical compound COC(=O)NN(C)C(=O)C1=CC(C#N)=CC(C)=C1NC(=O)C1=CC(Br)=NN1C1=NC=CC=C1Cl STJZZCQBEGTJMG-UHFFFAOYSA-N 0.000 description 1
- RYICNEMTMSZLOX-UHFFFAOYSA-N methyl n-[[3,5-dibromo-2-[[5-bromo-2-(3-chloropyridin-2-yl)pyrazole-3-carbonyl]amino]benzoyl]-ethylamino]carbamate Chemical compound COC(=O)NN(CC)C(=O)C1=CC(Br)=CC(Br)=C1NC(=O)C1=CC(Br)=NN1C1=NC=CC=C1Cl RYICNEMTMSZLOX-UHFFFAOYSA-N 0.000 description 1
- 125000000250 methylamino group Chemical group [H]N(*)C([H])([H])[H] 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- VOEYXMAFNDNNED-UHFFFAOYSA-N metolcarb Chemical compound CNC(=O)OC1=CC=CC(C)=C1 VOEYXMAFNDNNED-UHFFFAOYSA-N 0.000 description 1
- 229960001952 metrifonate Drugs 0.000 description 1
- FXWHFKOXMBTCMP-WMEDONTMSA-N milbemycin Natural products COC1C2OCC3=C/C=C/C(C)CC(=CCC4CC(CC5(O4)OC(C)C(C)C(OC(=O)C(C)CC(C)C)C5O)OC(=O)C(C=C1C)C23O)C FXWHFKOXMBTCMP-WMEDONTMSA-N 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 230000003129 miticidal effect Effects 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- KRTSDMXIXPKRQR-AATRIKPKSA-N monocrotophos Chemical compound CNC(=O)\C=C(/C)OP(=O)(OC)OC KRTSDMXIXPKRQR-AATRIKPKSA-N 0.000 description 1
- 229910052901 montmorillonite Inorganic materials 0.000 description 1
- 239000002362 mulch Substances 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 235000010460 mustard Nutrition 0.000 description 1
- 238000002703 mutagenesis Methods 0.000 description 1
- 231100000350 mutagenesis Toxicity 0.000 description 1
- TUCSJFNYZJYLHE-UHFFFAOYSA-N n'-tert-butyl-n'-(3,5-dimethylbenzoyl)-2,7-dimethyl-2,3-dihydro-1-benzofuran-6-carbohydrazide Chemical compound CC1=C2OC(C)CC2=CC=C1C(=O)NN(C(C)(C)C)C(=O)C1=CC(C)=CC(C)=C1 TUCSJFNYZJYLHE-UHFFFAOYSA-N 0.000 description 1
- YNKFZRGTXAPYFD-UHFFFAOYSA-N n-[[2-chloro-3,5-bis(trifluoromethyl)phenyl]carbamoyl]-2,6-difluorobenzamide Chemical compound FC1=CC=CC(F)=C1C(=O)NC(=O)NC1=CC(C(F)(F)F)=CC(C(F)(F)F)=C1Cl YNKFZRGTXAPYFD-UHFFFAOYSA-N 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- PEQJBOMPGWYIRO-UHFFFAOYSA-N n-ethyl-3,4-dimethoxyaniline Chemical compound CCNC1=CC=C(OC)C(OC)=C1 PEQJBOMPGWYIRO-UHFFFAOYSA-N 0.000 description 1
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 1
- BUYMVQAILCEWRR-UHFFFAOYSA-N naled Chemical compound COP(=O)(OC)OC(Br)C(Cl)(Cl)Br BUYMVQAILCEWRR-UHFFFAOYSA-N 0.000 description 1
- PSZYNBSKGUBXEH-UHFFFAOYSA-N naphthalene-1-sulfonic acid Chemical class C1=CC=C2C(S(=O)(=O)O)=CC=CC2=C1 PSZYNBSKGUBXEH-UHFFFAOYSA-N 0.000 description 1
- 229940042880 natural phospholipid Drugs 0.000 description 1
- 229920005615 natural polymer Polymers 0.000 description 1
- 229960002715 nicotine Drugs 0.000 description 1
- SNICXCGAKADSCV-UHFFFAOYSA-N nicotine Natural products CN1CCCC1C1=CC=CN=C1 SNICXCGAKADSCV-UHFFFAOYSA-N 0.000 description 1
- 229940079888 nitenpyram Drugs 0.000 description 1
- JCXJVPUVTGWSNB-UHFFFAOYSA-N nitrogen dioxide Inorganic materials O=[N]=O JCXJVPUVTGWSNB-UHFFFAOYSA-N 0.000 description 1
- 239000003284 nod factor Substances 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 108010003516 norsynephrine receptor Proteins 0.000 description 1
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 description 1
- YTYGAJLZOJPJGH-UHFFFAOYSA-N noviflumuron Chemical compound FC1=C(Cl)C(OC(F)(F)C(C(F)(F)F)F)=C(Cl)C=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F YTYGAJLZOJPJGH-UHFFFAOYSA-N 0.000 description 1
- 235000021231 nutrient uptake Nutrition 0.000 description 1
- 230000035764 nutrition Effects 0.000 description 1
- 150000002482 oligosaccharides Polymers 0.000 description 1
- PZXOQEXFMJCDPG-UHFFFAOYSA-N omethoate Chemical compound CNC(=O)CSP(=O)(OC)OC PZXOQEXFMJCDPG-UHFFFAOYSA-N 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000008723 osmotic stress Effects 0.000 description 1
- 230000002018 overexpression Effects 0.000 description 1
- 238000012261 overproduction Methods 0.000 description 1
- KZAUOCCYDRDERY-UHFFFAOYSA-N oxamyl Chemical compound CNC(=O)ON=C(SC)C(=O)N(C)C KZAUOCCYDRDERY-UHFFFAOYSA-N 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 230000020477 pH reduction Effects 0.000 description 1
- 238000010422 painting Methods 0.000 description 1
- 229910052625 palygorskite Inorganic materials 0.000 description 1
- FJKROLUGYXJWQN-UHFFFAOYSA-N papa-hydroxy-benzoic acid Natural products OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 1
- LCCNCVORNKJIRZ-UHFFFAOYSA-N parathion Chemical compound CCOP(=S)(OCC)OC1=CC=C([N+]([O-])=O)C=C1 LCCNCVORNKJIRZ-UHFFFAOYSA-N 0.000 description 1
- RLBIQVVOMOPOHC-UHFFFAOYSA-N parathion-methyl Chemical group COP(=S)(OC)OC1=CC=C([N+]([O-])=O)C=C1 RLBIQVVOMOPOHC-UHFFFAOYSA-N 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 235000021017 pears Nutrition 0.000 description 1
- 239000003415 peat Substances 0.000 description 1
- 235000011197 perejil Nutrition 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 229960000490 permethrin Drugs 0.000 description 1
- RLLPVAHGXHCWKJ-UHFFFAOYSA-N permethrin Chemical compound CC1(C)C(C=C(Cl)Cl)C1C(=O)OCC1=CC=CC(OC=2C=CC=CC=2)=C1 RLLPVAHGXHCWKJ-UHFFFAOYSA-N 0.000 description 1
- 125000000951 phenoxy group Chemical group [H]C1=C([H])C([H])=C(O*)C([H])=C1[H] 0.000 description 1
- XAMUDJHXFNRLCY-UHFFFAOYSA-N phenthoate Chemical compound CCOC(=O)C(SP(=S)(OC)OC)C1=CC=CC=C1 XAMUDJHXFNRLCY-UHFFFAOYSA-N 0.000 description 1
- 150000008048 phenylpyrazoles Chemical class 0.000 description 1
- BULVZWIRKLYCBC-UHFFFAOYSA-N phorate Chemical compound CCOP(=S)(OCC)SCSCC BULVZWIRKLYCBC-UHFFFAOYSA-N 0.000 description 1
- LMNZTLDVJIUSHT-UHFFFAOYSA-N phosmet Chemical compound C1=CC=C2C(=O)N(CSP(=S)(OC)OC)C(=O)C2=C1 LMNZTLDVJIUSHT-UHFFFAOYSA-N 0.000 description 1
- RGCLLPNLLBQHPF-HJWRWDBZSA-N phosphamidon Chemical compound CCN(CC)C(=O)C(\Cl)=C(/C)OP(=O)(OC)OC RGCLLPNLLBQHPF-HJWRWDBZSA-N 0.000 description 1
- HOKBIQDJCNTWST-UHFFFAOYSA-N phosphanylidenezinc;zinc Chemical compound [Zn].[Zn]=P.[Zn]=P HOKBIQDJCNTWST-UHFFFAOYSA-N 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- 150000003003 phosphines Chemical class 0.000 description 1
- 150000003904 phospholipids Chemical class 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 229910000073 phosphorus hydride Inorganic materials 0.000 description 1
- 230000029553 photosynthesis Effects 0.000 description 1
- 238000010672 photosynthesis Methods 0.000 description 1
- ATROHALUCMTWTB-OWBHPGMISA-N phoxim Chemical compound CCOP(=S)(OCC)O\N=C(\C#N)C1=CC=CC=C1 ATROHALUCMTWTB-OWBHPGMISA-N 0.000 description 1
- 229950001664 phoxim Drugs 0.000 description 1
- 239000001007 phthalocyanine dye Substances 0.000 description 1
- 230000000885 phytotoxic effect Effects 0.000 description 1
- YFGYUFNIOHWBOB-UHFFFAOYSA-N pirimicarb Chemical compound CN(C)C(=O)OC1=NC(N(C)C)=NC(C)=C1C YFGYUFNIOHWBOB-UHFFFAOYSA-N 0.000 description 1
- QHOQHJPRIBSPCY-UHFFFAOYSA-N pirimiphos-methyl Chemical group CCN(CC)C1=NC(C)=CC(OP(=S)(OC)OC)=N1 QHOQHJPRIBSPCY-UHFFFAOYSA-N 0.000 description 1
- 239000000902 placebo Substances 0.000 description 1
- 229940068196 placebo Drugs 0.000 description 1
- 230000008121 plant development Effects 0.000 description 1
- 239000005648 plant growth regulator Substances 0.000 description 1
- 230000037039 plant physiology Effects 0.000 description 1
- 239000013600 plasmid vector Substances 0.000 description 1
- 235000021018 plums Nutrition 0.000 description 1
- 229920002704 polyhistidine Polymers 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- PWMWGKRAALHLEH-UHFFFAOYSA-M potassium;4-phenylbutanoate Chemical compound [K+].[O-]C(=O)CCCC1=CC=CC=C1 PWMWGKRAALHLEH-UHFFFAOYSA-M 0.000 description 1
- SMKRKQBMYOFFMU-UHFFFAOYSA-N prallethrin Chemical compound CC1(C)C(C=C(C)C)C1C(=O)OC1C(C)=C(CC#C)C(=O)C1 SMKRKQBMYOFFMU-UHFFFAOYSA-N 0.000 description 1
- WHHIPMZEDGBUCC-UHFFFAOYSA-N probenazole Chemical compound C1=CC=C2C(OCC=C)=NS(=O)(=O)C2=C1 WHHIPMZEDGBUCC-UHFFFAOYSA-N 0.000 description 1
- QYMMJNLHFKGANY-UHFFFAOYSA-N profenofos Chemical compound CCCSP(=O)(OCC)OC1=CC=C(Br)C=C1Cl QYMMJNLHFKGANY-UHFFFAOYSA-N 0.000 description 1
- BUCOQPHDYUOJSI-UHFFFAOYSA-N prohexadione Chemical compound CCC(=O)C1C(=O)CC(C(O)=O)CC1=O BUCOQPHDYUOJSI-UHFFFAOYSA-N 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- ZYHMJXZULPZUED-UHFFFAOYSA-N propargite Chemical compound C1=CC(C(C)(C)C)=CC=C1OC1C(OS(=O)OCC#C)CCCC1 ZYHMJXZULPZUED-UHFFFAOYSA-N 0.000 description 1
- 239000003380 propellant Substances 0.000 description 1
- BZNDWPRGXNILMS-VQHVLOKHSA-N propetamphos Chemical compound CCNP(=S)(OC)O\C(C)=C\C(=O)OC(C)C BZNDWPRGXNILMS-VQHVLOKHSA-N 0.000 description 1
- 125000002572 propoxy group Chemical group [*]OC([H])([H])C(C([H])([H])[H])([H])[H] 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 239000003531 protein hydrolysate Substances 0.000 description 1
- 230000026447 protein localization Effects 0.000 description 1
- FITIWKDOCAUBQD-UHFFFAOYSA-N prothiofos Chemical compound CCCSP(=S)(OCC)OC1=CC=C(Cl)C=C1Cl FITIWKDOCAUBQD-UHFFFAOYSA-N 0.000 description 1
- 210000001938 protoplast Anatomy 0.000 description 1
- 229960003351 prussian blue Drugs 0.000 description 1
- 239000013225 prussian blue Substances 0.000 description 1
- 210000003689 pubic bone Anatomy 0.000 description 1
- 239000008262 pumice Substances 0.000 description 1
- 235000015136 pumpkin Nutrition 0.000 description 1
- DZVWKNFPXMUIFA-UHFFFAOYSA-N pyflubumide Chemical compound C1=C(CC(C)C)C(C(OC)(C(F)(F)F)C(F)(F)F)=CC=C1N(C(=O)C(C)C)C(=O)C1=C(C)N(C)N=C1C DZVWKNFPXMUIFA-UHFFFAOYSA-N 0.000 description 1
- QHMTXANCGGJZRX-WUXMJOGZSA-N pymetrozine Chemical compound C1C(C)=NNC(=O)N1\N=C\C1=CC=CN=C1 QHMTXANCGGJZRX-WUXMJOGZSA-N 0.000 description 1
- QHGVXILFMXYDRS-UHFFFAOYSA-N pyraclofos Chemical compound C1=C(OP(=O)(OCC)SCCC)C=NN1C1=CC=C(Cl)C=C1 QHGVXILFMXYDRS-UHFFFAOYSA-N 0.000 description 1
- 229940015367 pyrethrum Drugs 0.000 description 1
- DWFZBUWUXWZWKD-UHFFFAOYSA-N pyridaben Chemical compound C1=CC(C(C)(C)C)=CC=C1CSC1=C(Cl)C(=O)N(C(C)(C)C)N=C1 DWFZBUWUXWZWKD-UHFFFAOYSA-N 0.000 description 1
- AEHJMNVBLRLZKK-UHFFFAOYSA-N pyridalyl Chemical group N1=CC(C(F)(F)F)=CC=C1OCCCOC1=C(Cl)C=C(OCC=C(Cl)Cl)C=C1Cl AEHJMNVBLRLZKK-UHFFFAOYSA-N 0.000 description 1
- CXJSOEPQXUCJSA-UHFFFAOYSA-N pyridaphenthion Chemical compound N1=C(OP(=S)(OCC)OCC)C=CC(=O)N1C1=CC=CC=C1 CXJSOEPQXUCJSA-UHFFFAOYSA-N 0.000 description 1
- MIOBBYRMXGNORL-UHFFFAOYSA-N pyrifluquinazon Chemical compound C1C2=CC(C(F)(C(F)(F)F)C(F)(F)F)=CC=C2N(C(=O)C)C(=O)N1NCC1=CC=CN=C1 MIOBBYRMXGNORL-UHFFFAOYSA-N 0.000 description 1
- ITKAIUGKVKDENI-UHFFFAOYSA-N pyrimidifen Chemical compound CC1=C(C)C(CCOCC)=CC=C1OCCNC1=NC=NC(CC)=C1Cl ITKAIUGKVKDENI-UHFFFAOYSA-N 0.000 description 1
- YYXSCUSVVALMNW-FOWTUZBSSA-N pyriminostrobin Chemical compound CO\C=C(\C(=O)OC)C1=CC=CC=C1COC1=CC(C(F)(F)F)=NC(NC=2C(=CC(Cl)=CC=2)Cl)=N1 YYXSCUSVVALMNW-FOWTUZBSSA-N 0.000 description 1
- NHDHVHZZCFYRSB-UHFFFAOYSA-N pyriproxyfen Chemical compound C=1C=CC=NC=1OC(C)COC(C=C1)=CC=C1OC1=CC=CC=C1 NHDHVHZZCFYRSB-UHFFFAOYSA-N 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- JYQUHIFYBATCCY-UHFFFAOYSA-N quinalphos Chemical compound C1=CC=CC2=NC(OP(=S)(OCC)OCC)=CN=C21 JYQUHIFYBATCCY-UHFFFAOYSA-N 0.000 description 1
- FBQQHUGEACOBDN-UHFFFAOYSA-N quinomethionate Chemical compound N1=C2SC(=O)SC2=NC2=CC(C)=CC=C21 FBQQHUGEACOBDN-UHFFFAOYSA-N 0.000 description 1
- 235000021013 raspberries Nutrition 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000001846 repelling effect Effects 0.000 description 1
- 230000001850 reproductive effect Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 229940108410 resmethrin Drugs 0.000 description 1
- VEMKTZHHVJILDY-FIWHBWSRSA-N resmethrin Chemical compound CC1(C)[C@H](C=C(C)C)C1C(=O)OCC1=COC(CC=2C=CC=CC=2)=C1 VEMKTZHHVJILDY-FIWHBWSRSA-N 0.000 description 1
- 108091008146 restriction endonucleases Proteins 0.000 description 1
- SLUXPOIDTZWGCG-UHFFFAOYSA-N rhizobitoxine Natural products OCC(N)COC=CC(N)C(O)=O SLUXPOIDTZWGCG-UHFFFAOYSA-N 0.000 description 1
- 239000003161 ribonuclease inhibitor Substances 0.000 description 1
- 229940080817 rotenone Drugs 0.000 description 1
- JUVIOZPCNVVQFO-HBGVWJBISA-N rotenone Chemical compound O([C@H](CC1=C2O3)C(C)=C)C1=CC=C2C(=O)[C@@H]1[C@H]3COC2=C1C=C(OC)C(OC)=C2 JUVIOZPCNVVQFO-HBGVWJBISA-N 0.000 description 1
- 108091052345 ryanodine receptor (TC 1.A.3.1) family Proteins 0.000 description 1
- MSHXTAQSSIEBQS-UHFFFAOYSA-N s-[3-carbamoylsulfanyl-2-(dimethylamino)propyl] carbamothioate;hydron;chloride Chemical compound [Cl-].NC(=O)SCC([NH+](C)C)CSC(N)=O MSHXTAQSSIEBQS-UHFFFAOYSA-N 0.000 description 1
- 229960004889 salicylic acid Drugs 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 238000007480 sanger sequencing Methods 0.000 description 1
- 229940043230 sarcosine Drugs 0.000 description 1
- 229960005393 sarolaner Drugs 0.000 description 1
- 230000002000 scavenging effect Effects 0.000 description 1
- 230000009758 senescence Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 235000019355 sepiolite Nutrition 0.000 description 1
- 229910052624 sepiolite Inorganic materials 0.000 description 1
- 238000012163 sequencing technique Methods 0.000 description 1
- 239000003352 sequestering agent Substances 0.000 description 1
- 125000003607 serino group Chemical group [H]N([H])[C@]([H])(C(=O)[*])C(O[H])([H])[H] 0.000 description 1
- 230000007330 shade avoidance Effects 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000004328 sodium tetraborate Substances 0.000 description 1
- 235000010339 sodium tetraborate Nutrition 0.000 description 1
- KBRBTPNRBSCEJD-UHFFFAOYSA-M sodium;3-cycloprop-2-en-1-ylpropanoate Chemical compound [Na+].[O-]C(=O)CCC1C=C1 KBRBTPNRBSCEJD-UHFFFAOYSA-M 0.000 description 1
- 238000010563 solid-state fermentation Methods 0.000 description 1
- 239000004455 soybean meal Substances 0.000 description 1
- 238000002798 spectrophotometry method Methods 0.000 description 1
- 229940063673 spermidine Drugs 0.000 description 1
- 229940063675 spermine Drugs 0.000 description 1
- 238000009987 spinning Methods 0.000 description 1
- 229940014213 spinosad Drugs 0.000 description 1
- 229930185156 spinosyn Natural products 0.000 description 1
- HEOYPZMAGQITRO-UHFFFAOYSA-N spirobudifen Chemical compound C(OCCCC)(OC1=C(C(OC12CCCCC2)=O)C2=C(C=C(C=C2)Cl)Cl)=O HEOYPZMAGQITRO-UHFFFAOYSA-N 0.000 description 1
- 238000001694 spray drying Methods 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 239000010902 straw Substances 0.000 description 1
- 235000021012 strawberries Nutrition 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 125000000446 sulfanediyl group Chemical group *S* 0.000 description 1
- CCEKAJIANROZEO-UHFFFAOYSA-N sulfluramid Chemical compound CCNS(=O)(=O)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F CCEKAJIANROZEO-UHFFFAOYSA-N 0.000 description 1
- 125000001273 sulfonato group Chemical group [O-]S(*)(=O)=O 0.000 description 1
- 125000001174 sulfone group Chemical group 0.000 description 1
- 125000000472 sulfonyl group Chemical group *S(*)(=O)=O 0.000 description 1
- XIUROWKZWPIAIB-UHFFFAOYSA-N sulfotep Chemical compound CCOP(=S)(OCC)OP(=S)(OCC)OCC XIUROWKZWPIAIB-UHFFFAOYSA-N 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- OBTWBSRJZRCYQV-UHFFFAOYSA-N sulfuryl difluoride Chemical compound FS(F)(=O)=O OBTWBSRJZRCYQV-UHFFFAOYSA-N 0.000 description 1
- 239000002600 sunflower oil Substances 0.000 description 1
- 230000001502 supplementing effect Effects 0.000 description 1
- 230000008093 supporting effect Effects 0.000 description 1
- 239000002352 surface water Substances 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 239000004546 suspension concentrate Substances 0.000 description 1
- 239000011885 synergistic combination Substances 0.000 description 1
- 239000006273 synthetic pesticide Substances 0.000 description 1
- 229920001059 synthetic polymer Polymers 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 239000005936 tau-Fluvalinate Substances 0.000 description 1
- INISTDXBRIBGOC-XMMISQBUSA-N tau-fluvalinate Chemical compound N([C@H](C(C)C)C(=O)OC(C#N)C=1C=C(OC=2C=CC=CC=2)C=CC=1)C1=CC=C(C(F)(F)F)C=C1Cl INISTDXBRIBGOC-XMMISQBUSA-N 0.000 description 1
- XOAAWQZATWQOTB-UHFFFAOYSA-N taurine Chemical class NCCS(O)(=O)=O XOAAWQZATWQOTB-UHFFFAOYSA-N 0.000 description 1
- QYPNKSZPJQQLRK-UHFFFAOYSA-N tebufenozide Chemical compound C1=CC(CC)=CC=C1C(=O)NN(C(C)(C)C)C(=O)C1=CC(C)=CC(C)=C1 QYPNKSZPJQQLRK-UHFFFAOYSA-N 0.000 description 1
- ZZYSLNWGKKDOML-UHFFFAOYSA-N tebufenpyrad Chemical compound CCC1=NN(C)C(C(=O)NCC=2C=CC(=CC=2)C(C)(C)C)=C1Cl ZZYSLNWGKKDOML-UHFFFAOYSA-N 0.000 description 1
- AWYOMXWDGWUJHS-UHFFFAOYSA-N tebupirimfos Chemical compound CCOP(=S)(OC(C)C)OC1=CN=C(C(C)(C)C)N=C1 AWYOMXWDGWUJHS-UHFFFAOYSA-N 0.000 description 1
- XQTLDIFVVHJORV-UHFFFAOYSA-N tecnazene Chemical compound [O-][N+](=O)C1=C(Cl)C(Cl)=CC(Cl)=C1Cl XQTLDIFVVHJORV-UHFFFAOYSA-N 0.000 description 1
- CJDWRQLODFKPEL-UHFFFAOYSA-N teflubenzuron Chemical compound FC1=CC=CC(F)=C1C(=O)NC(=O)NC1=CC(Cl)=C(F)C(Cl)=C1F CJDWRQLODFKPEL-UHFFFAOYSA-N 0.000 description 1
- WWJZWCUNLNYYAU-UHFFFAOYSA-N temephos Chemical compound C1=CC(OP(=S)(OC)OC)=CC=C1SC1=CC=C(OP(=S)(OC)OC)C=C1 WWJZWCUNLNYYAU-UHFFFAOYSA-N 0.000 description 1
- UBCKGWBNUIFUST-YHYXMXQVSA-N tetrachlorvinphos Chemical compound COP(=O)(OC)O\C(=C/Cl)C1=CC(Cl)=C(Cl)C=C1Cl UBCKGWBNUIFUST-YHYXMXQVSA-N 0.000 description 1
- MLGCXEBRWGEOQX-UHFFFAOYSA-N tetradifon Chemical compound C1=CC(Cl)=CC=C1S(=O)(=O)C1=CC(Cl)=C(Cl)C=C1Cl MLGCXEBRWGEOQX-UHFFFAOYSA-N 0.000 description 1
- 229960005199 tetramethrin Drugs 0.000 description 1
- KNDVJPKNBVIKML-UHFFFAOYSA-N tetraniliprole Chemical compound CNC(=O)C1=CC(C#N)=CC(C)=C1NC(=O)C1=CC(CN2N=C(N=N2)C(F)(F)F)=NN1C1=NC=CC=C1Cl KNDVJPKNBVIKML-UHFFFAOYSA-N 0.000 description 1
- NWWZPOKUUAIXIW-FLIBITNWSA-N thiamethoxam Chemical compound [O-][N+](=O)\N=C/1N(C)COCN\1CC1=CN=C(Cl)S1 NWWZPOKUUAIXIW-FLIBITNWSA-N 0.000 description 1
- DNVLJEWNNDHELH-UHFFFAOYSA-N thiocyclam Chemical compound CN(C)C1CSSSC1 DNVLJEWNNDHELH-UHFFFAOYSA-N 0.000 description 1
- OPASCBHCTNRLRM-UHFFFAOYSA-N thiometon Chemical compound CCSCCSP(=S)(OC)OC OPASCBHCTNRLRM-UHFFFAOYSA-N 0.000 description 1
- QSOHVSNIQHGFJU-UHFFFAOYSA-L thiosultap disodium Chemical compound [Na+].[Na+].[O-]S(=O)(=O)SCC(N(C)C)CSS([O-])(=O)=O QSOHVSNIQHGFJU-UHFFFAOYSA-L 0.000 description 1
- 230000009974 thixotropic effect Effects 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- WPALTCMYPARVNV-UHFFFAOYSA-N tolfenpyrad Chemical compound CCC1=NN(C)C(C(=O)NCC=2C=CC(OC=3C=CC(C)=CC=3)=CC=2)=C1Cl WPALTCMYPARVNV-UHFFFAOYSA-N 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- XMLSXPIVAXONDL-UHFFFAOYSA-N trans-jasmone Natural products CCC=CCC1=C(C)CCC1=O XMLSXPIVAXONDL-UHFFFAOYSA-N 0.000 description 1
- DDVNRFNDOPPVQJ-HQJQHLMTSA-N transfluthrin Chemical compound CC1(C)[C@H](C=C(Cl)Cl)[C@H]1C(=O)OCC1=C(F)C(F)=CC(F)=C1F DDVNRFNDOPPVQJ-HQJQHLMTSA-N 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- NKNFWVNSBIXGLL-UHFFFAOYSA-N triazamate Chemical compound CCOC(=O)CSC1=NC(C(C)(C)C)=NN1C(=O)N(C)C NKNFWVNSBIXGLL-UHFFFAOYSA-N 0.000 description 1
- 229940116861 trichinella britovi Drugs 0.000 description 1
- 229940096911 trichinella spiralis Drugs 0.000 description 1
- NFACJZMKEDPNKN-UHFFFAOYSA-N trichlorfon Chemical compound COP(=O)(OC)C(O)C(Cl)(Cl)Cl NFACJZMKEDPNKN-UHFFFAOYSA-N 0.000 description 1
- DFFWZNDCNBOKDI-UHFFFAOYSA-N trinexapac Chemical compound O=C1CC(C(=O)O)CC(=O)C1=C(O)C1CC1 DFFWZNDCNBOKDI-UHFFFAOYSA-N 0.000 description 1
- RVKCCVTVZORVGD-UHFFFAOYSA-N trinexapac-ethyl Chemical group O=C1CC(C(=O)OCC)CC(=O)C1=C(O)C1CC1 RVKCCVTVZORVGD-UHFFFAOYSA-N 0.000 description 1
- YNWVFADWVLCOPU-MAUPQMMJSA-N uniconazole P Chemical compound C1=NC=NN1/C([C@@H](O)C(C)(C)C)=C/C1=CC=C(Cl)C=C1 YNWVFADWVLCOPU-MAUPQMMJSA-N 0.000 description 1
- 230000001018 virulence Effects 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 238000003260 vortexing Methods 0.000 description 1
- 235000020234 walnut Nutrition 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
- 239000004563 wettable powder Substances 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
- 229920001285 xanthan gum Polymers 0.000 description 1
- WCJYTPVNMWIZCG-UHFFFAOYSA-N xylylcarb Chemical compound CNC(=O)OC1=CC=C(C)C(C)=C1 WCJYTPVNMWIZCG-UHFFFAOYSA-N 0.000 description 1
- 239000005943 zeta-Cypermethrin Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229940048462 zinc phosphide Drugs 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N63/00—Biocides, pest repellants or attractants, or plant growth regulators containing microorganisms, viruses, microbial fungi, animals or substances produced by, or obtained from, microorganisms, viruses, microbial fungi or animals, e.g. enzymes or fermentates
- A01N63/20—Bacteria; Substances produced thereby or obtained therefrom
- A01N63/22—Bacillus
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N63/00—Biocides, pest repellants or attractants, or plant growth regulators containing microorganisms, viruses, microbial fungi, animals or substances produced by, or obtained from, microorganisms, viruses, microbial fungi or animals, e.g. enzymes or fermentates
- A01N63/20—Bacteria; Substances produced thereby or obtained therefrom
- A01N63/22—Bacillus
- A01N63/23—B. thuringiensis
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01P—BIOCIDAL, PEST REPELLANT, PEST ATTRACTANT OR PLANT GROWTH REGULATORY ACTIVITY OF CHEMICAL COMPOUNDS OR PREPARATIONS
- A01P21/00—Plant growth regulators
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01P—BIOCIDAL, PEST REPELLANT, PEST ATTRACTANT OR PLANT GROWTH REGULATORY ACTIVITY OF CHEMICAL COMPOUNDS OR PREPARATIONS
- A01P5/00—Nematocides
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01P—BIOCIDAL, PEST REPELLANT, PEST ATTRACTANT OR PLANT GROWTH REGULATORY ACTIVITY OF CHEMICAL COMPOUNDS OR PREPARATIONS
- A01P7/00—Arthropodicides
Definitions
- fertilizers are employed worldwide, based on both inorganic and organic substances.
- a fertilizer may be a single substance or a composition, and is used to provide nutrients to plants.
- a major breakthrough in the application of fertilizers was the development of nitrogen-based fertilizer by Justus von Liebig around 1840. Fertilizers, however, can lead to soil acidification and destabilization of nutrient balance in soil, including depletion of minerals and enrichment of salt and heavy metals.
- excessive fertilizer use can lead to alteration of soil fauna as well as contaminate surface water and ground water. Further, unhealthful substances such as nitrate may become enriched in plants and fruits.
- insecticides and fungicides are employed worldwide to control pests. Synthetic insecticides or fungicides often are non-specific and therefore can act on organisms other than the target organisms, including other naturally occurring beneficial organisms. Because of their chemical nature, they may also be toxic and non-biodegradable. Consumers worldwide are increasingly conscious of the potential environmental and health problems associated with the residuals of chemicals, particularly in food products. This has resulted in growing consumer pressure to reduce the use or at least the quantity of chemical (i.e., synthetic) pesticides. Thus, there is a need to manage food chain requirements while still allowing effective pest control.
- a further problem arising with the use of synthetic insecticides or fungicides is that the repeated and exclusive application of an insecticide or fungicide often leads to selection of resistant animal pests or microorganisms. Normally, such strains are also crossresistant against other active ingredients having the same mode of action. An effective control of the pathogens with said active compounds is then not possible any longer. However, active ingredients having new mechanisms of action are difficult and expensive to develop.
- BCAs biological control agents
- insecticides and/or plant health-enhancing and/or plant protection agents act as insecticides and/or plant health-enhancing and/or plant protection agents
- the effectiveness of BCAs is not at the same level as for conventional insecticides and fungicides, especially in case of severe infection pressure. Consequently, in some circumstances, biological control agents, their mutants and metabolites produced by them are, in particular, in low application rates, not entirely satisfactory.
- biological control agents including biological control agents used in conjunction with synthetic fungicides and insecticides, to strive to fulfill the above-mentioned requirements.
- sequence listing is submitted electronically via EFS- Web as an XML-formatted sequence listing with a file named “BCS219008 WO.xml” created on November 16, 2022, and having a size of 19 kilobytes, and is filed concurrently with the specification.
- the sequence listing contained in this XML-formatted document is part of the specification and is herein incorporated by reference in its entirety.
- compositions which have an enhanced ability to improve plant growth and/or to enhance plant health or which exhibit enhanced activity against insects, mites, and/or nematodes.
- compositions according to the invention as defined in the following.
- a) recombinant exosporium-producing Bacillus cells that express a fusion protein comprising: (i) at least one enzyme having serine protease activity; and (ii) a targeting sequence that localizes the fusion protein to the exosporium of the Bacillus cells or exosporium fragments derived from such recombinant exosporium-producing Bacillus cells; and b) at least one particular insecticide disclosed herein, one is able to enhance preferably in a superadditive manner (i) plant growth, plant yield and/or plant health and/or (ii) the activity against insects, mites, nematodes and/or phytopathogens.
- references herein to targeting sequences, exosporium proteins, exosporium protein fragments, fusion proteins, and recombinant exosporium producing Bacillus cells that express such fusion proteins should not be considered to be stand-alone embodiments. Instead, throughout the present application, references to the targeting sequences, exosporium proteins, exosporium protein fragments, fusion proteins, and recombinant exosporium producing Bacillus cells that express such fusion proteins should be considered to be disclosed and claimed only in combination (and preferably in a synergistic combination) with one or more of the particular insecticides described herein. Furthermore, references to the “particular insecticide disclosed herein” are intended to encompass insecticides described below under the heading “Insecticides.”
- the present invention is directed to a composition
- a composition comprising in synergistically effective amounts: a) recombinant exosporium-producing Bacillus cells that express a fusion protein comprising: (i) a Bacillus firmus serine protease; and (ii) a targeting sequence that localizes the fusion protein to the exosporium of the Bacillus cells or exosporium fragments derived from such recombinant exosporium-producing Bacillus cells; and b) at least one insecticide selected from the group consisting of acetamiprid, aldicarb, amitraz, beta- cyfluthrin, carbaryl, clothianidin, cyfluthrin, cypermethrin, deltamethrin, endosulfan, ethion, ethiprole, ethoprophos, fenamiphos, fenobucarb, fenthion, fipronil, flubendi
- the targeting sequence comprises: an amino acid sequence having at least about 43% identity with amino acids 20-35 of SEQ ID NO: 1, wherein the identity with amino acids 25-35 is at least about 54%; a targeting sequence comprising amino acids 1-35 of SEQ ID NO: 1; a targeting sequence comprising amino acids 20-35 of SEQ ID NO: 1; a targeting sequence comprising amino acids 22-31 of SEQ ID NO: 1; a targeting sequence comprising amino acids 22-33 of SEQ ID NO: 1; a targeting sequence comprising amino acids 20-31 of SEQ ID NO: 1; a targeting sequence comprising SEQ ID NO: 1; a targeting sequence comprising SEQ ID NO: 2; or an exosporium protein comprising an amino acid sequence having at least 85% identity with SEQ ID NO: 3.
- the exosporium-producing Bacillus cells are cells of a Bacillus cereus family member.
- the recombinant exosporium-producing Bacillus cells may be any one of Bacillus anthracis, Bacillus cereus, Bacillus thuringiensis , Bacillus mycoides, Bacillus pseudomycoides, Bacillus samanii, Bacillus gaemokensis, Bacillus weihenstephensis, Bacillus toyoiensis, and combinations thereof.
- the recombinant Bacillus cells are cells of Bacillus thuringiensis BT013A.
- the fusion protein comprises a serine protease enzyme from Bacillus firmus.
- the insecticide is selected from the group consisting of acetamiprid, aldicarb, amitraz, beta-cyfluthrin, carbaryl, clothianidin, cyfluthrin, cypermethrin, deltamethrin, endosulfan, ethion, ethiprole, ethoprophos, fenamiphos, fenobucarb, fenthion, fipronil, flubendiamide, flupyradifurone, fluopyram, formetanate, heptanophos, imidacloprid, methamidophos, methiocarb, methomyl, niclosamide, oxydemeton-methyl, phosalone, silafluofen, spirodiclofen, spiromesifen, spirotetramat, thiacloprid, thiodicarb, tralomethrin, triazophos
- the insecticide is selected from the group consisting of clothianidin, cypermethrin, ethiprole, fipronil, fluopyram, flupyradifurone, imidacloprid, methiocarb, and thiodicarb.
- the composition of the present invention comprises a) recombinant exosporium-producing Bacillus cells that express a fusion protein comprising: (i) an enzyme having serine protease activity comprising an amino acid sequence having at least 95% identity to any one of SEQ ID NOs: 4-6 or an amino acid sequence having at least 95% identity to SEQ ID NO: 6; and (ii) a targeting sequence that localizes the fusion protein to the exosporium of the Bacillus cells; and b) at least one insecticide selected from the group consisting of clothianidin, cypermethrin, ethiprole, fipronil, fluopyram, flupyradifurone, imidacloprid, methiocarb, and thiodicarb in a synergistically effective amount.
- the at least one insecticide is clothianidin;
- the targeting sequence comprises an amino acid sequence having at least about 43% identity with amino acids 20-35 of SEQ ID NO: 1, wherein the identity with amino acids 25-35 is at least about 54%;
- the enzyme having serine protease activity comprises an amino acid sequence having at least 95% identity to any one of SEQ ID NOs: 4-5 or an amino acid sequence having at least 95% identity to SEQ ID NO: 6;
- the recombinant Bacillus cereus family member cells comprise cells of Bacillus thuringiensis or Bacillus mycoides.
- the recombinant Bacillus cereus family member cells are cells of Bacillus thuringiensis BT013A.
- the at least one insecticide is fluopyram;
- the targeting sequence comprises an amino acid sequence having at least about 43% identity with amino acids 20-35 of SEQ ID NO: 1, wherein the identity with amino acids 25-35 is at least about 54%;
- an enzyme having serine protease activity comprising an amino acid sequence having at least 95% identity to any one of SEQ ID NOs: 4-5 or an amino acid sequence having at least 95% identity to SEQ ID NO: 6;
- the recombinant Bacillus cereus family member cells comprise cells of Bacillus thuringiensis or Bacillus mycoides.
- the recombinant Bacillus cereus family member cells are cells of Bacillus thuringiensis BT013A.
- the at least one insecticide is clothianidin;
- the targeting sequence comprises an amino acid sequence having at least about 43% identity with amino acids 20-35 of SEQ ID NO: 1, wherein the identity with amino acids 25-35 is at least about 54%;
- the enzyme having serine protease activity comprises an amino acid sequence having at least 95% identity to any one of SEQ ID NOs: 4-5 or an amino acid sequence having at least 95% identity to SEQ ID NO: 6;
- the recombinant Bacillus cereus family member cells comprise cells of Bacillus thuringiensis or Bacillus mycoides.
- the recombinant Bacillus cereus family member cells are cells of Bacillus thuringiensis BT013A.
- the at least one insecticide is fipronil;
- the targeting sequence comprises an amino acid sequence having at least about 43% identity with amino acids 20-35 of SEQ ID NO: 1, wherein the identity with amino acids 25-35 is at least about 54%;
- the enzyme having serine protease activity comprises an amino acid sequence having at least 95% identity to any one of SEQ ID NOs: 4-5 or an amino acid sequence having at least 95% identity to SEQ ID NO: 6;
- the recombinant Bacillus cereus family member cells comprise cells of Bacillus thuringiensis or Bacillus mycoides.
- the recombinant Bacillus cereus family member cells are cells of Bacillus thuringiensis BT013A.
- the at least one insecticide is flupyradifurone;
- the targeting sequence comprises an amino acid sequence having at least about 43% identity with amino acids 20-35 of SEQ ID NO: 1, wherein the identity with amino acids 25-35 is at least about 54%;
- the enzyme having serine protease activity comprises an amino acid sequence having at least 95% identity to any one of SEQ ID NOs: 4-5 or an amino acid sequence having at least 95% identity to SEQ ID NO: 6;
- the recombinant Bacillus cereus family member cells comprise cells of Bacillus thuringiensis or Bacillus mycoides.
- the recombinant Bacillus cereus family member cells are cells of Bacillus thuringiensis BT013A.
- the at least one insecticide is imidacloprid;
- the targeting sequence comprises an amino acid sequence having at least about 43% identity with amino acids 20-35 of SEQ ID NO: 1, wherein the identity with amino acids 25-35 is at least about 54%;
- the enzyme having serine protease activity comprises an amino acid sequence having at least 95% identity to any one of SEQ ID NOs: 4-5 or an amino acid sequence having at least 95% identity to SEQ ID NO: 6;
- the recombinant Bacillus cereus family member cells comprise cells of Bacillus thuringiensis or Bacillus mycoides.
- the recombinant Bacillus cereus family member cells are cells of Bacillus thuringiensis BT013A.
- the at least one insecticide is methiocarb;
- the targeting sequence comprises an amino acid sequence having at least about 43% identity with amino acids 20-35 of SEQ ID NO: 1, wherein the identity with amino acids 25-35 is at least about 54%;
- the enzyme having serine protease activity comprises an amino acid sequence having at least 95% identity to any one of SEQ ID NOs: 4-5 or an amino acid sequence having at least 95% identity to SEQ ID NO: 6; and
- the recombinant Bacillus cereus family member cells comprise cells of Bacillus thuringiensis or Bacillus mycoides.
- the recombinant Bacillus cereus family member cells are cells of Bacillus thuringiensis BT013A.
- the at least one insecticide is thiodicarb;
- the targeting sequence comprises an amino acid sequence having at least about 43% identity with amino acids 20-35 of SEQ ID NO: 1, wherein the identity with amino acids 25-35 is at least about 54%;
- the enzyme having serine protease activity comprises an amino acid sequence having at least 95% identity to any one of SEQ ID NOs: 4-5 or an amino acid sequence having at least 95% identity to SEQ ID NO: 6;
- the recombinant Bacillus cereus family member cells comprise cells of Bacillus thuringiensis or Bacillus mycoides.
- the recombinant Bacillus cereus family member cells are cells of Bacillus thuringiensis BT013A.
- the composition further comprises at least one fungicide.
- the at least one fungicide may be synthetic.
- the composition further comprises at least one auxiliary selected from the group consisting of extenders, solvents, spontaneity promoters, carriers, emulsifiers, dispersants, frost protectants, thickeners and adjuvants.
- the invention is directed to a seed treated with any of the compositions disclosed herein.
- the present invention relates to use of the disclosed compositions as an insecticide and/or biostimulant.
- the disclosed compositions are used for reducing overall damage of plants and plant parts as well as losses in harvested fruits or vegetables caused by insects, mites, nematodes and/or phytopathogens.
- the disclosed compositions are used for enhancing plant growth and/or promoting plant health.
- the present invention is directed to a method of treating a plant, a plant part, such as a seed, root, rhizome, corm, bulb, or tuber, and/or a locus on which or near which the plant or the plant parts grow, such as soil, to enhance plant growth and/or promote plant health
- a plant loci a) recombinant exosporium-producing Bacillus cells that express a fusion protein comprising: (i) an enzyme having serine protease activity, preferably comprising an amino acid sequence having at least 95% identity to any one of SEQ ID NOs: 4-5 or an amino acid sequence having at least 95% identity to SEQ ID NO: 6; and (ii) a targeting sequence that localizes the fusion protein to the exosporium of the Bacillus cells or exosporium fragments derived from such recombinant exosporium-producing Bacillus cells; and
- the present invention is a method for reducing overall damage of plants and plant parts as well as losses in harvested fruits or vegetables caused by insects, mites, nematodes and/or phytopathogens comprising the step of simultaneously or sequentially applying to a plant, a plant part, such as a seed, root, rhizome, corm, bulb, or tuber, and/or a locus on which or near which the plant or the plant parts grow, such as soil: a) recombinant exosporium-producing Bacillus cells that express a fusion protein comprising: (i) an enzyme having serine protease activity, preferably comprising an amino acid sequence having at least 95% identity to any one of SEQ ID NOs: 4-5 or an amino acid sequence having at least 95% identity to SEQ ID NO: 6; and (ii) a targeting sequence that localizes the fusion protein to the exosporium of the Bacillus cells or exosporium fragments derived from such recombinant exo
- Bacillus cercus family member refers to any Bacillus species that is capable of producing an exosporium.
- Bacillus cercus family of bacteria includes the species Bacillus anthracis, Bacillus cercus, Bacillus thuringiensis , Bacillus mycoides, Bacillus pseudomycoides, Bacillus samanii, Bacillus gaemokensis, Bacillus weihenstephensis, and Bacillus toyoiensis.
- Bacillus cercus family members are also referred to in the art as “Bacillus cercus sensu lato.”
- foliar used herein with respect to the application of enzymes or recombinant microorganisms to plants means that the enzyme or recombinant microorganism is applied to one or more aerial portions of the plant, including stems, leaves, fruits, flowers, or other exposed aerial portions of the plant.
- fusion protein refers to a protein having a polypeptide sequence that comprises sequences derived from two or more separate proteins.
- a fusion protein can be generated by joining together a nucleic acid molecule that encodes all or part of a first polypeptide with a nucleic acid molecule that encodes all or part of a second polypeptide to create a nucleic acid sequence which, when expressed, yields a single polypeptide having functional properties derived from each of the original proteins.
- a fusion protein may include a polypeptide comprising a combination of polypeptide sequences that would not naturally occur together without human intervention.
- a fusion protein may include a polypeptide that deviates from polypeptide sequences that exist in nature, a polypeptide that comprises a synthetic polypeptide sequence or a polypeptide expressed by a recombinant DNA sequence that has been incorporated into a host cell by genetic transformation or gene editing.
- references in this application to an “isolated polypeptide”, “isolated fusion protein”, or an equivalent term or phrase, is intended to mean that the polypeptide or the fusion protein is one that is present alone or in combination with other compositions, but not within its natural environment.
- a DNA molecule encoding a serine protease or any naturally occurring serine protease variant would be an isolated DNA molecule so long as the nucleotide sequence was not within the DNA of the bacterium from which the sequence encoding the protein is naturally found.
- a synthetic nucleotide sequence encoding the amino acid sequence of the naturally occurring serine protease would be considered to be isolated for the purposes of this disclosure.
- any transgenic nucleotide sequence i.e., the nucleotide sequence of the DNA inserted into the genome of the cells of a plant or bacterium, or present in an extrachromosomal vector, would be considered to be an isolated nucleotide sequence whether it is present within the plasmid or similar structure used to transform the cells, within the genome of the plant or bacterium, or present in detectable amounts in tissues, progeny, biological samples or commodity products derived from the plant or bacterium.
- the term “germination rate” as used herein refers to the number of seeds that germinate during a particular time period. For example, a germination rate of 85% indicates that 85 out of 100 seeds germinate during a given time period.
- inactivate or “inactivation” as used herein in reference to the inactivation of spores of a recombinant Bacillus cereus family member means that the spores are unable to germinate, or that the spores can germinate, but are damaged such that germination does not result in a living bacterium.
- partially inactivate or “partial inactivation” mean that a percentage of the spores are inactivated, but that some spores retain the ability to germinate and return to a live, replicating state.
- genetic inactivation refers to inactivation of spores a recombinant Bacillus cereus family member by a mutation of the spore’s DNA that results in complete or partial inactivation of the spore.
- physical inactivation and chemical inactivation refer to inactivation of spores using any physical or chemical means, e.g., by heat treatment, gamma irradiation, x-ray irradiation, UV-A irradiation, UV-B irradiation, or treatment with a solvent such as glutaraldehyde, formaldehyde, hydrogen peroxide, acetic acid, bleach, chloroform, phenol, or any combination thereof.
- mutant sequence refers to an amino acid sequence as it exists in a naturally occurring protein.
- a “plant growth medium” includes any material that is capable of supporting the growth of a plant.
- promoting plant growth and “stimulating plant growth” are used interchangeably herein, and refer to the ability to enhance or increase at least one of the plant’s height, weight, leaf size, root size, fruit size, shoot size or stem size, and/or the ability to increase protein yield from the plant, and/or to increase crop yield, and/or to improve plant vigor. For example, this may relate to increased length and/or fresh and/or dry weights of roots and/or shoots of treated plants or crops compared to untreated plants or crops.
- Increased yield of a plant in particular of an agricultural, silvicultural and/or ornamental plant, means that the yield of a product of the respective plant is increased by a measurable amount over the yield of the same product of the plant produced under the same conditions, but without the application of the compositions disclosed herein.
- Improved plant vigor includes the following: (a) improved vitality of the plant, (b) improved quality of the plant and/or of the plant products, e.g., enhanced protein content, (c) improved visual appearance, (d) delay of senescence, (e) enhanced root growth and/or more developed root system (e.g., determined by the dry mass of the root), (f) enhanced nodulation, in particular rhizobial nodulation, (g) longer panicles, (h) bigger leaf blade, (i) less dead basal leaves, (j) increased chlorophyll content, (k) prolonged photosynthetically active period, (1) increased or improved plant stand density, (m) less plant verse (lodging), (n) increased plant weight, (o) increased plant height, (p) tillering increase, (q) stronger and/or more productive tillers, (r) less non-productive tillers, (s) enhanced photosynthetic activity and/or enhanced pigment content and thus greener leaf color, (t) earlier and/or improved ger
- the term “recombinant” as used in reference to the bacteria described herein encompasses bacteria having any genetic modification as compared to wild-type bacteria of the same type, including bacteria that have been modified to delete of a gene or a portion of a gene (e.g., bacteria that have a “knock-out” of a gene), as well as bacteria that have been modified to express an exogenous peptide or protein.
- Rhizosphere is used interchangeably with “root zone” to denote that segment of the soil that surrounds the roots of a plant and is influenced by them.
- the term “synergistically effective amount” as used herein refers to an amount of a first substance (e.g., a first enzyme) that when used in combination with a second substance (e.g., a second enzyme) produces a biological effect that is greater than the sum of the biological effects of each of the respective first and second substances when used alone.
- a first substance e.g., a first enzyme
- a second substance e.g., a second enzyme
- targeting sequence refers to a polypeptide sequence that, when present as part of a longer polypeptide or a protein, results in the localization of the longer polypeptide or the protein to a specific subcellular location.
- the targeting sequences described herein result in localization of proteins to the exosporium of a Bacillus cereus family member.
- ATCC is the abbreviation for the American Type Culture Collection, International Depository Authority for the Purposes of Depositing Biological Material for the Purposes of Patenting under the Budapest Treaty on the International Recognition of the Deposit of Microorganisms for the Purposes of Patent Procedure, having the address ATCC Patent Depository, 10801 University Boulevard, Manassas, Virginia 10110, U.S.A.
- CBS is the abbreviation for the Centraalbureeau voor Schimmelcultures, an International Depository Authority for the Purposes of Depositing Biological Material for the Purposes of Patenting under the Budapest Treaty on the International Recognition of the Deposit of Microorganisms for the Purposes of Patent Procedure, having the address Uppsalalaan 8, Baam/Utrecht, The Netherlands.
- CGMCC is the abbreviation for the China General Microbiological Culture Collection Cente, an International Depository Authority for the Purposes of Depositing Biological Material for the Purposes of Patenting under the Budapest Treaty on the International Recognition of the Deposit of Microorganisms for the Purposes of Patent Procedure, having the address of Institute of Microbiology, Chinese Academy of Sciences, No. 1 Beichen West Road, Chaoyang District, Beijing 100 101.
- CNCM is the acronym for the Collection Nationale de Cultures de Microorganismes, Institut Pasteur, Paris, France.
- DSM is the abbreviation for Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, an International Depositary Authority for the Purposes of Depositing Biological Material for the Purposes of Patenting under the Budapest Treaty on the International Recognition of the Deposit of Microorganisms for the Purposes of Patent Procedure, having the address Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, InhoffenstraBe 7B, 38124 Braunschweig, Germany.
- IMI is the acronym for CABI Bioscience, Eggham, UK (formerly International Mycological Institute; also known as CMI and CABI).
- NRRL is the abbreviation for the Agricultural Research Service Culture Collection, International Depository Authority for the Purposes of Deposing Biological Material for the Purposes of Patenting under the Budapest Treaty on the International Recognition of the Deposit of Microorganisms for the Purposes of Patent Procedure, having the address National Center for Agricultural Utilization Research, Agricultural Research Service, U.S. Department of Agriculture, 1815 North University Street, Peoria, Illinois 61604, U.S.A.
- compositions of the present invention comprise a) recombinant exosporium- producing Bacillus cells that express a fusion protein comprising: (i) an enzyme having serine protease activity from Bacillus firmus; and (ii) a targeting sequence that localizes the fusion protein to the exosporium of the Bacillus cells or exosporium fragments derived from such recombinant exosporium-producing Bacillus cells; and b) at least one particular insecticide or biostimulant disclosed herein in a synergistically effective amount.
- the fusion proteins of the present invention comprise a targeting sequence, exosporium protein, or exosporium protein fragment that targets the fusion protein to the exosporium of a recombinant Bacillus cereus family member.
- the fusion proteins further comprise an enzyme having serine protease activity. When expressed in Bacillus cereus family member bacteria, these fusion proteins are targeted to the exosporium layer of the spore and are physically oriented such that the serine protease is displayed on the outside of the spore.
- This Bacillus exosporium display (BEMD) system can be used to deliver the serine protease to plants (e.g., to plant foliage, fruits, flowers, stems, or roots) or to a plant growth medium such as soil. Enzymes and proteins delivered to the soil or another plant growth medium in this manner persist and exhibit activity in the soil for extended periods of time.
- Introduction of recombinant Bacillus cercus family member bacteria expressing the fusion proteins described herein into soil or the rhizosphere of a plant leads to a beneficial enhancement of plant growth and/or to control pests, such as nematodes, in many different soil conditions.
- the use of the BEMD to create these enzymes allows them to continue to exert their beneficial results to the plant and the rhizosphere over the first months of a plant’s life.
- the BEMD system can be modified such that the exosporium of the recombinant Bacillus cercus family member can be removed from the spore, generating exosporium fragments containing the fusion proteins.
- the exosporium fragments can also be used to deliver the serine proteases to plants in a cell-free preparation.
- amino acid sequences for the targeting sequences, exosporium proteins, and exosporium protein fragments that can be used for targeting of enzymes or proteins (e.g., enzymes having serine protease activity) to the exosporium of a Bacillus cercus family members, are provided in Table 1 together with their SEQ ID NOs.
- Bacillus is a genus of rod-shaped bacteria.
- the Bacillus cercus family of bacteria includes any Bacillus species that is capable of producing an exosporium.
- Bacillus cercus family of bacteria includes the species Bacillus anthracis, Bacillus cercus, Bacillus thuringiensis , Bacillus mycoides, Bacillus pseudomycoides, Bacillus samanii, Bacillus gaemokensis, Bacillus weihenstephensis, and Bacillus toyoiensis.
- the outermost layer of the endospores is known as the exosporium and comprises a basal layer surrounded by an external nap of hair-like projections. Filaments on the hair-like nap are predominantly formed by the collagen-like glycoprotein BclA, while the basal layer is comprised of a number of different proteins.
- Another collagen-related protein, BclB is also present in the exosporium and exposed on endospores of Bacillus cereus family members.
- BclA the major constituent of the surface nap, has been shown to be attached to the exosporium with its amino-terminus (N-terminus) positioned at the basal layer and its carboxy-terminus (C-terminus) extending outward from the spore.
- Spores of the B. cereus group are complex, multilayered structures.
- the nucleoid containing core is enclosed within a peptidoglycan cortex, which is surrounded by the spore coat.
- Spores of all the B. cereus group species are encircled by an additional loose-fitting layer called the exosporium, which is not present on other species such as Bacillus subtilis, for which the coat constitutes the outermost layer of the mature spore.
- the exosporium is a balloonlike layer that acts as the outer permeability barrier of the spore and contributes to spore survival and virulence.
- amino acids 20-35 of BclA from Bacillus anthracis Sterne strain have been found to be sufficient for targeting to the exosporium.
- a sequence alignment of amino acids 1 ⁇ 41 of BclA (SEQ ID NO: 1) with the corresponding N-terminal regions of several other Bacillus cercus family exosporium proteins and Bacillus cereus family proteins having related sequences is shown in FIGS. 1A and IB of U.S. Patent Application Publication No. 2016/0108096. As can be seen from FIGS. 1A and IB, there is a region of high homology among all of the proteins in the region corresponding to amino acids 20-41 of BclA.
- amino acids corresponding to amino acids 36 ⁇ 41 of BclA contain secondary structure and are not necessary for fusion protein localization to the exosporium.
- the conserved targeting sequence region of BclA (amino acids 20-35 of SEQ ID NO: 1) is shown in bold in FIGS. 1A and IB.
- a more highly conserved region spanning amino acids 25-35 of BclA within the targeting sequence is underlined in the sequences in FIGS. 1A and IB, and is the recognition sequence for ExsFA/BxpB/ExsFB and homologs, which direct and assemble the described proteins on the surface of the exosporium.
- each of these sequences contains a conserved region corresponding to amino acids 20-35 of BclA (SEQ ID NO: 1; shown in bold), and a more highly conserved region corresponding to amino acids 25-35 of BclA (underlined).
- BclA which includes amino acids 20-35 can be used as to target a fusion protein to the exosporium.
- full-length exosporium proteins or exosporium protein fragments can be used for targeting the fusion proteins to the exosporium.
- full-length BclA or a fragment of BclA that includes amino acids 20-35 can be used for targeting to the exosporium.
- full length BclA (SEQ ID NO: 3) or a midsized fragment of BclA that lacks the carboxy-terminus such as amino acids 1-196 of BclA or amino acids 1-166 of BclA can be used to target the fusion proteins to the exosporium.
- the targeting sequence can also comprise much shorter portions of BclA which include amino acids 20-35, such as SEQ ID NO: 1 (amino acids methionine residue linked to amino acids 20-35 of BclA. Even shorter fragments of BclA which include only some of amino acids 20-35 also exhibit the ability to target fusion proteins to the exosporium.
- the targeting sequence can comprise amino acids 22-31 of SEQ ID NO: 1, amino acids 22-33 of SEQ ID NO: 1, or amino acids 20-31 of SEQ ID NO: 1.
- any amino acid sequence comprising amino acids 20-35 of BclA can serve as the targeting sequence.
- the targeting sequence can comprise amino acids 1-35 of SEQ ID NO: 1, amino acids 20-35 of SEQ ID NO: 1, SEQ ID NO: 1, SEQ ID NO: 2, amino acids 22-31 of SEQ ID NO: 1, amino acids 22-33 of SEQ ID NO: 1, or amino acids 20-31 of SEQ ID NO: 1.
- the targeting sequence can consist of amino acids 1-35 of SEQ ID NO: 1, amino acids 20-35 of SEQ ID NO: 1, or SEQ ID NO: 1.
- the targeting sequence can consist of amino acids 22-31 of SEQ ID NO: 1, amino acids 22-33 of SEQ ID NO: 1, or amino acids 20-31 of SEQ ID NO: 1.
- the exosporium protein can comprise full length BclA (SEQ ID NO: 3), or the exosporium protein fragment can comprise a midsized fragment of BclA that lacks the carboxy-terminus, such as amino acids 1-196 of BclA.
- the targeting sequence can comprise amino acids 2-35 of SEQ ID NO: 1; amino acids 5-35 of SEQ ID NO: 1; amino acids 8-35 of SEQ ID NO: 1; amino acids 10-35 of SEQ ID NO: 1; or amino acids 15-35 of SEQ ID NO: 1.
- sequences shorter than amino acids 20-35 of BclA can be used to target a fusion protein to the exosporium of a recombinant Bacillus cereus family member.
- amino acids 20-33 of BclA, amino acids 20-31 of BclA, amino acids 21-33 of BclA, or amino acids 23-31 of BclA can be used to target a fusion protein to the exosporium of a recombinant Bacillus cereus family member.
- the targeting sequence can consist of amino acids 20-33 of SEQ ID NO: 1, amino acids 20-31 of SEQ ID NO: 1, amino acids 21-33 of SEQ ID NO: 1, or amino acids 23-31 of SEQ ID NO: 1.
- additional amino acids can be added to the aminoterminus, the carboxy terminus, or both the amino- and carboxy termini to create a targeting sequence that will be effective for targeting a fusion protein to the exosporium of a recombinant Bacillus cereus family member.
- FIG. 1 lists the percent identity of the corresponding amino acids of each sequence to amino acids 20-35 of BclA (“20-35% Identity”) and to amino acids 25-35 of BclA (“25-35 % Identity”). Sequences having a targeting sequence identity as low as 43.8% with amino acids 20-35 of BclA (SEQ ID NO: 1), wherein the identity with amino acids 25-35 of BclA is 54.5%, retain the ability to target fusion proteins to the exosporium. Data are provided in Table 58 in Example 59 of PCT Publication No. WO 2016/044661, which is incorporated herein by reference in its entirety.
- Table 58 shows the enzyme levels of phosphatidylcholinespecific phospholipase C gene (PC-PLC) and lipase on Bacillus cereus family member spores expressing fusion proteins containing these enzymes and various targeting sequences with sequence identity to amino acids 20-35 of BclA ranging from 50.0% to 68.8% and with sequence identity to amino acids 25-35 ranging from 63.6% to 81.8%.
- PC-PLC phosphatidylcholinespecific phospholipase C gene
- targeting of a protein of interest e.g., an enzyme
- targeting sequences having 50-68.8% identity to amino acids 20-35 of BclA SEQ ID NO: 1
- identity to amino acids 25-35 of BclA is 63.6% to 81.8%.
- Such motif is present in a targeting sequence, exosporium protein, or exosporium protein fragment that targets the fusion protein to the exosporium of the recombinant Bacillus bacterium and comprises the sequence X1-X2-X3-X4-X5-X6-X7-X8-X9-X10- X11-X12-X13-X14-X15-X16, wherein:
- Xi is any amino acid or absent
- X2 is phenylalanine (F), leucine (L), isoleucine (I), or methionine (M);
- X3 is any amino acid
- X4 is proline (P) or serine (S); X5 is any amino acid;
- Xe is leucine (L), asparagine (N), serine (S), or isoleucine (I);
- X7 is valine (V) or isoleucine (I);
- Xs is glycine (G);
- X9 is proline (P);
- X10 is threonine (T) or proline (P);
- Xn is leucine (L) or phenylalanine (F);
- X12 is proline (P);
- X13 is any amino acid
- X14 is any amino acid
- X15 is proline (P), glutamine (Q), or threonine (T);
- Xi6 is proline (P), threonine (T), or serine (S).
- any of the targeting sequences, exosporuim proteins, or exosporium protein fragments can be used to target any protein or peptide of interest, including the proteins having serine protease activity described herein, to the exosporium of a recombinant Bacillus cereus family member.
- FIGS. 1A and IB of U.S. Patent Application Publication No. 2016/0108096 list the percent identity of each of the corresponding amino acids of each sequence to amino acids 20-35 of BclA (“20-35% Identity”) and to amino acids 25-35 of BclA (“25-35% Identity”).
- the corresponding amino acids of BetA/BAS3290 are about 81.3% identical
- the corresponding amino acids of BAS4623 are about 50.0% identical
- the corresponding amino acids of BclB are about 43.8% identical
- the corresponding amino acids of BAS1882 are about 62.5% identical
- the corresponding amino acids of the KBAB4 2280 gene product are about 81.3% identical
- the corresponding amino acids of the KBAB4 3572 gene product are about 81.3% identical.
- the sequence identities over this region for the remaining sequences are listed in FIGS. 1A and IB.
- the targeting sequence can comprise an amino acid sequence having at least about 43% identity with amino acids 20-35 of SEQ ID NO: 1, wherein the identity with amino acids 25-35 is at least about 54%.
- the targeting sequence consists of an amino acid sequence consisting of 16 amino acids and having at least about 43% identity with amino acids 20-35 of SEQ ID NO: 1, wherein the identity with amino acids 25-35 is at least about 54%.
- the targeting sequence can also comprise an amino acid sequence having at least about 50% identity with amino acids 20-35 of SEQ ID NO: 1, wherein the identity with amino acids 25-35 is at least about 63%.
- the targeting sequence consists of an amino acid sequence consisting of 16 amino acids and having at least about 50% identity with amino acids 20-35 of SEQ ID NO: 1, wherein the identity with amino acids 25-35 is at least about 63%.
- the targeting sequence can also comprise an amino acid sequence having at least about 50% identity with amino acids 20-35 of SEQ ID NO: 1, wherein the identity with amino acids 25-35 is at least about 72%.
- the targeting sequence consists of an amino acid sequence consisting of 16 amino acids and having at least about 50% identity with amino acids 20-35 of SEQ ID NO: 1, wherein the identity with amino acids 25-35 is at least about 72%.
- the targeting sequence can also comprise an amino acid sequence having at least about 56% identity with amino acids 20-35 of SEQ ID NO: 1, wherein the identity with amino acids 25-35 is at least about 63%.
- the targeting sequence consists of an amino acid sequence consisting of 16 amino acids and having at least about 56% identity with amino acids 20-35 of SEQ ID NO: 1, wherein the identity with amino acids 25-35 is at least about 63%.
- the targeting sequence can comprise an amino sequence having at least about 62% identity with amino acids 20-35 of SEQ ID NO: 1, wherein the identity with amino acids 25-35 is at least about 72%.
- the targeting sequence can consist of an amino acid sequence consisting of 16 amino acids and having at least about 62% identity with amino acids 20-35 of SEQ ID NO: 1, wherein the identity with amino acids 25-35 of SEQ ID NO: 1 is at least about 72%.
- the targeting sequence can comprise an amino acid sequence having at least 68% identity with amino acids 20-35 of SEQ ID NO: 1, wherein the identity with amino acids 25-35 is at least about 81%.
- the targeting sequence consists of an amino acid sequence consisting of 16 amino acids and having at least 68% identity with amino acids 20-35 of SEQ ID NO: 1, wherein the identity with amino acids 25-35 is at least about 81%.
- the targeting sequence can also comprises an amino sequence having at least about 75% identity with amino acids 20-35 of SEQ ID NO: 1, wherein the identity with amino acids 25-35 is at least about 72%.
- the targeting sequence consists of an amino acid sequence consisting of 16 amino acids and having at least about 75% identity with amino acids 20-35 of SEQ ID NO: 1, wherein the identity with amino acids 25-35 of SEQ ID NO: 1 is at least about 72%.
- the targeting sequence can also comprise an amino sequence having at least about 75% identity with amino acids 20-35 of SEQ ID NO: 1, wherein the identity with amino acids 25-35 is at least about 81%.
- the targeting sequence consists of an amino acid sequence consisting of 16 amino acids and having at least about 75% identity with amino acids 20-35 of SEQ ID NO: 1, wherein the identity with amino acids 25-35 of SEQ ID NO: 1 is at least about 81%.
- the targeting sequence can also comprise an amino acid sequence having at least about 81% identity with amino acids 20-35 of SEQ ID NO: 1, wherein the identity with amino acids 25-35 is at least about 81%.
- the targeting sequence consists of an amino acid sequence consisting of 16 amino acids and having at least about 81% identity with amino acids 20-35 of SEQ ID NO: 1, wherein the identity with amino acids 25-35 is at least about 81%.
- the targeting sequence can comprise an amino acid sequence having at least about 81% identity with amino acids 20-35 of SEQ ID NO: 1, wherein the identity with amino acids 25-35 is at least about 90%.
- the targeting sequence consists of an amino acid sequence consisting of 16 amino acids and having at least about 81% identity with amino acids 20-35 of SEQ ID NO: 1, wherein the identity with amino acids 25-35 is at least about 90%.
- targeting sequences can also be used as targeting sequences, so long as the targeting sequence comprises amino acids 20-35 of BclA, the corresponding amino acids of BetA/BAS3290, BAS4263, BclB, BAS 1882, the KBAB4 2280 gene product, or the KBAB 3572 gene product, or a sequence comprising any of the above noted sequence identities to amino acids 20-35 and 25-35 of BclA is present.
- exosporium proteins having a high degree of sequence identity with any of the full-length exosporium proteins or the exosporium protein fragments described above can also be used to target a peptide or protein to the exosporium of a Bacillus cereus family member.
- the fusion protein can comprise an exosporium protein or exosporium protein fragment comprising an amino acid sequence having at least 85% identity with SEQ ID NO: 3.
- the fusion protein can comprise an exosporium protein having at least 90% identity with SEQ ID NO: 3.
- the fusion protein can comprise an exosporium protein having at least 95% identity with SEQ ID NO: 3.
- the fusion protein can comprise an exosporium protein having at least 98% identity with SEQ ID NO: 3.
- the fusion protein can comprise an exosporium protein having at least 99% identity with SEQ ID NO: 3.
- the fusion protein can comprise an exosporium protein having 100% identity with SEQ ID NO: 3.
- FIGS. 1A and IB show a sequence alignment of the amino-terminal region of BclA (SEQ ID NO: 1) with the corresponding amino-terminal regions of a number of other Bacillus cereus family member exosporium proteins.
- BclA SEQ ID NO: 1
- FIG. 1 shows a conserved motif at amino acids 20-35 of BclA (shown in bold in FIG. 1), with a more highly conserved motif at amino acids 25-35 of BclA (shown in bold and underlined in FIG. 1).
- This more highly conserved region is the recognition sequence for ExsFA/BxpB/ExsFB and homologs, which direct and assemble the described exosporium proteins on the surface of the exosporium.
- the targeting motif, exosporium protein, or exosporium protein fragment is recognized by the spore exosporium assembly machinery and directed to the exosporium, resulting in display of the protein or peptide of interest portion of the fusion protein (e.g., the enzyme having serine protease activity) on the outside of the spore.
- the protein or peptide of interest portion of the fusion protein e.g., the enzyme having serine protease activity
- the use of different targeting sequences allows for control of the expression level of the fusion protein on the surface of the Bacillus cereus family member spore.
- Use of certain of the targeting sequences described herein will result in a higher level of expression of the fusion protein, whereas use of others of the targeting sequences will result in lower levels of expression of the fusion protein on the surface of the spore.
- the targeting sequence, exosporium protein, or exosporium protein fragment can comprise the amino acid sequence GXT at its carboxy terminus, wherein X is any amino acid.
- the targeting sequence, exosporium protein, or exosporium protein fragment can comprise an alanine residue at the position of the targeting sequence that corresponds to amino acid 20 of SEQ ID NO: 1.
- the targeting sequence, exosporium protein, or exosporium protein fragment can further comprise a methionine, serine, or threonine residue at the amino acid position immediately preceding the first amino acid of the targeting sequence, exosporium protein, or exosporium protein fragment or at the position of the targeting sequence that corresponds to amino acid 20 of SEQ ID NO: 1.
- Fusion proteins comprising a targeting sequence, exosporium protein, or exosporium protein fragment that targets the fusion protein to the exosporium of a recombinant Bacillus cereus family member are provided.
- the fusion proteins further comprise an enzyme having serine protease activity.
- the fusion protein can comprise: (1) a targeting sequence comprising an amino acid sequence having at least about 43% identity with amino acids 20-35 of SEQ ID NO: 1, wherein the identity with amino acids 25-35 is at least about 54%; (2) a targeting sequence comprising amino acids 1-35 of SEQ ID NO: 1; (3) a targeting sequence comprising amino acids 20-35 of SEQ ID NO: 1; (4) a targeting sequence comprising SEQ ID NO: 1; (5) an exosporium protein comprising an amino acid sequence having at least 85% identity with SEQ ID NO: 3; (6) a targeting sequence comprising amino acids 2-35 of SEQ ID NO: 1; (7) a targeting sequence comprising amino acids 5-35 of SEQ ID NO: 1; (8) a targeting sequence comprising amino acids 8-35 of SEQ ID NO: 1; (9) a targeting sequence comprising amino acids 10-35 of SEQ ID NO: 1; (10) a targeting sequence comprising amino acids 15-35 of SEQ ID NO: 1; (1
- the targeting sequence can comprise an amino acid sequence having at least about 50% identity with amino acids 20-35 of SEQ ID NO: 1, wherein the identity with amino acids 25-35 is at least about 63%.
- the targeting sequence can consist of an amino acid sequence having at least about 50% identity with amino acids 20-35 of SEQ ID NO: 1, wherein the identity with amino acids 25-35 is at least about 63%.
- the targeting sequence can comprise an amino acid sequence having at least about 50% identity with amino acids 20-35 of SEQ ID NO: 1, wherein the identity with amino acids 25-35 is at least about 72%.
- the targeting sequence can consist of an amino acid sequence having at least about 50% identity with amino acids 20-35 of SEQ ID NO: 1, wherein the identity with amino acids 25-35 is at least about 72%.
- the targeting sequence can comprise an amino acid sequence having at least about 56% identity with amino acids 20-35 of SEQ ID NO: 1, wherein the identity with amino acids 25-35 is at least about 63%.
- the targeting sequence can consist of an amino acid sequence having at least about 56% identity with amino acids 20-35 of SEQ ID NO: 1, wherein the identity with amino acids 25-35 is at least about 63%.
- the targeting sequence can comprise an amino sequence having at least about 62% identity with amino acids 20-35 of SEQ ID NO: 1, wherein the identity with amino acids 25-35 is at least about 72%.
- the targeting sequence can consist of an amino sequence having at least about 62% identity with amino acids 20-35 of SEQ ID NO: 1, wherein the identity with amino acids 25-35 is at least about 72%.
- the targeting sequence can comprise an amino acid sequence having at least about 68% identity with amino acids 20-35 of SEQ ID NO: 1, wherein the identity with amino acids 25-35 is at least about 81%.
- the targeting sequence can consist of an amino acid sequence having at least about 68% identity with amino acids 20-35 of SEQ ID NO: 1, wherein the identity with amino acids 25-35 is at least about 81%.
- the targeting sequence can comprise an amino sequence having at least about 75% identity with amino acids 20-35 of SEQ ID NO: 1, wherein the identity with amino acids 25-35 is at least about 72%.
- the targeting sequence can consist of an amino sequence having at least about 75% identity with amino acids 20-35 of SEQ ID NO: 1, wherein the identity with amino acids 25-35 is at least about 72%.
- the targeting sequence can comprise an amino sequence having at least about 75% identity with amino acids 20-35 of SEQ ID NO: 1, wherein the identity with amino acids 25-35 is at least about 81%.
- the targeting sequence can consist of an amino sequence having at least about 75% identity with amino acids 20-35 of SEQ ID NO: 1, wherein the identity with amino acids 25-35 is at least about 81%.
- the targeting sequence can comprise an amino acid sequence having at least about 81% identity with amino acids 20-35 of SEQ ID NO: 1, wherein the identity with amino acids 25-35 is at least about 81%.
- the targeting sequence can consist of an amino acid sequence having at least about 81% identity with amino acids 20-35 of SEQ ID NO: 1, wherein the identity with amino acids 25-35 is at least about 81%.
- the targeting sequence can comprise an amino acid sequence having at least about 81% identity with amino acids 20-35 of SEQ ID NO: 1, wherein the identity with amino acids 25-35 is at least about 90%.
- the targeting sequence can consist of an amino acid sequence having at least about 81% identity with amino acids 20-35 of SEQ ID NO: 1, wherein the identity with amino acids 25-35 is at least about 90%.
- the targeting sequence can consist of: (a) an amino acid sequence consisting of 16 amino acids and having at least about 43% identity with amino acids 20-35 of SEQ ID NO: 1, wherein the identity with amino acids 25-35 is at least about 54%; (b) amino acids 1-35 of SEQ ID NO: 1; (c) amino acids 20-35 of SEQ ID NO: 1; (d) SEQ ID NO: 1; (e) SEQ ID NO: 2.
- the fusion protein can comprise an exosporium protein or an exosporium protein fragment comprising an amino acid sequence having at least 90% identity with SEQ ID NO: 3.
- the fusion protein can comprise an exosporium protein or an exosporium protein fragment comprising an amino acid sequence having at least 95% identity with SEQ ID NO: 3.
- the fusion protein can comprise an exosporium protein or an exosporium protein fragment comprising an amino acid sequence having at least 98% identity with SEQ ID NO: 3.
- the fusion protein can comprise an exosporium protein or an exosporium protein fragment comprising an amino acid sequence having at least 99% identity with SEQ ID NO: 3.
- the fusion protein can comprise an exosporium protein or an exosporium protein fragment comprising an amino acid sequence having 100% identity with SEQ ID NO: 3.
- the fusion protein can comprise a targeting sequence, exosporium protein, or exosporium protein fragment that targets the fusion protein to the exosporium of the recombinant Bacillus bacterium, wherein the targeting sequence, exosporium protein, or exosporium protein fragment comprises the sequence X1-X2-X3-X4-X5-X6-X7-X8-X9-X10-X11- X12-X13-X14-X15-X16, wherein:
- Xi is any amino acid or absent
- X2 is phenylalanine (F), leucine (L), isoleucine (I), or methionine (M);
- X3 is any amino acid
- X4 is proline (P) or serine (S);
- X5 is any amino acid
- Xe is leucine (L), asparagine (N), serine (S), or isoleucine (I);
- X7 is valine (V) or isoleucine (I);
- Xs is glycine (G);
- X9 is proline (P);
- X10 is threonine (T) or proline (P);
- Xn is leucine (L) or phenylalanine (F);
- X12 is proline (P);
- X13 is any amino acid
- X14 is any amino acid
- X15 is proline (P), glutamine (Q), or threonine (T);
- Xi6 is proline (P), threonine (T), or serine (S)
- the targeting sequence, exosporium protein, or exosporium protein fragment can comprise the amino acid sequence GXT at its carboxy terminus, wherein X is any amino acid.
- the targeting sequence, exosporium protein, or exosporium protein fragment can comprise an alanine residue at the position of the targeting sequence that corresponds to amino acid 20 of SEQ ID NO: 1.
- the targeting sequence, exosporium protein, or exosporium protein fragment can further comprise a methionine, serine, or threonine residue at the amino acid position immediately preceding the first amino acid of the targeting sequence, exosporium protein, or exosporium protein fragment or at the position of the targeting sequence that corresponds to amino acid 20 of SEQ ID NO: 1.
- Fusion proteins comprising a targeting sequence, exosporium protein, or exosporium protein fragment that targets the fusion protein to the exosporium of a recombinant Bacillus cereus family member and an enzyme having serine protease activity are provided.
- the fusion proteins can comprise an enzyme having serine protease activity.
- Serine proteases are one of the largest and mostly widely distributed class of proteases. Serine proteases cleave peptide bonds at serine residues within a specific recognition site in a protein. These proteases are frequently used by bacteria for nutrient scavenging in the environment. Serine proteases have also been show to exhibit nematicidal activity through digestion of intestinal tissue in nematodes. Studies of Bacillus firmus strain DS-1, which shows nematicidal activity against Meloidogyne incognita and soybean cyst nematode, revealed that the serine protease produced by that strain has serine protease activity and degraded the intestinal tissues of nematodes.
- SEQ ID NOs: 4-6 are amino acid sequences for wild-type enzymes and a variant enzyme that exhibit or are predicted to exhibit serine protease activity.
- SEQ ID NOs: 4 and 5 provide the amino acid sequence for wild-type serine protease enzymes from two different Bacillus firmus strains and have 98% sequence similarity.
- SEQ ID NO: 6 provides the amino acid sequence for the same enzyme as in SEQ ID NO: 4, except for a deletion of amino acids 181-240 of SEQ ID NO: 4, such that SEQ ID NOs: 4 and 6 have 81% sequence similarity.
- the catalytic residues referenced in Geng, et al., 2016, above, are maintained in the variant serine protease amino acid sequence of SEQ ID NO: 6.
- Table 2. Amino Acid Sequences for Serine Protease and Variant
- the enzyme having serine protease activity can comprise a serine protease from Bacillus firmus, also referred to as a Bacillus firmus serine protease enzyme.
- the serine protease from Bacillus firmus can be Sepl from a Bacillus firmus strain.
- the serine protease can be Sepl from Bacillus firmus DS-1, which is SEQ ID NO: 4. See Geng, et al., 2016, above.
- the serine protease can be Sepl from another Bacillus firmus strain, such as SEQ ID NO: 5.
- sequence identity or “percent sequence identity” or “% sequence identity” is determined by aligning the entire length of the sequences in such a way as to obtain optimal matching so that the minimal number of edit operations (e.g., inserts, deletions and substitutions) are needed in order to transform the one sequence into an exact copy of the other sequence being aligned.
- edit operations e.g., inserts, deletions and substitutions
- the enzyme having serine protease activity can comprise an amino acid sequence having at least 80% identity to any one of SEQ ID NOs: 4-5.
- the enzyme having serine protease activity can comprise an amino acid sequence having at least 85% identity to any one of SEQ ID NOs: 4-5.
- the enzyme having serine protease activity can comprise an amino acid sequence having at least 90% identity to any one of SEQ ID NOs: 4-5.
- the enzyme having serine protease activity can comprise an amino acid sequence having at least 95% identity to any one of SEQ ID NOs: 4-5.
- the enzyme having serine protease activity can comprise an amino acid sequence having at least 98% identity to any one of SEQ ID NOs: 4-5.
- the enzyme having serine protease activity can comprise an amino acid sequence having at least 99% identity to any one of SEQ ID NOs: 4-5.
- the enzyme having serine protease activity can comprise an amino acid sequence having 100% identity to any one of SEQ ID NOs: 4-5.
- the enzyme can comprise SEQ ID NOs: 4-5.
- the enzyme can consist of SEQ ID NOs: 4-5.
- the enzyme having serine protease activity can comprise an amino acid sequence having at least one amino acid deletion relative to the sequence of a wild-type serine protease enzyme from a Bacillus firmus bacterium, wherein the amino acid deletion retains the catalytic residues of the wild-type enzyme and results in the same or increased serine protease activity as compared to the serine protease activity of the wild-type serine protease enzyme under the same conditions.
- the wild-type serine protease enzyme is Sepl from Bacillus firmus DS-1. See Geng, et al., 2016, above.
- the enzyme has increased serine protease activity as compared to the serine protease activity of the wild-type serine protease enzyme under the same conditions.
- amino acid sequence of the enzyme can comprise SEQ ID NO: 6.
- the enzyme having serine protease activity can comprise an amino acid sequence having at least 80% identity to SEQ ID NO: 6.
- the enzyme having serine protease activity can comprise an amino acid sequence having at least 85% identity to SEQ ID NO: 6.
- the enzyme having serine protease activity can comprise an amino acid sequence having at least 90% identity to SEQ ID NO: 6.
- the enzyme having serine protease activity can comprise an amino acid sequence having at least 95% identity to SEQ ID NO: 6.
- the enzyme having serine protease activity can comprise an amino acid sequence having at least 98% identity to SEQ ID NO: 6.
- the enzyme having serine protease activity can comprise an amino acid sequence having at least 99% identity to SEQ ID NO: 6.
- the enzyme having serine protease activity can comprise an amino acid sequence having 100% identity to SEQ ID NO: 6.
- the enzyme can consist of SEQ ID NO: 6.
- the enzyme having serine protease activity and having 70%, 75%, 80%, 85%, 90%, 95%, 98%, or 99% sequence identity to SEQ ID NO: 6 maintains the deletion in SEQ ID NO: 6 (of amino acid 181-240 of SEQ ID NO: 5).
- a fusion protein comprises an enzyme whose native sequence includes a signal peptide
- the enzyme can be used without the signal peptide.
- the native signal peptide or another signal peptide
- the native signal peptide can optionally be included at the amino terminus of the enzyme, immediately preceding the first amino acid of the enzyme sequence.
- a signal peptide can optionally be included at the amino terminus of the enzymes whose native sequences do not include a signal peptide.
- the enzyme having serine protease activity can further comprise a signal peptide.
- the signal peptide is present, it is preferably present at the amino terminus of the enzyme having serine protease activity.
- the signal peptide preferably immediately precedes the first amino acid of the enzyme having serine protease activity.
- the fusion protein comprises a signal peptide
- the signal peptide can be present at the amino terminus of the enzyme having serine protease activity.
- any of the fusion proteins described herein can be made using standard cloning and molecular biology methods known in the art.
- a gene encoding a protein or peptide of interest e.g., an enzyme having serine protease activity
- PCR polymerase chain reaction
- DNA molecule that encodes the fusion protein can be cloned into any suitable vector, for example a plasmid vector.
- the vector suitably comprises a multiple cloning site into which the DNA molecule encoding the fusion protein can be easily inserted.
- the vector also suitably contains a selectable marker, such as an antibiotic resistance gene, such that bacteria transformed, transfected, or mated with the vector can be readily identified and isolated.
- the vector is a plasmid
- the plasmid suitably also comprises an origin of replication.
- DNA coding for the fusion protein can be integrated into the chromosomal DNA of the B. cereus family member or spore- forming bacterium host.
- any of the fusion proteins described herein can also comprise additional polypeptide sequences that are not part of the targeting sequence, exosporium protein, exosporium protein fragment, or the enzyme having serine protease activity.
- the fusion protein can include tags or markers to facilitate purification or visualization of the fusion protein (e.g., a polyhistidine tag or a fluorescent protein such as GFP or YFP) or visualization of recombinant Bacillus cereus family member spores expressing the fusion protein.
- Fusion proteins on the exosporium of a Bacillus cereus family member using the targeting sequences, exosporium proteins, and exosporium protein fragments described herein is enhanced due to a lack of secondary structure in the amino-termini of these sequences, which allows for native folding of the fused proteins and retention of activity. Proper folding can be further enhanced by the inclusion of a short amino acid linker between the targeting sequence, exosporium protein, exosporium protein fragment, spore coat protein, and the enzyme having serine protease activity.
- any of the fusion proteins described herein can comprise an amino acid linker between the targeting sequence, the exosporium protein, or the exosporium protein fragment and the enzyme having serine protease activity.
- the linker can comprise a polyalanine linker or a poly glycine linker.
- a linker comprising a mixture of both alanine and glycine residues can also be used.
- a fusion protein in a fusion protein where the targeting sequence comprises SEQ ID NO: 1, can have one of the following structures:
- Glycine Linker SEQ ID NO: 1 -G n -POI
- a n , G n , and (A/G) n are any number of alanines, any number of glycines, or any number of a mixture of alanines and glycines, respectively.
- n can be 1 to 25, and is preferably 5 to 10.
- the linker comprises a mixture of alanine and glycine residues, any combination of glycine and alanine residues can be used.
- “POI” stands for “protein of interest” and represents the enzyme having serine protease activity.
- the linker can comprise a protease recognition site. Inclusion of a protease recognition site allows for targeted removal, upon exposure to a protease that recognizes the protease recognition site, of the fusion protein containing the enzyme having serine protease activity.
- the linker would typically be amino-terminal to the signal peptide.
- the fusion protein comprises SEQ ID NO: 2, a polyalanine linker, a signal sequence, and the serine protease of SEQ ID NO: 4, these elements would typically be arranged in the following order within the fusion protein, going from the amino-terminus of the fusion protein to the carboxyterminus: SEQ ID NO: 2 - A n -signal sequence-SEQ ID NO: 4.
- the invention further relates to recombinant Bacillus cereus family members that express a fusion protein.
- the fusion protein can be any of the fusion proteins described above.
- the recombinant Bacillus cereus family member can comprise any Bacillus species that is capable of producing an exosporium.
- the recombinant Bacillus cereus family member can comprise Bacillus anthracis, Bacillus cereus, Bacillus thuringiensis, Bacillus mycoides, Bacillus pseudomycoides, Bacillus samanii, Bacillus gaemokensis, Bacillus weihenstephensis, Bacillus toyoiensis, or a combination of any thereof.
- the recombinant Bacillus cereus family member suitably comprises Bacillus thuringiensis or Bacillus mycoides.
- any Bacillus cereus family member can be conjugated, transduced, or transformed with a vector encoding the fusion protein using standard methods known in the art (e.g., by electroporation).
- the bacteria can then be screened to identify transformants by any method known in the art.
- the vector includes an antibiotic resistance gene
- the bacteria can be screened for antibiotic resistance.
- DNA encoding the fusion protein can be integrated into the chromosomal DNA of a B. cereus family member host.
- the recombinant Bacillus cereus family member can then exposed to conditions which will induce sporulation. Suitable conditions for inducing sporulation are known in the art.
- the recombinant Bacillus cereus family member can be plated onto agar plates, and incubated at a temperature of about 30°C for several days (e.g., 3 days).
- the recombinant Bacillus cereus family member can be in the form of a spore.
- Inactivated strains non-toxic strains, or genetically manipulated strains of any of the above species can also suitably be used.
- a Bacillus thuringiensis that lacks the Cry toxin can be used.
- the recombinant B. cereus family member spores expressing the fusion protein have been generated, they can be inactivated to prevent further germination once in use. Any method for inactivating bacterial spores that is known in the art can be used.
- Suitable methods include, without limitation, heat treatment, gamma irradiation, x-ray irradiation, UV-A irradiation, UV-B irradiation, chemical treatment (e.g., treatment with glutaraldehyde, formaldehyde, hydrogen peroxide, acetic acid, bleach, or any combination thereof), or a combination thereof.
- chemical treatment e.g., treatment with glutaraldehyde, formaldehyde, hydrogen peroxide, acetic acid, bleach, or any combination thereof
- spores derived from nontoxigenic strains, or genetically or physically inactivated strains can be used.
- the recombinant Bacillus cereus family member can be in the form of a spore, wherein the spore is inactivated.
- the recombinant Bacillus cereus family member can coexpress two or more of any of the fusion proteins described herein.
- the recombinant Bacillus cereus family member can coexpress at least one fusion protein that comprises SEQ ID NO: 4 together with a fusion protein that comprises SEQ ID NO: 6.
- Bacillus cereus family member strains have inherent beneficial attributes. For example, some strains have plant-growth promoting effects. Other strains are endophytic. Some strains are both endophytic and have plant-growth promoting effects.
- any of the recombinant Bacillus cereus family members described herein can comprise a plant-growth promoting strain of bacteria, an endophytic strain of bacteria, or a strain of bacteria that is both plant-growth promoting and endophytic.
- the plant-growth promoting strain of bacteria can comprise a strain of bacteria that produces an insecticidal toxin (e.g., a Cry toxin), produces a fungicidal compound (e.g., a P-l,3-glucanase, a chitosanase, a lyticase, or a combination of any thereof), produces a nematocidal compound (e.g., a Cry toxin), produces a bacteriocidal compound, is resistant to one or more antibiotics, comprises one or more freely replicating plasmids, binds to plant roots, colonizes plant roots, forms biofilms, solubilizes nutrients, secretes organic acids, or any combination thereof.
- an insecticidal toxin e.g., a Cry toxin
- produces a fungicidal compound e.g., a P-l,3-glucanase, a chitosanase,
- the recombinant Bacillus cereus family member can comprises an endophytic strain of bacteria.
- the recombinant Bacillus cereus family member can comprise an inactivating mutation in its BclA gene, its CotE gene, or its CotO gene (e.g., a knock-out of the BclA gene, CotE gene, or CotO gene).
- the recombinant Bacillus cereus family member can comprise an inactivating mutation in its BclA gene (e.g., a knock-out of the BclA gene). It has been found that expression of fusion proteins in a recombinant Bacillus cereus family member having such a mutation results in increased expression levels of the fusion protein.
- Compositions of the present invention include cultures, such as whole broth cultures, of the strains described herein.
- culture refers to a population of cells growing in the absence of other species in a predetermined culture media under controlled laboratory or manufacturing conditions.
- Biologically pure cultures of the recombinant Bacillus cereus family members of the present invention may be obtained according to methods well known in the art.
- Conventional large-scale microbial culture processes include submerged fermentation, solid state fermentation, or liquid surface culture. During the fermentation, as nutrients are depleted, cells begin the transition from growth phase to sporulation phase, such that the final product of fermentation is largely spores, metabolites and residual fermentation medium. Sporulation is part of the natural life cycle of Bacillus cereus family members and is generally initiated by the cell in response to stressful environmental conditions, such as nutrient limitation. Fermentation is configured to obtain high levels of colony forming units and to promote sporulation.
- the bacterial cells, spores and metabolites in culture media resulting from fermentation may be used directly or concentrated by conventional industrial methods, such as centrifugation or filtration such as tangential-flow filtration or depth filtration, and evaporation.
- compositions of the present invention include the products of the microbial culture processes described herein.
- the product is referred to as a “fermentation broth” or a “whole broth culture.”
- Such broth may be concentrated, as described above.
- the concentrated fermentation broth may be washed, for example, via a diafiltration process, to remove residual fermentation broth and metabolites.
- broth concentrate refers to fermentation broth that has been concentrated by conventional industrial methods, as described above, but remains in liquid form.
- fermentation product refers to fermentation broth or whole broth culture, broth concentrate and/or dried fermentation broth or broth concentrate.
- the fermentation broth or broth concentrate can be dried with or without the addition of carriers using conventional drying processes or methods such as spray drying, freeze drying, tray drying, fluidized-bed drying, drum drying, or evaporation.
- drying process or methods such as spray drying, freeze drying, tray drying, fluidized-bed drying, drum drying, or evaporation.
- transfer product refers to fermentation broth or whole broth culture, broth concentrate and/or dried fermentation broth or broth concentrate.
- the resulting dry products may be further processed, such as by milling or granulation, to achieve a specific particle size or physical format. Carriers, described below, may also be added post-drying.
- Cell-free preparations of fermentation broth of the strains of the present invention can be obtained by any means known in the art, such as extraction, centrifugation and/or filtration of fermentation broth. Those of skill in the art will appreciate that so-called cell-free preparations may not be devoid of cells but rather are largely cell-free or essentially cell-free, depending on the technique used (e.g., speed of centrifugation) to remove the cells.
- the resulting cell-free preparation may be dried and/or formulated with components that aid in its application to plants or to plant growth media. Concentration methods and drying techniques described above for fermentation broth are also applicable to cell-free preparations.
- the recombinant Bacillus cereus family member can comprise a mutation or other modification that allows for collection of exosporium fragments comprising the fusion proteins from spores of the recombinant Bacillus cereus family member.
- the DNA encoding the fusion proteins used in the recombinant Bacillus cereus family members, exosporium fragments, formulations, plant seeds, and methods, described herein is suitably under the control of a sporulation promoter which will cause expression of the fusion protein on the exosporium of a B. cereus family member endospore (e.g., a native bclA promoter from a B. cereus family member).
- a sporulation promoter which will cause expression of the fusion protein on the exosporium of a B. cereus family member endospore (e.g., a native bclA promoter from a B. cereus family member).
- any of the fusion proteins described above can be expressed in the recombinant Bacillus cereus family member under the control of a sporulation promoter that is native to the targeting sequence, exosporium protein, or exosporium protein fragment of the fusion protein, or a portion of such a promoter.
- Any of the fusion proteins can be expressed under the control of a high- expression sporulation promoter.
- the high-expression sporulation promoter can comprise a sigma-K sporulation- specific polymerase promoter sequence.
- nucleotide sequences for promoters that can be used to express any of the fusion proteins in a recombinant Bacillus cereus family member are provided in Table 3 below, together with their SEQ ID NOs.
- Table 3 also provides illustrative minimal promoter sequences for many of the promoters.
- sigma-K sporulation- specific polymerase promoter sequences in the promoters are indicated by bold and underlined text.
- the promoter sequences are immediately upstream of the start codon for each of the indicated genes.
- the last nucleotide of the promoter sequence immediately precedes the first nucleotide of the start codon for the coding region of the gene encoding the indicated protein.
- the sigma-K sporulation-specific polymerase promoter sequences in the promoter sequences shown in Table 3 result in high expression levels of the fusion protein during late sporulation.
- the consensus sequence for the sigma-K sporulation-specific polymerase promoter sequence is CATANNNTN (SEQ ID NO: 14); however, this sequence can comprise up to two mutations and still be functional.
- the sigma-K sporulation- specific polymerase promoter sequence is generally found upstream of the ribosome binding site (RBS).
- Promoters having a high degree of sequence identity to any of the sequences shown above in Table 3 can also be used to express the fusion proteins.
- fusion protein can be expressed under the control of a BclA promoter, a CotY promoter, an ExsY promoter, or a promoter having a high degree of sequence identity to any of these promoters.
- the fusion protein can be expressed under the control of a promoter comprising a nucleic acid sequence having at least 80% identity with a nucleic acid sequence of any one of SEQ ID NOs: 7, 8, 9, 10, 11, 12, or 13.
- the fusion protein can be expressed under the control of a promoter comprising a nucleic acid sequence having at least 85% identity with a nucleic acid sequence of any one of SEQ ID NOs: 7, 8, 9, 10, 11, 12, or 13.
- the fusion protein can be expressed under the control of a promoter comprising a nucleic acid sequence having at least 90% identity with a nucleic acid sequence of any one of SEQ ID NOs: 7, 8, 9, 10, 11, 12, or 13.
- the fusion protein can be expressed under the control of a promoter comprising a nucleic acid sequence having at least 95% identity with a nucleic acid sequence of any one of SEQ ID NOs: 7, 8, 9, 10, 11, 12, or 13.
- the fusion protein can be expressed under the control of a promoter comprising a nucleic acid sequence having at least 98% identity with a nucleic acid sequence of any one of SEQ ID NOs: 7, 8, 9, 10, 11, 12, or 13.
- the fusion protein can be expressed under the control of a promoter comprising a nucleic acid sequence having at least 99% identity with a nucleic acid sequence of any one of SEQ ID NOs: 7, 8, 9, 10, 11, 12, or 13.
- the fusion protein can be expressed under the control of a promoter comprising a nucleic acid sequence having 100% identity with a nucleic acid sequence of any one of SEQ ID NOs: 7, 8, 9, 10, 11, 12, or 13.
- the fusion protein can be expressed under the control of a promoter comprising a sigma-K sporulation specific polymerase promoter sequence, wherein the sigma-K sporulation- specific polymerase promoter sequence or sequences have 100% identity with the corresponding nucleotides of any of SEQ ID NOs: 7, 8, 9, 10, 11, 12, or 13.
- the fusion proteins can be expressed under the control of a promoter that is native to the targeting sequence, exosporium protein, or exosporium protein fragment of the fusion protein.
- a promoter that is native to the targeting sequence, exosporium protein, or exosporium protein fragment of the fusion protein.
- the fusion protein can be expressed under the control of a native BclA promoter (e.g., SEQ ID NO: 11, or 12).
- Table 3 also provides illustrative minimal promoter sequences.
- the fusion proteins can be expressed under any of these minimal promoter sequences.
- the fusion protein can be expressed under a portion of any of the promoters listed above in Table 3, so long as the portion of the promoter includes a sigma-K sporulation- specific polymerase promoter sequence.
- the fusion protein can be expressed under a promoter region that comprises the first 25, 50, 100, 150, 200, 250, or 300 nucleotides upstream of the start codon, so long as that region comprises a sigma-K sporulationspecific polymerase promoter sequence.
- the recombinant Bacillus cereus family members that express fusion proteins comprising a protein or peptide of interest (e.g., an enzyme having serine protease activity) and a targeting sequence, an exosporium protein, or an exosporium protein fragment that targets the fusion protein to the exosporium of the recombinant Bacillus cereus family member can be used for various purposes, including delivering the proteins or peptides of interest plants, seeds, a plant growth medium, or an area surrounding a seed or a plant (e.g., via soil drench, foliar application, or as a seed treatment).
- the presence of the living microorganisms may not be desirable, and instead, it would be desirable to separate the living spore from the fusion proteins in the exosporium on the outside surface of the spore.
- use of exosporium fragments that have been separated from the spores may be preferred over the use of living microorganisms having the enzyme on their exosporium.
- Mutations or other genetic alterations can be introduced into the recombinant Bacillus cereus family members that allow free exosporium to be separated from spores of the recombinant Bacillus cereus family member. This separation process yields exosporium fragments that contain the fusion proteins but that are substantially free of the spores themselves.
- substantially free of spores it is meant that once the free exosporium is separated from the spores, a preparation is obtained that contains less than 5% by volume of spores, preferably less than 3% by volume of spores, even more preferably less than 1% by volume of spores, and most preferably contains no spores or if spores are present, they are undetectable.
- exosporium fragments can be used in place of the recombinant Bacillus cereus family members themselves in any of the formulations, plant seeds, and methods described herein.
- Exosporium fragments derived from spores of a recombinant Bacillus cereus family member can be used in any of the formulations, plant seeds, and methods described herein.
- the recombinant Bacillus cereus family member expresses any of the fusion proteins described herein.
- the recombinant Bacillus cereus family member also comprises a mutation or expresses a protein, wherein the expression of the protein is increased as compared to the expression of the protein in a wild-type Bacillus cereus family member under the same conditions.
- the mutation or the increased expression of the protein results in Bacillus cereus family member spores having an exosporium that is easier to remove from the spore as compared to the exosporium of a wild-type spore.
- the recombinant Bacillus cereus family member can comprise a mutation in a CotE gene; (ii) can express an ExsY protein, wherein the expression of the ExsY protein is increased as compared to the expression of the ExsY protein in a wild-type Bacillus cereus family member under the same conditions, and wherein the ExsY protein comprises a carboxy-terminal tag comprising a globular protein; (iii) can express a BclB protein, wherein the expression of the BclB protein is increased as compared to the expression of the BclB protein in a wild- type Bacillus cereus family member under the same conditions; (iv) can express a YjcB protein, wherein the expression of the YjcB protein is increased as compared to the expression of the YjcB protein in a wild-type Bacillus cereus family member under the same conditions; (v) can comprise a mutation in an ExsY gene; (vi) can comprise a mutation in an ExsY
- the recombinant Bacillus cereus family member can comprise a mutation in the CotE gene, such as a knock-out of the CotE gene or a dominant negative form of the CotE gene.
- the mutation in the CotE gene can partially or completely inhibit the ability of CotE to attach the exosporium to the spore.
- the recombinant Bacillus cereus family member can express an ExsY protein.
- the ExsY protein comprises a carboxy-terminal tag comprising a globular protein (e.g., a green fluorescent protein (GFP) or a variant thereof), and the expression of the ExsY protein is increased as compared to the expression of the ExsY protein in a wild-type Bacillus cereus family member under the same conditions.
- the globular protein can have a molecular weight of between 25 kDa and 100 kDa. Expression of the ExsY protein comprising the carboxy-terminal tag comprising a globular protein can inhibit binding of the ExsY protein to its targets in the exosporium.
- the recombinant Bacillus cereus family member can express a BclB protein. Expression of the BclB protein can result in the formation of a fragile exosporium. The expression of the BclB protein can be increased as compared to the expression of the BclB protein in a wild-type Bacillus cereus family member under the same conditions.
- the recombinant Bacillus cereus family member can express a YjcB protein. Expression of the YjcB protein can cause the exosporium to form in pieces rather than in a complete structure. The expression of the YjcB protein can be increased as compared to the expression of the YjcB protein in a wild-type Bacillus cereus family member under the same conditions.
- the recombinant Bacillus cereus family member can comprise a mutation an ExsY gene, such as a knock-out of the ExsY gene.
- the mutation in the ExsY gene can partially or completely inhibit the ability of ExsY to complete the formation of the exosporium or attach the exosporium to the spore.
- the recombinant Bacillus cereus family member can comprise a mutation a CotY gene, such as a knock-out of the CotY gene.
- the mutation in the CotY gene can result in the formation of a fragile exosporium.
- the recombinant Bacillus cereus family member can comprise a mutation an ExsA gene, such as a knock-out of the ExsA gene.
- the mutation in the ExsA gene can result in the formation of a fragile exosporium.
- the recombinant Bacillus cereus family member can comprise a mutation a CotO gene, such as a knock-out of the CotO gene or a dominant negative form of the CotO gene.
- the mutation in the CotO gene can cause the exosporium to form in strips.
- Exosporium fragments can be prepared from any of these recombinant Bacillus cereus family members and used for various purposes as described further herein below. Where the recombinant Bacillus cereus family member expresses a fusion protein, the exosporium fragments will comprise the fusion proteins. Upon purification of the exosporium fragments that contain the fusion proteins from the spores, a cell-free protein preparation is obtained in which the fusion proteins are stabilized and supported through covalent bonds to the exosporium fragments.
- a suspension or fermentation broth of the spores can be subjected to centrifugation or filtration to produce fragments of exosporium that are separated from the spores.
- the exosporium fragments will comprise the fusion protein.
- a suspension or fermentation broth comprising the spores can be subjected to centrifugation, followed by collection of the supernatant.
- the supernatant comprises the fragments of the exosporium and is substantially free of spores.
- a suspension or fermentation broth comprising the spores can be subjected to filtration, followed by collection of the filtrate.
- the filtrate comprises the fragments of the exosporium and is substantially free of spores.
- the suspension or fermentation broth of spores can be agitated or mechanically disrupted prior to centrifugation or filtration.
- the exosporium fragments can also be separated from the spores by gradient centrifugation, affinity purification, or by allowing the spores to settle out of the suspension.
- the fusion proteins Due to the strong covalent bonds between the fusion proteins and the exosporium fragments, the fusion proteins become resistant to heat. The heat resistance of the fusion proteins bound to the exosporium fragments allows them to be used for applications that require heat-resistant proteins or enzymes.
- Exosporium fragments derived from a recombinant Bacillus cereus family member are provided.
- exosporium fragments can be derived from any of the recombinant Bacillus cereus family members that comprise any of the mutations or other genetic alterations described herein that allow for collection of free exosporium.
- exosporium fragments can comprise any of the fusion proteins described above.
- composition according to the present invention comprises at least one particular insecticide disclosed herein.
- Insecticides as well as the term “insecticidal” refers to the ability of a substance to increase mortality or inhibit growth rate of insects.
- the term “insects” includes all organisms in the class “Insecta”.
- pre-adult insects refers to any form of an organism prior to the adult stage, including, for example, eggs, larvae, and nymphs.
- the terms “insecticide” and “insecticidal” also encompass “nematicide” and “nematicidal” and “acaricide” and “acaricidal.”
- nematodes and “nematicidal” refers to the ability of a substance to increase mortality or inhibit the growth rate of nematodes.
- nematode comprises eggs, larvae, juvenile and mature forms of said organism.
- Acaricide and “acaricidal” refers to the ability of a substance to increase mortality or inhibit growth rate of ectoparasites belonging to the class Arachnida, sub-class Acari.
- the active ingredients specified herein by their “common name” are known and described, for example, in the Pesticide Manual (“The Pesticide Manual”, 14th Ed., British Crop Protection Council 2006) or can be searched in the internet (e.g., http ://www. alanwood.net/pesticides) .
- insecticides are selected from the group consisting of (1) Acetylcholinesterase (AChE) inhibitors, for example carbamates, e.g., Alanycarb, Aldicarb, Bendiocarb, Benfuracarb, Butocarboxim, Butoxycarboxim, Carbaryl, Carbofuran, Carbosulfan, Ethiofencarb, Fenobucarb, Formetanate, Furathiocarb, Isoprocarb, Methiocarb, Methomyl, Metolcarb, Oxamyl, Pirimicarb, Propoxur, Thiodicarb, Thiofanox, Triazamate, Trimethacarb, XMC and Xylylcarb or organophosphates, e.g., Acephate, Azamethiphos, Azinphos-ethyl, Azinphos-methyl, Cadusafos, Chlorethoxyfo
- AChE Acetyl
- GABA-gated chloride channel antagonists for example cyclodiene organochlorines, e.g., Chlordane and Endosulfan, or phenylpyrazoles (fiproles), e.g., Ethiprole and Fipronil;
- Sodium channel modulators I voltage-dependent sodium channel blockers, for example pyrethroids, e.g,. Acrinathrin, Allethrin, d-cis-trans Allethrin, d- trans Allethrin, Bifenthrin, Bioallethrin, Bioallethrin S-cyclopentenyl isomer, Bioresmethrin, Cycloprothrin, Cyfluthrin, beta-Cyfluthrin, Cyhalothrin, lambda-Cyhalothrin, gamma-Cyhalothrin, Cypermethrin, alpha-Cypermethrin, beta-Cypermethrin, theta-Cypermethrin, zeta-Cypermethrin, Cyphenothrin [(IR)-trans isomers], Deltamethrin, Empenthrin [(EZ)-(IR) isomers), Esfenval
- Nicotinic acetylcholine receptor (nAChR) allosteric activators for example spinosyns, e.g., Spinetoram and Spinosad;
- Chloride channel activators for example avermectins/milbemycins, e.g., Abamectin, Emamectin benzoate, Lepimectin and Milbemectin;
- Juvenile hormone mimics for example juvenile horrnon analogues, e.g., Hydroprene, Kinoprene and Methoprene or Fenoxycarb or Pyriproxyfen;
- Miscellaneous non-specific (multi-site) inhibitors for example alkyl halides, e.g., Methyl bromide and other alkyl halides; or Chloropicrin or Sulfuryl fluoride or Borax or Tartar emetic;
- Mite growth inhibitors e.g., Clofentezine, Hexythiazox and Diflovidazin or Etoxazole;
- Microbial disruptors of insect midgut membranes e.g., Bacillus thuringiensis subspecies israelensis, Bacillus sphaericus, Bacillus thuringiensis subspecies aizawai, Bacillus thuringiensis subspecies kurstaki, Bacillus thuringiensis subspecies tenebrionis and Bt crop proteins: CrylAb, CrylAc, CrylFa, Cry2Ab, mCry3A, Cry3Ab, Cry3Bb, Cry34/35Abl;
- Inhibitors of mitochondrial ATP synthase for example Diafenthiuron or organotin miticides, e.g., Azocyclotin, Cyhexatin and Fenbutatin oxide or Propargite or Tetradifon;
- Nicotinic acetylcholine receptor (nAChR) channel blockers for example Bensultap, Cartap hydrochloride, Thiocyclam and Thiosultap-sodium;
- Inhibitors of chitin biosynthesis type 0, for example Bistrifluron, Chlorfluazuron, Diflubenzuron, Flucycloxuron, Flufenoxuron, Hexaflumuron, Eufenuron, Novaluron, Noviflumuron, Teflubenzuron and Triflumuron;
- Inhibitors of chitin biosynthesis type 1, for example Buprofezin;
- Moulting disruptors for example Cyromazine
- Ecdysone receptor agonists for example Chromafenozide, Halofenozide, Methoxyfenozide and Tebufenozide; [000259] (19) Octopamine receptor agonists, for example Amitraz;
- Mitochondrial complex III electron transport inhibitors for example Hydramethylnon or Acequinocyl or Fluacrypyrim;
- Mitochondrial complex I electron transport inhibitors for example METI acaricides, e.g., Fenazaquin, Fenpyroximate, Pyrimidifen, Pyridaben, Tebufenpyrad and Tolfenpyrad or Rotenone (Derris);
- METI acaricides e.g., Fenazaquin, Fenpyroximate, Pyrimidifen, Pyridaben, Tebufenpyrad and Tolfenpyrad or Rotenone (Derris)
- Inhibitors of acetyl CoA carboxylase for example tetronic and tetramic acid derivatives, e.g., Spirobudiclofen, Spirodiclofen, Spiromesifen and Spirotetramat;
- Mitochondrial complex IV electron transport inhibitors for example phosphines, e.g., Aluminium phosphide, Calcium phosphide, Phosphine and Zinc phosphide or Cyanide;
- phosphines e.g., Aluminium phosphide, Calcium phosphide, Phosphine and Zinc phosphide or Cyanide;
- Ryanodine receptor modulators for example diamides, e.g., Chlorantraniliprole, Cyantraniliprole, Flubendiamide and Tetrachloroantraniliprole.
- diamides e.g., Chlorantraniliprole, Cyantraniliprole, Flubendiamide and Tetrachloroantraniliprole.
- insecticides with unknown or uncertain mode of action are, for example, Afidopyropen, Afoxolaner, Azadirachtin, Benclothiaz, Benzoximate, Bifenazate, Broflanilide, Bromopropylate, Chinomethionat, Cryolite, Cyclobutrifluram, Cyclaniliprole, Cycloxaprid, Cyhalodiamide Dicloromezotiaz, Dicofol, Diflovidazin, Flometoquin, Fluazaindolizine, Fluensulfone, Flufenerim, Flufenoxystrobin, Flufiprole, Fluhexafon, Fluopyram, Fluralaner, Fluxametamide, Fufenozide, Guadipyr, Heptafluthrin, Imidaclothiz, Iprodione, Eotilaner, Meperfluthrin, Paichongding, Pyfluoropen, Af
- insecticides that are used in the compositions of the present invention are biological products, such as the following.
- Bacillus thuringiensis subsp. aizawai in particular strain ABTS- 1857 (SD- 1372; e.g., XENTARI® from Valent BioSciences); Bacillus mycoides, isolate J. (e.g., BmJ from Certis USA LLC, a subsidiary of Mitsui & Co.); Bacillus sphaericus, in particular Serotype H5a5b strain 2362 (strain ABTS- 1743) (e.g., VECTOLEX® from Valent BioSciences, US); Bacillus thuringiensis subsp.
- Bacillus thuringiensis subsp. aizawai in particular serotype H-7 (e.g., FLORBAC® WG from Valent BioSciences, U.S.); Bacillus thuringiensis subsp. kurstaki strain HD-1 (e.g., DIPEL® ES from Valent BioSciences, U.S.); Bacillus thuringiensis subsp.
- israelensis strain BMP 144 Bacillus thuringiensis israelensis strain BMP 144 (e.g., AQUAB AC® by Becker Microbial Products IL); Burkholderia spp., in particular Burkholderia rinojensis strain A396 (also known as Burkholderia rinojensis strain MBI 305) (Accession No.
- Beauveria bassiana strain ATCC 74040 (e.g., NATURALIS® from Biofa); Beauveria bassiana strain GHA (Accession No. ATCC74250; e.g., BOTANIGUARD® ES and MYCONTROL-O® from Laverlam International Corporation); Beauveria bassiana strain CG 716 (e.g., BOVEMAX® from Novozymes); Beauveria bassiana strain 147 (e.g., product OSTRINIL®); Beauveria bassiana strain NPP111B005; Beauveria bassiana strain PPRI 5339 (Accession No.
- NRRL 50757 e.g., VELIFER® and BROADBAND® from BASF SE
- Beauveria bassiana strain R444 e.g., BB-PROTEC® from Andermatt Biocontrol
- Metarhizium anisopliae strain F52 (DSM3884/ ATCC 90448; e.g.
- Met52 by Novozymes Metarhizium anisopliae var acridum strain ARSEF324 (e.g., GREEN MUSCLE® and GREEN GUARD® from BASF SE)); Metarhizium anisopliae var acridum isolate IMI 330189 (ARSEF7486); Isaria fumosorosea strain FE 9901 (e.g., NOFLY® from Koppert); Beauveria brongniartii (e.g., BEAUPRO® from Andermatt Biocontrol AG); Lecanicillium lecanii (formerly known as Verticillium lecanii) strain KV01 (e.g., MYCOTAL® from Koppert); Metarhizium anisopliae 3213-1 (deposited under NRRL accession number 67074) (WO 2017/066094; Pioneer Hi-Bred International).
- Metarhizium anisopliae 3213-1 deposited under NRRL accession number 6707
- Bacillus subtilis in particular strain QST713/AQ713 (having NRRL Accession No. B-21661; available as SERENADE® OPTI or SERENADE® ASO from Bayer CropScience LP, US); Bacillus pumilus, in particular strain QST2808 (having Accession No. NRRL No. B-30087).
- Bacillus firmus in particular, strain CNMC 1-1582 (e.g., VOTIVO® from BASF SE); Bacillus amyloliquefaciens, in particular strain FZB42 (e.g., RHIZOVITAL® from ABiTEP, DE); Bacillus amyloliquefaciens strain PTA-4838 (AVEO EZ® from Valent/Sumitomo; VARNIMO® ST from LidoChem); Bacillus amyloliquefaciens MBI600 and cis-Jasmone (2-Cyclopenten-l-one, 3-methyl-2-(2Z)-2-pentenyl) (TRUNEMCO® from Nufarrn Americas, Inc.); Bacillus cereus, in particular spores of Bacillus cereus strain CNCM 1-1562 (cf.
- Bacillus laterosporus also known as Brevibacillus laterosporus; e.g., BIO-TODE® from Agro-Organics, ZA); Bacillus megaterium, strain YFM3.25 (e.g., BIO ARC® from BioArc); Bacillus mojavensis, strain SR11 (CECT-7666 by Probelte S.A); Bacillus nematocida B16 (CGMCC Accession No.
- Bacillus licheniformis FMCH001 and Bacillus subtilis FMCH002 available as QUARTZO® (WG), PRESENCE® (WP) from FMC Corporation
- Pasteuria nishizawae e.g., OYACYST® LF/ST from Pasteuria Bioscience; CLARIVA® PN from Syngenta/ChemChina
- Burkholderia rinojensis e.g., strain A396 (also known as Burkholderia rinojensis strain MBI 305) (Accession No.
- Pasteuria penetrans (formerly Bacillus penetrans', e.g., PASTEURIATM Wettable Powder from Pasteuria Bioscience); Pasteuria usgae (e.g., ECONEMTM from Pasteuria Bioscience); Streptomycete sp., such as Streptomyces lydicus strain WYEC108 (also known as Streptomyces lydicus strain WYCD108US) (ACTINO-IRON® and ACTINOVATE® from Novozymes); Streptomyces saraceticus (e.g., CLANDA® from A & A Group (Agro Chemical Corp.)
- Myrothecium verrucaria strain AARC-0255 (e.g., DITERATM by Valent Biosciences); Purpureocillium lilacinum strain 580 (BIOSTAT® WP (ATCC No. 38740) by Laverlam), strain in the product BIO-NEMATON® (T.Stanes and Company Ltd.), strain in the product MYSIS® (Varsha Bioscience and Technology India Pvt Ltd.), strain in the product BIOICONEMA® (Nico Orgo Maures, India), strain in the product NEMAT® (Ballagro Agro Tecnologia Ltda, Brazil), and a strain in the product SPECTRUM PAE L® (Promotora Tecnica Industrial, S.A. DE C.V., Mexico).
- Bio insecticides may also include non-microbial products, such as a terpene blend comrpsing as active ingredients substantially pure a-terpinene, substantially pure p-cymene and substantially pure limonene in a relative ratio of about 35-45:12-20:10-15 (e.g., REQUIEM® by Bayer CropScience LP, U.S.) and a composition comprising one or more fatty acids or derivatives thereof selected from unsaturated and saturated C12-24 fatty acids, salts thereof, esters thereof or mixtures of any of the foregoing, wherein at least 95% of said fatty acids or derivatives thereof are in the rage of C14 to C20 (e.g., FLIPPER® by AlphaBio Pesticides or Bayer AG).
- non-microbial products such as a terpene blend comrpsing as active ingredients substantially pure a-terpinene, substantially pure p-cymene and substantially pure limonene in a relative ratio of about 35-
- the composition according to the present invention comprises at least one particular biostimulant disclosed herein.
- Plant growth promoting active ingredients that can be used in the compositions of the present invention are listed below.
- Bacillus pumilus in particular strain QST2808 (having Accession No. NRRL No. B-30087); Bacillus subtilis, in particular strain QST713/AQ713 (having NRRL Accession No. B-21661 and described in U.S. Patent No. 6,060,051; available as SERENADE® OPTI or SERENADE® ASO from Bayer CropScience LP); Bacillus subtilis, in particular strain AQ30002 (having Accession Nos. NRRL B-50421 and described in U.S.
- Patent Application No. 13/330,576 Bacillus subtilis, in particular strain AQ30004 (and NRRL B-50455 and described in U.S. Patent Application No. 13/330,576); Sinorhizobium meliloti strain NRG-185-1 (NITRAGIN® GOLD from Bayer CropScience).
- Bacillus subtilis strain BU1814 (available as TEQUALIS® from BASF SE); Bacillus subtilis rm303 (RHIZOMAX® from Biofilm Crop Protection); Bacillus amyloliquefaciens pm414 (LOLI-PEPTA® from Biofilm Crop Protection); Bacillus mycoides BT155 (Accession No. NRRL B-50921), Bacillus mycoides EE118 (Accession No. NRRL B- 50918), Bacillus mycoides EE141 (Accession No. NRRL B-50916), Bacillus mycoides BT46-3 (Accession No.
- NRRL B-50922 Bacillus cereus family member EE128 (Accession No. NRRL B-50917), Bacillus thuringiensis BT013A (Accession No. NRRL B-50924) also known as Bacillus thuringiensis 4Q7, Bacillus cereus family member EE349 (Accession No. NRRL B- 50928), Bacillus amyloliquefaciens SB3281 (Accession No.
- Bacillus amyloliquefaciens TJ1000 available as QUIKROOTS® from Novozymes
- Bacillus firmus in particular strain CNMC 1-1582 (e.g., VOTIVO® from BASF SE)
- Bacillus pumilus in particular strain GB34 (e.g., YIELD SHIELD® from Bayer Crop Science, DE)
- Bacillus amyloliquefaciens in particular strain IN937a
- Bacillus amyloliquefaciens, in particular strain FZB42 e.g., RHIZOVITAL® from ABiTEP, DE
- Bacillus amyloliquefaciens BS27 accesion No.
- NRRL B-5015 a mixture of Bacillus licheniformis FMCH001 and Bacillus subtilis FMCH002 (available as QUARTZO® (WG), PRESENCE® (WP) from FMC Corporation); Bacillus cereus, in particular strain BP01 (Accession No.
- ATCC 55675 e.g., MEPICHLOR® from Arysta Lifescience, US
- Bacillus subtilis in particular strain MBI 600 (e.g., SUBTILEX® from BASF SE); Bradyrhizobium japonicum (e.g., OPTIMIZE® from Novozymes); Mesorhizobium cicer (e.g., NODULATOR® from BASF SE); Rhiz.obium leguminosarium biovar viciae (e.g., NODULATOR® from BASF SE); Delftia acidovorans, in particular strain RAY209 (e.g., BIOBOOST® from Brett Young Seeds); Lactobacillus sp.
- MBI 600 e.g., SUBTILEX® from BASF SE
- Bradyrhizobium japonicum e.g., OPTIMIZE® from Novozymes
- Mesorhizobium cicer e.g., NODULATOR
- LACTOPLANT® from LactoPAFI
- Paenibacillus polymyxa in particular strain AC-1 (e.g., TOPSEED® from Green Biotech Company Ltd.); Pseudomonas proradix (e.g., PRORADIX® from Sourcon Padena); Azospirillum brasilense (e.g., VIGOR® from KALO, Inc.); Azospirillum lipoferum (e.g., VERTEX-IFTM from TerraMax, Inc.); a mixture of Azotobacter vinelandii and Clostridium pasteurianum (available as INVIGORATE® from Agrinos).
- Purpureocillium lilacinum (previously known as Paecilomyces lilacinus) strain 251 (AGAL 89/030550; e.g., BIOACT® DC from Bayer CropScience Biologies GmbH), Penicillium bilaii, strain ATCC 22348 (e.g., JUMPSTART® from Acceleron BioAg), Talaromyces flavus, strain VI 17b; Trichoderma atroviride strain CNCM 1-1237 (e.g., ESQUIVE® WP from Agrauxine, FR), Trichoderma viride, e.g., strain B35 (Pietr et al., 1993, Zesz. Nauk. A R w Szczecinie 161: 125-137).
- Trichoderma atroviride strain LC52 also known as Trichoderma atroviride strain LU132; e.g., SENTINEL® from Agrimm Technologies Limited
- Trichoderma atroviride strain SCI having Accession No. CBS 122089, WO 2009/116106 and U.S. Patent No. 8,431,120 (e.g., VINTEC® from Bi-PA);
- Trichoderma asperellum strain kd e.g., T-GRO® from Andermatt Biocontrol
- Trichoderma asperellum strain Eco-T Plantt Health Products, ZA
- Trichoderma harzianum strain T-22 having Accession No.
- ATCC 20847 e.g., TRIANUM-P® from Andermatt Biocontrol or Koppert
- Myrothecium verrucaria strain AARC-0255 e.g., DITERATM from Valent Biosciences
- Penicillium bilaii strain ATCC 20851 Pythium oligandrum strain Ml (ATCC 38472; e.g., POLYVERSUM® from Bioprepraty, CZ)
- Trichoderma virens strain GL-21 having Accession No. NRRL 15948 (e.g., SOILGARD® from Certis, USA); Verticillium albo-atrum (formerly V. dahliae) strain WCS850 (CBS 276.92; e.g., DUTCH TRIG® from Tree Care Innovations).
- Abscisic acid and related analogues [e.g., (2Z,4E)-5-[6-Ethynyl-l-hydroxy-2,6- dimethyl-4-oxocyclohex-2-en- 1 -yl] -3-methylpenta-2,4-dienoic acid, methyl-(2Z,4E)-5 - [6-ethynyL 1 - hydroxy-2,6-dimethyl-4-oxocyclohex-2-en-l-yl]-3-methylpenta-2,4-dienoate, (2Z,4E)-3-ethyl-5-(l- hydroxy-2,6,6-trimethyl-4-oxocyclohex-2-en- 1 -yl)penta-2,4-dienoic acid, (2E,4E)-5-( 1 -hydroxy-2, 6,6- trimethyl-4-oxocyclohex-2-en- 1 -yl)-3-(trifluoromethyl
- Patent No. 5,123,951 5-aminolevulinic acid, ancymidol, 6-benzylaminopurine, bikinin, brassinolide, brassinoli de-ethyl, L- canaline, catechin and catechines (e.g., (2S,3R)-2-(3,4-Dihydroxyphenyl)-3,4-dihydro-2H-chromen- 3,5,7-triol), chitooligosaccharides (CO; COs differ from LCOs in that they lack the pendant fatty acid chain that is characteristic of LCOs.
- catechin and catechines e.g., (2S,3R)-2-(3,4-Dihydroxyphenyl)-3,4-dihydro-2H-chromen- 3,5,7-triol
- COs differ from LCOs in that they lack the pendant fatty acid chain that is characteristic of LCOs.
- COs sometimes referred to as N-acetylchitooligosaccharides, are also composed of GlcNAc residues but have side chain decorations that make them different from chitin molecules [(CsHisNOsjn, CAS No. 1398-61-4] and chitosan molecules [(CsHnNO ⁇ n, CAS No.
- chitinous compounds chlormequat chloride, cloprop, cyclanilide, 3-(Cycloprop-l- enyl)propionic acid, l-[2-(4-cyano-3,5-dicyclopropylphenyl)acetamido]cyclohexanecarboxylic acid, 1- [2-(4-cyano-3-cyclopropylphenyl)acetamido]cyclohexanecarboxylic acid, daminozide, dazomet, dazomet- sodium, n-decanol, dikegulac, dikegulac-sodium, endothal, endothal-dipotassium, -disodium, and mono(N,N-dimethylalkylammonium), ethephon, flumetralin, flurenol, flurenol-butyl, flurenol- methyl, flurprimidol, forchlorfenuron,
- LCOs differ in the number of GlcNAc residues in the backbone, in the length and degree of saturation of the fatty acyl chain and in the substitutions of reducing and non-reducing sugar residues), linoleic acid or derivatives thereof, linolenic acid or derivatives thereof, maleic hydrazide, mepiquat chloride, mepiquat pentaborate, 1- methylcyclopropene, 3 -methylcyclopropene, 1 -ethylcyclopropene, 1-n-propylcyclopropene, 1- cyclopropenylmethanol, methoxyvinylglycin (MVG), 3’ -methyl abscisic acid, l-(4-methylphenyl)-N-(2- oxo-l-propyl-l,2,3,4-tetrahydroquinolin-6-yl)methanesulfonamide and related substituted tetrahydroquinolin
- the composition comprises a) recombinant exosporium-producing Bacillus cells that express a fusion protein comprising: (i) at least one plant growth stimulating protein or peptide selected from the group consisting of an enzyme involved in the production or activation of a plant growth stimulating compound; an enzyme that degrades or modifies a bacterial, fungal, or plant nutrient source; and a protein or peptide that protects a plant from a pathogen; and (ii) a targeting sequence that localizes the fusion protein to the exosporium of the Bacillus cells; and b) at least one particular insecticide disclosed herein in a synergistically effective amount.
- a “synergistically effective amount” represents a quantity of a combination of a recombinant exosporium-producing Bacillus cells that express a fusion protein and at least one insecticide as described herein that is more effective against insects, mites, nematodes and/or phytopathogens than a recombinant exosporium-producing Bacillus cells that express a fusion protein or the insecticide alone.
- a “synergistically effective amount” according to the present invention also represents a quantity of a combination of a recombinant exosporium-producing Bacillus cells that expresses a fusion protein and at least one particular insecticide disclosed herein that is more effective at enhancing plant growth and/or promoting plant health than the a recombinant exosporium-producing Bacillus cells that express a fusion protein or the insecticide alone.
- the present invention comprises each and every combination of each of the particular insecticides and/or plant growth promoting active ingredients (i.e., biostimulants) disclosed herein with the recombinant exosporium-producing Bacillus cells.
- active ingredients i.e., biostimulants
- the present invention relates to a composition
- a composition comprising: a) recombinant exosporium-producing Bacillus cells that express a fusion protein comprising: (i) an enzyme with serine protease activity from Bacillus firmus, preferably having an amino acid sequence with at least 95% identity to SEQ ID NOs: 4-6 or exosporium fragments derived from such recombinant exosporium-producing Bacillus cells and (ii) a targeting sequence that localizes the fusion protein to the exosporium of the Bacillus cells; and b) at least one particular insecticide disclosed herein in a synergistically effective amount and the at least one insecticide is selected from the group consisting of acetamiprid, aldicarb, amitraz, beta-cyfluthrin, carbaryl, clothianidin, cyfluthrin, cypermethrin, deltamethrin, endosulfan, ethion,
- fungicidal means the ability of a substance to increase mortality or inhibit the growth rate of fungi.
- the term “fungus” or “fungi” includes a wide variety of nucleated sporebearing organisms that are devoid of chlorophyll. Examples of fungi include yeasts, molds, mildews, rusts, and mushrooms.
- One aspect of the present invention is to provide a composition as described above additionally comprising at least one auxiliary selected from the group consisting of extenders, solvents, spontaneity promoters, carriers, emulsifiers, dispersants, frost protectants, thickeners and adjuvants.
- auxiliary selected from the group consisting of extenders, solvents, spontaneity promoters, carriers, emulsifiers, dispersants, frost protectants, thickeners and adjuvants.
- formulations are referred to as formulations.
- such formulations, and application forms prepared from them are provided as crop protection agents and/or pesticidal agents, such as drench, drip and spray liquors, comprising the composition of the invention.
- the application forms may comprise further crop protection agents and/or pesticidal agents, and/or activity-enhancing adjuvants such as penetrants, examples being vegetable oils such as, for example, rapeseed oil, sunflower oil, mineral oils such as, for example, liquid paraffins, alkyl esters of vegetable fatty acids, such as rapeseed oil or soybean oil methyl esters, or alkanol alkoxylates, and/or spreaders such as, for example, alkylsiloxanes and/or salts, examples being organic or inorganic ammonium or phosphonium salts, examples being ammonium sulphate or diammonium hydrogen phosphate, and/or retention promoters such as dioctyl sulphosuccinate or hydroxyprop
- Examples of typical formulations include water-soluble liquids (SL), emulsifiable concentrates (EC), emulsions in water (EW), suspension concentrates (SC, SE, FS, OD), water-dispersible granules (WG), granules (GR) and capsule concentrates (CS); these and other possible types of formulation are described, for example, by Crop Life International and in Pesticide Specifications, Manual on Development and Use of FAO and WHO Specifications for Pesticides, FAO Plant Production and Protection Papers - 173, prepared by the FAO/WHO Joint Meeting on Pesticide Specifications, 2004, ISBN: 9251048576.
- the formulations may comprise active agrochemical compounds other than one or more active compounds of the invention.
- the formulations or application forms in question preferably comprise auxiliaries, such as extenders, solvents, spontaneity promoters, carriers, emulsifiers, dispersants, frost protectants, biocides, thickeners and/or other auxiliaries, such as adjuvants, for example.
- auxiliaries such as extenders, solvents, spontaneity promoters, carriers, emulsifiers, dispersants, frost protectants, biocides, thickeners and/or other auxiliaries, such as adjuvants, for example.
- An adjuvant in this context is a component which enhances the biological effect of the formulation, without the component itself having a biological effect.
- adjuvants are agents which promote the retention, spreading, attachment to the leaf surface, or penetration.
- formulations are produced in a known manner, for example by mixing the active compounds with auxiliaries such as, for example, extenders, solvents and/or solid carriers and/or further auxiliaries, such as, for example, surfactants.
- auxiliaries such as, for example, extenders, solvents and/or solid carriers and/or further auxiliaries, such as, for example, surfactants.
- the formulations are prepared either in suitable plants or else before or during the application.
- auxiliaries are substances which are suitable for imparting to the formulation of the active compound or the application forms prepared from these formulations (such as, e.g., usable crop protection agents, such as spray liquors or seed dressings) particular properties such as certain physical, technical and/or biological properties.
- Suitable extenders are, for example, water, polar and nonpolar organic chemical liquids, for example from the classes of the aromatic and non-aromatic hydrocarbons (such as paraffins, alkylbenzenes, alkylnaphthalenes, chlorobenzenes), the alcohols and polyols (which, if appropriate, may also be substituted, etherified and/or esterified), the ketones (such as acetone, cyclohexanone), esters (including fats and oils) and (poly)ethers, the unsubstituted and substituted amines, amides, lactams (such as N-alkylpyrrolidones) and lactones, the sulphones and sulphoxides (such as dimethyl sulphoxide).
- aromatic and non-aromatic hydrocarbons such as paraffins, alkylbenzenes, alkylnaphthalenes, chlorobenzenes
- the alcohols and polyols
- suitable liquid solvents are: aromatics such as xylene, toluene or alkylnaphthalenes, chlorinated aromatics and chlorinated aliphatic hydrocarbons such as chlorobenzenes, chloroethylenes or methylene chloride, aliphatic hydrocarbons such as cyclohexane or paraffins, for example petroleum fractions, mineral and vegetable oils, alcohols such as butanol or glycol and also their ethers and esters, ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone or cyclohexanone, strongly polar solvents such as dimethylformamide and dimethyl sulphoxide, and also water.
- aromatics such as xylene, toluene or alkylnaphthalenes
- chlorinated aromatics and chlorinated aliphatic hydrocarbons such as chlorobenzenes, chloroethylenes or methylene chloride
- aliphatic hydrocarbons
- Suitable solvents are, for example, aromatic hydrocarbons, such as xylene, toluene or alkylnaphthalenes, for example, chlorinated aromatic or aliphatic hydrocarbons, such as chlorobenzene, chloroethylene or methylene chloride, for example, aliphatic hydrocarbons, such as cyclohexane, for example, paraffins, petroleum fractions, mineral and vegetable oils, alcohols, such as methanol, ethanol, isopropanol, butanol or glycol, for example, and also their ethers and esters, ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone or cyclohexanone, for example, strongly polar solvents, such as dimethyl sulphoxide, and water.
- aromatic hydrocarbons such as xylene, toluene or alkylnaphthalenes
- chlorinated aromatic or aliphatic hydrocarbons such as chloro
- Suitable carriers are in particular: for example, ammonium salts and ground natural minerals such as kaolins, clays, talc, chalk, quartz, attapulgite, montmorillonite or diatomaceous earth, and ground synthetic minerals, such as finely divided silica, alumina and natural or synthetic silicates, resins, waxes and/or solid fertilizers. Mixtures of such carriers may likewise be used.
- Carriers suitable for granules include the following: for example, crushed and fractionated natural minerals such as calcite, marble, pumice, sepiolite, dolomite, and also synthetic granules of inorganic and organic meals, and also granules of organic material such as sawdust, paper, coconut shells, maize cobs and tobacco stalks.
- Liquefied gaseous extenders or solvents may also be used. Particularly suitable are those extenders or carriers which at standard temperature and under standard pressure are gaseous, examples being aerosol propellants, such as halogenated hydrocarbons, and also butane, propane, nitrogen and carbon dioxide.
- Examples of emulsifiers and/or foam-formers, dispersants or wetting agents having ionic or nonionic properties, or mixtures of these surface-active substances are salts of polyacrylic acid, salts of lignosulphonic acid, salts of phenolsulphonic acid or naphthalenesulphonic acid, polycondensates of ethylene oxide with fatty alcohols or with fatty acids or with fatty amines, with substituted phenols (preferably alkylphenols or arylphenols), salts of sulphosuccinic esters, taurine derivatives (preferably alkyltaurates), phosphoric esters of polyethoxylated alcohols or phenols, fatty acid esters of polyols, and derivatives of the compounds containing sulphates, sulphonates and phosphates, examples being alkylaryl polyglycol ethers, alkylsulphonates, alkyl sulphates, arylsulphonates, protein
- auxiliaries that may be present in the formulations and in the application forms derived from them include colorants such as inorganic pigments, examples being iron oxide, titanium oxide, Prussian Blue, and organic dyes, such as alizarin dyes, azo dyes and metal phthalocyanine dyes, and nutrients and trace nutrients, such as salts of iron, manganese, boron, copper, cobalt, molybdenum and zinc.
- colorants such as inorganic pigments, examples being iron oxide, titanium oxide, Prussian Blue
- organic dyes such as alizarin dyes, azo dyes and metal phthalocyanine dyes
- nutrients and trace nutrients such as salts of iron, manganese, boron, copper, cobalt, molybdenum and zinc.
- Stabilizers such as low-temperature stabilizers, preservatives, antioxidants, light stabilizers or other agents which improve chemical and/or physical stability may also be present. Additionally present may be foam-formers or defoamers.
- the formulations and application forms derived from them may also comprise, as additional auxiliaries, stickers such as carboxymethylcellulose, natural and synthetic polymers in powder, granule or latex form, such as gum arabic, polyvinyl alcohol, polyvinyl acetate, and also natural phospholipids, such as cephalins and lecithins, and synthetic phospholipids.
- additional auxiliaries include mineral and vegetable oils.
- auxiliaries there may possibly be further auxiliaries present in the formulations and the application forms derived from them.
- additives include fragrances, protective colloids, binders, adhesives, thickeners, thixotropic substances, penetrants, retention promoters, stabilizers, sequestrants, complexing agents, humectants and spreaders.
- the active compounds may be combined with any solid or liquid additive commonly used for formulation purposes.
- Suitable retention promoters include all those substances which reduce the dynamic surface tension, such as dioctyl sulphosuccinate, or increase the viscoelasticity, such as hydroxypropylguar polymers, for example.
- Suitable penetrants in the present context include all those substances which are typically used in order to enhance the penetration of active agrochemical compounds into plants.
- Penetrants in this context are defined in that, from the (generally aqueous) application liquor and/or from the spray coating, they are able to penetrate the cuticle of the plant and thereby increase the mobility of the active compounds in the cuticle. This property can be determined using the method described in the literature (Baur, et al., 1997, Pesticide Science, 51, 131-152).
- Examples include alcohol alkoxy lates such as coconut fatty ethoxylate (10) or isotridecyl ethoxylate (12), fatty acid esters such as rapeseed or soybean oil methyl esters, fatty amine alkoxylates such as tallowamine ethoxylate (15), or ammonium and/or phosphonium salts such as ammonium sulphate or diammonium hydrogen phosphate, for example.
- alcohol alkoxy lates such as coconut fatty ethoxylate (10) or isotridecyl ethoxylate (12)
- fatty acid esters such as rapeseed or soybean oil methyl esters
- fatty amine alkoxylates such as tallowamine ethoxylate (15)
- ammonium and/or phosphonium salts such as ammonium sulphate or diammonium hydrogen phosphate, for example.
- the formulations preferably comprise between 0.0001% and 98% by weight of active compound or, with particular preference, between 0.01% and 95% by weight of active compound, more preferably between 0.5% and 90% by weight of active compound, based on the weight of the formulation.
- the content of the active compound is defined as the sum of the recombinant exosporium-producing Bacillus cells and the at least one particular insecticide disclosed herein.
- the active compound content of the application forms (crop protection products) prepared from the formulations may vary within wide ranges.
- the active compound concentration of the application forms may be situated typically between 0.0001% and 95% by weight of active compound, preferably between 0.0001% and 1% by weight, based on the weight of the application form. Application takes place in a customary manner adapted to the application forms.
- kits of parts comprising a recombinant exosporium-producing Bacillus cells or exosporium fragments derived therefrom and at least one particular insecticide disclosed herein in a synergistically effective amount in a spatially separated arrangement.
- the above-mentioned kit of parts further comprises at least one additional fungicide and/or at least one particular insecticide disclosed herein.
- the fungicide and/or the insecticide can be present either in the recombinant exosporium-producing Bacillus cells or exosporium fragments derived therefrom component of the kit of parts or in the insecticide component of the kit of parts being spatially separated or in both of these components.
- the fungicide and/or the insecticide are present in the recombinant exosporium-producing Bacillus cells or exosporium fragments component.
- the kit of parts according to the present invention can additionally comprise at least one auxiliary selected from the group consisting of extenders, solvents, spontaneity promoters, carriers, emulsifiers, dispersants, frost protectants, thickeners and adjuvants as mentioned below.
- This at least one auxiliary can be present either in the recombinant exosporium-producing Bacillus cells or exosporium fragment component of the kit of parts or in the insecticide component of the kit of parts being spatially separated or in both of these components.
- composition as described above is used for reducing overall damage of plants and plant parts as well as losses in harvested fruits or vegetables caused by insects, mites, nematodes and/or phytopathogens.
- composition as described above increases the overall plant health.
- plant health generally comprises various sorts of improvements of plants that are not connected to the control of pests.
- advantageous properties are improved crop characteristics including: emergence, crop yields, protein content, oil content, starch content, more developed root system, improved root growth, improved root size maintenance, improved root effectiveness, improved stress tolerance (e.g., against drought, heat, salt, UV, water, cold), reduced ethylene (reduced production and/or inhibition of reception), tillering increase, increase in plant height, bigger leaf blade, less dead basal leaves, stronger tillers, greener leaf color, pigment content, photosynthetic activity, less input needed (such as fertilizers or water), less seeds needed, more productive tillers, earlier flowering, early grain maturity, less plant verse (lodging), increased shoot growth, enhanced plant vigor, increased plant stand and early and better germination.
- improved stress tolerance e.g., against drought, heat, salt, UV, water, cold
- reduced ethylene reduced production and/or inhibition of reception
- tillering increase, increase in plant height, bigger leaf blade, less dead basal
- improved plant health preferably refers to improved plant characteristics including: crop yield, more developed root system (improved root growth), improved root size maintenance, improved root effectiveness, tillering increase, increase in plant height, bigger leaf blade, less dead basal leaves, stronger tillers, greener leaf color, photosynthetic activity, more productive tillers, enhanced plant vigor, and increased plant stand.
- improved plant health preferably especially refers to improved plant properties selected from crop yield, more developed root system, improved root growth, improved root size maintenance, improved root effectiveness, tillering increase, and increase in plant height.
- composition according to the present invention on plant health as defined herein can be determined by comparing plants which are grown under the same environmental conditions, whereby a part of said plants is treated with a composition according to the present invention and another part of said plants is not treated with a composition according to the present invention.
- said other part is not treated at all or treated with a placebo (i.e., an application without a composition according to the invention such as an application without all active ingredients (i.e., without the recombinant exosporium-producing Bacillus cereus family member-based biological control agent as described herein and without an insecticide as described herein), or an application without the recombinant exosporium- producing Bacillus cereus family member-based biological control agent as described herein, or an application without an insecticide as described herein.
- a placebo i.e., an application without a composition according to the invention such as an application without all active ingredients (i.e., without the recombinant exosporium-producing Bacillus cereus family member-based biological control agent as described herein and without an insecticide as described herein), or an application without the recombinant exosporium- producing Bacillus cereus family member-based biological control agent as described herein, or an application without an insecticide as described herein.
- composition according to the present invention may be applied in any desired manner, such as in the form of a seed coating, soil drench, and/or directly in-furrow and/or as a foliar spray and applied either pre-emergence, post-emergence or both.
- the composition can be applied to the seed, the plant or to harvested fruits and vegetables or to the soil wherein the plant is growing or wherein it is desired to grow (plant’s locus of growth).
- composition according to the present invention is used for treating conventional or transgenic plants or seed thereof.
- the present invention also relates to methods for stimulating plant growth using any of the compositions described above comprising recombinant exosporium-producing Bacillus cells that express a fusion protein and at least one particular insecticide disclosed herein.
- the method for stimulating plant growth comprises applying to a plant, a plant part, to the locus surrounding the plant or in which the plant will be planted (e.g., soil or other growth medium) a composition comprising recombinant exosporium-producing Bacillus cells that express a fusion protein comprising: (i) at least one plant growth stimulating protein or peptide; and (ii) a targeting sequence, exosporium protein, or exosporium protein fragment, and at least one further particular insecticide disclosed herein in a synergistically effective amount.
- a method for reducing overall damage of plants and plant parts as well as losses in harvested fruits or vegetables caused by insects, mites, nematodes and/or phytopathogens comprising the step of simultaneously or sequentially applying the recombinant exosporium-producing Bacillus cells and at least one particular insecticide disclosed herein in a synergistically effective amount.
- the composition comprises at least one fungicide and/or at least one insecticide in addition to the recombinant exosporium- producing Bacillus cells or exosporium fragments derived therefrom and the particular insecticide disclosed herein.
- the at least one fungicide is a synthetic fungicide.
- the method of the present invention includes the following application methods, namely both of the recombinant exosporium-producing Bacillus cells or exosporium fragments derived therefrom and the at least one particular insecticide disclosed herein may be formulated into a single, stable composition with an agriculturally acceptable shelf life (so called “solo-formulation”), or being combined before or at the time of use (so called “combined- formulations”).
- the expression “combination” stands for the various combinations of the recombinant exosporium-producing Bacillus cells or exosporium fragments derived therefrom and the at least insecticide, and optionally the at least one fungicide, in a solo-formulation, in a single “ready-mix” form, in a combined spray mixture composed from solo-formulations, such as a “tank-mix”, and especially in a combined use of the single active ingredients when applied in a sequential manner, i.e., one after the other within a reasonably short period, such as a few hours or days, e.g., 2 hours to 7 days.
- the order of applying the composition according to the present invention is not essential for working the present invention.
- the term “combination” also encompasses the presence of the recombinant exosporium-producing Bacillus cells or exosporium fragments derived therefrom and the at least one particular insecticide disclosed herein, and optionally the at least one fungicide on or in a plant to be treated or its surrounding, habitat or storage space, e.g., after simultaneously or consecutively applying the recombinant exosporium-producing Bacillus cells and the at least one particular insecticide disclosed herein, and optionally the at least one fungicide to a plant its surrounding, habitat or storage space.
- the recombinant exosporium-producing Bacillus cells or exosporium fragments derived therefrom and the at least one particular insecticide disclosed herein, and optionally the at least one fungicide are employed or used in a sequential manner, it is preferred to treat the plants or plant parts (which includes seeds and plants emerging from the seed), harvested fruits and vegetables according to the following method: Firstly applying the at least one particular insecticide disclosed herein and optionally the at least one fungicide and/or the at least one additional insecticide on the plant or plant parts, and secondly applying the recombinant exosporium-producing Bacillus cells or exosporium fragments derived therefrom to the same plant or plant parts.
- the time periods between the first and the second application within a (crop) growing cycle may vary and depend on the effect to be achieved.
- the first application is done to prevent an infestation of the plant or plant parts with insects, mites, nematodes and/or phytopathogens (this is particularly the case when treating seeds) or to combat the infestation with insects, mites, nematodes and/or phytopathogens (this is particularly the case when treating plants and plant parts)
- the second application is done to prevent or control the infestation with insects, mites, nematodes and/or phytopathogens and/or to promote plant growth.
- Control in this context means that the recombinant exosporium-producing Bacillus cells or exosporium fragments derived therefrom are not able to fully exterminate the pests or phytopathogenic fungi but are able to keep the infestation on an acceptable level.
- the present invention also provides methods of enhancing the killing, inhibiting, preventative and/or repelling activity of the compositions of the present invention by multiple applications.
- the compositions of the present invention are applied to a plant and/or plant part for two times, during any desired development stages or under any predetermined pest pressure, at an interval of about 1 hour, about 5 hours, about 10 hours, about 24 hours, about two days, about 3 days, about 4 days, about 5 days, about 1 week, about 10 days, about two weeks, about three weeks, about 1 month or more.
- compositions of the present invention are applied to a plant and/or plant part for more than two times, for example, 3 times, 4 times, 5 times, 6 times, 7 times, 8 times, 9 times, 10 times, or more, during any desired development stages or under any predetermined pest pressure, at an interval of about 1 hour, about 5 hours, about 10 hours, about 24 hours, about 2 days, about 3 days, about 4 days, about 5 days, about 1 week, about 10 days, about 2 weeks, about 3 weeks, about 1 month or more.
- the intervals between each application can vary if it is desired.
- One skilled in the art will be able to determine the application times and length of interval depending on plant species, plant pest species, and other factors.
- harvested fruits and vegetables with the composition according to the invention is carried out directly or by action on their surroundings, habitat or storage space using customary treatment methods, for example dipping, spraying, atomizing, irrigating, evaporating, dusting, fogging, broadcasting, foaming, painting, spreading- on, watering (drenching), drip irrigating.
- customary treatment methods for example dipping, spraying, atomizing, irrigating, evaporating, dusting, fogging, broadcasting, foaming, painting, spreading- on, watering (drenching), drip irrigating.
- plant to be treated encompasses every part of a plant including its root system and the material - e.g., soil or nutrition medium - which is in a radius of at least 10 cm, 20 cm, 30 cm around the caulis or bole of a plant to be treated or which is at least 10 cm, 20 cm, 30 cm around the root system of said plant to be treated, respectively.
- material - e.g., soil or nutrition medium - which is in a radius of at least 10 cm, 20 cm, 30 cm around the caulis or bole of a plant to be treated or which is at least 10 cm, 20 cm, 30 cm around the root system of said plant to be treated, respectively.
- the amount of the recombinant exosporium-producing Bacillus cells or exosporium fragments derived therefrom which is used or employed in combination with at least one particular insecticide disclosed herein, optionally in the presence of at least one fungicide, depends on the final formulation as well as size or type of the plant, plant parts, seeds, harvested fruits and vegetables to be treated.
- the recombinant exosporium-producing Bacillus cells or exosporium fragments derived therefrom to be employed or used according to the invention is present in about 1% to about 80% (w/w), preferably in about 1% to about 60% (w/w), more preferably about 10% to about 50% (w/w) of its solo-formulation or combined- formulation with the at least one particular insecticide disclosed herein, and optionally the fungicide.
- the amount of the at least one particular insecticide disclosed herein which is used or employed in combination with the recombinant exosporium-producing Bacillus cells or exosporium fragments derived therefrom, optionally in the presence of at least one fungicide depends on the final formulation as well as size or type of the plant, plant parts, seeds, harvested fruit or vegetable to be treated.
- the recombinant exosporium-producing Bacillus cells or exosporium fragments derived therefrom to be employed or used according to the invention is present in about 0.1% to about 80% (w/w), preferably 1% to about 60% (w/w), more preferably about 10% to about 50% (w/w) of its solo-formulation or combined-formulation with the at least one particular insecticide disclosed herein, and optionally the at least one fungicide.
- Application of the recombinant exosporium-producing Bacillus cells or exosporium fragments derived therefrom may be effected as a foliar spray, as a soil treatment, and/or as a seed treatment/dressing.
- a foliar treatment in one embodiment, about 1/16 to about 5 gallons of whole broth are applied per acre.
- soil treatment in one embodiment, about 1 to about 5 gallons of whole broth are applied per acre.
- When used for seed treatment about 1/32 to about 1/4 gallons of whole broth are applied per acre.
- the end-use formulation contains 1 x 10 3 , 1 x 10 4 , at least 1 x 10 5 , at least 1 x 10 6 , 1 x 10 7 , at least 1 x 10 8 , at least 1 x 10 9 , or at least 1 x 10 10 colony forming units per gram.
- the recombinant exosporium-producing Bacillus cells or exosporium fragments derived therefrom and at least one particular insecticide disclosed herein, and if present preferably also the fungicide are used or employed in a synergistic weight ratio.
- the skilled person is able to find out the synergistic weight ratios for the present invention by routine methods. The skilled person understands that these ratios refer to the ratio within a combined- formulation as well as to the calculative ratio of the recombinant exosporium-producing Bacillus cells or exosporium fragments derived therefrom described herein and the at least one particular insecticide disclosed herein when both components are applied as mono-formulations to a plant to be treated.
- the ratio can be calculated based on the amount of the at least one particular insecticide disclosed herein, at the time point of applying said component of a combination according to the invention to a plant or plant part and the amount of recombinant exosporium- producing Bacillus cells or exosporium fragments derived therefrom shortly prior (e.g., 48 h, 24 h, 12 h, 6 h, 2 h, 1 h) or at the time point of applying said component of a combination according to the invention to a plant or plant part.
- the skilled person can determine the concentration of insecticide on/in a plant by chemical analysis known in the art, at the time point or shortly before the time point of applying the recombinant exosporium-producing Bacillus cells or exosporium fragments derived therefrom.
- the concentration of the recombinant exosporium-producing Bacillus cells or exosporium fragments derived therefrom can be determined using tests which are also known in the art, at the time point or shortly before the time point of applying the insecticide.
- the synergistic weight ratio of the recombinant exosporium-producing Bacillus cells or exosporium fragments derived therefrom and the at least one particular insecticide disclosed herein lies in the range of 1:1000 to 1000:1, preferably in the range of 1:500 to 500:1, more preferably in the range of 1:300 to 500:1. Especially preferred ratios are between 20:1 and 1:20, such as 10:1, 5:1 or 2:1.
- ratio ranges refer to the recombinant Bacillus cercus family memberbased biological control agent (to be combined with at least one particular insecticide or a preparation of at least one particular insecticide disclosed herein), for example, a ratio of 100:1 means 100 weight parts of a spore preparation of the recombinant exosporium-producing Bacillus-based biological control agent and 1 weight part of insecticide are combined (either as a solo formulation, a combined formulation or by separate applications to plants so that the combination is formed on the plant).
- the spore preparation of the recombinant exosporium-producing Bacillus cells is a dried spore preparation containing at least about 1 x 10 4 cfu/g, at least about 1 x 10 5 cfu/g, at least about 1 x 10 6 cfu/g at least about 1 x 10 7 cfu/g, at least about 1 x 10 8 cfu/g, at least about 1 x 10 9 cfu/g, at least about 1 x IO 10 cfu/g, or at least about 1 x 10 11 cfu/g.
- the synergistic weight ratio of the recombinant exosporium-producing Bacillus cells or exosporium fragments derived therefrom and the at least one particular insecticide disclosed herein is in the range of 1:100 to 20,000:1, preferably in the range of 1 :50 to 10,000: 1 or even in the range of 1 :50 to 1,000: 1.
- the concentration of the recombinant exosporium-producing Bacillus cells or exosporium fragments derived therefrom after dispersal is at least 50 g/ha, such as 50 - 7500 g/ha, 50 - 2500 g/ha, 50 - 1500 g/ha; at least 250 g/ha (hectare), at least 500 g/ha or at least 800 g/ha.
- composition to be employed or used according to the present invention may vary.
- the skilled person is able to find the appropriate application rate by way of routine experiments.
- the present invention therefore also relates in particular to a method for protecting seed and germinating plants from attack by pests, by treating the seed with the recombinant exosporium-producing Bacillus cells as defined above and at least one particular insecticide disclosed herein in a synergistically effective amount.
- the method of the invention for protecting seed and germinating plants from attack by pests encompasses a method in which the seed is treated simultaneously in one operation with the recombinant exosporium-producing Bacillus cells and the at least one particular insecticide disclosed herein, and optionally the at least one fungicide.
- the seed is treated at different times with the recombinant exosporium-producing Bacillus cells or exosporium fragments derived therefrom and the at least one particular insecticide disclosed herein, and optionally the at least one fungicide.
- the invention likewise relates to the use of the composition of the invention for treating seed for the purpose of protecting the seed and the resultant plant against insects, mites, nematodes and/or phytopathogens.
- the invention also relates to seed which at the same time has been treated with a recombinant exosporium-producing Bacillus cells or exosporium fragments derived therefrom and at least one particular insecticide disclosed herein, and optionally at least one fungicide.
- the invention further relates to seed which has been treated at different times with the recombinant exosporium-producing Bacillus cells or exosporium fragments derived therefrom and the at least one particular insecticide disclosed herein and optionally the at least one fungicide and/or the at least one insecticide.
- the individual active ingredients in the composition of the invention may be present in different layers on the seed.
- the invention relates to seed which, following treatment with the composition of the invention, is subjected to a film-coating process in order to prevent dust abrasion of the seed.
- One of the advantages of the present invention is that, owing to the particular systemic properties of the compositions of the invention, the treatment of the seed with these compositions provides protection from insects, mites, nematodes and/or phytopathogens not only to the seed itself but also to the plants originating from the seed, after they have emerged. In this way, it may not be necessary to treat the crop directly at the time of sowing or shortly thereafter.
- a further advantage is to be seen in the fact that, through the treatment of the seed with composition of the invention, germination and emergence of the treated seed may be promoted.
- composition of the invention may also be used, in particular, on transgenic seed.
- composition of the invention may be used in combination with agents of the signaling technology, as a result of which, for example, colonization with symbionts is improved, such as rhizobia, mycorrhiza and/or endophytic bacteria, for example, is enhanced, and/or nitrogen fixation is optimized.
- agents of the signaling technology for example, colonization with symbionts is improved, such as rhizobia, mycorrhiza and/or endophytic bacteria, for example, is enhanced, and/or nitrogen fixation is optimized.
- compositions of the invention are suitable for protecting seed of any variety of plant which is used in agriculture, in greenhouses, in forestry or in horticulture. More particularly, the seed in question is that of cereals (e.g., wheat, barley, rye, oats and millet), maize, cotton, soybeans, rice, potatoes, sunflower, coffee, tobacco, canola, oilseed rape, beets (e.g., sugar beet and fodder beet), peanuts, vegetables (e.g., tomato, cucumber, bean, brassicas, onions and lettuce), fruit plants, lawns and ornamentals. Particularly important is the treatment of the seed of cereals (such as wheat, barley, rye and oats) maize, soybeans, cotton, canola, oilseed rape and rice.
- cereals e.g., wheat, barley, rye, oats and millet
- maize cotton
- soybeans rice
- potatoes sunflower
- coffee tobacco
- the seed in question here is that of plants which generally contain at least one heterologous gene that controls the expression of a polypeptide having, in particular, insecticidal and/or nematicidal properties.
- These heterologous genes in transgenic seed may come from microorganisms such as Bacillus, Rhizobium, Pseudomonas, Serratia, Trichoderma, Clavibacter, Glomus or Gliocladium.
- the present invention is particularly suitable for the treatment of transgenic seed which contains at least one heterologous gene from Bacillus sp.
- the heterologous gene in question comes from Bacillus thuringiensis .
- the composition of the invention is applied alone or in a suitable formulation to the seed.
- the seed is preferably treated in a condition in which its stability is such that no damage occurs in the course of the treatment.
- the seed may be treated at any point in time between harvesting and sowing.
- seed is used which has been separated from the plant and has had cobs, hulls, stems, husks, hair or pulp removed.
- seed may be used that has been harvested, cleaned and dried to a moisture content of less than 15% by weight.
- seed can also be used that after drying has been treated with water, for example, and then dried again.
- compositions of the invention can be applied directly, in other words without comprising further components and without having been diluted.
- suitable formulations and methods for seed treatment are known to the skilled person and are described in, for example, the following documents: U.S. Patent Nos. 4,272,417; 4,245,432; 4,808,430; 5,876,739; U.S. Patent Publication No. 2003/0176428 Al; and PCT Patent Publication Nos. WO 2002/080675 Al; WO 2002/028186 A2.
- the combinations which can be used in accordance with the invention may be converted into the customary seed-dressing formulations, such as solutions, emulsions, suspensions, powders, foams, slurries or other coating compositions for seed, and also ULV formulations.
- customary seed-dressing formulations such as solutions, emulsions, suspensions, powders, foams, slurries or other coating compositions for seed, and also ULV formulations.
- formulations are prepared in a known manner, by mixing composition with customary adjuvants, such as, for example, customary extenders and also solvents or diluents, colorants, wetters, dispersants, emulsifiers, antifoams, preservatives, secondary thickeners, stickers, gibberellins, and also water.
- customary adjuvants such as, for example, customary extenders and also solvents or diluents, colorants, wetters, dispersants, emulsifiers, antifoams, preservatives, secondary thickeners, stickers, gibberellins, and also water.
- Colorants which may be present in the seed-dressing formulations which can be used in accordance with the invention include all colorants which are customary for such purposes. In this context it is possible to use not only pigments, which are of low solubility in water, but also water-soluble dyes. Examples include the colorants known under the designations Rhodamin B, C.I. Pigment Red 112, and C.I. Solvent Red 1.
- Wetters which may be present in the seed-dressing formulations which can be used in accordance with the invention include all of the substances which promote wetting and which are customary in the formulation of active agrochemical ingredients. Use may be made preferably of alkylnaphthalenesulphonates, such as diisopropyl- or diisobutylnaphthalenesulphonates.
- Dispersants and/or emulsifiers which may be present in the seed-dressing formulations which can be used in accordance with the invention include all of the nonionic, anionic and cationic dispersants that are customary in the formulation of active agrochemical ingredients. Use may be made preferably of nonionic or anionic dispersants or of mixtures of nonionic or anionic dispersants.
- Suitable nonionic dispersants are, in particular, ethylene oxidepropylene oxide block polymers, alkylphenol poly glycol ethers and also tristryrylphenol polyglycol ethers, and the phosphated or sulphated derivatives of these.
- Suitable anionic dispersants are, in particular, lignosulphonates, salts of polyacrylic acid, and arylsulphonateformaldehyde condensates.
- Antifoams which may be present in the seed-dressing formulations which can be used in accordance with the invention include all of the foam inhibitors that are customary in the formulation of active agrochemical ingredients. Use may be made preferably of silicone antifoams and magnesium stearate.
- Preservatives which may be present in the seed-dressing formulations which can be used in accordance with the invention include all of the substances which can be employed for such purposes in agrochemical compositions. Examples include dichlorophen and benzyl alcohol hemiformal.
- Secondary thickeners which may be present in the seed-dressing formulations which can be used in accordance with the invention include all substances which can be used for such purposes in agrochemical compositions. Those contemplated with preference include cellulose derivatives, acrylic acid derivatives, xanthan, modified clays and highly disperse silica.
- Stickers which may be present in the seed-dressing formulations which can be used in accordance with the invention include all customary binders which can be used in seeddressing products. Preferred mention may be made of polyvinylpyrrolidone, polyvinyl acetate, polyvinyl alcohol and tylose.
- the gibberellins are known (cf. R. Wegler, “Chemie der convinced- und Schadlingsbekampfungsstoff”, Volume 2, Springer Verlag, 1970, pp. 401-412).
- the seed-dressing formulations which can be used in accordance with the invention may be used, either directly or after prior dilution with water, to treat seed of any of a wide variety of types. Accordingly, the concentrates or the preparations obtainable from them by dilution with water may be employed to dress the seed of cereals, such as wheat, barley, rye, oats and triticale, and also the seed of maize, rice, oilseed rape, peas, beans, cotton, sunflowers and beets, or else the seed of any of a very wide variety of vegetables.
- the seed-dressing formulations which can be used in accordance with the invention, or their diluted preparations may also be used to dress seed of transgenic plants. In that case, additional synergistic effects may occur in interaction with the substances formed through expression.
- suitable mixing equipment includes all such equipment which can typically be employed for seed dressing. More particularly, the procedure when carrying out seed dressing is to place the seed in a mixer, to add the particular desired amount of seed-dressing formulations, either as such or following dilution with water beforehand, and to carry out mixing until the distribution of the formulation on the seed is uniform. This may be followed by a drying operation.
- the application rate of the seed-dressing formulations which can be used in accordance with the invention may be varied within a relatively wide range. It is guided by the particular amount of the recombinant exosporium-producing Bacillus cereus family memberbased biological control agent and the at least one particular insecticide disclosed herein in the formulations, and by the seed.
- the application rates in the case of the composition are situated generally at between 0.001 and 50 g per kilogram of seed, preferably between 0.01 and 15 g per kilogram of seed.
- compositions according to the invention in case they exhibit insecticidal and miticidal and/or nematicidal activity, in combination with good plant tolerance and favourable toxicity to warm-blooded animals and being tolerated well by the environment, are suitable for protecting plants and plant organs, for increasing harvest yields, for improving the quality of the harvested material and for controlling animal pests, in particular insects, mites, arachnids, helminths, nematodes and molluscs, which are encountered in agriculture, in horticulture, in animal husbandry, in forests, in gardens and leisure facilities, in protection of stored products and of materials, and in the hygiene sector. They can be preferably employed as plant protection agents.
- the present invention relates to the use of the composition according to the invention as insecticide and/or fungicide.
- pests from the phylum Arthropoda especially from the class Arachnida, for example, Acarus spp., Aceria sheldoni, Aculops spp., Aculus spp., Amblyomma spp., Amphitetranychus viennensis, Argas spp., Boophilus spp., Brevipalpus spp., Bryobia graminum, Bryobia praetiosa, Centruroides spp., Chorioptes spp., Dermanyssus gallinae, Dermatophagoides pteronyssinus, Dermatophagoides farinae, Dermacentor spp., Eotetranychus spp., Epitrimerus pyri, Eutetr any chits spp., Eriophyes spp., Glycyphagus domesticus, Halotydeus destructor, He
- clover mite in particular clover mite, brown mite, hazelnut spider mite, asparagus spider mite, brown wheat mite, legume mite, oxalis mite, boxwood mite, Texas citrus mite, Oriental red mite, citrus red mite, European red mite, yellow spider mite, fig spider mite, Lewis spider mite, six-spotted spider mite, Willamette mite, Yuma spider mite, web-spinning mite, pineapple mite, citrus green mite, honey-locust spider mite, tea red spider mite, southern red mite, avocado brown mite, spruce spider mite, avocado red mite, Banks grass mite, carmine spider mite, desert spider mite, vegetable spider mite, tumid spider mite, strawberry spider mite, two-spotted spider mite, McDaniel mite, Pacific spider mite, hawthorn spider mite, four-spotted spider mite, Schoenei spider mite, Chilean false spider mite, citrus flat mite, privet mite
- Hymenoptera for example, Acromyrmex spp., Athalia spp., Atta spp., Diprion spp., Hoplocampa spp., Lasius spp., Monomorium pharaonis, Sirex spp., Solenopsis invicta, Tapinoma spp., Urocerus spp., Vespa spp., Xeris spp.;
- Coptotermes spp. for example, Coptotermes spp., Cornitermes cumulans, Cryptotermes spp., Incisitermes spp., Microtermes obesi, Odontotermes spp., Reticulitermes spp.;
- Siphonaptera for example, Ceratophyllus spp., Ctenocephalides spp., Pulex irritans, Tunga penetrans, Xenopsylla cheopsis',
- Thysanoptera for example, Anaphothrips obscurus, Baliothrips biformis, Drepanothrips reuteri, Enneothrips flavens, Frankliniella spp., Heliothrips spp., Hercinothrips femoralis, Rhipiphorothrips cruentatus, Scirtothrips spp., Taeniothrips cardamomi, Thrips spp.;
- pests from the phylum Mollusca especially from the class Bivalvia, for example, Dreissena spp., and from the class Gastropoda, for example, Arion spp., Biomphalaria spp., Bulinus spp., Deroceras spp., Galba spp., Lymnaea spp., Oncomelania spp., Pomacea spp., Succinea spp.;
- animal pests from the phylums Plathelminthes and Nematoda for example, Ancylostoma duodenale, Ancylostoma ceylanicum, Acylostoma braziliensis, Ancylostoma spp., Ascaris spp., Brugia malayi, Brugia timori, Bunostomum spp., Chabertia spp., Clonorchis spp., Cooperia spp., Dicrocoelium spp., Dictyocaulus filaria, Diphyllobothrium latum, Dracunculus medinensis, Echinococcus granulosus, Echinococcus multilocularis, Enterobius vermicularis , Faciola spp., Haemonchus spp., Heterakis spp., Hymenolepis nana, Hyostrongulus spp
- phytoparasitic pests from the phylum Nematoda for example, Aphelenchoides spp., Bursaphelenchus spp., Ditylenchus spp., Globodera spp., Heterodera spp., Longidorus spp., Meloidogyne spp., Pratylenchus spp., Radopholus spp., Trichodorus spp., Tylenchulus spp., Xiphinema spp., Helicotylenchus spp., Tylenchorhynchus spp., Scutellonema spp., Paratrichodorus spp., Meloinema spp., Paraphelenchus spp., Aglenchus spp., Belonolaimus spp., Nacobbus spp., Rotylenchulus spp., Rot
- composition is well tolerated by plants at the concentrations required for controlling plant diseases and pests allows the treatment of above-ground parts of plants, of propagation stock and seeds, and of the soil.
- plants and plant parts can be treated.
- plants are meant all plants and plant populations such as desirable and undesirable wild plants, cultivars and plant varieties (whether or not protectable by plant variety or plant breeder’s rights).
- Cultivars and plant varieties can be plants obtained by conventional propagation and breeding methods which can be assisted or supplemented by one or more biotechnological methods such as by use of double haploids, protoplast fusion, random and directed mutagenesis, molecular or genetic markers or by bioengineering and genetic engineering methods.
- plant parts are meant all above ground and below ground parts and organs of plants such as shoot, leaf, blossom and root, whereby for example leaves, needles, stems, branches, blossoms, fruiting bodies, fruits and seed as well as roots, corms and rhizomes are listed.
- Crops and vegetative and generative propagating material for example cuttings, corms, rhizomes, runners and seeds also belong to plant parts.
- the inventive composition when it is well tolerated by plants, has favourable homeotherm toxicity and is well tolerated by the environment, is suitable for protecting plants and plant organs, for enhancing harvest yields, for improving the quality of the harvested material. It can preferably be used as crop protection composition. It is active against normally sensitive and resistant species and against all or some stages of development.
- Plants which can be treated in accordance with the invention include the following main crop plants: maize, soya bean, alfalfa, cotton, sunflower, Brassica oil seeds such as Brassica napus (e.g., canola, rapeseed), Brassica rapa, B.
- juncea e.g., (field) mustard
- Brassica carinata Arecaceae sp. (e.g., oilpalm, coconut), rice, wheat, sugar beet, sugar cane, oats, rye, barley, millet and sorghum, triticale, flax, nuts, grapes and vine and various fruit and vegetables from various botanic taxa, e.g., Rosaceae sp.
- pome fruits such as apples and pears, but also stone fruits such as apricots, cherries, almonds, plums and peaches, and berry fruits such as strawberries, raspberries, red and black currant and gooseberry
- Ribesioidae sp. Juglandaceae sp.
- Betulaceae sp. Anacardiaceae sp., Fagaceae sp., Moraceae sp., Oleaceae sp. (e.g., olive tree), Actinidaceae sp., Lauraceae sp. (e.g., avocado, cinnamon, camphor), Musaceae sp.
- Rubiaceae sp. e.g., coffee
- Theaceae .sp. e.g., tea
- Sterculiceae sp. e.g., tea
- Sterculiceae sp. e.g., tea
- Sterculiceae sp. e.g., tea
- Sterculiceae sp. e.g., tea
- Rutaceae sp. e.g., lemons, oranges, mandarins and grapefruit
- Solanaceae sp. e.g., tomatoes, potatoes, peppers, capsicum, aubergines, tobacco
- Cucurbitaceae sp. e.g., cucumbers - including gherkins, pumpkins, watermelons, calabashes and melons
- Alliaceae sp. e.g., leeks and onions
- Cruciferae sp. e.g., white cabbage, red cabbage, broccoli, cauliflower, Brussels sprouts, pak choi, kohlrabi, radishes, horseradish, cress and Chinese cabbage
- Leguminosae sp. e.g., peanuts, peas, lentils and beans - e.g., common beans and broad beans
- Linaceae sp. e.g., hemp
- Cannabeacea sp. e.g., cannabis
- Malvaceae sp. e.g., okra, cocoa
- Papaveraceae e.g., poppy
- Asparagaceae e.g., asparagus
- useful plants and ornamental plants in the garden and woods including turf, lawn, grass and Stevia rebaudiana’, and in each case genetically modified types of these plants.
- the treatment according to the invention may also result in super-additive (“synergistic”) effects.
- inventive composition in the treatment according to the invention may also have a strengthening effect in plants.
- the defense system of the plant against attack by unwanted phytopathogenic fungi and/ or microorganisms and/or viruses is mobilized.
- Plant- strengthening (resistance-inducing) substances are to be understood as meaning, in the present context, those substances or combinations of substances which are capable of stimulating the defense system of plants in such a way that, when subsequently inoculated with unwanted phytopathogenic fungi and/or microorganisms and/or viruses, the treated plants display a substantial degree of resistance to these phytopathogenic fungi and/or microorganisms and/or viruses.
- composition according to the present invention in the treatment according to the invention, plants can be protected against attack by the abovementioned pathogens within a certain period of time after the treatment.
- the period of time within which protection is effected generally extends from 1 to 10 days, preferably 1 to 7 days, after the treatment of the plants with the active compounds.
- Plants and plant cultivars which are also preferably to be treated according to the invention are resistant against one or more biotic stresses, i.e., said plants show a better defense against animal and microbial pests, such as against nematodes, insects, mites, phytopathogenic fungi, bacteria, viruses and/or viroids.
- Plants and plant cultivars which may also be treated according to the invention are those plants which are resistant to one or more abiotic stresses, i.e., that already exhibit an increased plant health with respect to stress tolerance.
- Abiotic stress conditions may include, for example, drought, cold temperature exposure, heat exposure, osmotic stress, flooding, increased soil salinity, increased mineral exposure, ozone exposure, high light exposure, limited availability of nitrogen nutrients, limited availability of phosphorus nutrients, shade avoidance.
- the treatment of these plants and cultivars with the composition of the present invention additionally increases the overall plant health (cf. above).
- Plants and plant cultivars which may also be treated according to the invention are those plants characterized by enhanced yield characteristics, i.e., that already exhibit an increased plant health with respect to this feature. Increased yield in said plants can be the result of, for example, improved plant physiology, growth and development, such as water use efficiency, water retention efficiency, improved nitrogen use, enhanced carbon assimilation, improved photosynthesis, increased germination efficiency and accelerated maturation.
- Yield can furthermore be affected by improved plant architecture (under stress and non-stress conditions), including but not limited to, early flowering, flowering control for hybrid seed production, seedling vigor, plant size, internode number and distance, root growth, seed size, fruit size, pod size, pod or ear number, seed number per pod or ear, seed mass, enhanced seed filling, reduced seed dispersal, reduced pod dehiscence and lodging resistance.
- Further yield traits include seed composition, such as carbohydrate content, protein content, oil content and composition, nutritional value, reduction in anti-nutritional compounds, improved processability and better storage stability.
- the treatment of these plants and cultivars with the composition of the present invention additionally increases the overall plant health (cf. above).
- Plants that may be treated according to the invention are hybrid plants that already express the characteristic of heterosis or hybrid vigor which results in generally higher yield, vigor, health and resistance towards biotic and abiotic stress factors. Such plants are typically made by crossing an inbred male-sterile parent line (the female parent) with another inbred male-fertile parent line (the male parent). Hybrid seed is typically harvested from the male sterile plants and sold to growers. Male sterile plants can sometimes (e.g., in com) be produced by detasseling, i.e., the mechanical removal of the male reproductive organs (or males flowers) but, more typically, male sterility is the result of genetic determinants in the plant genome.
- male sterile plants can also be obtained by plant biotechnology methods such as genetic engineering.
- a particularly useful means of obtaining male-sterile plants is described in WO 89/10396 in which, for example, a ribonuclease such as bamase is selectively expressed in the tapetum cells in the stamens. Fertility can then be restored by expression in the tapetum cells of a ribonuclease inhibitor such as barstar.
- Plants or plant cultivars obtained by plant biotechnology methods such as genetic engineering which may be treated according to the invention are herbicide-tolerant plants, i.e., plants made tolerant to one or more given herbicides. Such plants can be obtained either by genetic transformation, or by selection of plants containing a mutation imparting such herbicide tolerance.
- a method for stimulating plant growth and/or promoting plant health and/or controlling plant pests, such as nematodes, and/or controlling plant pathogens comprises applying the compositions of the present invention to a plant growth medium, a plant, a plant seed, or an area surrounding a plant or a plant seed contacting the plant pest with the compositions of the present invention.
- the method comprises applying a formulation to a plant growth medium, a plant, a plant seed, or an area surrounding a plant or a plant seed.
- the formulation can comprise any of the formulations described herein.
- the method can comprise applying a composition comprising an insecticide or plant growth promoting active ingredient and the recombinant Bacillus cereus family member, the exosporium fragments, or the formulation to the plant growth medium.
- the plant growth medium can comprise soil, water, an aqueous solution, sand, gravel, a polysaccharide, mulch, compost, peat moss, straw, logs, clay, soybean meal, yeast extract, or a combination thereof.
- the plant growth medium can comprise a fertilizer.
- Any of the methods described herein can further comprise supplementing the plant growth medium with a substrate for an enzyme.
- Suitable substrates include, but are not limited to protein meal, casein, gelatin, albumin, or a combination of any thereof.
- the method can comprise applying any of the compositions of the present invention to roots of the plant.
- the method can comprise applying the compositions of the present invention foliarly.
- the method can comprise applying the compositions of the present invention to the plant seed.
- the plant pest that are controlled can be phytoparasitic pests from the phylum Nematoda, for example, Aglenchus spp., Anguina spp., Aphelenchoides spp., Belonolaimus spp., Bursaphelenchus spp., Cacopaurus spp., Criconemella spp., Criconemoides spp., Ditylenchus spp., Dolichodorus spp., Globodera spp., Helicotylenchus spp., Hemicriconemoides spp., Hemicycliophora spp., Heterodera spp., Hoplolaimus spp., Longidorus spp., Lygus spp., Melo
- plants grown in the presence of any of the compositions of the present invention can exhibit increased growth as compared to plants grown in the absence of the composition under the same conditions.
- seeds to which any of the compositions of the present invention has been applied can exhibit increased germination rates as compared to seeds to which the composition has not been applied, under the same conditions.
- plants grown in the presence of any of the compositions of the present invention can exhibit increased nutrient uptake as compared to plants grown in the absence of the composition, under the same conditions.
- plants grown in the presence of any of the compositions of the present invention can exhibit decreased susceptibility to a pest, such as nematodes, as compared to plants grown in the absence of the composition, under the same conditions.
- plants grown in the presence of any of the compositions of the present invention can exhibit decreased nematode damage, including reduced galling, reduced cysts, and/or reduced nematodes per weight of root, as compared to plants grown in the absence of the composition, under the same conditions.
- plants or the locus in which the plant is grown, such as soil, to which any of the compositions of the present invention has been applied can exhibit reduced nematode eggs and/or reduced nematodes per volume of soil, as compared to plants grown in the absence of composition, under the same conditions.
- the compositons of the present invention decrease nematodes and/or nematode damage by at least about 0.5%, or by at least about 1%, or by at least about 2%, or by at least about 3%, or by at least about 5%, or by at least about 6%, or by at least about 7%, or by at least about 8%, or by at least about 9%, or by at least about 10%, or by at least about 11%, or by at least about 12% when compared to plants produced under the same conditions but without treatment by a recombinant Bacillus cereus family member.
- plants grown in the presence of any of the compositions of the present invention can exhibit decreased susceptibility to a pathogen as compared to plants grown in the absence of the composition, under the same conditions.
- plants grown in the presence of any of the compositions of the present invention can exhibit decreased susceptibility to an environmental stress (e.g., drought, flood, heat, freezing, salt, heavy metals, low pH, high pH, or a combination of any thereof) as compared to plants grown in the absence of the composition, under the same conditions.
- an environmental stress e.g., drought, flood, heat, freezing, salt, heavy metals, low pH, high pH, or a combination of any thereof
- plants grown in the presence of any of the compositions of the present invention can exhibit increased root nodulation as compared to plants grown in the absence of the composition, under the same conditions.
- plants grown in the presence of any of the compositions of the present invention can exhibit greater crop yield as compared to plants grown in the absence of the composition, under the same conditions.
- the composition of the present invention increases yield or total plant weight by at least about 0.5%, or by at least about 1%, or by at least about 2%, or by at least about 3%, or by at least about 5%, or by at least about 6%, or by at least about 7%, or by at least about 8%, or by at least about 9%, or by at least about 10%, or by at least about 11%, or by at least about 12% when compared to plants produced under the same conditions but without treatment by the compositions of the present invention.
- compositions of the present invention improve some aspect of plant vigor, such as germination, by at least about 0.5%, or by at least about 1%, or by at least about 2%, or by at least about 3%, or by at least about 5%, or by at least about 6%, or by at least about 7%, or by at least about 8%, or by at least about 9%, or by at least about 10%, or by at least about 11%, or by at least about 12% when compared to plants produced under the same conditions but without treatment by a composition of the present invention.
- plants grown in the presence of any of the compositions of the present invention can exhibit altered leaf senescence as compared to plants grown in the absence of such compositions, under the same conditions.
- Example 1 Construction of a Bacillus cercus Family Member Displaying a Serine Protease or Serine Protease Variant
- the pSUPER plasmid was generated through fusion of the pUC57 plasmid (containing an ampicillin resistance cassette and a ColEl origin of replication) with the pBC16-l plasmid from Bacillus cercus (containing a tetracycline resistance gene, repU replication gene and oriU origin of replication).
- This 5.8 kb plasmid can replicate in both E. coli and Bacillus spp. and can be selected by conferring resistance to P-lactam antibiotics in E.
- the basal pSUPER plasmid was modified by insertion of a PCR-generated fragment that fused the BclA promoter (SEQ ID NO: 11), a start codon, amino acids 20-35 of BclA (amino acids 20-35 of SEQ ID NO: 1) and an alanine linker sequence in frame with SEQ ID NO: 4, SEQ ID NO: 5, or SEQ ID NO: 6, resulting in a plasmid termed pSUPER-BclA 20- 35-SEQ ID NO: 4, pSUPER-BclA 20-35-SEQ ID NO: 5, or pSUPER-BclA 20-35-SEQ ID NO: 6, respectively.
- This construct was transformed into E. coli and plated on Lysogeny broth plates plus ampicillin (100 pg/mL) to obtain single colonies. Individual colonies were used to inoculate Lysogeny broth plus ampicillin and incubated overnight at 37°C, 300 rpm. Plasmids from resulting cultures were extracted using a commercial plasmid purification kit. DNA concentrations of these plasmid extracts were determined via spectrophotometry, and obtained plasmids subjected to analytical digests with appropriate combinations of restriction enzymes. The resulting digestion patterns were visualized by agarose gel electrophoresis to investigate plasmid size and presence of distinct plasmid features. Relevant sections, such as the SEQ ID NO: 4, SEQ ID NO: 5 or SEQ ID NO: 6 expression cassette, of the purified pSUPER derivatives were further investigated by Sanger sequencing.
- a derivative plasmid of the pSUPER plasmids described above was created as follows.
- the pBC fragment (pBC 16-1 -derived section of pSUPER including BclA/serine protease variant expression cassette and tetracycline resistance) of the pSUPER plasmids described above was amplified by PCR and subsequently circularized by blunt-end ligation.
- pSUPER, verified as described above, and pBC plasmid ligations were introduced by electroporation into Bacillus thuringiensis BT013A. Single transformed colonies were isolated by plating on nutrient broth plates containing tetracycline (10 pg/mL).
- Bacillus thuringiensis BT013A was deposited with the United States Department of Agriculture (USDA) Agricultural Research Service (ARS), having the address 1815 North University Street, Peoria, Illinois 61604, U.S.A., on March 10, 2014, and assigned accession number NRRL B-50924. Bacillus thuringiensis BT013A is also known as Bacillus thuringiensis 4Q7.
- USDA United States Department of Agriculture
- ARS Agricultural Research Service
- Clones were passaged under high temperature (40°C) in brain heart infusion broth. Individual colonies were toothpicked onto LB agar plates containing erythromycin 5 pg/mL, grown at 30°C, and screened for the presence of the pKOKI plasmid integrated into the chromosome by colony PCR. Colonies that had an integration event were continued through passaging to screen for single colonies that lost erythromycin resistance (signifying loss of the plasmid by recombination and removal of the exsY gene). Verified deletions were confirmed by PCR amplification and sequencing of the target region of the chromosome.
- the spores were collected via centrifugation at 8,000 x g for 10 minutes, and supernatant containing the exosporium fragments was filtered through a 0.22 pm filter to remove any residual spores. No spores were found in the filtrate.
- Example 3 Use of an Expression Cassette Comprising a Non-Antibiotic Selectable Marker to Express the Serine Protease Variant on the Surface of Bacillus cerus Family Member Spores
- SEQ ID NO: 6 was cloned into a derivative of the pSUPER plasmid described in Example 1.
- the tetracycline resistance marker had previously been exchanged with a non- antibiotic selectable marker.
- the pBC fragment of this derivative pSUPER plasmid was created as described in Example 1.
- the resulting pBC ligation referred to as pBCnam212, was introduced using electroporation into a Bacillus thuringiensis BT013A derivative strain that had been modified to support the use of the non- antibiotic selectable marker. Single colonies of transformations were obtained by plating on suitable selection media on petri plates.
- Example 4 Formula for the Efficacy of the Combination of Multiple Active Ingredients
- a synergistic effect of active ingredients is present when the activity of the active ingredient combinations exceeds the total of the activities of the active ingredients when applied individually.
- the expected activity for a given combination of two active ingredients can be calculated as follows (cf. Colby, S.R., “Calculating Synergistic and Antagonistic Responses of Herbicide Combinations,” Weeds, 1967, 15, 20-22):
- X is the efficacy when active ingredient A is applied at an application rate of m ppm (or g/ha),
- Y is the efficacy when active ingredient B is applied at an application rate of n ppm (or g/ha),
- E is the efficacy when the active ingredients A and B are applied at application rates of m and n ppm (or g/ha), respectively, and then
- the formula and analysis can be applied to an evaluation of plant growth promotion.
- Such an assay is evaluated several days after the applications to plants.
- 100% means plant weight which corresponds to that of the untreated control plant.
- Efficacy means in this case the additional % of plant weight in comparison to that of the untreated control. For example, a treatment that resulted in plant weights that were 120% compared to the untreated control plant would have an efficacy of 20%. If the plant growth promotion effect for the combination (i.e., the observed efficacy for % plant weights of plants treated with the combination) exceeds the calculated value, then the activity of the combination is superadditive, i.e., a synergistic effect exists.
- the formula and analysis can also be used to evaluate synergy in disease control and insect control assays.
- the degree of efficacy expressed in % is denoted. 0% means an efficacy which corresponds to that of the control while an efficacy of 100% means that no disease is observed.
- Seed is treated with (i) 234.8 mL/100 kg of the whole broth culture of BT013A-pBCnam212, which is equivalent to 1 x 10 10 colony forming units (of the recombinant cell expressing the serine protease variant) (“CFU”)/100 kg seed or 234.8 mL/100 kg of the exosporium fragments of BTO I Acxs l z KO- pBC212 and/or (ii) fluopyram.
- the concentration of each whole broth culture is 5 x 10 6 CFU/mL.
- the same volume of the exosporium fragment preparation as whole broth is applied to seeds to achieve a comparable application rate to that of the whole broth, as very little liquid is lost during the centrifugation and filtration processes that are used to separate exosporium fragments from cells.
- the fluopyram is applied to the seed, alone or in combination with the whole broth culture or exosporium fragments, at or below its label rate. All treatments are planted into a sandy loam soil. Ten days post emergence, soybean plants are inoculated with 2,000 second stage juvenile soybean cyst nematodes (Heterodera glycine). Plants are harvested four weeks later and cysts are removed and collected using a system of sieves, centrifugation, and a sucrose solution.
- Cysts are then crushed to release the eggs which are enumerated by taking three sub-samples from the total solution collected from each of ten plants from each treatment. It is expected that the seeds treated with the recombinant Bacillus thuringiensis in combination with the fluopyram or the exosporium fragments in combination with the fluopyram will show a greater reduction in both the total number of nematode eggs and the number of eggs per gram of root, than the seed treated with only one active ingredient; i.e., a synergistic effect will be shown.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Environmental Sciences (AREA)
- Pest Control & Pesticides (AREA)
- Plant Pathology (AREA)
- General Health & Medical Sciences (AREA)
- Health & Medical Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Chemical & Material Sciences (AREA)
- Agronomy & Crop Science (AREA)
- Biotechnology (AREA)
- Microbiology (AREA)
- Virology (AREA)
- Dentistry (AREA)
- Insects & Arthropods (AREA)
- Botany (AREA)
- Agricultural Chemicals And Associated Chemicals (AREA)
Abstract
The present invention relates to a composition comprising (a) a recombinant Bacillus cereus family member that expresses a fusion protein comprising (i) an enzyme having serine protease activity comprising an amino acid sequence having at least 95% identity to any one of SEQ ID NOs: 4-5 or an amino acid sequence having at least 95% identity to SEQ ID NO: 6 and (ii) a targeting sequence, exosporium protein, or exosporium protein fragment that targets the fusion protein to the exosporium of a recombinant Bacillus cereus family member or exosporium fragments derived from such recombinant Bacillus cereus family member; and (b) at least one insecticide or plant growth promoter disclosed herein, in a synergistically effective amount. Furthermore, the present invention relates to the use of this composition as well as a method for nematode control, enhancing plant growth, promoting plant health, and/or reducing overall damage of plants and plant parts.
Description
BENEFICIAL COMBINATIONS WITH RECOMBINANT BACILLUS CELLS
EXPRESSING A SERINE PROTEASE
CROSS-REFERENCE TO RELATED APPLICATIONS
[0001] This application claims priority to U.S. Provisional Patent Application No. 63/281,648, filed November 20, 2021, the contents of which are incorporated herein by reference in its entirety.
FIELD OF THE INVENTION
[0002] In crop protection, there is a continuous need for applications that improve the health and/or the growth of plants. Healthier plants generally result in higher yields and/or better quality of a plant or its products.
[0003] In order to promote plant health, fertilizers are employed worldwide, based on both inorganic and organic substances. A fertilizer may be a single substance or a composition, and is used to provide nutrients to plants. A major breakthrough in the application of fertilizers was the development of nitrogen-based fertilizer by Justus von Liebig around 1840. Fertilizers, however, can lead to soil acidification and destabilization of nutrient balance in soil, including depletion of minerals and enrichment of salt and heavy metals. In addition, excessive fertilizer use can lead to alteration of soil fauna as well as contaminate surface water and ground water. Further, unhealthful substances such as nitrate may become enriched in plants and fruits.
[0004] In addition, insecticides and fungicides are employed worldwide to control pests. Synthetic insecticides or fungicides often are non-specific and therefore can act on organisms other than the target organisms, including other naturally occurring beneficial organisms. Because of their chemical nature, they may also be toxic and non-biodegradable. Consumers worldwide are increasingly conscious of the potential environmental and health problems associated with the residuals of chemicals, particularly in food products. This has resulted in growing consumer pressure to reduce the use or at least the quantity of chemical (i.e., synthetic) pesticides. Thus, there is a need to manage food chain requirements while still allowing effective pest control.
[0005] A further problem arising with the use of synthetic insecticides or fungicides is that the repeated and exclusive application of an insecticide or fungicide often leads to selection of resistant animal pests or microorganisms. Normally, such strains are also crossresistant against other active ingredients having the same mode of action. An effective control
of the pathogens with said active compounds is then not possible any longer. However, active ingredients having new mechanisms of action are difficult and expensive to develop.
[0006] The use of biological control agents (BCAs), which act as insecticides and/or plant health-enhancing and/or plant protection agents, is an alternative to fertilizers and synthetic pesticides. In some cases, the effectiveness of BCAs is not at the same level as for conventional insecticides and fungicides, especially in case of severe infection pressure. Consequently, in some circumstances, biological control agents, their mutants and metabolites produced by them are, in particular, in low application rates, not entirely satisfactory. Thus, there is a constant need for developing new insecticides, plant health-enhancing and/or plant protection compositions, including biological control agents used in conjunction with synthetic fungicides and insecticides, to strive to fulfill the above-mentioned requirements.
REFERENCE TO SEQUENCE LISTING SUBMITTED ELECTRONICALLY
[0007] The official copy of the sequence listing is submitted electronically via EFS- Web as an XML-formatted sequence listing with a file named “BCS219008 WO.xml” created on November 16, 2022, and having a size of 19 kilobytes, and is filed concurrently with the specification. The sequence listing contained in this XML-formatted document is part of the specification and is herein incorporated by reference in its entirety.
SUMMARY
[0008] In view of this, it was in particular an object of the present invention to provide compositions which have an enhanced ability to improve plant growth and/or to enhance plant health or which exhibit enhanced activity against insects, mites, and/or nematodes.
[0009] Accordingly, it was found that these objectives are achieved with the compositions according to the invention as defined in the following. By applying a) recombinant exosporium-producing Bacillus cells that express a fusion protein comprising: (i) at least one enzyme having serine protease activity; and (ii) a targeting sequence that localizes the fusion protein to the exosporium of the Bacillus cells or exosporium fragments derived from such recombinant exosporium-producing Bacillus cells; and b) at least one particular insecticide disclosed herein, one is able to enhance preferably in a superadditive manner (i) plant growth, plant yield and/or plant health and/or (ii) the activity against insects, mites, nematodes and/or phytopathogens.
[0010] References herein to targeting sequences, exosporium proteins, exosporium protein fragments, fusion proteins, and recombinant exosporium producing Bacillus cells that
express such fusion proteins should not be considered to be stand-alone embodiments. Instead, throughout the present application, references to the targeting sequences, exosporium proteins, exosporium protein fragments, fusion proteins, and recombinant exosporium producing Bacillus cells that express such fusion proteins should be considered to be disclosed and claimed only in combination (and preferably in a synergistic combination) with one or more of the particular insecticides described herein. Furthermore, references to the “particular insecticide disclosed herein” are intended to encompass insecticides described below under the heading “Insecticides.”
[0011] The present invention is directed to a composition comprising in synergistically effective amounts: a) recombinant exosporium-producing Bacillus cells that express a fusion protein comprising: (i) a Bacillus firmus serine protease; and (ii) a targeting sequence that localizes the fusion protein to the exosporium of the Bacillus cells or exosporium fragments derived from such recombinant exosporium-producing Bacillus cells; and b) at least one insecticide selected from the group consisting of acetamiprid, aldicarb, amitraz, beta- cyfluthrin, carbaryl, clothianidin, cyfluthrin, cypermethrin, deltamethrin, endosulfan, ethion, ethiprole, ethoprophos, fenamiphos, fenobucarb, fenthion, fipronil, flubendiamide, flupyradifurone, fluopyram, formetanate, heptanophos, imidacloprid, methamidophos, methiocarb, methomyl, niclosamide, oxydemeton-methyl, phosalone, silafluofen, spirodiclofen, spiromesifen, spirotetramat, thiacloprid, thiodicarb, tralomethrin, triazophos, triflumuron, vamidothion, l-{2-fhioro-4-methyl-5-[(R)-(2,2,2-trifluoroethyl)sulphinyl]phenyl}-3-
(trifluoromethyl)-lH-l,2,4-triazol-5-amine, l-(3-chloropyridin-2-yl)-N-[4-cyano-2-methyl-6- (methylcarbamoyl)phenyl]-3-{[5-(trifluoromethyl)-2H-tetrazol-2-yl]methyl}-lH-pyrazole-5- carboxamide and pesticidal terpene mixtures comprising the three terpenes a-terpinene, p- cymene and limonene; Bacillus firmus 1-1582; Purpureocillium lilacinum strain 251 (AGAL 89/030550; e.g., BIOACT® DC from Bayer CropScience Biologies GmbH); and a composition comprising one or more fatty acids or derivatives thereof selected from unsaturated and saturated C12-24 fatty acids, salts thereof, esters thereof or mixtures of any of the foregoing, wherein at least 95% of said fatty acids or derivatives thereof are in the rage of C14 to C20 (e.g., FLIPPER® by AlphaBio Pesticides or Bayer AG).
[00011] In some embodiments, the targeting sequence comprises: an amino acid sequence having at least about 43% identity with amino acids 20-35 of SEQ ID NO: 1, wherein the identity with amino acids 25-35 is at least about 54%; a targeting sequence comprising amino acids 1-35 of SEQ ID NO: 1; a targeting sequence comprising amino acids 20-35 of SEQ ID NO: 1; a targeting sequence comprising amino acids 22-31 of SEQ ID NO: 1; a targeting
sequence comprising amino acids 22-33 of SEQ ID NO: 1; a targeting sequence comprising amino acids 20-31 of SEQ ID NO: 1; a targeting sequence comprising SEQ ID NO: 1; a targeting sequence comprising SEQ ID NO: 2; or an exosporium protein comprising an amino acid sequence having at least 85% identity with SEQ ID NO: 3.
[00012] In some embodiments, the exosporium-producing Bacillus cells are cells of a Bacillus cereus family member. The recombinant exosporium-producing Bacillus cells may be any one of Bacillus anthracis, Bacillus cereus, Bacillus thuringiensis , Bacillus mycoides, Bacillus pseudomycoides, Bacillus samanii, Bacillus gaemokensis, Bacillus weihenstephensis, Bacillus toyoiensis, and combinations thereof. In a further embodiment, the recombinant Bacillus cells are cells of Bacillus thuringiensis BT013A.
[00013] In certain aspects, the fusion protein comprises a serine protease enzyme from Bacillus firmus.
[00014] In certain embodiments, the insecticide is selected from the group consisting of acetamiprid, aldicarb, amitraz, beta-cyfluthrin, carbaryl, clothianidin, cyfluthrin, cypermethrin, deltamethrin, endosulfan, ethion, ethiprole, ethoprophos, fenamiphos, fenobucarb, fenthion, fipronil, flubendiamide, flupyradifurone, fluopyram, formetanate, heptanophos, imidacloprid, methamidophos, methiocarb, methomyl, niclosamide, oxydemeton-methyl, phosalone, silafluofen, spirodiclofen, spiromesifen, spirotetramat, thiacloprid, thiodicarb, tralomethrin, triazophos, triflumuron, vamidothion, l-{2-fluoro-4-methyl-5-[(R)-(2,2,2- trifhioroethyl)sulphinyl]phenyl}-3-(trifluoromethyl)-lH-l,2,4-triazol-5-amine, l-(3- chloropyridin-2-yl)-N-[4-cyano-2-methyl-6-(methylcarbamoyl)phenyl]-3-{[5-(trifluoromethyl)- 2H-tetrazol-2-yl]methyl}-lH-pyrazole-5-carboxamide, pesticidal terpene mixtures comprising the three terpenes a-terpinene, p-cymene and limonene, and a composition comprising one or more fatty acids or derivatives thereof selected from unsaturated and saturated C 12-24 fatty acids, salts thereof, esters thereof or mixtures of any of the foregoing, wherein at least 95% of said fatty acids or derivatives thereof are in the range of C14 to C20 (e.g., FLIPPER® by AlphaBio Pesticides or Bayer AG).
[00015] In other embodiments, the insecticide is selected from the group consisting of clothianidin, cypermethrin, ethiprole, fipronil, fluopyram, flupyradifurone, imidacloprid, methiocarb, and thiodicarb.
[00016] In some embodiments, the composition of the present invention comprises a) recombinant exosporium-producing Bacillus cells that express a fusion protein comprising: (i) an enzyme having serine protease activity comprising an amino acid sequence having at least 95% identity to any one of SEQ ID NOs: 4-6 or an amino acid sequence having at least 95%
identity to SEQ ID NO: 6; and (ii) a targeting sequence that localizes the fusion protein to the exosporium of the Bacillus cells; and b) at least one insecticide selected from the group consisting of clothianidin, cypermethrin, ethiprole, fipronil, fluopyram, flupyradifurone, imidacloprid, methiocarb, and thiodicarb in a synergistically effective amount.
[00017] In a particular aspect of the above embodiments (i) the at least one insecticide is clothianidin; (ii) the targeting sequence comprises an amino acid sequence having at least about 43% identity with amino acids 20-35 of SEQ ID NO: 1, wherein the identity with amino acids 25-35 is at least about 54%; (iii) the enzyme having serine protease activity comprises an amino acid sequence having at least 95% identity to any one of SEQ ID NOs: 4-5 or an amino acid sequence having at least 95% identity to SEQ ID NO: 6; and (iv) the recombinant Bacillus cereus family member cells comprise cells of Bacillus thuringiensis or Bacillus mycoides. In yet another particular embodiment, the recombinant Bacillus cereus family member cells are cells of Bacillus thuringiensis BT013A.
[00018] In a particular aspect of the above embodiments (i) the at least one insecticide is fluopyram; (ii) the targeting sequence comprises an amino acid sequence having at least about 43% identity with amino acids 20-35 of SEQ ID NO: 1, wherein the identity with amino acids 25-35 is at least about 54%; (iii) an enzyme having serine protease activity comprising an amino acid sequence having at least 95% identity to any one of SEQ ID NOs: 4-5 or an amino acid sequence having at least 95% identity to SEQ ID NO: 6; and (iv) the recombinant Bacillus cereus family member cells comprise cells of Bacillus thuringiensis or Bacillus mycoides. In yet another particular embodiment, the recombinant Bacillus cereus family member cells are cells of Bacillus thuringiensis BT013A.
[00019] In a particular aspect of the above embodiments (i) the at least one insecticide is clothianidin; (ii) the targeting sequence comprises an amino acid sequence having at least about 43% identity with amino acids 20-35 of SEQ ID NO: 1, wherein the identity with amino acids 25-35 is at least about 54%; (iii) the enzyme having serine protease activity comprises an amino acid sequence having at least 95% identity to any one of SEQ ID NOs: 4-5 or an amino acid sequence having at least 95% identity to SEQ ID NO: 6; and (iv) the recombinant Bacillus cereus family member cells comprise cells of Bacillus thuringiensis or Bacillus mycoides. In yet another particular embodiment, the recombinant Bacillus cereus family member cells are cells of Bacillus thuringiensis BT013A.
[00020] In a particular aspect of the above embodiments (i) the at least one insecticide is fipronil; (ii) the targeting sequence comprises an amino acid sequence having at least about 43% identity with amino acids 20-35 of SEQ ID NO: 1, wherein the identity with amino acids
25-35 is at least about 54%; (iii) the enzyme having serine protease activity comprises an amino acid sequence having at least 95% identity to any one of SEQ ID NOs: 4-5 or an amino acid sequence having at least 95% identity to SEQ ID NO: 6; and (iv) the recombinant Bacillus cereus family member cells comprise cells of Bacillus thuringiensis or Bacillus mycoides. In yet another particular embodiment, the recombinant Bacillus cereus family member cells are cells of Bacillus thuringiensis BT013A.
[00021] In a particular aspect of the above embodiments (i) the at least one insecticide is flupyradifurone; (ii) the targeting sequence comprises an amino acid sequence having at least about 43% identity with amino acids 20-35 of SEQ ID NO: 1, wherein the identity with amino acids 25-35 is at least about 54%; (iii) the enzyme having serine protease activity comprises an amino acid sequence having at least 95% identity to any one of SEQ ID NOs: 4-5 or an amino acid sequence having at least 95% identity to SEQ ID NO: 6; and (iv) the recombinant Bacillus cereus family member cells comprise cells of Bacillus thuringiensis or Bacillus mycoides. In yet another particular embodiment, the recombinant Bacillus cereus family member cells are cells of Bacillus thuringiensis BT013A.
[00022] In a particular aspect of the above embodiments (i) the at least one insecticide is imidacloprid; (ii) the targeting sequence comprises an amino acid sequence having at least about 43% identity with amino acids 20-35 of SEQ ID NO: 1, wherein the identity with amino acids 25-35 is at least about 54%; (iii) the enzyme having serine protease activity comprises an amino acid sequence having at least 95% identity to any one of SEQ ID NOs: 4-5 or an amino acid sequence having at least 95% identity to SEQ ID NO: 6; and (iv) the recombinant Bacillus cereus family member cells comprise cells of Bacillus thuringiensis or Bacillus mycoides. In yet another particular embodiment, the recombinant Bacillus cereus family member cells are cells of Bacillus thuringiensis BT013A.
[00023] In a particular aspect of the above embodiments (i) the at least one insecticide is methiocarb; (ii) the targeting sequence comprises an amino acid sequence having at least about 43% identity with amino acids 20-35 of SEQ ID NO: 1, wherein the identity with amino acids 25-35 is at least about 54%; (iii) the enzyme having serine protease activity comprises an amino acid sequence having at least 95% identity to any one of SEQ ID NOs: 4-5 or an amino acid sequence having at least 95% identity to SEQ ID NO: 6; and (iv) the recombinant Bacillus cereus family member cells comprise cells of Bacillus thuringiensis or Bacillus mycoides. In yet another particular embodiment, the recombinant Bacillus cereus family member cells are cells of Bacillus thuringiensis BT013A.
[00024] In a particular aspect of the above embodiments (i) the at least one insecticide is thiodicarb; (ii) the targeting sequence comprises an amino acid sequence having at least about 43% identity with amino acids 20-35 of SEQ ID NO: 1, wherein the identity with amino acids 25-35 is at least about 54%; (iii) the enzyme having serine protease activity comprises an amino acid sequence having at least 95% identity to any one of SEQ ID NOs: 4-5 or an amino acid sequence having at least 95% identity to SEQ ID NO: 6; and (iv) the recombinant Bacillus cereus family member cells comprise cells of Bacillus thuringiensis or Bacillus mycoides. In yet another particular embodiment, the recombinant Bacillus cereus family member cells are cells of Bacillus thuringiensis BT013A.
[00025] In yet other embodiments, the composition further comprises at least one fungicide. The at least one fungicide may be synthetic.
[00026] In some aspects, the composition further comprises at least one auxiliary selected from the group consisting of extenders, solvents, spontaneity promoters, carriers, emulsifiers, dispersants, frost protectants, thickeners and adjuvants.
[00027] In other aspects, the invention is directed to a seed treated with any of the compositions disclosed herein.
[00028] Furthermore, the present invention relates to use of the disclosed compositions as an insecticide and/or biostimulant. In certain aspects, the disclosed compositions are used for reducing overall damage of plants and plant parts as well as losses in harvested fruits or vegetables caused by insects, mites, nematodes and/or phytopathogens. In other aspects, the disclosed compositions are used for enhancing plant growth and/or promoting plant health.
[00029] Additionally, the present invention is directed to a method of treating a plant, a plant part, such as a seed, root, rhizome, corm, bulb, or tuber, and/or a locus on which or near which the plant or the plant parts grow, such as soil, to enhance plant growth and/or promote plant health comprising the step of simultaneously or sequentially applying to a plant, a plant part and/or a plant loci: a) recombinant exosporium-producing Bacillus cells that express a fusion protein comprising: (i) an enzyme having serine protease activity, preferably comprising an amino acid sequence having at least 95% identity to any one of SEQ ID NOs: 4-5 or an amino acid sequence having at least 95% identity to SEQ ID NO: 6; and (ii) a targeting sequence that localizes the fusion protein to the exosporium of the Bacillus cells or exosporium fragments derived from such recombinant exosporium-producing Bacillus cells; and b) at least one insecticide selected from a particular insecticide disclosed herein that exhibits activity against insects, mites, nematodes and/or phytopathogens in a synergistically effective amount.
[00030] In another embodiment, the present invention is a method for reducing overall damage of plants and plant parts as well as losses in harvested fruits or vegetables caused by insects, mites, nematodes and/or phytopathogens comprising the step of simultaneously or sequentially applying to a plant, a plant part, such as a seed, root, rhizome, corm, bulb, or tuber, and/or a locus on which or near which the plant or the plant parts grow, such as soil: a) recombinant exosporium-producing Bacillus cells that express a fusion protein comprising: (i) an enzyme having serine protease activity, preferably comprising an amino acid sequence having at least 95% identity to any one of SEQ ID NOs: 4-5 or an amino acid sequence having at least 95% identity to SEQ ID NO: 6; and (ii) a targeting sequence that localizes the fusion protein to the exosporium of the Bacillus cells or exosporium fragments derived from such recombinant exosporium-producing Bacillus cells; and b) at least one insecticide selected from the particular insecticides disclosed herein that exhibits activity against insects, mites, nematodes and/or phytopathogens in a synergistically effective amount.
[00031] In the above paragraphs, the term “comprise” or any derivative thereof (e.g., comprising, comprises) may be replaced with “consist of’ or the applicable corresponding derivative thereof.
[00032] Other objects and features will be in part apparent and in part pointed out hereinafter.
DEFINITIONS
[00033] When the articles “a”, “an”, “one”, “the”, and “said” are used herein, they mean “at least one” or “one or more” unless otherwise indicated.
[00034] The term “Bacillus cercus family member” as used herein refers to any Bacillus species that is capable of producing an exosporium. Thus, the Bacillus cercus family of bacteria includes the species Bacillus anthracis, Bacillus cercus, Bacillus thuringiensis , Bacillus mycoides, Bacillus pseudomycoides, Bacillus samanii, Bacillus gaemokensis, Bacillus weihenstephensis, and Bacillus toyoiensis. Bacillus cercus family members are also referred to in the art as “Bacillus cercus sensu lato.”
[00035] The terms “comprising,” “including”, and “having” are intended to be inclusive and mean that there may be additional elements other than the listed elements.
[00036] The term “foliar” used herein with respect to the application of enzymes or recombinant microorganisms to plants means that the enzyme or recombinant microorganism is applied to one or more aerial portions of the plant, including stems, leaves, fruits, flowers, or other exposed aerial portions of the plant.
[00037] The term “fusion protein” as used herein refers to a protein having a polypeptide sequence that comprises sequences derived from two or more separate proteins. A fusion protein can be generated by joining together a nucleic acid molecule that encodes all or part of a first polypeptide with a nucleic acid molecule that encodes all or part of a second polypeptide to create a nucleic acid sequence which, when expressed, yields a single polypeptide having functional properties derived from each of the original proteins. As such, a fusion protein may include a polypeptide comprising a combination of polypeptide sequences that would not naturally occur together without human intervention. For example, a fusion protein may include a polypeptide that deviates from polypeptide sequences that exist in nature, a polypeptide that comprises a synthetic polypeptide sequence or a polypeptide expressed by a recombinant DNA sequence that has been incorporated into a host cell by genetic transformation or gene editing.
[00038] Reference in this application to an “isolated polypeptide”, “isolated fusion protein”, or an equivalent term or phrase, is intended to mean that the polypeptide or the fusion protein is one that is present alone or in combination with other compositions, but not within its natural environment. Similarly, a DNA molecule encoding a serine protease or any naturally occurring serine protease variant would be an isolated DNA molecule so long as the nucleotide sequence was not within the DNA of the bacterium from which the sequence encoding the protein is naturally found. A synthetic nucleotide sequence encoding the amino acid sequence of the naturally occurring serine protease would be considered to be isolated for the purposes of this disclosure. For the purposes of this disclosure, any transgenic nucleotide sequence, i.e., the nucleotide sequence of the DNA inserted into the genome of the cells of a plant or bacterium, or present in an extrachromosomal vector, would be considered to be an isolated nucleotide sequence whether it is present within the plasmid or similar structure used to transform the cells, within the genome of the plant or bacterium, or present in detectable amounts in tissues, progeny, biological samples or commodity products derived from the plant or bacterium.
[00039] The term “germination rate” as used herein refers to the number of seeds that germinate during a particular time period. For example, a germination rate of 85% indicates that 85 out of 100 seeds germinate during a given time period.
[00040] The term “inactivate” or “inactivation” as used herein in reference to the inactivation of spores of a recombinant Bacillus cereus family member means that the spores are unable to germinate, or that the spores can germinate, but are damaged such that germination does not result in a living bacterium. The terms “partially inactivate” or “partial inactivation” mean that a percentage of the spores are inactivated, but that some spores retain the ability to
germinate and return to a live, replicating state. The term “genetic inactivation” refers to inactivation of spores a recombinant Bacillus cereus family member by a mutation of the spore’s DNA that results in complete or partial inactivation of the spore. The terms “physical inactivation” and “chemical inactivation” refer to inactivation of spores using any physical or chemical means, e.g., by heat treatment, gamma irradiation, x-ray irradiation, UV-A irradiation, UV-B irradiation, or treatment with a solvent such as glutaraldehyde, formaldehyde, hydrogen peroxide, acetic acid, bleach, chloroform, phenol, or any combination thereof.
[00041] The terms “native sequence”, “native amino acid sequence”, “wild-type sequence”, and “wild-type amino acid sequence” are used interchangeably herein to refer to an amino acid sequence as it exists in a naturally occurring protein.
[00042] A “plant growth medium” includes any material that is capable of supporting the growth of a plant.
[00043] The terms “promoting plant growth” and “stimulating plant growth” are used interchangeably herein, and refer to the ability to enhance or increase at least one of the plant’s height, weight, leaf size, root size, fruit size, shoot size or stem size, and/or the ability to increase protein yield from the plant, and/or to increase crop yield, and/or to improve plant vigor. For example, this may relate to increased length and/or fresh and/or dry weights of roots and/or shoots of treated plants or crops compared to untreated plants or crops.
[00044] Increased yield of a plant, in particular of an agricultural, silvicultural and/or ornamental plant, means that the yield of a product of the respective plant is increased by a measurable amount over the yield of the same product of the plant produced under the same conditions, but without the application of the compositions disclosed herein.
[00045] Improved plant vigor includes the following: (a) improved vitality of the plant, (b) improved quality of the plant and/or of the plant products, e.g., enhanced protein content, (c) improved visual appearance, (d) delay of senescence, (e) enhanced root growth and/or more developed root system (e.g., determined by the dry mass of the root), (f) enhanced nodulation, in particular rhizobial nodulation, (g) longer panicles, (h) bigger leaf blade, (i) less dead basal leaves, (j) increased chlorophyll content, (k) prolonged photosynthetically active period, (1) increased or improved plant stand density, (m) less plant verse (lodging), (n) increased plant weight, (o) increased plant height, (p) tillering increase, (q) stronger and/or more productive tillers, (r) less non-productive tillers, (s) enhanced photosynthetic activity and/or enhanced pigment content and thus greener leaf color, (t) earlier and/or improved germination, (u) improved and/or more uniform and/or earlier emergence, (v) increased shoot growth, (w)
earlier flowering, (x) earlier fruiting, (y) earlier grain maturity, (z) less fertilizers needed, (aa) less seeds needed.
[00046] The term “recombinant” as used in reference to the bacteria described herein encompasses bacteria having any genetic modification as compared to wild-type bacteria of the same type, including bacteria that have been modified to delete of a gene or a portion of a gene (e.g., bacteria that have a “knock-out” of a gene), as well as bacteria that have been modified to express an exogenous peptide or protein.
[00047] The term “rhizosphere” is used interchangeably with “root zone” to denote that segment of the soil that surrounds the roots of a plant and is influenced by them.
[00048] The term “synergistically effective amount” as used herein refers to an amount of a first substance (e.g., a first enzyme) that when used in combination with a second substance (e.g., a second enzyme) produces a biological effect that is greater than the sum of the biological effects of each of the respective first and second substances when used alone.
[00049] The term “targeting sequence” as used herein refers to a polypeptide sequence that, when present as part of a longer polypeptide or a protein, results in the localization of the longer polypeptide or the protein to a specific subcellular location. The targeting sequences described herein result in localization of proteins to the exosporium of a Bacillus cereus family member.
[00050] The following abbreviations are useful for understanding the depositary institution of the microbial strains listed below.
[00051] ATCC is the abbreviation for the American Type Culture Collection, International Depository Authority for the Purposes of Depositing Biological Material for the Purposes of Patenting under the Budapest Treaty on the International Recognition of the Deposit of Microorganisms for the Purposes of Patent Procedure, having the address ATCC Patent Depository, 10801 University Boulevard, Manassas, Virginia 10110, U.S.A.
[00052] CBS is the abbreviation for the Centraalbureeau voor Schimmelcultures, an International Depository Authority for the Purposes of Depositing Biological Material for the Purposes of Patenting under the Budapest Treaty on the International Recognition of the Deposit of Microorganisms for the Purposes of Patent Procedure, having the address Uppsalalaan 8, Baam/Utrecht, The Netherlands.
[00053] CGMCC is the abbreviation for the China General Microbiological Culture Collection Cente, an International Depository Authority for the Purposes of Depositing Biological Material for the Purposes of Patenting under the Budapest Treaty on the International Recognition of the Deposit of Microorganisms for the Purposes of Patent Procedure, having the
address of Institute of Microbiology, Chinese Academy of Sciences, No. 1 Beichen West Road, Chaoyang District, Beijing 100 101.
[00054] CNCM is the acronym for the Collection Nationale de Cultures de Microorganismes, Institut Pasteur, Paris, France.
[00055] DSM is the abbreviation for Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, an International Depositary Authority for the Purposes of Depositing Biological Material for the Purposes of Patenting under the Budapest Treaty on the International Recognition of the Deposit of Microorganisms for the Purposes of Patent Procedure, having the address Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, InhoffenstraBe 7B, 38124 Braunschweig, Germany.
[00056] IMI is the acronym for CABI Bioscience, Eggham, UK (formerly International Mycological Institute; also known as CMI and CABI).
[00057] NRRL is the abbreviation for the Agricultural Research Service Culture Collection, International Depository Authority for the Purposes of Deposing Biological Material for the Purposes of Patenting under the Budapest Treaty on the International Recognition of the Deposit of Microorganisms for the Purposes of Patent Procedure, having the address National Center for Agricultural Utilization Research, Agricultural Research Service, U.S. Department of Agriculture, 1815 North University Street, Peoria, Illinois 61604, U.S.A.
DETAILED DESCRIPTION OF THE INVENTION
[00058] Compositions of the present invention comprise a) recombinant exosporium- producing Bacillus cells that express a fusion protein comprising: (i) an enzyme having serine protease activity from Bacillus firmus; and (ii) a targeting sequence that localizes the fusion protein to the exosporium of the Bacillus cells or exosporium fragments derived from such recombinant exosporium-producing Bacillus cells; and b) at least one particular insecticide or biostimulant disclosed herein in a synergistically effective amount.
Fusion Proteins for Expression in Bacillus Cereus Family Members
[00059] The fusion proteins of the present invention comprise a targeting sequence, exosporium protein, or exosporium protein fragment that targets the fusion protein to the exosporium of a recombinant Bacillus cereus family member. The fusion proteins further comprise an enzyme having serine protease activity. When expressed in Bacillus cereus family member bacteria, these fusion proteins are targeted to the exosporium layer of the spore and are physically oriented such that the serine protease is displayed on the outside of the spore.
[00060] This Bacillus exosporium display (BEMD) system can be used to deliver the serine protease to plants (e.g., to plant foliage, fruits, flowers, stems, or roots) or to a plant growth medium such as soil. Enzymes and proteins delivered to the soil or another plant growth medium in this manner persist and exhibit activity in the soil for extended periods of time. Introduction of recombinant Bacillus cercus family member bacteria expressing the fusion proteins described herein into soil or the rhizosphere of a plant leads to a beneficial enhancement of plant growth and/or to control pests, such as nematodes, in many different soil conditions. The use of the BEMD to create these enzymes allows them to continue to exert their beneficial results to the plant and the rhizosphere over the first months of a plant’s life.
[00061] In addition, as is described further hereinbelow, the BEMD system can be modified such that the exosporium of the recombinant Bacillus cercus family member can be removed from the spore, generating exosporium fragments containing the fusion proteins. The exosporium fragments can also be used to deliver the serine proteases to plants in a cell-free preparation.
Targeting Sequences, Exosporium Proteins, and Exosporium Protein Fragments for Targeting Enzymes Having Serine Protease Activity to the Exosporium of a Bacillus cercus Family Member
[00062] For ease of reference, descriptions of the amino acid sequences for the targeting sequences, exosporium proteins, and exosporium protein fragments that can be used for targeting of enzymes or proteins (e.g., enzymes having serine protease activity) to the exosporium of a Bacillus cercus family members, are provided in Table 1 together with their SEQ ID NOs.
Table 1. Peptide and Protein Sequences Used for Targeting of Proteins or Peptides of Interest to the Exosporium of Bacillus cercus Family Members
AA = amino acids
* AA 1^41 of B. anthracis Sterne strain BclA have 100% sequence identity with AA 1^41 of B. thuringiensis BclA.
[00063] Bacillus is a genus of rod-shaped bacteria. The Bacillus cercus family of bacteria includes any Bacillus species that is capable of producing an exosporium. Thus, the Bacillus cercus family of bacteria includes the species Bacillus anthracis, Bacillus cercus, Bacillus thuringiensis , Bacillus mycoides, Bacillus pseudomycoides, Bacillus samanii, Bacillus gaemokensis, Bacillus weihenstephensis, and Bacillus toyoiensis. Under stressful environmental conditions, Bacillus cereus family bacteria undergo sporulation and form oval endospores that can stay dormant for extended periods of time. The outermost layer of the endospores is known as the exosporium and comprises a basal layer surrounded by an external nap of hair-like projections. Filaments on the hair-like nap are predominantly formed by the collagen-like glycoprotein BclA, while the basal layer is comprised of a number of different proteins. Another collagen-related protein, BclB, is also present in the exosporium and exposed on endospores of Bacillus cereus family members. BclA, the major constituent of the surface nap, has been shown to be attached to the exosporium with its amino-terminus (N-terminus) positioned at the basal layer and its carboxy-terminus (C-terminus) extending outward from the spore.
[00064] The scientific literature describes the Bacillus cereus “family” or “group” as a subgroup within the genus Bacillus. See Priest et al., “Population Structure and Evolution of the Bacillus cereus Group,” J. Bacteriology, 2004, vol. 186. no. 23, pp. 7959-7970; Peng et al., “The Regulation of Exosporium-Related Genes in Bacillus thuringiensis,” Nature Scientific Reports, 2016, vol. 6, no. 19005, pp. 1-12. Peng et al. states:
Spores of the B. cereus group are complex, multilayered structures. The nucleoid containing core is enclosed within a peptidoglycan cortex, which is surrounded by the spore coat. Spores of all the B. cereus group species are encircled by an additional loose-fitting layer called the exosporium, which is not present on other species such as Bacillus subtilis, for which the coat constitutes the outermost layer of the mature spore. The exosporium is a balloonlike layer that acts as the outer permeability barrier of the spore and contributes to spore survival and virulence.
[00065] It was previously discovered that certain sequences from the N-terminal regions of BclA and BclB could be used to target a peptide or protein to the exosporium of a Bacillus cereus family member endospore (see U.S. Patent Application Publication Nos. 2010/0233124 and 2011/0281316, and Thompson et al., “Targeting of the BclA and BclB Proteins to the Bacillus anthracis Spore Surface”, Molecular Microbiology 70(2):421-34
(2008)). It was also found that the BetA/BAS3290 protein of Bacillus anthracis localized to the exosporium. Further targeting sequences, as well as exosporium proteins and fragments of exosporium proteins, that can be incorporated into a fusion protein and used to target a peptide or protein of interest to the exosporium of a recombinant Bacillus cercus family member are described in U.S. Patent Application Publication Nos. 2016/0031948 and 2016/0108096, which are incorporated by reference herein in their entirety.
[00066] In particular, amino acids 20-35 of BclA from Bacillus anthracis Sterne strain have been found to be sufficient for targeting to the exosporium. A sequence alignment of amino acids 1^41 of BclA (SEQ ID NO: 1) with the corresponding N-terminal regions of several other Bacillus cercus family exosporium proteins and Bacillus cereus family proteins having related sequences is shown in FIGS. 1A and IB of U.S. Patent Application Publication No. 2016/0108096. As can be seen from FIGS. 1A and IB, there is a region of high homology among all of the proteins in the region corresponding to amino acids 20-41 of BclA. However, in these sequences, the amino acids corresponding to amino acids 36^41 of BclA contain secondary structure and are not necessary for fusion protein localization to the exosporium. The conserved targeting sequence region of BclA (amino acids 20-35 of SEQ ID NO: 1) is shown in bold in FIGS. 1A and IB. A more highly conserved region spanning amino acids 25-35 of BclA within the targeting sequence is underlined in the sequences in FIGS. 1A and IB, and is the recognition sequence for ExsFA/BxpB/ExsFB and homologs, which direct and assemble the described proteins on the surface of the exosporium. As can be seen from this figure, each of these sequences contains a conserved region corresponding to amino acids 20-35 of BclA (SEQ ID NO: 1; shown in bold), and a more highly conserved region corresponding to amino acids 25-35 of BclA (underlined).
[00067] Any portion of BclA which includes amino acids 20-35 can be used as to target a fusion protein to the exosporium. In addition, full-length exosporium proteins or exosporium protein fragments can be used for targeting the fusion proteins to the exosporium. Thus, full-length BclA or a fragment of BclA that includes amino acids 20-35 can be used for targeting to the exosporium. For example, full length BclA (SEQ ID NO: 3) or a midsized fragment of BclA that lacks the carboxy-terminus such as amino acids 1-196 of BclA or amino acids 1-166 of BclA can be used to target the fusion proteins to the exosporium. Midsized fragments such as these have less secondary structure than full length BclA and have been found to be suitable for use as a targeting sequence. The targeting sequence can also comprise much shorter portions of BclA which include amino acids 20-35, such as SEQ ID NO: 1 (amino acids
methionine residue linked to amino acids 20-35 of BclA. Even shorter fragments of BclA which include only some of amino acids 20-35 also exhibit the ability to target fusion proteins to the exosporium. For example, the targeting sequence can comprise amino acids 22-31 of SEQ ID NO: 1, amino acids 22-33 of SEQ ID NO: 1, or amino acids 20-31 of SEQ ID NO: 1.
[00068] Furthermore, any amino acid sequence comprising amino acids 20-35 of BclA can serve as the targeting sequence.
[00069] The targeting sequence can comprise amino acids 1-35 of SEQ ID NO: 1, amino acids 20-35 of SEQ ID NO: 1, SEQ ID NO: 1, SEQ ID NO: 2, amino acids 22-31 of SEQ ID NO: 1, amino acids 22-33 of SEQ ID NO: 1, or amino acids 20-31 of SEQ ID NO: 1. Alternatively, the targeting sequence can consist of amino acids 1-35 of SEQ ID NO: 1, amino acids 20-35 of SEQ ID NO: 1, or SEQ ID NO: 1. Alternatively, the targeting sequence can consist of amino acids 22-31 of SEQ ID NO: 1, amino acids 22-33 of SEQ ID NO: 1, or amino acids 20-31 of SEQ ID NO: 1. Alternatively, the exosporium protein can comprise full length BclA (SEQ ID NO: 3), or the exosporium protein fragment can comprise a midsized fragment of BclA that lacks the carboxy-terminus, such as amino acids 1-196 of BclA.
[00070] The targeting sequence can comprise amino acids 2-35 of SEQ ID NO: 1; amino acids 5-35 of SEQ ID NO: 1; amino acids 8-35 of SEQ ID NO: 1; amino acids 10-35 of SEQ ID NO: 1; or amino acids 15-35 of SEQ ID NO: 1.
[00071] Furthermore, it has been found that sequences shorter than amino acids 20-35 of BclA can be used to target a fusion protein to the exosporium of a recombinant Bacillus cereus family member. In particular, amino acids 20-33 of BclA, amino acids 20-31 of BclA, amino acids 21-33 of BclA, or amino acids 23-31 of BclA can be used to target a fusion protein to the exosporium of a recombinant Bacillus cereus family member. Thus, the targeting sequence can consist of amino acids 20-33 of SEQ ID NO: 1, amino acids 20-31 of SEQ ID NO: 1, amino acids 21-33 of SEQ ID NO: 1, or amino acids 23-31 of SEQ ID NO: 1.
[00072] Even shorter regions within amino acids 20-35 of BclA can also be used for targeting a fusion protein to the exosporium of a recombinant Bacillus cereus family member. In particular, any amino acid sequence that includes amino acids 25-30 of SEQ ID NO: 1 or the corresponding amino acids from any of the sequences shown in FIGS. 1A and IB of U.S. Patent Application Publication No. 2016/0108096 can be used. A skilled person will recognize that starting with amino acids 25-30 of SEQ ID NO: 1 or the corresponding region of any of the sequences shown in FIGS. 1A and IB, additional amino acids can be added to the aminoterminus, the carboxy terminus, or both the amino- and carboxy termini to create a targeting
sequence that will be effective for targeting a fusion protein to the exosporium of a recombinant Bacillus cereus family member.
[00073] In addition, it can readily be seen from the sequence alignment in FIGS. 1A and IB of U.S. Patent Application Publication No. 2016/0108096 that while amino acids 20-35 of BclA are conserved, and amino acids 25-35 are more conserved, some degree of variation can occur in this region without affecting the ability of the targeting sequence to target a protein to the exosporium. The corresponding regions of any of the SEQ ID NOs. shown in FIGS. 1A and IB can also be used to target a fusion protein to the exosporium of a recombinant Bacillus cereus family member. By “corresponding regions,” it is meant that when the sequences are aligned with SEQ ID NO: 1, as shown in FIGS. 1A and IB, the regions of the other amino acid sequences that align with the amino acids of SEQ ID NO: 1 are the “corresponding regions” of those sequences.
[00074] FIG. 1 lists the percent identity of the corresponding amino acids of each sequence to amino acids 20-35 of BclA (“20-35% Identity”) and to amino acids 25-35 of BclA (“25-35 % Identity”). Sequences having a targeting sequence identity as low as 43.8% with amino acids 20-35 of BclA (SEQ ID NO: 1), wherein the identity with amino acids 25-35 of BclA is 54.5%, retain the ability to target fusion proteins to the exosporium. Data are provided in Table 58 in Example 59 of PCT Publication No. WO 2016/044661, which is incorporated herein by reference in its entirety. Table 58 shows the enzyme levels of phosphatidylcholinespecific phospholipase C gene (PC-PLC) and lipase on Bacillus cereus family member spores expressing fusion proteins containing these enzymes and various targeting sequences with sequence identity to amino acids 20-35 of BclA ranging from 50.0% to 68.8% and with sequence identity to amino acids 25-35 ranging from 63.6% to 81.8%.
[00075] These data show that targeting of a protein of interest (e.g., an enzyme) to the exosporium proteins can be achieved using targeting sequences having 50-68.8% identity to amino acids 20-35 of BclA (SEQ ID NO: 1), wherein the identity to amino acids 25-35 of BclA is 63.6% to 81.8%. Such motif is present in a targeting sequence, exosporium protein, or exosporium protein fragment that targets the fusion protein to the exosporium of the recombinant Bacillus bacterium and comprises the sequence X1-X2-X3-X4-X5-X6-X7-X8-X9-X10- X11-X12-X13-X14-X15-X16, wherein:
Xi is any amino acid or absent;
X2 is phenylalanine (F), leucine (L), isoleucine (I), or methionine (M);
X3 is any amino acid;
X4 is proline (P) or serine (S);
X5 is any amino acid;
Xe is leucine (L), asparagine (N), serine (S), or isoleucine (I);
X7 is valine (V) or isoleucine (I);
Xs is glycine (G);
X9 is proline (P);
X10 is threonine (T) or proline (P);
Xn is leucine (L) or phenylalanine (F);
X12 is proline (P);
X13 is any amino acid;
X14 is any amino acid;
X15 is proline (P), glutamine (Q), or threonine (T); and
Xi6 is proline (P), threonine (T), or serine (S).
[00076] Any of the targeting sequences, exosporuim proteins, or exosporium protein fragments can be used to target any protein or peptide of interest, including the proteins having serine protease activity described herein, to the exosporium of a recombinant Bacillus cereus family member.
[00077] FIGS. 1A and IB of U.S. Patent Application Publication No. 2016/0108096 list the percent identity of each of the corresponding amino acids of each sequence to amino acids 20-35 of BclA (“20-35% Identity”) and to amino acids 25-35 of BclA (“25-35% Identity”). Thus, for example, as compared to amino acids 20-35 of BclA, the corresponding amino acids of BetA/BAS3290 are about 81.3% identical, the corresponding amino acids of BAS4623 are about 50.0% identical, the corresponding amino acids of BclB are about 43.8% identical, the corresponding amino acids of BAS1882 are about 62.5% identical, the corresponding amino acids of the KBAB4 2280 gene product are about 81.3% identical, and the corresponding amino acids of the KBAB4 3572 gene product are about 81.3% identical. The sequence identities over this region for the remaining sequences are listed in FIGS. 1A and IB.
[00078] With respect to amino acids 25-35 of BclA, the corresponding amino acids of BetA/BAS3290 are about 90.9% identical, the corresponding amino acids of BAS4623 are about 72.7% identical, the corresponding amino acids of BclB are about 54.5% identical, the corresponding amino acids of BAS 1882 are about 72.7% identical, the corresponding amino acids of the KBAB4 2280 gene product are about 90.9% identical, and the corresponding amino acids of the KBAB4 3572 gene product are about 81.8% identical. The sequence identities over this region for the remaining sequences are listed in FIGS. 1A and IB of U.S. Patent Application Publication No. 2016/0108096.
[00079] Thus, the targeting sequence can comprise an amino acid sequence having at least about 43% identity with amino acids 20-35 of SEQ ID NO: 1, wherein the identity with amino acids 25-35 is at least about 54%. Alternatively, the targeting sequence consists of an amino acid sequence consisting of 16 amino acids and having at least about 43% identity with amino acids 20-35 of SEQ ID NO: 1, wherein the identity with amino acids 25-35 is at least about 54%.
[00080] The targeting sequence can also comprise an amino acid sequence having at least about 50% identity with amino acids 20-35 of SEQ ID NO: 1, wherein the identity with amino acids 25-35 is at least about 63%. Alternatively, the targeting sequence consists of an amino acid sequence consisting of 16 amino acids and having at least about 50% identity with amino acids 20-35 of SEQ ID NO: 1, wherein the identity with amino acids 25-35 is at least about 63%.
[00081] The targeting sequence can also comprise an amino acid sequence having at least about 50% identity with amino acids 20-35 of SEQ ID NO: 1, wherein the identity with amino acids 25-35 is at least about 72%. Alternatively, the targeting sequence consists of an amino acid sequence consisting of 16 amino acids and having at least about 50% identity with amino acids 20-35 of SEQ ID NO: 1, wherein the identity with amino acids 25-35 is at least about 72%.
[00082] The targeting sequence can also comprise an amino acid sequence having at least about 56% identity with amino acids 20-35 of SEQ ID NO: 1, wherein the identity with amino acids 25-35 is at least about 63%. Alternatively, the targeting sequence consists of an amino acid sequence consisting of 16 amino acids and having at least about 56% identity with amino acids 20-35 of SEQ ID NO: 1, wherein the identity with amino acids 25-35 is at least about 63%.
[00083] The targeting sequence can comprise an amino sequence having at least about 62% identity with amino acids 20-35 of SEQ ID NO: 1, wherein the identity with amino acids 25-35 is at least about 72%. Alternatively, the targeting sequence can consist of an amino acid sequence consisting of 16 amino acids and having at least about 62% identity with amino acids 20-35 of SEQ ID NO: 1, wherein the identity with amino acids 25-35 of SEQ ID NO: 1 is at least about 72%.
[00084] The targeting sequence can comprise an amino acid sequence having at least 68% identity with amino acids 20-35 of SEQ ID NO: 1, wherein the identity with amino acids 25-35 is at least about 81%. Alternatively, the targeting sequence consists of an amino acid
sequence consisting of 16 amino acids and having at least 68% identity with amino acids 20-35 of SEQ ID NO: 1, wherein the identity with amino acids 25-35 is at least about 81%.
[00085] The targeting sequence can also comprises an amino sequence having at least about 75% identity with amino acids 20-35 of SEQ ID NO: 1, wherein the identity with amino acids 25-35 is at least about 72%. Alternatively, the targeting sequence consists of an amino acid sequence consisting of 16 amino acids and having at least about 75% identity with amino acids 20-35 of SEQ ID NO: 1, wherein the identity with amino acids 25-35 of SEQ ID NO: 1 is at least about 72%.
[00086] The targeting sequence can also comprise an amino sequence having at least about 75% identity with amino acids 20-35 of SEQ ID NO: 1, wherein the identity with amino acids 25-35 is at least about 81%. Alternatively, the targeting sequence consists of an amino acid sequence consisting of 16 amino acids and having at least about 75% identity with amino acids 20-35 of SEQ ID NO: 1, wherein the identity with amino acids 25-35 of SEQ ID NO: 1 is at least about 81%.
[00087] The targeting sequence can also comprise an amino acid sequence having at least about 81% identity with amino acids 20-35 of SEQ ID NO: 1, wherein the identity with amino acids 25-35 is at least about 81%. Alternatively, the targeting sequence consists of an amino acid sequence consisting of 16 amino acids and having at least about 81% identity with amino acids 20-35 of SEQ ID NO: 1, wherein the identity with amino acids 25-35 is at least about 81%.
[00088] The targeting sequence can comprise an amino acid sequence having at least about 81% identity with amino acids 20-35 of SEQ ID NO: 1, wherein the identity with amino acids 25-35 is at least about 90%. Alternatively, the targeting sequence consists of an amino acid sequence consisting of 16 amino acids and having at least about 81% identity with amino acids 20-35 of SEQ ID NO: 1, wherein the identity with amino acids 25-35 is at least about 90%.
[00089] The skilled person will recognize that variants of the above sequences can also be used as targeting sequences, so long as the targeting sequence comprises amino acids 20-35 of BclA, the corresponding amino acids of BetA/BAS3290, BAS4263, BclB, BAS 1882, the KBAB4 2280 gene product, or the KBAB 3572 gene product, or a sequence comprising any of the above noted sequence identities to amino acids 20-35 and 25-35 of BclA is present.
[00090] Moreover, exosporium proteins having a high degree of sequence identity with any of the full-length exosporium proteins or the exosporium protein fragments described above can also be used to target a peptide or protein to the exosporium of a Bacillus cereus
family member. Thus, the fusion protein can comprise an exosporium protein or exosporium protein fragment comprising an amino acid sequence having at least 85% identity with SEQ ID NO: 3.
[00091] Alternatively, the fusion protein can comprise an exosporium protein having at least 90% identity with SEQ ID NO: 3.
[00092] The fusion protein can comprise an exosporium protein having at least 95% identity with SEQ ID NO: 3.
[00093] The fusion protein can comprise an exosporium protein having at least 98% identity with SEQ ID NO: 3.
[00094] The fusion protein can comprise an exosporium protein having at least 99% identity with SEQ ID NO: 3.
[00095] The fusion protein can comprise an exosporium protein having 100% identity with SEQ ID NO: 3.
[00096] The targeting sequence, exosporium protein or exosporium protein fragment of the present invention may also be described in terms of a motif that provides the targeting function. FIGS. 1A and IB show a sequence alignment of the amino-terminal region of BclA (SEQ ID NO: 1) with the corresponding amino-terminal regions of a number of other Bacillus cereus family member exosporium proteins. As can be seen from FIG. 1, there is a conserved motif at amino acids 20-35 of BclA (shown in bold in FIG. 1), with a more highly conserved motif at amino acids 25-35 of BclA (shown in bold and underlined in FIG. 1). This more highly conserved region is the recognition sequence for ExsFA/BxpB/ExsFB and homologs, which direct and assemble the described exosporium proteins on the surface of the exosporium.
[00097] During sporulation of a recombinant Bacillus cereus family member expressing any of the fusion proteins described herein, the targeting motif, exosporium protein, or exosporium protein fragment is recognized by the spore exosporium assembly machinery and directed to the exosporium, resulting in display of the protein or peptide of interest portion of the fusion protein (e.g., the enzyme having serine protease activity) on the outside of the spore.
[00098] The use of different targeting sequences allows for control of the expression level of the fusion protein on the surface of the Bacillus cereus family member spore. Use of certain of the targeting sequences described herein will result in a higher level of expression of the fusion protein, whereas use of others of the targeting sequences will result in lower levels of expression of the fusion protein on the surface of the spore.
[00099] In any of the fusion proteins described herein, the targeting sequence, exosporium protein, or exosporium protein fragment can comprise the amino acid sequence GXT at its carboxy terminus, wherein X is any amino acid.
[000100] In any of the fusion proteins described herein, the targeting sequence, exosporium protein, or exosporium protein fragment, can comprise an alanine residue at the position of the targeting sequence that corresponds to amino acid 20 of SEQ ID NO: 1.
[000101] In any of the fusion proteins described herein, the targeting sequence, exosporium protein, or exosporium protein fragment can further comprise a methionine, serine, or threonine residue at the amino acid position immediately preceding the first amino acid of the targeting sequence, exosporium protein, or exosporium protein fragment or at the position of the targeting sequence that corresponds to amino acid 20 of SEQ ID NO: 1.
Fusion Proteins for Expression in Recombinant Bacillus cereus Family Members
[000102] Fusion proteins comprising a targeting sequence, exosporium protein, or exosporium protein fragment that targets the fusion protein to the exosporium of a recombinant Bacillus cereus family member are provided. The fusion proteins further comprise an enzyme having serine protease activity.
[000103] In any of the fusion proteins described herein, the fusion protein can comprise: (1) a targeting sequence comprising an amino acid sequence having at least about 43% identity with amino acids 20-35 of SEQ ID NO: 1, wherein the identity with amino acids 25-35 is at least about 54%; (2) a targeting sequence comprising amino acids 1-35 of SEQ ID NO: 1; (3) a targeting sequence comprising amino acids 20-35 of SEQ ID NO: 1; (4) a targeting sequence comprising SEQ ID NO: 1; (5) an exosporium protein comprising an amino acid sequence having at least 85% identity with SEQ ID NO: 3; (6) a targeting sequence comprising amino acids 2-35 of SEQ ID NO: 1; (7) a targeting sequence comprising amino acids 5-35 of SEQ ID NO: 1; (8) a targeting sequence comprising amino acids 8-35 of SEQ ID NO: 1; (9) a targeting sequence comprising amino acids 10-35 of SEQ ID NO: 1; (10) a targeting sequence comprising amino acids 15-35 of SEQ ID NO: 1; (11) a targeting sequence consisting of amino acids 20-33 of SEQ ID NO: 1; (12) a targeting sequence consisting of amino acids 21-33 of SEQ ID NO: 1; (13) a targeting sequence consisting of amino acids 23-31 of SEQ ID NO: 1.
[000104] For example, the targeting sequence can comprise an amino acid sequence having at least about 50% identity with amino acids 20-35 of SEQ ID NO: 1, wherein the identity with amino acids 25-35 is at least about 63%.
[000105] Alternatively, the targeting sequence can consist of an amino acid sequence having at least about 50% identity with amino acids 20-35 of SEQ ID NO: 1, wherein the identity with amino acids 25-35 is at least about 63%.
[000106] The targeting sequence can comprise an amino acid sequence having at least about 50% identity with amino acids 20-35 of SEQ ID NO: 1, wherein the identity with amino acids 25-35 is at least about 72%.
[000107] Alternatively, the targeting sequence can consist of an amino acid sequence having at least about 50% identity with amino acids 20-35 of SEQ ID NO: 1, wherein the identity with amino acids 25-35 is at least about 72%.
[000108] The targeting sequence can comprise an amino acid sequence having at least about 56% identity with amino acids 20-35 of SEQ ID NO: 1, wherein the identity with amino acids 25-35 is at least about 63%.
[000109] Alternatively, the targeting sequence can consist of an amino acid sequence having at least about 56% identity with amino acids 20-35 of SEQ ID NO: 1, wherein the identity with amino acids 25-35 is at least about 63%.
[000110] The targeting sequence can comprise an amino sequence having at least about 62% identity with amino acids 20-35 of SEQ ID NO: 1, wherein the identity with amino acids 25-35 is at least about 72%.
[000111] Alternatively, the targeting sequence can consist of an amino sequence having at least about 62% identity with amino acids 20-35 of SEQ ID NO: 1, wherein the identity with amino acids 25-35 is at least about 72%.
[000112] The targeting sequence can comprise an amino acid sequence having at least about 68% identity with amino acids 20-35 of SEQ ID NO: 1, wherein the identity with amino acids 25-35 is at least about 81%.
[000113] Alternatively, the targeting sequence can consist of an amino acid sequence having at least about 68% identity with amino acids 20-35 of SEQ ID NO: 1, wherein the identity with amino acids 25-35 is at least about 81%.
[000114] The targeting sequence can comprise an amino sequence having at least about 75% identity with amino acids 20-35 of SEQ ID NO: 1, wherein the identity with amino acids 25-35 is at least about 72%.
[000115] Alternatively, the targeting sequence can consist of an amino sequence having at least about 75% identity with amino acids 20-35 of SEQ ID NO: 1, wherein the identity with amino acids 25-35 is at least about 72%.
[000116] The targeting sequence can comprise an amino sequence having at least about 75% identity with amino acids 20-35 of SEQ ID NO: 1, wherein the identity with amino acids 25-35 is at least about 81%.
[000117] Alternatively, the targeting sequence can consist of an amino sequence having at least about 75% identity with amino acids 20-35 of SEQ ID NO: 1, wherein the identity with amino acids 25-35 is at least about 81%.
[000118] The targeting sequence can comprise an amino acid sequence having at least about 81% identity with amino acids 20-35 of SEQ ID NO: 1, wherein the identity with amino acids 25-35 is at least about 81%.
[000119] Alternatively, the targeting sequence can consist of an amino acid sequence having at least about 81% identity with amino acids 20-35 of SEQ ID NO: 1, wherein the identity with amino acids 25-35 is at least about 81%.
[000120] The targeting sequence can comprise an amino acid sequence having at least about 81% identity with amino acids 20-35 of SEQ ID NO: 1, wherein the identity with amino acids 25-35 is at least about 90%.
[000121] Alternatively, the targeting sequence can consist of an amino acid sequence having at least about 81% identity with amino acids 20-35 of SEQ ID NO: 1, wherein the identity with amino acids 25-35 is at least about 90%.
[000122] For example, the targeting sequence can consist of: (a) an amino acid sequence consisting of 16 amino acids and having at least about 43% identity with amino acids 20-35 of SEQ ID NO: 1, wherein the identity with amino acids 25-35 is at least about 54%; (b) amino acids 1-35 of SEQ ID NO: 1; (c) amino acids 20-35 of SEQ ID NO: 1; (d) SEQ ID NO: 1; (e) SEQ ID NO: 2.
[000123] In any of the fusion proteins described herein, the fusion protein can comprise an exosporium protein or an exosporium protein fragment comprising an amino acid sequence having at least 90% identity with SEQ ID NO: 3.
[000124] The fusion protein can comprise an exosporium protein or an exosporium protein fragment comprising an amino acid sequence having at least 95% identity with SEQ ID NO: 3.
[000125] The fusion protein can comprise an exosporium protein or an exosporium protein fragment comprising an amino acid sequence having at least 98% identity with SEQ ID NO: 3.
[000126] The fusion protein can comprise an exosporium protein or an exosporium protein fragment comprising an amino acid sequence having at least 99% identity with SEQ ID NO: 3.
[000127] The fusion protein can comprise an exosporium protein or an exosporium protein fragment comprising an amino acid sequence having 100% identity with SEQ ID NO: 3.
[000128] The fusion protein can comprise a targeting sequence, exosporium protein, or exosporium protein fragment that targets the fusion protein to the exosporium of the recombinant Bacillus bacterium, wherein the targeting sequence, exosporium protein, or exosporium protein fragment comprises the sequence X1-X2-X3-X4-X5-X6-X7-X8-X9-X10-X11- X12-X13-X14-X15-X16, wherein:
Xi is any amino acid or absent;
X2 is phenylalanine (F), leucine (L), isoleucine (I), or methionine (M);
X3 is any amino acid;
X4 is proline (P) or serine (S);
X5 is any amino acid;
Xe is leucine (L), asparagine (N), serine (S), or isoleucine (I);
X7 is valine (V) or isoleucine (I);
Xs is glycine (G);
X9 is proline (P);
X10 is threonine (T) or proline (P);
Xn is leucine (L) or phenylalanine (F);
X12 is proline (P);
X13 is any amino acid;
X14 is any amino acid;
X15 is proline (P), glutamine (Q), or threonine (T); and
Xi6 is proline (P), threonine (T), or serine (S)
[000129] In any of the fusion proteins described herein, the targeting sequence, exosporium protein, or exosporium protein fragment can comprise the amino acid sequence GXT at its carboxy terminus, wherein X is any amino acid.
[000130] In any of the fusion proteins described herein, the targeting sequence, exosporium protein, or exosporium protein fragment can comprise an alanine residue at the position of the targeting sequence that corresponds to amino acid 20 of SEQ ID NO: 1.
[000131] In any of the fusion proteins described herein, the targeting sequence, exosporium protein, or exosporium protein fragment can further comprise a methionine, serine,
or threonine residue at the amino acid position immediately preceding the first amino acid of the targeting sequence, exosporium protein, or exosporium protein fragment or at the position of the targeting sequence that corresponds to amino acid 20 of SEQ ID NO: 1.
Fusion Proteins Comprising an Enzyme Having Serine Protease Activity
[000132] Fusion proteins comprising a targeting sequence, exosporium protein, or exosporium protein fragment that targets the fusion protein to the exosporium of a recombinant Bacillus cereus family member and an enzyme having serine protease activity are provided.
[000133] The fusion proteins can comprise an enzyme having serine protease activity.
[000134] Serine proteases are one of the largest and mostly widely distributed class of proteases. Serine proteases cleave peptide bonds at serine residues within a specific recognition site in a protein. These proteases are frequently used by bacteria for nutrient scavenging in the environment. Serine proteases have also been show to exhibit nematicidal activity through digestion of intestinal tissue in nematodes. Studies of Bacillus firmus strain DS-1, which shows nematicidal activity against Meloidogyne incognita and soybean cyst nematode, revealed that the serine protease produced by that strain has serine protease activity and degraded the intestinal tissues of nematodes. Geng, C., et al., “A Novel Serine Protease, Sepl, from Bacillus firmus DS-1 Has Nematicidal Activity and Degrades Multiple Intestinal- Associated Nematode Proteins”, Scientific Reports, 2016, vol. 6, no. 25012.
[000135] Other studies have shown that serine proteases have activity against pathogens such as fungal plant pathogens and oomycetes, such as Pythium. See Dunne et al., “Overproduction of an Inducible Extracellular Serine Protease Improves Biological Control of Pythium ultimum by Stenotrophomonas maltophilia strain W81,” Microbiology, 2000, vol. 146, pp. 2069-2078, and Yen, Y., et al., “An Antifungal Protease Produced by Pseudomonas aeruginosa M-1001 with Shrimp and Crab Shell Powder as a Carbon Source,” Enzyme and Microbial Technology, 2006, vol. 39, pp. 311-317.
[000136] In Table 2, SEQ ID NOs: 4-6 are amino acid sequences for wild-type enzymes and a variant enzyme that exhibit or are predicted to exhibit serine protease activity. Thus, for example, SEQ ID NOs: 4 and 5 provide the amino acid sequence for wild-type serine protease enzymes from two different Bacillus firmus strains and have 98% sequence similarity. SEQ ID NO: 6 provides the amino acid sequence for the same enzyme as in SEQ ID NO: 4, except for a deletion of amino acids 181-240 of SEQ ID NO: 4, such that SEQ ID NOs: 4 and 6 have 81% sequence similarity. The catalytic residues referenced in Geng, et al., 2016, above, are maintained in the variant serine protease amino acid sequence of SEQ ID NO: 6.
Table 2. Amino Acid Sequences for Serine Protease and Variant
[000137] The enzyme having serine protease activity can comprise a serine protease from Bacillus firmus, also referred to as a Bacillus firmus serine protease enzyme. In yet another embodiment, the serine protease from Bacillus firmus can be Sepl from a Bacillus firmus strain. In yet another embodiment, the serine protease can be Sepl from Bacillus firmus DS-1, which is SEQ ID NO: 4. See Geng, et al., 2016, above. In yet another embodiment, the serine protease can be Sepl from another Bacillus firmus strain, such as SEQ ID NO: 5.
[000138] For serine protease enzymes described herein, “sequence identity” or “percent sequence identity” or “% sequence identity” is determined by aligning the entire length of the sequences in such a way as to obtain optimal matching so that the minimal number of edit operations (e.g., inserts, deletions and substitutions) are needed in order to transform the one sequence into an exact copy of the other sequence being aligned. The Needleman-Wunsch
Global Alignmment of Protein Sequences, which is an algorithm that is available through the
U.S National Library of Medicine’s National Center for Biotechnology Information (“NCBI”) website, is one example of such analysis.
[000139] Alternatively or in addition, the enzyme having serine protease activity can comprise an amino acid sequence having at least 80% identity to any one of SEQ ID NOs: 4-5.
[000140] The enzyme having serine protease activity can comprise an amino acid sequence having at least 85% identity to any one of SEQ ID NOs: 4-5.
[000141] The enzyme having serine protease activity can comprise an amino acid sequence having at least 90% identity to any one of SEQ ID NOs: 4-5.
[000142] The enzyme having serine protease activity can comprise an amino acid sequence having at least 95% identity to any one of SEQ ID NOs: 4-5.
[000143] The enzyme having serine protease activity can comprise an amino acid sequence having at least 98% identity to any one of SEQ ID NOs: 4-5.
[000144] The enzyme having serine protease activity can comprise an amino acid sequence having at least 99% identity to any one of SEQ ID NOs: 4-5.
[000145] The enzyme having serine protease activity can comprise an amino acid sequence having 100% identity to any one of SEQ ID NOs: 4-5.
[000146] For example, the enzyme can comprise SEQ ID NOs: 4-5.
[000147] Alternatively, the enzyme can consist of SEQ ID NOs: 4-5.
[000148] Additionally, or alternatively, the enzyme having serine protease activity can comprise an amino acid sequence having at least one amino acid deletion relative to the sequence of a wild-type serine protease enzyme from a Bacillus firmus bacterium, wherein the amino acid deletion retains the catalytic residues of the wild-type enzyme and results in the same or increased serine protease activity as compared to the serine protease activity of the wild-type serine protease enzyme under the same conditions. In one embodiment the wild-type serine protease enzyme is Sepl from Bacillus firmus DS-1. See Geng, et al., 2016, above.
[000149] In one embodiment, the enzyme has increased serine protease activity as compared to the serine protease activity of the wild-type serine protease enzyme under the same conditions.
[000150] For example, the amino acid sequence of the enzyme can comprise SEQ ID NO: 6.
[000151] Alternatively or in addition, the enzyme having serine protease activity can comprise an amino acid sequence having at least 80% identity to SEQ ID NO: 6.
[000152] The enzyme having serine protease activity can comprise an amino acid sequence having at least 85% identity to SEQ ID NO: 6.
[000153] The enzyme having serine protease activity can comprise an amino acid sequence having at least 90% identity to SEQ ID NO: 6.
[000154] The enzyme having serine protease activity can comprise an amino acid sequence having at least 95% identity to SEQ ID NO: 6.
[000155] The enzyme having serine protease activity can comprise an amino acid sequence having at least 98% identity to SEQ ID NO: 6.
[000156] The enzyme having serine protease activity can comprise an amino acid sequence having at least 99% identity to SEQ ID NO: 6.
[000157] The enzyme having serine protease activity can comprise an amino acid sequence having 100% identity to SEQ ID NO: 6.
[000158] Alternatively, the enzyme can consist of SEQ ID NO: 6.
[000159] In addition, the enzyme having serine protease activity and having 70%, 75%, 80%, 85%, 90%, 95%, 98%, or 99% sequence identity to SEQ ID NO: 6 maintains the deletion in SEQ ID NO: 6 (of amino acid 181-240 of SEQ ID NO: 5).
Optional Inclusion o f Signal Peptides in the Fusion Proteins
[000160] When a fusion protein comprises an enzyme whose native sequence includes a signal peptide, the enzyme can be used without the signal peptide. Alternatively, the native signal peptide (or another signal peptide) can optionally be included at the amino terminus of the enzyme, immediately preceding the first amino acid of the enzyme sequence.
[000161] In addition, a signal peptide can optionally be included at the amino terminus of the enzymes whose native sequences do not include a signal peptide.
[000162] In any of the fusion proteins described herein, the enzyme having serine protease activity can further comprise a signal peptide.
[000163] Where the signal peptide is present, it is preferably present at the amino terminus of the enzyme having serine protease activity.
[000164] The signal peptide preferably immediately precedes the first amino acid of the enzyme having serine protease activity.
[000165] Where the fusion protein comprises a signal peptide, the signal peptide can be present at the amino terminus of the enzyme having serine protease activity.
Methods for Making the Fusion Proteins
[000166] Any of the fusion proteins described herein can be made using standard cloning and molecular biology methods known in the art. For example, a gene encoding a protein or peptide of interest (e.g., an enzyme having serine protease activity) can be amplified by polymerase chain reaction (PCR) or, alternatively, de novo synthesized, and ligated to DNA coding for any of the targeting sequences, exosporium proteins, or exosporium protein fragments described herein, to form a DNA molecule that encodes the fusion protein. The DNA molecule encoding the fusion protein can be cloned into any suitable vector, for example a plasmid vector. The vector suitably comprises a multiple cloning site into which the DNA molecule encoding the fusion protein can be easily inserted. The vector also suitably contains a selectable marker, such as an antibiotic resistance gene, such that bacteria transformed, transfected, or mated with the vector can be readily identified and isolated. Where the vector is a plasmid, the plasmid suitably also comprises an origin of replication. Alternatively, DNA coding for the fusion protein can be integrated into the chromosomal DNA of the B. cereus family member or spore- forming bacterium host.
Tags, Markers, and Linkers that Can Be Included in the Fusion Proteins
[000167] Any of the fusion proteins described herein can also comprise additional polypeptide sequences that are not part of the targeting sequence, exosporium protein, exosporium protein fragment, or the enzyme having serine protease activity. For example, the fusion protein can include tags or markers to facilitate purification or visualization of the fusion protein (e.g., a polyhistidine tag or a fluorescent protein such as GFP or YFP) or visualization of recombinant Bacillus cereus family member spores expressing the fusion protein.
[000168] Expression of fusion proteins on the exosporium of a Bacillus cereus family member using the targeting sequences, exosporium proteins, and exosporium protein fragments described herein is enhanced due to a lack of secondary structure in the amino-termini of these sequences, which allows for native folding of the fused proteins and retention of activity. Proper folding can be further enhanced by the inclusion of a short amino acid linker between the targeting sequence, exosporium protein, exosporium protein fragment, spore coat protein, and the enzyme having serine protease activity.
[000169] Thus, any of the fusion proteins described herein can comprise an amino acid linker between the targeting sequence, the exosporium protein, or the exosporium protein fragment and the enzyme having serine protease activity.
[000170] The linker can comprise a polyalanine linker or a poly glycine linker. A linker comprising a mixture of both alanine and glycine residues can also be used.
[000171] For example, in a fusion protein where the targeting sequence comprises SEQ ID NO: 1, a fusion protein can have one of the following structures:
No linker: SEQ ID NO: 1 - POI
Alanine Linker: SEQ ID NO: 1 -An-POI
Glycine Linker: SEQ ID NO: 1 -Gn-POI
Mixed Alanine and Glycine Linker: SEQ ID NO: 1 - (A/G)n - POI where An, Gn, and (A/G)n are any number of alanines, any number of glycines, or any number of a mixture of alanines and glycines, respectively. For example, n can be 1 to 25, and is preferably 5 to 10. Where the linker comprises a mixture of alanine and glycine residues, any combination of glycine and alanine residues can be used. In the above structures, “POI” stands for “protein of interest” and represents the enzyme having serine protease activity.
[000172] Alternatively or in addition, the linker can comprise a protease recognition site. Inclusion of a protease recognition site allows for targeted removal, upon exposure to a protease that recognizes the protease recognition site, of the fusion protein containing the enzyme having serine protease activity.
[000173] Where the fusion protein comprises both a linker and signal peptide, the linker would typically be amino-terminal to the signal peptide. For example, where the fusion protein comprises SEQ ID NO: 2, a polyalanine linker, a signal sequence, and the serine protease of SEQ ID NO: 4, these elements would typically be arranged in the following order within the fusion protein, going from the amino-terminus of the fusion protein to the carboxyterminus: SEQ ID NO: 2 - An-signal sequence-SEQ ID NO: 4.
Recombinant Bacillus cereus Family Members Hosts for Expression of the Fusion Proteins
[000174] The invention further relates to recombinant Bacillus cereus family members that express a fusion protein. The fusion protein can be any of the fusion proteins described above.
[000175] The recombinant Bacillus cereus family member can comprise any Bacillus species that is capable of producing an exosporium. For example, the recombinant Bacillus cereus family member can comprise Bacillus anthracis, Bacillus cereus, Bacillus thuringiensis, Bacillus mycoides, Bacillus pseudomycoides, Bacillus samanii, Bacillus gaemokensis, Bacillus weihenstephensis, Bacillus toyoiensis, or a combination of any thereof. The recombinant Bacillus cereus family member suitably comprises Bacillus thuringiensis or Bacillus mycoides.
[000176] To generate a recombinant Bacillus cereus family member expressing a fusion protein, any Bacillus cereus family member can be conjugated, transduced, or transformed with a vector encoding the fusion protein using standard methods known in the art (e.g., by electroporation). The bacteria can then be screened to identify transformants by any method known in the art. For example, where the vector includes an antibiotic resistance gene, the bacteria can be screened for antibiotic resistance. Alternatively, DNA encoding the fusion protein can be integrated into the chromosomal DNA of a B. cereus family member host. The recombinant Bacillus cereus family member can then exposed to conditions which will induce sporulation. Suitable conditions for inducing sporulation are known in the art. For example, the recombinant Bacillus cereus family member can be plated onto agar plates, and incubated at a temperature of about 30°C for several days (e.g., 3 days).
[000177] Thus, the recombinant Bacillus cereus family member can be in the form of a spore.
[000178] Inactivated strains, non-toxic strains, or genetically manipulated strains of any of the above species can also suitably be used. For example, a Bacillus thuringiensis that lacks the Cry toxin can be used. Alternatively or in addition, once the recombinant B. cereus family member spores expressing the fusion protein have been generated, they can be inactivated to
prevent further germination once in use. Any method for inactivating bacterial spores that is known in the art can be used. Suitable methods include, without limitation, heat treatment, gamma irradiation, x-ray irradiation, UV-A irradiation, UV-B irradiation, chemical treatment (e.g., treatment with glutaraldehyde, formaldehyde, hydrogen peroxide, acetic acid, bleach, or any combination thereof), or a combination thereof. Alternatively, spores derived from nontoxigenic strains, or genetically or physically inactivated strains, can be used.
[000179] Thus, the recombinant Bacillus cereus family member can be in the form of a spore, wherein the spore is inactivated.
[000180] The recombinant Bacillus cereus family member can coexpress two or more of any of the fusion proteins described herein. For example, the recombinant Bacillus cereus family member can coexpress at least one fusion protein that comprises SEQ ID NO: 4 together with a fusion protein that comprises SEQ ID NO: 6.
[000181] Many Bacillus cereus family member strains have inherent beneficial attributes. For example, some strains have plant-growth promoting effects. Other strains are endophytic. Some strains are both endophytic and have plant-growth promoting effects.
[000182] Thus, any of the recombinant Bacillus cereus family members described herein can comprise a plant-growth promoting strain of bacteria, an endophytic strain of bacteria, or a strain of bacteria that is both plant-growth promoting and endophytic.
[000183] The plant-growth promoting strain of bacteria can comprise a strain of bacteria that produces an insecticidal toxin (e.g., a Cry toxin), produces a fungicidal compound (e.g., a P-l,3-glucanase, a chitosanase, a lyticase, or a combination of any thereof), produces a nematocidal compound (e.g., a Cry toxin), produces a bacteriocidal compound, is resistant to one or more antibiotics, comprises one or more freely replicating plasmids, binds to plant roots, colonizes plant roots, forms biofilms, solubilizes nutrients, secretes organic acids, or any combination thereof.
[000184] The recombinant Bacillus cereus family member can comprises an endophytic strain of bacteria.
[000185] The recombinant Bacillus cereus family member can comprise an inactivating mutation in its BclA gene, its CotE gene, or its CotO gene (e.g., a knock-out of the BclA gene, CotE gene, or CotO gene). For example, the recombinant Bacillus cereus family member can comprise an inactivating mutation in its BclA gene (e.g., a knock-out of the BclA gene). It has been found that expression of fusion proteins in a recombinant Bacillus cereus family member having such a mutation results in increased expression levels of the fusion protein.
[000186] Compositions of the present invention include cultures, such as whole broth cultures, of the strains described herein. The term culture refers to a population of cells growing in the absence of other species in a predetermined culture media under controlled laboratory or manufacturing conditions. Biologically pure cultures of the recombinant Bacillus cereus family members of the present invention may be obtained according to methods well known in the art.
[000187] Conventional large-scale microbial culture processes include submerged fermentation, solid state fermentation, or liquid surface culture. During the fermentation, as nutrients are depleted, cells begin the transition from growth phase to sporulation phase, such that the final product of fermentation is largely spores, metabolites and residual fermentation medium. Sporulation is part of the natural life cycle of Bacillus cereus family members and is generally initiated by the cell in response to stressful environmental conditions, such as nutrient limitation. Fermentation is configured to obtain high levels of colony forming units and to promote sporulation. The bacterial cells, spores and metabolites in culture media resulting from fermentation may be used directly or concentrated by conventional industrial methods, such as centrifugation or filtration such as tangential-flow filtration or depth filtration, and evaporation.
[000188] Compositions of the present invention include the products of the microbial culture processes described herein. In embodiments in which submerged fermentation is used as the culture process, the product is referred to as a “fermentation broth” or a “whole broth culture.” Such broth may be concentrated, as described above. The concentrated fermentation broth may be washed, for example, via a diafiltration process, to remove residual fermentation broth and metabolites. The term “broth concentrate,” as used herein, refers to fermentation broth that has been concentrated by conventional industrial methods, as described above, but remains in liquid form. The term “fermentation product,” as used herein, refers to fermentation broth or whole broth culture, broth concentrate and/or dried fermentation broth or broth concentrate.
[000189] The fermentation broth or broth concentrate can be dried with or without the addition of carriers using conventional drying processes or methods such as spray drying, freeze drying, tray drying, fluidized-bed drying, drum drying, or evaporation. The term “fermentation product,” as used herein, refers to fermentation broth or whole broth culture, broth concentrate and/or dried fermentation broth or broth concentrate.
[000190] The resulting dry products may be further processed, such as by milling or granulation, to achieve a specific particle size or physical format. Carriers, described below, may also be added post-drying.
[000191] Cell-free preparations of fermentation broth of the strains of the present invention can be obtained by any means known in the art, such as extraction, centrifugation and/or filtration of fermentation broth. Those of skill in the art will appreciate that so-called cell-free preparations may not be devoid of cells but rather are largely cell-free or essentially cell-free, depending on the technique used (e.g., speed of centrifugation) to remove the cells. The resulting cell-free preparation may be dried and/or formulated with components that aid in its application to plants or to plant growth media. Concentration methods and drying techniques described above for fermentation broth are also applicable to cell-free preparations.
[000192] As described further below, the recombinant Bacillus cereus family member can comprise a mutation or other modification that allows for collection of exosporium fragments comprising the fusion proteins from spores of the recombinant Bacillus cereus family member.
Promoters for Expression of Fusion Proteins in Recombinant Bacillus cereus Family Members
[000193] The DNA encoding the fusion proteins used in the recombinant Bacillus cereus family members, exosporium fragments, formulations, plant seeds, and methods, described herein is suitably under the control of a sporulation promoter which will cause expression of the fusion protein on the exosporium of a B. cereus family member endospore (e.g., a native bclA promoter from a B. cereus family member).
[000194] Thus, any of the fusion proteins described above can be expressed in the recombinant Bacillus cereus family member under the control of a sporulation promoter that is native to the targeting sequence, exosporium protein, or exosporium protein fragment of the fusion protein, or a portion of such a promoter.
[000195] Any of the fusion proteins can be expressed under the control of a high- expression sporulation promoter.
[000196] The high-expression sporulation promoter can comprise a sigma-K sporulation- specific polymerase promoter sequence.
[000197] For ease of reference, illustrative nucleotide sequences for promoters that can be used to express any of the fusion proteins in a recombinant Bacillus cereus family member are provided in Table 3 below, together with their SEQ ID NOs. Table 3 also provides illustrative minimal promoter sequences for many of the promoters. In Table 3, sigma-K sporulation- specific polymerase promoter sequences in the promoters are indicated by bold and underlined text. The promoter sequences are immediately upstream of the start codon for each
of the indicated genes. In other words, in the sequences shown in Table 3 below, the last nucleotide of the promoter sequence immediately precedes the first nucleotide of the start codon for the coding region of the gene encoding the indicated protein.
Attorney Docket No: BCS219008 WO
Table 3. Promoter Sequences for Expression of Fusion Proteins in Recombinant Bacillus cereus Family Members
[000198] The sigma-K sporulation-specific polymerase promoter sequences in the promoter sequences shown in Table 3 result in high expression levels of the fusion protein during late sporulation. The consensus sequence for the sigma-K sporulation-specific polymerase promoter sequence is CATANNNTN (SEQ ID NO: 14); however, this sequence can comprise up to two mutations and still be functional. The sigma-K sporulation- specific polymerase promoter sequence is generally found upstream of the ribosome binding site (RBS).
[000199] Promoters having a high degree of sequence identity to any of the sequences shown above in Table 3 can also be used to express the fusion proteins.
[000200] For example, fusion protein can be expressed under the control of a BclA promoter, a CotY promoter, an ExsY promoter, or a promoter having a high degree of sequence identity to any of these promoters.
[000201] Thus, for example, the fusion protein can be expressed under the control of a promoter comprising a nucleic acid sequence having at least 80% identity with a nucleic acid sequence of any one of SEQ ID NOs: 7, 8, 9, 10, 11, 12, or 13.
[000202] The fusion protein can be expressed under the control of a promoter comprising a nucleic acid sequence having at least 85% identity with a nucleic acid sequence of any one of SEQ ID NOs: 7, 8, 9, 10, 11, 12, or 13.
[000203] The fusion protein can be expressed under the control of a promoter comprising a nucleic acid sequence having at least 90% identity with a nucleic acid sequence of any one of SEQ ID NOs: 7, 8, 9, 10, 11, 12, or 13.
[000204] The fusion protein can be expressed under the control of a promoter comprising a nucleic acid sequence having at least 95% identity with a nucleic acid sequence of any one of SEQ ID NOs: 7, 8, 9, 10, 11, 12, or 13.
[000205] The fusion protein can be expressed under the control of a promoter comprising a nucleic acid sequence having at least 98% identity with a nucleic acid sequence of any one of SEQ ID NOs: 7, 8, 9, 10, 11, 12, or 13.
[000206] The fusion protein can be expressed under the control of a promoter comprising a nucleic acid sequence having at least 99% identity with a nucleic acid sequence of any one of SEQ ID NOs: 7, 8, 9, 10, 11, 12, or 13.
[000207] The fusion protein can be expressed under the control of a promoter comprising a nucleic acid sequence having 100% identity with a nucleic acid sequence of any one of SEQ ID NOs: 7, 8, 9, 10, 11, 12, or 13.
[000208] The fusion protein can be expressed under the control of a promoter comprising a sigma-K sporulation specific polymerase promoter sequence, wherein the sigma-K
sporulation- specific polymerase promoter sequence or sequences have 100% identity with the corresponding nucleotides of any of SEQ ID NOs: 7, 8, 9, 10, 11, 12, or 13.
[000209] The fusion proteins can be expressed under the control of a promoter that is native to the targeting sequence, exosporium protein, or exosporium protein fragment of the fusion protein. Thus, for example, where the targeting sequence is derived from BclA, the fusion protein can be expressed under the control of a native BclA promoter (e.g., SEQ ID NO: 11, or 12).
[000210] Table 3 also provides illustrative minimal promoter sequences. The fusion proteins can be expressed under any of these minimal promoter sequences.
[000211] Furthermore, the fusion protein can be expressed under a portion of any of the promoters listed above in Table 3, so long as the portion of the promoter includes a sigma-K sporulation- specific polymerase promoter sequence. For example, the fusion protein can be expressed under a promoter region that comprises the first 25, 50, 100, 150, 200, 250, or 300 nucleotides upstream of the start codon, so long as that region comprises a sigma-K sporulationspecific polymerase promoter sequence.
Mutations and Other Genetic Alterations to Recombinant Bacillus cereus Family Members that Allow for Collection of Free Exosporium and Exosporium Fragments Derived from Such Recombinant Bacillus cereus Family Members
[000212] As is described further hereinbelow, the recombinant Bacillus cereus family members that express fusion proteins comprising a protein or peptide of interest (e.g., an enzyme having serine protease activity) and a targeting sequence, an exosporium protein, or an exosporium protein fragment that targets the fusion protein to the exosporium of the recombinant Bacillus cereus family member can be used for various purposes, including delivering the proteins or peptides of interest plants, seeds, a plant growth medium, or an area surrounding a seed or a plant (e.g., via soil drench, foliar application, or as a seed treatment). However, in some cases, the presence of the living microorganisms may not be desirable, and instead, it would be desirable to separate the living spore from the fusion proteins in the exosporium on the outside surface of the spore. For example, in some applications it will be desirable to increase enzyme activity without concern for spore integrity. In such situations, use of exosporium fragments that have been separated from the spores may be preferred over the use of living microorganisms having the enzyme on their exosporium.
[000213] In addition, for some uses, it may be desirable to reduce the density of the product. In such instances, it would be desirable to separate the dense spore from the
exosporium (containing the fusion proteins). Furthermore, under some circumstances the presence of live spores would lead to potential for bacterial growth in a product, which would be undesirable for some applications.
[000214] Mutations or other genetic alterations (e.g., overexpression of a protein) can be introduced into the recombinant Bacillus cereus family members that allow free exosporium to be separated from spores of the recombinant Bacillus cereus family member. This separation process yields exosporium fragments that contain the fusion proteins but that are substantially free of the spores themselves. By “substantially free of spores” it is meant that once the free exosporium is separated from the spores, a preparation is obtained that contains less than 5% by volume of spores, preferably less than 3% by volume of spores, even more preferably less than 1% by volume of spores, and most preferably contains no spores or if spores are present, they are undetectable. These exosporium fragments can be used in place of the recombinant Bacillus cereus family members themselves in any of the formulations, plant seeds, and methods described herein.
[000215] Exosporium fragments derived from spores of a recombinant Bacillus cereus family member can be used in any of the formulations, plant seeds, and methods described herein. The recombinant Bacillus cereus family member expresses any of the fusion proteins described herein. The recombinant Bacillus cereus family member also comprises a mutation or expresses a protein, wherein the expression of the protein is increased as compared to the expression of the protein in a wild-type Bacillus cereus family member under the same conditions. The mutation or the increased expression of the protein results in Bacillus cereus family member spores having an exosporium that is easier to remove from the spore as compared to the exosporium of a wild-type spore.
[000216] The recombinant Bacillus cereus family member: (i) can comprise a mutation in a CotE gene; (ii) can express an ExsY protein, wherein the expression of the ExsY protein is increased as compared to the expression of the ExsY protein in a wild-type Bacillus cereus family member under the same conditions, and wherein the ExsY protein comprises a carboxy-terminal tag comprising a globular protein; (iii) can express a BclB protein, wherein the expression of the BclB protein is increased as compared to the expression of the BclB protein in a wild- type Bacillus cereus family member under the same conditions; (iv) can express a YjcB protein, wherein the expression of the YjcB protein is increased as compared to the expression of the YjcB protein in a wild-type Bacillus cereus family member under the same conditions; (v) can comprise a mutation in an ExsY gene; (vi) can comprise a mutation in
a CotY gene; (vii) can comprise a mutation in an ExsA gene; or (viii) can comprise a mutation in a CotO gene.
[000217] The recombinant Bacillus cereus family member can comprise a mutation in the CotE gene, such as a knock-out of the CotE gene or a dominant negative form of the CotE gene. The mutation in the CotE gene can partially or completely inhibit the ability of CotE to attach the exosporium to the spore.
[000218] The recombinant Bacillus cereus family member can express an ExsY protein. The ExsY protein comprises a carboxy-terminal tag comprising a globular protein (e.g., a green fluorescent protein (GFP) or a variant thereof), and the expression of the ExsY protein is increased as compared to the expression of the ExsY protein in a wild-type Bacillus cereus family member under the same conditions. The globular protein can have a molecular weight of between 25 kDa and 100 kDa. Expression of the ExsY protein comprising the carboxy-terminal tag comprising a globular protein can inhibit binding of the ExsY protein to its targets in the exosporium.
[000219] The recombinant Bacillus cereus family member can express a BclB protein. Expression of the BclB protein can result in the formation of a fragile exosporium. The expression of the BclB protein can be increased as compared to the expression of the BclB protein in a wild-type Bacillus cereus family member under the same conditions.
[000220] The recombinant Bacillus cereus family member can express a YjcB protein. Expression of the YjcB protein can cause the exosporium to form in pieces rather than in a complete structure. The expression of the YjcB protein can be increased as compared to the expression of the YjcB protein in a wild-type Bacillus cereus family member under the same conditions.
[000221] The recombinant Bacillus cereus family member can comprise a mutation an ExsY gene, such as a knock-out of the ExsY gene. The mutation in the ExsY gene can partially or completely inhibit the ability of ExsY to complete the formation of the exosporium or attach the exosporium to the spore.
[000222] The recombinant Bacillus cereus family member can comprise a mutation a CotY gene, such as a knock-out of the CotY gene. The mutation in the CotY gene can result in the formation of a fragile exosporium.
[000223] The recombinant Bacillus cereus family member can comprise a mutation an ExsA gene, such as a knock-out of the ExsA gene. The mutation in the ExsA gene can result in the formation of a fragile exosporium.
[000224] The recombinant Bacillus cereus family member can comprise a mutation a CotO gene, such as a knock-out of the CotO gene or a dominant negative form of the CotO gene. The mutation in the CotO gene can cause the exosporium to form in strips.
[000225] For ease of reference, descriptions of illustrative sequences for CotE, ExsY, BclB, YjcB, CotY, ExsA, and CotO are provided in Table 4 below.
Table 4. Sequences of Proteins that Can be Mutated or Otherwise Genetically Altered to Allow for Collection of Free Exosporium
[000226] Exosporium fragments can be prepared from any of these recombinant Bacillus cereus family members and used for various purposes as described further herein below. Where the recombinant Bacillus cereus family member expresses a fusion protein, the exosporium fragments will comprise the fusion proteins. Upon purification of the exosporium fragments that contain the fusion proteins from the spores, a cell-free protein preparation is obtained in which the fusion proteins are stabilized and supported through covalent bonds to the exosporium fragments.
[000227] To remove the exosporium from spores of the recombinant Bacillus cereus family members that have mutations or other genetic alterations that allow for collection of free exosporium, a suspension or fermentation broth of the spores can be subjected to centrifugation or filtration to produce fragments of exosporium that are separated from the spores. Where the recombinant Bacillus cereus family member expresses a fusion protein, the exosporium fragments will comprise the fusion protein.
[000228] A suspension or fermentation broth comprising the spores can be subjected to centrifugation, followed by collection of the supernatant. The supernatant comprises the fragments of the exosporium and is substantially free of spores.
[000229] Alternatively, a suspension or fermentation broth comprising the spores can be subjected to filtration, followed by collection of the filtrate. The filtrate comprises the fragments of the exosporium and is substantially free of spores.
[000230] The suspension or fermentation broth of spores can be agitated or mechanically disrupted prior to centrifugation or filtration.
[000231] The exosporium fragments can also be separated from the spores by gradient centrifugation, affinity purification, or by allowing the spores to settle out of the suspension.
[000232] Due to the strong covalent bonds between the fusion proteins and the exosporium fragments, the fusion proteins become resistant to heat. The heat resistance of the fusion proteins bound to the exosporium fragments allows them to be used for applications that require heat-resistant proteins or enzymes.
[000233] Exosporium fragments derived from a recombinant Bacillus cereus family member are provided.
[000234] The exosporium fragments can be derived from any of the recombinant Bacillus cereus family members that comprise any of the mutations or other genetic alterations described herein that allow for collection of free exosporium.
[000235] The exosporium fragments can comprise any of the fusion proteins described above.
Insecticides
[000236] The composition according to the present invention comprises at least one particular insecticide disclosed herein.
[000237] “Insecticides” as well as the term “insecticidal” refers to the ability of a substance to increase mortality or inhibit growth rate of insects. As used herein, the term “insects” includes all organisms in the class “Insecta”. The term “pre-adult” insects refers to any form of an organism prior to the adult stage, including, for example, eggs, larvae, and nymphs. As used herein, the terms “insecticide” and “insecticidal” also encompass “nematicide” and “nematicidal” and “acaricide” and “acaricidal.”
[000238] “Nematicides” and “nematicidal” refers to the ability of a substance to increase mortality or inhibit the growth rate of nematodes. In general, the term “nematode” comprises eggs, larvae, juvenile and mature forms of said organism.
[000239] “Acaricide” and “acaricidal” refers to the ability of a substance to increase mortality or inhibit growth rate of ectoparasites belonging to the class Arachnida, sub-class Acari.
[000240] The active ingredients specified herein by their “common name” are known and described, for example, in the Pesticide Manual (“The Pesticide Manual”, 14th Ed., British Crop Protection Council 2006) or can be searched in the internet (e.g., http ://www. alanwood.net/pesticides) .
[000241] In some embodiments, insecticides are selected from the group consisting of (1) Acetylcholinesterase (AChE) inhibitors, for example carbamates, e.g., Alanycarb, Aldicarb, Bendiocarb, Benfuracarb, Butocarboxim, Butoxycarboxim, Carbaryl, Carbofuran, Carbosulfan, Ethiofencarb, Fenobucarb, Formetanate, Furathiocarb, Isoprocarb, Methiocarb, Methomyl, Metolcarb, Oxamyl, Pirimicarb, Propoxur, Thiodicarb, Thiofanox, Triazamate, Trimethacarb, XMC and Xylylcarb or organophosphates, e.g., Acephate, Azamethiphos, Azinphos-ethyl, Azinphos-methyl, Cadusafos, Chlorethoxyfos, Chlorfenvinphos, Chlormephos, Chlorpyrifos, Chlorpyrifos-methyl, Coumaphos, Cyanophos, Demeton-S-methyl, Diazinon, Dichlorvos/DDVP, Dicrotophos, Dimethoate, Dimethylvinphos, Disulfoton, EPN, Ethion, Ethoprophos, Famphur, Fenamiphos, Fenitrothion, Fenthion, Fosthiazate, Heptenophos, Imicyafos, Isofenphos, Isopropyl O-(methoxyaminothio-phosphoryl)salicylate, Isoxathion, Malathion, Mecarbam, Methamidophos, Methidathion, Mevinphos, Monocrotophos, Naled, Omethoate, Oxydemeton-methyl, Parathion, Parathion-methyl, Phenthoate, Phorate, Phosalone, Phosmet, Phosphamidon, Phoxim, Pirimiphos-methyl, Profenofos, Propetamphos, Prothiofos, Pyraclofos, Pyridaphenthion, Quinalphos, Sulfotep, Tebupirimfos, Temephos, Terbufos, Tetrachlorvinphos, Thiometon, Triazophos, Trichlorfon and Vamidothion;
[000242] (2) GABA-gated chloride channel antagonists, for example cyclodiene organochlorines, e.g., Chlordane and Endosulfan, or phenylpyrazoles (fiproles), e.g., Ethiprole and Fipronil;
[000243] (3) Sodium channel modulators I voltage-dependent sodium channel blockers, for example pyrethroids, e.g,. Acrinathrin, Allethrin, d-cis-trans Allethrin, d- trans Allethrin, Bifenthrin, Bioallethrin, Bioallethrin S-cyclopentenyl isomer, Bioresmethrin, Cycloprothrin, Cyfluthrin, beta-Cyfluthrin, Cyhalothrin, lambda-Cyhalothrin, gamma-Cyhalothrin, Cypermethrin, alpha-Cypermethrin, beta-Cypermethrin, theta-Cypermethrin, zeta-Cypermethrin, Cyphenothrin [(IR)-trans isomers], Deltamethrin, Empenthrin [(EZ)-(IR) isomers), Esfenvalerate, Etofenprox, Fenpropathrin, Fenvalerate, Flucythrinate, Flumethrin, tau- Fluvalinate, Halfenprox, Imiprothrin, Kadethrin, Momfluorothrin, Permethrin, Phenothrin [(1R)- trans isomer), Prallethrin, Pyrethrine (pyrethrum), Resmethrin, Silafluofen, Tefluthrin, Tetramethrin, Tetramethrin [(1R) isomers)], Tralomethrin and Transfluthrin or DDT or Methoxychlor;
[000244] (4) Nicotinic acetylcholine receptor (nAChR) agonists, for example neonicotinoids, e.g., Acetamiprid, Clothianidin, Dinotefuran, Imidacloprid, Nitenpyram, Thiacloprid and Thiamethoxam or Nicotine or Sulfoxaflor or Flupyridafurone;
[000245] (5) Nicotinic acetylcholine receptor (nAChR) allosteric activators, for example spinosyns, e.g., Spinetoram and Spinosad;
[000246] (6) Chloride channel activators, for example avermectins/milbemycins, e.g., Abamectin, Emamectin benzoate, Lepimectin and Milbemectin;
[000247] (7) Juvenile hormone mimics, for example juvenile horrnon analogues, e.g., Hydroprene, Kinoprene and Methoprene or Fenoxycarb or Pyriproxyfen;
[000248] (8) Miscellaneous non-specific (multi-site) inhibitors, for example alkyl halides, e.g., Methyl bromide and other alkyl halides; or Chloropicrin or Sulfuryl fluoride or Borax or Tartar emetic;
[000249] (9) Selective homopteran feeding blockers, e.g., Pymetrozine or Flonicamid;
[000250] (10) Mite growth inhibitors, e.g., Clofentezine, Hexythiazox and Diflovidazin or Etoxazole;
[000251] (11) Microbial disruptors of insect midgut membranes, e.g., Bacillus thuringiensis subspecies israelensis, Bacillus sphaericus, Bacillus thuringiensis subspecies aizawai, Bacillus thuringiensis subspecies kurstaki, Bacillus thuringiensis subspecies tenebrionis and Bt crop proteins: CrylAb, CrylAc, CrylFa, Cry2Ab, mCry3A, Cry3Ab, Cry3Bb, Cry34/35Abl;
[000252] (12) Inhibitors of mitochondrial ATP synthase, for example Diafenthiuron or organotin miticides, e.g., Azocyclotin, Cyhexatin and Fenbutatin oxide or Propargite or Tetradifon;
[000253] (13) Uncouplers of oxidative phoshorylation via disruption of the proton gradient, for example Chlorfenapyr, DNOC and Sulfluramid;
[000254] (14) Nicotinic acetylcholine receptor (nAChR) channel blockers, for example Bensultap, Cartap hydrochloride, Thiocyclam and Thiosultap-sodium;
[000255] (15) Inhibitors of chitin biosynthesis, type 0, for example Bistrifluron, Chlorfluazuron, Diflubenzuron, Flucycloxuron, Flufenoxuron, Hexaflumuron, Eufenuron, Novaluron, Noviflumuron, Teflubenzuron and Triflumuron;
[000256] (16) Inhibitors of chitin biosynthesis, type 1, for example Buprofezin;
[000257] (17) Moulting disruptors, for example Cyromazine;
[000258] (18) Ecdysone receptor agonists, for example Chromafenozide, Halofenozide, Methoxyfenozide and Tebufenozide;
[000259] (19) Octopamine receptor agonists, for example Amitraz;
[000260] (20) Mitochondrial complex III electron transport inhibitors, for example Hydramethylnon or Acequinocyl or Fluacrypyrim;
[000261] (21) Mitochondrial complex I electron transport inhibitors, for example METI acaricides, e.g., Fenazaquin, Fenpyroximate, Pyrimidifen, Pyridaben, Tebufenpyrad and Tolfenpyrad or Rotenone (Derris);
[000262] (22) Voltage-dependent sodium channel blockers, e.g., Indoxacarb or Metaflumizone;
[000263] (23) Inhibitors of acetyl CoA carboxylase, for example tetronic and tetramic acid derivatives, e.g., Spirobudiclofen, Spirodiclofen, Spiromesifen and Spirotetramat;
[000264] (24) Mitochondrial complex IV electron transport inhibitors, for example phosphines, e.g., Aluminium phosphide, Calcium phosphide, Phosphine and Zinc phosphide or Cyanide;
[000265] (25) Mitochondrial complex II electron transport inhibitors, for example Cyenopyrafen and Cyflumetofen;
[000266] (26) Ryanodine receptor modulators, for example diamides, e.g., Chlorantraniliprole, Cyantraniliprole, Flubendiamide and Tetrachloroantraniliprole.
[000267] Further insecticides with unknown or uncertain mode of action are, for example, Afidopyropen, Afoxolaner, Azadirachtin, Benclothiaz, Benzoximate, Bifenazate, Broflanilide, Bromopropylate, Chinomethionat, Cryolite, Cyclobutrifluram, Cyclaniliprole, Cycloxaprid, Cyhalodiamide Dicloromezotiaz, Dicofol, Diflovidazin, Flometoquin, Fluazaindolizine, Fluensulfone, Flufenerim, Flufenoxystrobin, Flufiprole, Fluhexafon, Fluopyram, Fluralaner, Fluxametamide, Fufenozide, Guadipyr, Heptafluthrin, Imidaclothiz, Iprodione, Eotilaner, Meperfluthrin, Paichongding, Pyflubumide, Pyridalyl, Pyrifluquinazon, Pyriminostrobin, Sarolaner, Tetramethylfluthrin, Tetraniliprole, Tetrachlorantraniliprole, Tioxazafen, Thiofluoximate, Triflumezopyrim and lodomethane; furthermore products based on Bacillus firmus (including but not limited to strain CNCM 1-1582, such as, for example, VOTIVO™, BioNem) or one of the following known active compounds: l-{2-fluoro-4-methyl- 5-[(2,2,2-trifhiorethyl)sulfinyl]phenyl}-3-(trifluoromethyl)-lH-l,2,4-triazol-5-arnine (known from WO 2006/043635), { l'-[(2E)-3-(4-chlorophenyl)prop-2-en-l-yl]-5-fluorospiro[indole-3,4'- piperidin]-l(2H)-yl}(2-chloropyridin-4-yl)methanone (known from WO 2003/106457), 2- chloro-N- [2- { 1 - [(2E)-3 -(4-chlorophenyl)prop-2-en- 1 -yl]piperidin-4-yl } -4- (trifluoromethyl)phenyl]isonicotinamide (known from WO 2006/003494), 3-(2,5- dimethylphenyl)-4-hydroxy-8-methoxy-l,8-diazaspiro[4.5]dec-3-en-2-one (known from WO
2009/049851), 3-(2,5-dimethylphenyl)-8-methoxy-2-oxo-l,8-diazaspiro[4.5]dec-3-en-4-yl ethyl carbonate (known from WO 2009/049851), 4-(but-2-yn-l-yloxy)-6-(3,5-dimethylpiperidin-l- yl)-5-fluoropyrimidine (known from WO 2004/099160), 4-(but-2-yn-l-yloxy)-6-(3- chlorophenyl)pyrimidine (known from WO 2003/076415), PF1364 (CAS-Reg.No. 1204776-60- 2), methyl 2-[2-({ [3-bromo-l-(3-chloropyridin-2-yl)-lH-pyrazol-5-yl]carbonyl}amino)-5- chloro-3 -methylbenzoyl] -2-methylhydrazinecarboxylate (known from WO 2005/085216), methyl 2-[2-({[3-bromo-l-(3-chloropyridin-2-yl)-lH-pyrazol-5-yl]carbonyl}amino)-5-cyano-3- methylbenzoyl]-2-ethylhydrazinecarboxylate (known from WO 2005/085216), methyl 2-[2- ({[3-bromo-l-(3-chloropyridin-2-yl)-lH-pyrazol-5-yl]carbonyl}amino)-5-cyano-3- methylbenzoyl]-2-methylhydrazinecarboxylate (known from WO 2005/085216), methyl 2-[3,5- dibromo-2-({[3-bromo-l-(3-chloropyridin-2-yl)-lH-pyrazol-5-yl]carbonyl}amino)benzoyl]-2- ethylhydrazinecarboxylate (known from WO 2005/085216), N-[2-(5-amino-l,3,4-thiadiazol-2- yl)-4-chloro-6-methylphenyl]-3-bromo-l-(3-chloropyridin-2-yl)-lH-pyrazole-5-carboxamide (known from CN 102057925), 8-chloro-N-[(2-chloro-5-methoxyphenyl)sulfonyl]-6- (trifluoromethyl)imidazo[l,2-a]pyridine-2-carboxamide (known from WO 2009/080250), N- [(2E)-l-[(6-chloropyridin-3-yl)methyl]pyridin-2(lH)-ylidene]-2,2,2-trifluoroacetamide (known from WO 2012/029672), l-[(2-chloro-l,3-thiazol-5-yl)methyl]-4-oxo-3-phenyl-4H-pyrido[l,2- a]pyrimidin-l-ium-2-olate (known from WO 2009/099929), l-[(6-chloropyridin-3-yl)methyl]-4- oxo-3-phenyl-4H-pyrido[l,2-a]pyrimidin-l-ium-2-olate (known from WO 2009/099929), 4-(3- { 2,6-dichloro-4- [(3 ,3 -dichloroprop-2-en- 1 -yl)oxy ]phenoxy } propoxy)-2-methoxy-6- (trifhioromethyl)pyrimidine (known from CN 101337940), N-[2-(tert-butylcarbamoyl)-4-chloro- 6-methylphenyl] - 1 -(3 -chloropyridin-2-yl)-3 -(fluoromethoxy)- 1 H-pyrazole-5 -carboxamide (known from WO 2008/134969), butyl [2-(2,4-dichlorophenyl)-3-oxo-4-oxaspiro[4.5]dec-l-en- 1-yl] carbonate (known from CN 102060818), 3E)-3-[l-[(6-chloro-3-pyridyl)methyl]-2- pyridylidene]-l,l,l-trifluoro-propan-2-one (known from WO 2013/144213), N- (methylsulfonyl)-6-[2-(pyridin-3-yl)-l,3-thiazol-5-yl]pyridine-2-carboxamide (known from WO 2012/000896), N-[3-(benzylcarbamoyl)-4-chlorophenyl]-l-methyl-3-(pentafluoroethyl)-4- (trifhioromethyl)-lH-pyrazole-5-carboxamide (known from WO 2010/051926), 5-bromo-4- chloro-N-[4-chloro-2-methyl-6-(methylcarbamoyl)phenyl]-2-(3-chloro-2-pyridyl)pyrazole-3- carboxamido (known from CN 103232431), Tioxazafen, 4-[5-(3,5-dichlorophenyl)-4,5-dihydro- 5-(trifhioromethyl)-3-isoxazolyl]-2-methyl- /-(czs-l-oxido-3-thietanyl)-benzamide, 4-[5-(3,5- dichlorophenyl)-4,5-dihydro-5-(trifluoromethyl)-3-isoxazolyl]-2-methyl- /-(/ran5-l-oxido-3- thietanyl) -benzamide and 4-[(5S)-5-(3,5-dichlorophenyl)-4,5-dihydro-5-(trifluoromethyl)-3- isoxazolyl]-2-methyl- /-(czs-l-oxido-3-thietanyl)benzamide (known from WO 2013/050317
Al), A-[3-chloro-l-(3-pyridinyl)-lH-pyrazol-4-yl]-A-ethyl-3-[(3,3,3-trifluoropropyl)sulfinyl]- propanamide, (+)- N- [3 -chloro- 1 -(3 -pyridinyl)- 1 H-pyrazol -4-y 11- A-ethyl-3 - [(3,3,3- trifluoropropyl)sulfinyl]-propanamide and (-)-A-[3-chloro-l-(3-pyridinyl)- lH-pyrazol-4-yl]-A- ethyl-3-[(3,3,3-trifluoropropyl)sulfinyl]-propanamide (known from WO 2013/162715 A2, WO 2013/162716 A2, US 2014/0213448 Al), 5-[[(2E)-3-chloro-2-propen-l-yl]amino]-l-[2,6- dichloro-4-(trifluoromethyl)phenyl]-4-[(trifluoromethyl)sulfinyl]-lH-pyrazole-3-carbonitrile (known from CN 101337937 A), 3-bromo-A-[4-chloro-2-methyl-6-[(methylamino) thioxomelhyl Iphenyl |- 1 -(3-chloro-2-pyridinyl)- 1 H-pyrazole-5-carboxamide, (Liudaibenjiaxuanan, known from CN 103109816 A); N- [4-chloro-2-[[( 1,1 -dimethylethyl) amino]carbonyl]-6-methylphenyl]-l-(3-chloro-2-pyridinyl)-3-(fluoromethoxy)-lH-Pyrazole-5- carboxamide (known from WO 2012/034403 Al), A-[2-(5-amino-l,3,4-thiadiazol-2-yl)-4- chloro-6-methylphenyl]-3-bromo- l-(3-chloro-2-pyridinyl)- 1 H-pyrazole-5-carboxamide (known from WO 2011/085575 Al), 4-[3-[2,6-dichloro-4-[(3,3-dichloro-2-propen-l-yl)oxy]phenoxy] propoxy]-2-methoxy-6-(trifhioromethyl)-pyrimidine (known from CN 101337940 A); (2E)- and 2(Z)-2-[2-(4-cyanophenyl)-l-[3-(trifluoromethyl)phenyl]ethylidene]W-[4-(difluoromethoxy) phenyl]-hydrazinecarboxamide (known from CN 101715774 A); 3-(2,2-dichloroethenyl)-2,2- dimethyl-4-(lH-benzimidazol-2-yl)phenyl-cyclopropanecarboxylic acid ester (known from CN 103524422 A); (4aS)-7-chloro-2,5-dihydro-2-[[(methoxycarbonyl)[4-[(trifluoromethyl)thio] phenyl |amino|carbonyl |-indeno| 1 ,2-c|| 1 ,3,4 |oxadiazine-4a(3/7)-carboxylic acid methyl ester (known from CN 102391261 A).
[000268] Other insecticides that are used in the compositions of the present invention are biological products, such as the following.
[000269] Bacillus thuringiensis subsp. aizawai, in particular strain ABTS- 1857 (SD- 1372; e.g., XENTARI® from Valent BioSciences); Bacillus mycoides, isolate J. (e.g., BmJ from Certis USA LLC, a subsidiary of Mitsui & Co.); Bacillus sphaericus, in particular Serotype H5a5b strain 2362 (strain ABTS- 1743) (e.g., VECTOLEX® from Valent BioSciences, US); Bacillus thuringiensis subsp. kurstaki strain BMP 123 from Becker Microbial Products, IL; Bacillus thuringiensis subsp. aizawai, in particular serotype H-7 (e.g., FLORBAC® WG from Valent BioSciences, U.S.); Bacillus thuringiensis subsp. kurstaki strain HD-1 (e.g., DIPEL® ES from Valent BioSciences, U.S.); Bacillus thuringiensis subsp. kurstaki strain BMP 123 by Becker Microbial Products, IL; Bacillus thuringiensis israelensis strain BMP 144 (e.g., AQUAB AC® by Becker Microbial Products IL); Burkholderia spp., in particular Burkholderia rinojensis strain A396 (also known as Burkholderia rinojensis strain MBI 305) (Accession No. NRRL B-50319; WO 2011/106491 and WO 2013/032693; e.g., MBI-206 TGAI and ZELTO®
from Marrone Bio Innovations or BIOST from Albaugh); Chromobacterium subtsugae, in particular strain PRAA4-1T (MBI-203; e.g., GRANDEVO® from Marrone Bio Innovations); Paenibacillus popilliae (formerly Bacillus popilliae; e.g., MILKY SPORE POWDER™ and MILKY SPORE GRANULAR™ from St. Gabriel Laboratories); Bacillus thuringiensis subsp. israelensis (serotype H-14) strain AM65-52 (Accession No. ATCC 1276) (e.g., VECTOBAC® by Valent BioSciences, U.S.)
[000270] Beauveria bassiana strain ATCC 74040 (e.g., NATURALIS® from Biofa); Beauveria bassiana strain GHA (Accession No. ATCC74250; e.g., BOTANIGUARD® ES and MYCONTROL-O® from Laverlam International Corporation); Beauveria bassiana strain CG 716 (e.g., BOVEMAX® from Novozymes); Beauveria bassiana strain 147 (e.g., product OSTRINIL®); Beauveria bassiana strain NPP111B005; Beauveria bassiana strain PPRI 5339 (Accession No. NRRL 50757) (e.g., VELIFER® and BROADBAND® from BASF SE); Beauveria bassiana strain R444 (e.g., BB-PROTEC® from Andermatt Biocontrol), Metarhizium anisopliae, strain F52 (DSM3884/ ATCC 90448; e.g. Met52 by Novozymes); Metarhizium anisopliae var acridum strain ARSEF324 (e.g., GREEN MUSCLE® and GREEN GUARD® from BASF SE)); Metarhizium anisopliae var acridum isolate IMI 330189 (ARSEF7486); Isaria fumosorosea strain FE 9901 (e.g., NOFLY® from Koppert); Beauveria brongniartii (e.g., BEAUPRO® from Andermatt Biocontrol AG); Lecanicillium lecanii (formerly known as Verticillium lecanii) strain KV01 (e.g., MYCOTAL® from Koppert); Metarhizium anisopliae 3213-1 (deposited under NRRL accession number 67074) (WO 2017/066094; Pioneer Hi-Bred International).
[000271] Bacillus subtilis, in particular strain QST713/AQ713 (having NRRL Accession No. B-21661; available as SERENADE® OPTI or SERENADE® ASO from Bayer CropScience LP, US); Bacillus pumilus, in particular strain QST2808 (having Accession No. NRRL No. B-30087).
[000272] Bacillus firmus, in particular, strain CNMC 1-1582 (e.g., VOTIVO® from BASF SE); Bacillus amyloliquefaciens, in particular strain FZB42 (e.g., RHIZOVITAL® from ABiTEP, DE); Bacillus amyloliquefaciens strain PTA-4838 (AVEO EZ® from Valent/Sumitomo; VARNIMO® ST from LidoChem); Bacillus amyloliquefaciens MBI600 and cis-Jasmone (2-Cyclopenten-l-one, 3-methyl-2-(2Z)-2-pentenyl) (TRUNEMCO® from Nufarrn Americas, Inc.); Bacillus cereus, in particular spores of Bacillus cereus strain CNCM 1-1562 (cf. U.S. Patent No. 6,406,690); Bacillus laterosporus (also known as Brevibacillus laterosporus; e.g., BIO-TODE® from Agro-Organics, ZA); Bacillus megaterium, strain YFM3.25 (e.g., BIO ARC® from BioArc); Bacillus mojavensis, strain SR11 (CECT-7666 by Probelte S.A);
Bacillus nematocida B16 (CGMCC Accession No. 1128); a mixture of Bacillus licheniformis FMCH001 and Bacillus subtilis FMCH002 (available as QUARTZO® (WG), PRESENCE® (WP) from FMC Corporation); Pasteuria nishizawae (e.g., OYACYST® LF/ST from Pasteuria Bioscience; CLARIVA® PN from Syngenta/ChemChina); Burkholderia rinojensis, e.g., strain A396 (also known as Burkholderia rinojensis strain MBI 305) (Accession No. NRRL B-50319; WO 2011/106491 and WO 2013/032693; MAJESTENE® from Marrone Bio Innovations; also, e.g., BIOST from Albaugh); Pasteuria penetrans (formerly Bacillus penetrans', e.g., PASTEURIA™ Wettable Powder from Pasteuria Bioscience); Pasteuria usgae (e.g., ECONEM™ from Pasteuria Bioscience); Streptomycete sp., such as Streptomyces lydicus strain WYEC108 (also known as Streptomyces lydicus strain WYCD108US) (ACTINO-IRON® and ACTINOVATE® from Novozymes); Streptomyces saraceticus (e.g., CLANDA® from A & A Group (Agro Chemical Corp.)
[000273] Purpureocillium lilacinum strain 251 (AGAL 89/030550; e.g., BIO ACT® DC from Bayer CropScience Biologies GmbH).
[000274] Myrothecium verrucaria, strain AARC-0255 (e.g., DITERA™ by Valent Biosciences); Purpureocillium lilacinum strain 580 (BIOSTAT® WP (ATCC No. 38740) by Laverlam), strain in the product BIO-NEMATON® (T.Stanes and Company Ltd.), strain in the product MYSIS® (Varsha Bioscience and Technology India Pvt Ltd.), strain in the product BIOICONEMA® (Nico Orgo Maures, India), strain in the product NEMAT® (Ballagro Agro Tecnologia Ltda, Brazil), and a strain in the product SPECTRUM PAE L® (Promotora Tecnica Industrial, S.A. DE C.V., Mexico).
[000275] Biological insecticides may also include non-microbial products, such as a terpene blend comrpsing as active ingredients substantially pure a-terpinene, substantially pure p-cymene and substantially pure limonene in a relative ratio of about 35-45:12-20:10-15 (e.g., REQUIEM® by Bayer CropScience LP, U.S.) and a composition comprising one or more fatty acids or derivatives thereof selected from unsaturated and saturated C12-24 fatty acids, salts thereof, esters thereof or mixtures of any of the foregoing, wherein at least 95% of said fatty acids or derivatives thereof are in the rage of C14 to C20 (e.g., FLIPPER® by AlphaBio Pesticides or Bayer AG).
Plant-Growth Promoting Agents
[000276] The composition according to the present invention comprises at least one particular biostimulant disclosed herein. Plant growth promoting active ingredients that can be used in the compositions of the present invention are listed below.
[000277] Bacillus pumilus, in particular strain QST2808 (having Accession No. NRRL No. B-30087); Bacillus subtilis, in particular strain QST713/AQ713 (having NRRL Accession No. B-21661 and described in U.S. Patent No. 6,060,051; available as SERENADE® OPTI or SERENADE® ASO from Bayer CropScience LP); Bacillus subtilis, in particular strain AQ30002 (having Accession Nos. NRRL B-50421 and described in U.S. Patent Application No. 13/330,576); Bacillus subtilis, in particular strain AQ30004 (and NRRL B-50455 and described in U.S. Patent Application No. 13/330,576); Sinorhizobium meliloti strain NRG-185-1 (NITRAGIN® GOLD from Bayer CropScience).
[000278] Bacillus subtilis strain BU1814, (available as TEQUALIS® from BASF SE); Bacillus subtilis rm303 (RHIZOMAX® from Biofilm Crop Protection); Bacillus amyloliquefaciens pm414 (LOLI-PEPTA® from Biofilm Crop Protection); Bacillus mycoides BT155 (Accession No. NRRL B-50921), Bacillus mycoides EE118 (Accession No. NRRL B- 50918), Bacillus mycoides EE141 (Accession No. NRRL B-50916), Bacillus mycoides BT46-3 (Accession No. NRRL B-50922), Bacillus cereus family member EE128 (Accession No. NRRL B-50917), Bacillus thuringiensis BT013A (Accession No. NRRL B-50924) also known as Bacillus thuringiensis 4Q7, Bacillus cereus family member EE349 (Accession No. NRRL B- 50928), Bacillus amyloliquefaciens SB3281 (Accession No. ATCC PTA-7542; WO 2017/205258), Bacillus amyloliquefaciens TJ1000 (available as QUIKROOTS® from Novozymes); Bacillus firmus, in particular strain CNMC 1-1582 (e.g., VOTIVO® from BASF SE); Bacillus pumilus, in particular strain GB34 (e.g., YIELD SHIELD® from Bayer Crop Science, DE); Bacillus amyloliquefaciens, in particular strain IN937a; Bacillus amyloliquefaciens, in particular strain FZB42 (e.g., RHIZOVITAL® from ABiTEP, DE); Bacillus amyloliquefaciens BS27 (Accession No. NRRL B-5015); a mixture of Bacillus licheniformis FMCH001 and Bacillus subtilis FMCH002 (available as QUARTZO® (WG), PRESENCE® (WP) from FMC Corporation); Bacillus cereus, in particular strain BP01 (Accession No. ATCC 55675; e.g., MEPICHLOR® from Arysta Lifescience, US); Bacillus subtilis, in particular strain MBI 600 (e.g., SUBTILEX® from BASF SE); Bradyrhizobium japonicum (e.g., OPTIMIZE® from Novozymes); Mesorhizobium cicer (e.g., NODULATOR® from BASF SE); Rhiz.obium leguminosarium biovar viciae (e.g., NODULATOR® from BASF SE); Delftia acidovorans, in particular strain RAY209 (e.g., BIOBOOST® from Brett Young Seeds); Lactobacillus sp. (e.g., LACTOPLANT® from LactoPAFI); Paenibacillus polymyxa, in particular strain AC-1 (e.g., TOPSEED® from Green Biotech Company Ltd.); Pseudomonas proradix (e.g., PRORADIX® from Sourcon Padena); Azospirillum brasilense (e.g., VIGOR® from KALO, Inc.); Azospirillum lipoferum (e.g., VERTEX-IF™ from TerraMax, Inc.); a
mixture of Azotobacter vinelandii and Clostridium pasteurianum (available as INVIGORATE® from Agrinos).
[000279] Purpureocillium lilacinum (previously known as Paecilomyces lilacinus) strain 251 (AGAL 89/030550; e.g., BIOACT® DC from Bayer CropScience Biologies GmbH), Penicillium bilaii, strain ATCC 22348 (e.g., JUMPSTART® from Acceleron BioAg), Talaromyces flavus, strain VI 17b; Trichoderma atroviride strain CNCM 1-1237 (e.g., ESQUIVE® WP from Agrauxine, FR), Trichoderma viride, e.g., strain B35 (Pietr et al., 1993, Zesz. Nauk. A R w Szczecinie 161: 125-137).
[000280] Trichoderma atroviride strain LC52 (also known as Trichoderma atroviride strain LU132; e.g., SENTINEL® from Agrimm Technologies Limited); Trichoderma atroviride strain SCI, having Accession No. CBS 122089, WO 2009/116106 and U.S. Patent No. 8,431,120 (e.g., VINTEC® from Bi-PA); Trichoderma asperellum strain kd (e.g., T-GRO® from Andermatt Biocontrol); Trichoderma asperellum strain Eco-T (Plant Health Products, ZA); Trichoderma harzianum strain T-22 (having Accession No. ATCC 20847; e.g., TRIANUM-P® from Andermatt Biocontrol or Koppert); Myrothecium verrucaria strain AARC-0255 (e.g., DITERA™ from Valent Biosciences); Penicillium bilaii strain ATCC 20851; Pythium oligandrum strain Ml (ATCC 38472; e.g., POLYVERSUM® from Bioprepraty, CZ); Trichoderma virens strain GL-21 having Accession No. NRRL 15948 (e.g., SOILGARD® from Certis, USA); Verticillium albo-atrum (formerly V. dahliae) strain WCS850 (CBS 276.92; e.g., DUTCH TRIG® from Tree Care Innovations).
[000281] Examples of plant growth regulators that can be used in the compositions of the present invention are listed below.
[000282] Abscisic acid and related analogues [e.g., (2Z,4E)-5-[6-Ethynyl-l-hydroxy-2,6- dimethyl-4-oxocyclohex-2-en- 1 -yl] -3-methylpenta-2,4-dienoic acid, methyl-(2Z,4E)-5 - [6-ethynyL 1 - hydroxy-2,6-dimethyl-4-oxocyclohex-2-en-l-yl]-3-methylpenta-2,4-dienoate, (2Z,4E)-3-ethyl-5-(l- hydroxy-2,6,6-trimethyl-4-oxocyclohex-2-en- 1 -yl)penta-2,4-dienoic acid, (2E,4E)-5-( 1 -hydroxy-2, 6,6- trimethyl-4-oxocyclohex-2-en- 1 -yl)-3-(trifluoromethyl)penta-2,4-dienoic acid, methyl (2E,4E)-5-(l - hydroxy-2,6,6-trimethyl-4-oxocyclohex-2-en-l-yl)-3-(trifluoromethyl)penta-2,4-dienoate, (2Z,4E)-5-(2- hydroxy-l,3-dimethyl-5-oxobicyclo[4.1.0]hept-3-en-2-yl)-3-methylpenta-2,4-dienoic acid], acibenzolar, acibenzolar-S-methyl, S-adenosylhomocysteine, allantoin, 2-Aminoethoxyvinylglycine (AVG), aminooxyacetic acid and related esters [e.g., (Isopropylidene)-aminooxyacetic acid-2-(methoxy)-2- oxoethylester, (Isopropylidene)-aminooxyacetic acid-2-(hexyloxy)-2-oxoethylester, (Cyclohexylidene) - aminooxyacetic acid-2-(isopropyloxy)-2-oxoethylester], 1 -aminocycloprop- 1-yl carboxylic acid and derivatives thereof, e.g., disclosed in DE 3335514, EP 30287, DE 2906507 or U.S. Patent No. 5,123,951, 5-aminolevulinic acid, ancymidol, 6-benzylaminopurine, bikinin, brassinolide, brassinoli de-ethyl, L- canaline, catechin and catechines (e.g., (2S,3R)-2-(3,4-Dihydroxyphenyl)-3,4-dihydro-2H-chromen- 3,5,7-triol), chitooligosaccharides (CO; COs differ from LCOs in that they lack the pendant fatty acid chain that is characteristic of LCOs. COs, sometimes referred to as N-acetylchitooligosaccharides, are
also composed of GlcNAc residues but have side chain decorations that make them different from chitin molecules [(CsHisNOsjn, CAS No. 1398-61-4] and chitosan molecules [(CsHnNO^n, CAS No. 9012-76-4]), chitinous compounds, chlormequat chloride, cloprop, cyclanilide, 3-(Cycloprop-l- enyl)propionic acid, l-[2-(4-cyano-3,5-dicyclopropylphenyl)acetamido]cyclohexanecarboxylic acid, 1- [2-(4-cyano-3-cyclopropylphenyl)acetamido]cyclohexanecarboxylic acid, daminozide, dazomet, dazomet- sodium, n-decanol, dikegulac, dikegulac-sodium, endothal, endothal-dipotassium, -disodium, and mono(N,N-dimethylalkylammonium), ethephon, flumetralin, flurenol, flurenol-butyl, flurenol- methyl, flurprimidol, forchlorfenuron, gibberellic acid, inabenfide, indol-3-acetic acid (IAA), 4-indol-3- ylbutyric acid, isoprothiolane, probenazole, jasmonic acid, Jasmonic acid or derivatives thereof (e.g., jasmonic acid methyl ester, jasmonic acid ethyl ester), lipo-chitooligosaccharides (LCO, sometimes referred to as symbiotic nodulation (Nod) signals (or Nod factors) or as Myc factors, consist of an oligosaccharide backbone of P-l,4-linked N-accty l-D-glucosaminc (“GlcNAc”) residues with an N-linked fatty acyl chain condensed at the non-reducing end. As understood in the art, LCOs differ in the number of GlcNAc residues in the backbone, in the length and degree of saturation of the fatty acyl chain and in the substitutions of reducing and non-reducing sugar residues), linoleic acid or derivatives thereof, linolenic acid or derivatives thereof, maleic hydrazide, mepiquat chloride, mepiquat pentaborate, 1- methylcyclopropene, 3 -methylcyclopropene, 1 -ethylcyclopropene, 1-n-propylcyclopropene, 1- cyclopropenylmethanol, methoxyvinylglycin (MVG), 3’ -methyl abscisic acid, l-(4-methylphenyl)-N-(2- oxo-l-propyl-l,2,3,4-tetrahydroquinolin-6-yl)methanesulfonamide and related substituted tetrahydroquinolin-6-yl)methanesulfonamides, (3E,3aR,8bS)-3-({ [(2R)-4-Methyl-5-oxo-2,5- dihydrofuran-2-yl]oxy}methylen)-3,3a,4,8b-tetrahydro-2H-indeno[l,2-b]furan-2-one and related lactones as outlined in EP 2248421, 2-(l-naphthyl)acetamide, 1 -naphthylacetic acid, 2-naphthyloxyacetic acid, nitrophenolate-mixture, 4-Oxo-4[(2-phenylethyl)amino]butyric acid, paclobutrazol, 4-phenylbutyric acid and its related salts (e.g., sodium-4-phenylbutanoate, potassium-4-phenylbutanoate), phenylalanine, N- phenylph thalamic acid, prohexadione, prohexadione-calcium, putrescine, prohydrojasmon, rhizobi toxin, salicylic acid, salicylic acid methyl ester, sarcosine, sodium cycloprop- 1-en-l-yl acetate, sodium cycloprop-2-en- 1 -yl acetate, sodium-3-(cycloprop-2-en- 1 -yl)propanoate, sodium-3-(cycloprop- 1 -en- 1 -yl) propanoate, sidefungin, spermidine, spermine, strigolactone, tecnazene, thidiazuron, triacontanol, trinexapac, trinexapac-ethyl, tryptophan, tsitodef, uniconazole, uniconazole-P, 2-fluoro-N-(3- methoxyphenyl) - 9H- p u r i n -6- amine.
Compositions According to the Present Invention
[000283] According to the present invention the composition comprises a) recombinant exosporium-producing Bacillus cells that express a fusion protein comprising: (i) at least one plant growth stimulating protein or peptide selected from the group consisting of an enzyme involved in the production or activation of a plant growth stimulating compound; an enzyme that degrades or modifies a bacterial, fungal, or plant nutrient source; and a protein or peptide that
protects a plant from a pathogen; and (ii) a targeting sequence that localizes the fusion protein to the exosporium of the Bacillus cells; and b) at least one particular insecticide disclosed herein in a synergistically effective amount.
[000284] A “synergistically effective amount” according to the present invention represents a quantity of a combination of a recombinant exosporium-producing Bacillus cells that express a fusion protein and at least one insecticide as described herein that is more effective against insects, mites, nematodes and/or phytopathogens than a recombinant exosporium-producing Bacillus cells that express a fusion protein or the insecticide alone. A “synergistically effective amount” according to the present invention also represents a quantity of a combination of a recombinant exosporium-producing Bacillus cells that expresses a fusion protein and at least one particular insecticide disclosed herein that is more effective at enhancing plant growth and/or promoting plant health than the a recombinant exosporium-producing Bacillus cells that express a fusion protein or the insecticide alone.
[000285] The present invention comprises each and every combination of each of the particular insecticides and/or plant growth promoting active ingredients (i.e., biostimulants) disclosed herein with the recombinant exosporium-producing Bacillus cells.
[000286] In a highly preferred embodiment the present invention relates to a composition comprising: a) recombinant exosporium-producing Bacillus cells that express a fusion protein comprising: (i) an enzyme with serine protease activity from Bacillus firmus, preferably having an amino acid sequence with at least 95% identity to SEQ ID NOs: 4-6 or exosporium fragments derived from such recombinant exosporium-producing Bacillus cells and (ii) a targeting sequence that localizes the fusion protein to the exosporium of the Bacillus cells; and b) at least one particular insecticide disclosed herein in a synergistically effective amount and the at least one insecticide is selected from the group consisting of acetamiprid, aldicarb, amitraz, beta-cyfluthrin, carbaryl, clothianidin, cyfluthrin, cypermethrin, deltamethrin, endosulfan, ethion, ethiprole, ethoprophos, fenamiphos, fenobucarb, fenthion, fipronil, flubendiamide, fluopyram, flupyradifurone, formetanate, heptanophos, imidacloprid, methamidophos, methiocarb, methomyl, niclosamide, oxydemeton-methyl, phosalone, silafluofen, spirodiclofen, spiromesifen, spirotetramat, thiacloprid, thiodicarb, tralomethrin, triazophos, triflumuron, vamidothion, l-{2-fhioro-4-methyl-5-[(R)-(2,2,2- trifhioroethyl)sulphinyl]phenyl}-3-(trifluoromethyl)-lH-l,2,4-triazol-5-amine, and l-(3- chloropyridin-2-yl)-N-[4-cyano-2-methyl-6-(methylcarbamoyl)phenyl]-3-{[5-(trifluoromethyl)- 2H-tetrazol-2-yl]methyl}-lH-pyrazole-5-carboxamide in a synergistically effective amount.
[000287] In a preferred embodiment the composition according to the present invention further comprises at least one fungicide.
[000288] In general, “fungicidal” means the ability of a substance to increase mortality or inhibit the growth rate of fungi. The term “fungus” or “fungi” includes a wide variety of nucleated sporebearing organisms that are devoid of chlorophyll. Examples of fungi include yeasts, molds, mildews, rusts, and mushrooms.
Further Additives
[000289] One aspect of the present invention is to provide a composition as described above additionally comprising at least one auxiliary selected from the group consisting of extenders, solvents, spontaneity promoters, carriers, emulsifiers, dispersants, frost protectants, thickeners and adjuvants. Those compositions are referred to as formulations.
[000290] Accordingly, in one aspect of the present invention such formulations, and application forms prepared from them, are provided as crop protection agents and/or pesticidal agents, such as drench, drip and spray liquors, comprising the composition of the invention. The application forms may comprise further crop protection agents and/or pesticidal agents, and/or activity-enhancing adjuvants such as penetrants, examples being vegetable oils such as, for example, rapeseed oil, sunflower oil, mineral oils such as, for example, liquid paraffins, alkyl esters of vegetable fatty acids, such as rapeseed oil or soybean oil methyl esters, or alkanol alkoxylates, and/or spreaders such as, for example, alkylsiloxanes and/or salts, examples being organic or inorganic ammonium or phosphonium salts, examples being ammonium sulphate or diammonium hydrogen phosphate, and/or retention promoters such as dioctyl sulphosuccinate or hydroxypropylguar polymers and/or humectants such as glycerol and/or fertilizers such as ammonium, potassium or phosphorous fertilizers, for example.
[000291] Examples of typical formulations include water-soluble liquids (SL), emulsifiable concentrates (EC), emulsions in water (EW), suspension concentrates (SC, SE, FS, OD), water-dispersible granules (WG), granules (GR) and capsule concentrates (CS); these and other possible types of formulation are described, for example, by Crop Life International and in Pesticide Specifications, Manual on Development and Use of FAO and WHO Specifications for Pesticides, FAO Plant Production and Protection Papers - 173, prepared by the FAO/WHO Joint Meeting on Pesticide Specifications, 2004, ISBN: 9251048576. The formulations may comprise active agrochemical compounds other than one or more active compounds of the invention.
[000292] The formulations or application forms in question preferably comprise auxiliaries, such as extenders, solvents, spontaneity promoters, carriers, emulsifiers, dispersants,
frost protectants, biocides, thickeners and/or other auxiliaries, such as adjuvants, for example. An adjuvant in this context is a component which enhances the biological effect of the formulation, without the component itself having a biological effect. Examples of adjuvants are agents which promote the retention, spreading, attachment to the leaf surface, or penetration.
[000293] These formulations are produced in a known manner, for example by mixing the active compounds with auxiliaries such as, for example, extenders, solvents and/or solid carriers and/or further auxiliaries, such as, for example, surfactants. The formulations are prepared either in suitable plants or else before or during the application.
[000294] Suitable for use as auxiliaries are substances which are suitable for imparting to the formulation of the active compound or the application forms prepared from these formulations (such as, e.g., usable crop protection agents, such as spray liquors or seed dressings) particular properties such as certain physical, technical and/or biological properties.
[000295] Suitable extenders are, for example, water, polar and nonpolar organic chemical liquids, for example from the classes of the aromatic and non-aromatic hydrocarbons (such as paraffins, alkylbenzenes, alkylnaphthalenes, chlorobenzenes), the alcohols and polyols (which, if appropriate, may also be substituted, etherified and/or esterified), the ketones (such as acetone, cyclohexanone), esters (including fats and oils) and (poly)ethers, the unsubstituted and substituted amines, amides, lactams (such as N-alkylpyrrolidones) and lactones, the sulphones and sulphoxides (such as dimethyl sulphoxide).
[000296] If the extender used is water, it is also possible to employ, for example, organic solvents as auxiliary solvents. Essentially, suitable liquid solvents are: aromatics such as xylene, toluene or alkylnaphthalenes, chlorinated aromatics and chlorinated aliphatic hydrocarbons such as chlorobenzenes, chloroethylenes or methylene chloride, aliphatic hydrocarbons such as cyclohexane or paraffins, for example petroleum fractions, mineral and vegetable oils, alcohols such as butanol or glycol and also their ethers and esters, ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone or cyclohexanone, strongly polar solvents such as dimethylformamide and dimethyl sulphoxide, and also water.
[000297] In principle it is possible to use all suitable solvents. Suitable solvents are, for example, aromatic hydrocarbons, such as xylene, toluene or alkylnaphthalenes, for example, chlorinated aromatic or aliphatic hydrocarbons, such as chlorobenzene, chloroethylene or methylene chloride, for example, aliphatic hydrocarbons, such as cyclohexane, for example, paraffins, petroleum fractions, mineral and vegetable oils, alcohols, such as methanol, ethanol, isopropanol, butanol or glycol, for example, and also their ethers and esters, ketones such as
acetone, methyl ethyl ketone, methyl isobutyl ketone or cyclohexanone, for example, strongly polar solvents, such as dimethyl sulphoxide, and water.
[000298] All suitable carriers may in principle be used. Suitable carriers are in particular: for example, ammonium salts and ground natural minerals such as kaolins, clays, talc, chalk, quartz, attapulgite, montmorillonite or diatomaceous earth, and ground synthetic minerals, such as finely divided silica, alumina and natural or synthetic silicates, resins, waxes and/or solid fertilizers. Mixtures of such carriers may likewise be used. Carriers suitable for granules include the following: for example, crushed and fractionated natural minerals such as calcite, marble, pumice, sepiolite, dolomite, and also synthetic granules of inorganic and organic meals, and also granules of organic material such as sawdust, paper, coconut shells, maize cobs and tobacco stalks.
[000299] Liquefied gaseous extenders or solvents may also be used. Particularly suitable are those extenders or carriers which at standard temperature and under standard pressure are gaseous, examples being aerosol propellants, such as halogenated hydrocarbons, and also butane, propane, nitrogen and carbon dioxide.
[000300] Examples of emulsifiers and/or foam-formers, dispersants or wetting agents having ionic or nonionic properties, or mixtures of these surface-active substances, are salts of polyacrylic acid, salts of lignosulphonic acid, salts of phenolsulphonic acid or naphthalenesulphonic acid, polycondensates of ethylene oxide with fatty alcohols or with fatty acids or with fatty amines, with substituted phenols (preferably alkylphenols or arylphenols), salts of sulphosuccinic esters, taurine derivatives (preferably alkyltaurates), phosphoric esters of polyethoxylated alcohols or phenols, fatty acid esters of polyols, and derivatives of the compounds containing sulphates, sulphonates and phosphates, examples being alkylaryl polyglycol ethers, alkylsulphonates, alkyl sulphates, arylsulphonates, protein hydrolysates, lignin-sulphite waste liquors and methylcellulose. The presence of a surface-active substance is advantageous if one of the active compounds and/or one of the inert carriers is not soluble in water and if application takes place in water.
[000301] Further auxiliaries that may be present in the formulations and in the application forms derived from them include colorants such as inorganic pigments, examples being iron oxide, titanium oxide, Prussian Blue, and organic dyes, such as alizarin dyes, azo dyes and metal phthalocyanine dyes, and nutrients and trace nutrients, such as salts of iron, manganese, boron, copper, cobalt, molybdenum and zinc.
[000302] Stabilizers, such as low-temperature stabilizers, preservatives, antioxidants, light stabilizers or other agents which improve chemical and/or physical stability may also be present. Additionally present may be foam-formers or defoamers.
[000303] Furthermore, the formulations and application forms derived from them may also comprise, as additional auxiliaries, stickers such as carboxymethylcellulose, natural and synthetic polymers in powder, granule or latex form, such as gum arabic, polyvinyl alcohol, polyvinyl acetate, and also natural phospholipids, such as cephalins and lecithins, and synthetic phospholipids. Further possible auxiliaries include mineral and vegetable oils.
[000304] There may possibly be further auxiliaries present in the formulations and the application forms derived from them. Examples of such additives include fragrances, protective colloids, binders, adhesives, thickeners, thixotropic substances, penetrants, retention promoters, stabilizers, sequestrants, complexing agents, humectants and spreaders. Generally speaking, the active compounds may be combined with any solid or liquid additive commonly used for formulation purposes.
[000305] Suitable retention promoters include all those substances which reduce the dynamic surface tension, such as dioctyl sulphosuccinate, or increase the viscoelasticity, such as hydroxypropylguar polymers, for example.
[000306] Suitable penetrants in the present context include all those substances which are typically used in order to enhance the penetration of active agrochemical compounds into plants. Penetrants in this context are defined in that, from the (generally aqueous) application liquor and/or from the spray coating, they are able to penetrate the cuticle of the plant and thereby increase the mobility of the active compounds in the cuticle. This property can be determined using the method described in the literature (Baur, et al., 1997, Pesticide Science, 51, 131-152). Examples include alcohol alkoxy lates such as coconut fatty ethoxylate (10) or isotridecyl ethoxylate (12), fatty acid esters such as rapeseed or soybean oil methyl esters, fatty amine alkoxylates such as tallowamine ethoxylate (15), or ammonium and/or phosphonium salts such as ammonium sulphate or diammonium hydrogen phosphate, for example.
[000307] The formulations preferably comprise between 0.0001% and 98% by weight of active compound or, with particular preference, between 0.01% and 95% by weight of active compound, more preferably between 0.5% and 90% by weight of active compound, based on the weight of the formulation. The content of the active compound is defined as the sum of the recombinant exosporium-producing Bacillus cells and the at least one particular insecticide disclosed herein.
[000308] The active compound content of the application forms (crop protection products) prepared from the formulations may vary within wide ranges. The active compound concentration of the application forms may be situated typically between 0.0001% and 95% by weight of active compound, preferably between 0.0001% and 1% by weight, based on the weight of the application form. Application takes place in a customary manner adapted to the application forms.
[000309] Furthermore, in one aspect of the present invention a kit of parts is provided comprising a recombinant exosporium-producing Bacillus cells or exosporium fragments derived therefrom and at least one particular insecticide disclosed herein in a synergistically effective amount in a spatially separated arrangement.
[000310] In a further embodiment of the present invention the above-mentioned kit of parts further comprises at least one additional fungicide and/or at least one particular insecticide disclosed herein. The fungicide and/or the insecticide can be present either in the recombinant exosporium-producing Bacillus cells or exosporium fragments derived therefrom component of the kit of parts or in the insecticide component of the kit of parts being spatially separated or in both of these components. Preferably, the fungicide and/or the insecticide are present in the recombinant exosporium-producing Bacillus cells or exosporium fragments component.
[000311] Moreover, the kit of parts according to the present invention can additionally comprise at least one auxiliary selected from the group consisting of extenders, solvents, spontaneity promoters, carriers, emulsifiers, dispersants, frost protectants, thickeners and adjuvants as mentioned below. This at least one auxiliary can be present either in the recombinant exosporium-producing Bacillus cells or exosporium fragment component of the kit of parts or in the insecticide component of the kit of parts being spatially separated or in both of these components.
[000312] In another aspect of the present invention the composition as described above is used for reducing overall damage of plants and plant parts as well as losses in harvested fruits or vegetables caused by insects, mites, nematodes and/or phytopathogens.
[000313] Furthermore, in another aspect of the present invention the composition as described above increases the overall plant health.
[000314] The term “plant health” generally comprises various sorts of improvements of plants that are not connected to the control of pests. For example, advantageous properties that may be mentioned are improved crop characteristics including: emergence, crop yields, protein content, oil content, starch content, more developed root system, improved root growth, improved root size maintenance, improved root effectiveness, improved stress tolerance (e.g.,
against drought, heat, salt, UV, water, cold), reduced ethylene (reduced production and/or inhibition of reception), tillering increase, increase in plant height, bigger leaf blade, less dead basal leaves, stronger tillers, greener leaf color, pigment content, photosynthetic activity, less input needed (such as fertilizers or water), less seeds needed, more productive tillers, earlier flowering, early grain maturity, less plant verse (lodging), increased shoot growth, enhanced plant vigor, increased plant stand and early and better germination.
[000315] With regard to the use according to the present invention, improved plant health preferably refers to improved plant characteristics including: crop yield, more developed root system (improved root growth), improved root size maintenance, improved root effectiveness, tillering increase, increase in plant height, bigger leaf blade, less dead basal leaves, stronger tillers, greener leaf color, photosynthetic activity, more productive tillers, enhanced plant vigor, and increased plant stand.
[000316] With regard to the present invention, improved plant health preferably especially refers to improved plant properties selected from crop yield, more developed root system, improved root growth, improved root size maintenance, improved root effectiveness, tillering increase, and increase in plant height.
[000317] The effect of a composition according to the present invention on plant health as defined herein can be determined by comparing plants which are grown under the same environmental conditions, whereby a part of said plants is treated with a composition according to the present invention and another part of said plants is not treated with a composition according to the present invention. Instead, said other part is not treated at all or treated with a placebo (i.e., an application without a composition according to the invention such as an application without all active ingredients (i.e., without the recombinant exosporium-producing Bacillus cereus family member-based biological control agent as described herein and without an insecticide as described herein), or an application without the recombinant exosporium- producing Bacillus cereus family member-based biological control agent as described herein, or an application without an insecticide as described herein.
[000318] The composition according to the present invention may be applied in any desired manner, such as in the form of a seed coating, soil drench, and/or directly in-furrow and/or as a foliar spray and applied either pre-emergence, post-emergence or both. In other words, the composition can be applied to the seed, the plant or to harvested fruits and vegetables or to the soil wherein the plant is growing or wherein it is desired to grow (plant’s locus of growth).
[000319] Reducing the overall damage of plants and plant parts often results in healthier plants and/or in an increase in plant vigor and yield.
[000320] Preferably, the composition according to the present invention is used for treating conventional or transgenic plants or seed thereof.
[000321] The present invention also relates to methods for stimulating plant growth using any of the compositions described above comprising recombinant exosporium-producing Bacillus cells that express a fusion protein and at least one particular insecticide disclosed herein. The method for stimulating plant growth comprises applying to a plant, a plant part, to the locus surrounding the plant or in which the plant will be planted (e.g., soil or other growth medium) a composition comprising recombinant exosporium-producing Bacillus cells that express a fusion protein comprising: (i) at least one plant growth stimulating protein or peptide; and (ii) a targeting sequence, exosporium protein, or exosporium protein fragment, and at least one further particular insecticide disclosed herein in a synergistically effective amount.
[000322] In another aspect of the present invention a method for reducing overall damage of plants and plant parts as well as losses in harvested fruits or vegetables caused by insects, mites, nematodes and/or phytopathogens is provided comprising the step of simultaneously or sequentially applying the recombinant exosporium-producing Bacillus cells and at least one particular insecticide disclosed herein in a synergistically effective amount.
[000323] In another embodiment of the present invention, the composition comprises at least one fungicide and/or at least one insecticide in addition to the recombinant exosporium- producing Bacillus cells or exosporium fragments derived therefrom and the particular insecticide disclosed herein. In one embodiment, the at least one fungicide is a synthetic fungicide.
[000324] The method of the present invention includes the following application methods, namely both of the recombinant exosporium-producing Bacillus cells or exosporium fragments derived therefrom and the at least one particular insecticide disclosed herein may be formulated into a single, stable composition with an agriculturally acceptable shelf life (so called “solo-formulation”), or being combined before or at the time of use (so called “combined- formulations”).
[000325] If not mentioned otherwise, the expression “combination” stands for the various combinations of the recombinant exosporium-producing Bacillus cells or exosporium fragments derived therefrom and the at least insecticide, and optionally the at least one fungicide, in a solo-formulation, in a single “ready-mix” form, in a combined spray mixture composed from solo-formulations, such as a “tank-mix”, and especially in a combined use of the
single active ingredients when applied in a sequential manner, i.e., one after the other within a reasonably short period, such as a few hours or days, e.g., 2 hours to 7 days. The order of applying the composition according to the present invention is not essential for working the present invention. Accordingly, the term “combination” also encompasses the presence of the recombinant exosporium-producing Bacillus cells or exosporium fragments derived therefrom and the at least one particular insecticide disclosed herein, and optionally the at least one fungicide on or in a plant to be treated or its surrounding, habitat or storage space, e.g., after simultaneously or consecutively applying the recombinant exosporium-producing Bacillus cells and the at least one particular insecticide disclosed herein, and optionally the at least one fungicide to a plant its surrounding, habitat or storage space.
[000326] If the recombinant exosporium-producing Bacillus cells or exosporium fragments derived therefrom and the at least one particular insecticide disclosed herein, and optionally the at least one fungicide are employed or used in a sequential manner, it is preferred to treat the plants or plant parts (which includes seeds and plants emerging from the seed), harvested fruits and vegetables according to the following method: Firstly applying the at least one particular insecticide disclosed herein and optionally the at least one fungicide and/or the at least one additional insecticide on the plant or plant parts, and secondly applying the recombinant exosporium-producing Bacillus cells or exosporium fragments derived therefrom to the same plant or plant parts. By this application manner the amount of residues of insecticides/fungicides on the plant upon harvesting is as low as possible. The time periods between the first and the second application within a (crop) growing cycle may vary and depend on the effect to be achieved. For example, the first application is done to prevent an infestation of the plant or plant parts with insects, mites, nematodes and/or phytopathogens (this is particularly the case when treating seeds) or to combat the infestation with insects, mites, nematodes and/or phytopathogens (this is particularly the case when treating plants and plant parts) and the second application is done to prevent or control the infestation with insects, mites, nematodes and/or phytopathogens and/or to promote plant growth. Control in this context means that the recombinant exosporium-producing Bacillus cells or exosporium fragments derived therefrom are not able to fully exterminate the pests or phytopathogenic fungi but are able to keep the infestation on an acceptable level.
[000327] The present invention also provides methods of enhancing the killing, inhibiting, preventative and/or repelling activity of the compositions of the present invention by multiple applications. In some other embodiments, the compositions of the present invention are applied to a plant and/or plant part for two times, during any desired development stages or
under any predetermined pest pressure, at an interval of about 1 hour, about 5 hours, about 10 hours, about 24 hours, about two days, about 3 days, about 4 days, about 5 days, about 1 week, about 10 days, about two weeks, about three weeks, about 1 month or more. Still in some embodiments, the compositions of the present invention are applied to a plant and/or plant part for more than two times, for example, 3 times, 4 times, 5 times, 6 times, 7 times, 8 times, 9 times, 10 times, or more, during any desired development stages or under any predetermined pest pressure, at an interval of about 1 hour, about 5 hours, about 10 hours, about 24 hours, about 2 days, about 3 days, about 4 days, about 5 days, about 1 week, about 10 days, about 2 weeks, about 3 weeks, about 1 month or more. The intervals between each application can vary if it is desired. One skilled in the art will be able to determine the application times and length of interval depending on plant species, plant pest species, and other factors.
[000328] By following the before mentioned steps, a very low level of residues of the at least one fungicide and/or at least one particular insecticide disclosed herein and/or additional insecticide on the treated plant, plant parts, and the harvested fruits and vegetables can be achieved.
[000329] If not mentioned otherwise the treatment of plants or plant parts (which includes seeds and plants emerging from the seed), harvested fruits and vegetables with the composition according to the invention is carried out directly or by action on their surroundings, habitat or storage space using customary treatment methods, for example dipping, spraying, atomizing, irrigating, evaporating, dusting, fogging, broadcasting, foaming, painting, spreading- on, watering (drenching), drip irrigating. It is furthermore possible to apply the recombinant exosporium-producing Bacillus cells, the at least one particular insecticide disclosed herein, and optionally the at least one fungicide as solo-formulation or combined-formulations by the ultralow volume method, or to inject the composition according to the present invention as a composition or as sole- formulations into the soil (in- furrow).
[000330] The term “plant to be treated” encompasses every part of a plant including its root system and the material - e.g., soil or nutrition medium - which is in a radius of at least 10 cm, 20 cm, 30 cm around the caulis or bole of a plant to be treated or which is at least 10 cm, 20 cm, 30 cm around the root system of said plant to be treated, respectively.
[000331] The amount of the recombinant exosporium-producing Bacillus cells or exosporium fragments derived therefrom which is used or employed in combination with at least one particular insecticide disclosed herein, optionally in the presence of at least one fungicide, depends on the final formulation as well as size or type of the plant, plant parts, seeds, harvested fruits and vegetables to be treated. Usually, the recombinant exosporium-producing Bacillus
cells or exosporium fragments derived therefrom to be employed or used according to the invention is present in about 1% to about 80% (w/w), preferably in about 1% to about 60% (w/w), more preferably about 10% to about 50% (w/w) of its solo-formulation or combined- formulation with the at least one particular insecticide disclosed herein, and optionally the fungicide.
[000332] Also the amount of the at least one particular insecticide disclosed herein which is used or employed in combination with the recombinant exosporium-producing Bacillus cells or exosporium fragments derived therefrom, optionally in the presence of at least one fungicide, depends on the final formulation as well as size or type of the plant, plant parts, seeds, harvested fruit or vegetable to be treated. Usually, the recombinant exosporium-producing Bacillus cells or exosporium fragments derived therefrom to be employed or used according to the invention is present in about 0.1% to about 80% (w/w), preferably 1% to about 60% (w/w), more preferably about 10% to about 50% (w/w) of its solo-formulation or combined-formulation with the at least one particular insecticide disclosed herein, and optionally the at least one fungicide.
[000333] Application of the recombinant exosporium-producing Bacillus cells or exosporium fragments derived therefrom may be effected as a foliar spray, as a soil treatment, and/or as a seed treatment/dressing. When used as a foliar treatment, in one embodiment, about 1/16 to about 5 gallons of whole broth are applied per acre. When used as a soil treatment, in one embodiment, about 1 to about 5 gallons of whole broth are applied per acre. When used for seed treatment about 1/32 to about 1/4 gallons of whole broth are applied per acre. For seed treatment, the end-use formulation contains 1 x 103, 1 x 104, at least 1 x 105, at least 1 x 106, 1 x 107, at least 1 x 108, at least 1 x 109, or at least 1 x 1010 colony forming units per gram.
[000334] The recombinant exosporium-producing Bacillus cells or exosporium fragments derived therefrom and at least one particular insecticide disclosed herein, and if present preferably also the fungicide are used or employed in a synergistic weight ratio. The skilled person is able to find out the synergistic weight ratios for the present invention by routine methods. The skilled person understands that these ratios refer to the ratio within a combined- formulation as well as to the calculative ratio of the recombinant exosporium-producing Bacillus cells or exosporium fragments derived therefrom described herein and the at least one particular insecticide disclosed herein when both components are applied as mono-formulations to a plant to be treated. The skilled person can calculate this ratio by simple mathematics since the volume and the amount of the recombinant exosporium-producing Bacillus cells or exosporium
fragments derived therefrom and the at least one particular insecticide disclosed herein, respectively, in a mono-formulation is known to the skilled person.
[000335] The ratio can be calculated based on the amount of the at least one particular insecticide disclosed herein, at the time point of applying said component of a combination according to the invention to a plant or plant part and the amount of recombinant exosporium- producing Bacillus cells or exosporium fragments derived therefrom shortly prior (e.g., 48 h, 24 h, 12 h, 6 h, 2 h, 1 h) or at the time point of applying said component of a combination according to the invention to a plant or plant part.
[000336] The application of the recombinant exosporium-producing Bacillus cells or exosporium fragments derived therefrom and the at least one particular insecticide disclosed herein to a plant or a plant part can take place simultaneously or at different times as long as both components are present on or in the plant after the application(s). In cases where the recombinant exosporium-producing Bacillus cells or exosporium fragments derived therefrom and insecticide are applied at different times and insecticide is applied noticeable prior to the recombinant exosporium-producing Bacillus cells or exosporium fragments derived therefrom, the skilled person can determine the concentration of insecticide on/in a plant by chemical analysis known in the art, at the time point or shortly before the time point of applying the recombinant exosporium-producing Bacillus cells or exosporium fragments derived therefrom. Vice versa, when the recombinant exosporium-producing Bacillus cells or exosporium fragments derived therefrom are applied to a plant first, the concentration of the recombinant exosporium-producing Bacillus cells or exosporium fragments derived therefrom can be determined using tests which are also known in the art, at the time point or shortly before the time point of applying the insecticide.
[000337] In particular, in one embodiment the synergistic weight ratio of the recombinant exosporium-producing Bacillus cells or exosporium fragments derived therefrom and the at least one particular insecticide disclosed herein lies in the range of 1:1000 to 1000:1, preferably in the range of 1:500 to 500:1, more preferably in the range of 1:300 to 500:1. Especially preferred ratios are between 20:1 and 1:20, such as 10:1, 5:1 or 2:1. It has to be noted that when these ratio ranges refer to the recombinant Bacillus cercus family memberbased biological control agent (to be combined with at least one particular insecticide or a preparation of at least one particular insecticide disclosed herein), for example, a ratio of 100:1 means 100 weight parts of a spore preparation of the recombinant exosporium-producing Bacillus-based biological control agent and 1 weight part of insecticide are combined (either as a solo formulation, a combined formulation or by separate applications to plants so that the
combination is formed on the plant). In one aspect of this embodiment, the spore preparation of the recombinant exosporium-producing Bacillus cells is a dried spore preparation containing at least about 1 x 104 cfu/g, at least about 1 x 105 cfu/g, at least about 1 x 106 cfu/g at least about 1 x 107 cfu/g, at least about 1 x 108 cfu/g, at least about 1 x 109 cfu/g, at least about 1 x IO10 cfu/g, or at least about 1 x 1011 cfu/g.
[000338] In another embodiment, the synergistic weight ratio of the recombinant exosporium-producing Bacillus cells or exosporium fragments derived therefrom and the at least one particular insecticide disclosed herein is in the range of 1:100 to 20,000:1, preferably in the range of 1 :50 to 10,000: 1 or even in the range of 1 :50 to 1,000: 1.
[000339] In one embodiment of the present invention, the concentration of the recombinant exosporium-producing Bacillus cells or exosporium fragments derived therefrom after dispersal is at least 50 g/ha, such as 50 - 7500 g/ha, 50 - 2500 g/ha, 50 - 1500 g/ha; at least 250 g/ha (hectare), at least 500 g/ha or at least 800 g/ha.
[000340] The application rate of composition to be employed or used according to the present invention may vary. The skilled person is able to find the appropriate application rate by way of routine experiments.
[000341] In another aspect of the present invention a seed treated with the composition as described above is provided.
[000342] The control of insects, mites, nematodes and/or phytopathogens by treating the seed of plants has been known for a long time and is a subject of continual improvements. Nevertheless, the treatment of seed entails a series of problems which cannot always be solved in a satisfactory manner. Thus, it is desirable to develop methods for protecting the seed and the germinating plant that remove the need for, or at least significantly reduce, the additional delivery of crop protection compositions in the course of storage, after sowing or after the emergence of the plants. It is desirable, furthermore, to optimize the amount of active ingredient employed in such a way as to provide the best-possible protection to the seed and the germinating plant from attack by insects, mites, nematodes and/or phytopathogens, but without causing damage to the plant itself by the active ingredient employed. In particular, methods for treating seed ought also to take into consideration the intrinsic insecticidal and/or nematicidal properties of pest-resistant or pest-tolerant transgenic plants, in order to achieve optimum protection of the seed and of the germinating plant with a minimal use of crop protection compositions.
[000343] The present invention therefore also relates in particular to a method for protecting seed and germinating plants from attack by pests, by treating the seed with the
recombinant exosporium-producing Bacillus cells as defined above and at least one particular insecticide disclosed herein in a synergistically effective amount. The method of the invention for protecting seed and germinating plants from attack by pests encompasses a method in which the seed is treated simultaneously in one operation with the recombinant exosporium-producing Bacillus cells and the at least one particular insecticide disclosed herein, and optionally the at least one fungicide. It also encompasses a method in which the seed is treated at different times with the recombinant exosporium-producing Bacillus cells or exosporium fragments derived therefrom and the at least one particular insecticide disclosed herein, and optionally the at least one fungicide.
[000344] The invention likewise relates to the use of the composition of the invention for treating seed for the purpose of protecting the seed and the resultant plant against insects, mites, nematodes and/or phytopathogens.
[000345] The invention also relates to seed which at the same time has been treated with a recombinant exosporium-producing Bacillus cells or exosporium fragments derived therefrom and at least one particular insecticide disclosed herein, and optionally at least one fungicide. The invention further relates to seed which has been treated at different times with the recombinant exosporium-producing Bacillus cells or exosporium fragments derived therefrom and the at least one particular insecticide disclosed herein and optionally the at least one fungicide and/or the at least one insecticide. In the case of seed which has been treated at different times with the recombinant exosporium-producing Bacillus cells or exosporium fragments derived therefrom and the at least one particular insecticide disclosed herein, and optionally the at least one fungicide, the individual active ingredients in the composition of the invention may be present in different layers on the seed.
[000346] Furthermore, the invention relates to seed which, following treatment with the composition of the invention, is subjected to a film-coating process in order to prevent dust abrasion of the seed.
[000347] One of the advantages of the present invention is that, owing to the particular systemic properties of the compositions of the invention, the treatment of the seed with these compositions provides protection from insects, mites, nematodes and/or phytopathogens not only to the seed itself but also to the plants originating from the seed, after they have emerged. In this way, it may not be necessary to treat the crop directly at the time of sowing or shortly thereafter.
[000348] A further advantage is to be seen in the fact that, through the treatment of the seed with composition of the invention, germination and emergence of the treated seed may be promoted.
[000349] It is likewise considered to be advantageous composition of the invention may also be used, in particular, on transgenic seed.
[000350] It is also stated that the composition of the invention may be used in combination with agents of the signaling technology, as a result of which, for example, colonization with symbionts is improved, such as rhizobia, mycorrhiza and/or endophytic bacteria, for example, is enhanced, and/or nitrogen fixation is optimized.
[000351] The compositions of the invention are suitable for protecting seed of any variety of plant which is used in agriculture, in greenhouses, in forestry or in horticulture. More particularly, the seed in question is that of cereals (e.g., wheat, barley, rye, oats and millet), maize, cotton, soybeans, rice, potatoes, sunflower, coffee, tobacco, canola, oilseed rape, beets (e.g., sugar beet and fodder beet), peanuts, vegetables (e.g., tomato, cucumber, bean, brassicas, onions and lettuce), fruit plants, lawns and ornamentals. Particularly important is the treatment of the seed of cereals (such as wheat, barley, rye and oats) maize, soybeans, cotton, canola, oilseed rape and rice.
[000352] As already mentioned above, the treatment of transgenic seed with the composition of the invention is particularly important. The seed in question here is that of plants which generally contain at least one heterologous gene that controls the expression of a polypeptide having, in particular, insecticidal and/or nematicidal properties. These heterologous genes in transgenic seed may come from microorganisms such as Bacillus, Rhizobium, Pseudomonas, Serratia, Trichoderma, Clavibacter, Glomus or Gliocladium. The present invention is particularly suitable for the treatment of transgenic seed which contains at least one heterologous gene from Bacillus sp. With particular preference, the heterologous gene in question comes from Bacillus thuringiensis .
[000353] For the purposes of the present invention, the composition of the invention is applied alone or in a suitable formulation to the seed. The seed is preferably treated in a condition in which its stability is such that no damage occurs in the course of the treatment. Generally speaking, the seed may be treated at any point in time between harvesting and sowing. Typically, seed is used which has been separated from the plant and has had cobs, hulls, stems, husks, hair or pulp removed. Thus, for example, seed may be used that has been harvested, cleaned and dried to a moisture content of less than 15% by weight. Alternatively, seed can also be used that after drying has been treated with water, for example, and then dried again.
[000354] When treating seed it is necessary, generally speaking, to ensure that the amount of the composition of the invention, and/or of other additives, that is applied to the seed is selected such that the germination of the seed is not adversely affected, and/or that the plant which emerges from the seed is not damaged. This is the case in particular with active ingredients which may exhibit phytotoxic effects at certain application rates.
[000355] The compositions of the invention can be applied directly, in other words without comprising further components and without having been diluted. As a general rule, it is preferable to apply the compositions in the form of a suitable formulation to the seed. Suitable formulations and methods for seed treatment are known to the skilled person and are described in, for example, the following documents: U.S. Patent Nos. 4,272,417; 4,245,432; 4,808,430; 5,876,739; U.S. Patent Publication No. 2003/0176428 Al; and PCT Patent Publication Nos. WO 2002/080675 Al; WO 2002/028186 A2.
[000356] The combinations which can be used in accordance with the invention may be converted into the customary seed-dressing formulations, such as solutions, emulsions, suspensions, powders, foams, slurries or other coating compositions for seed, and also ULV formulations.
[000357] These formulations are prepared in a known manner, by mixing composition with customary adjuvants, such as, for example, customary extenders and also solvents or diluents, colorants, wetters, dispersants, emulsifiers, antifoams, preservatives, secondary thickeners, stickers, gibberellins, and also water.
[000358] Colorants which may be present in the seed-dressing formulations which can be used in accordance with the invention include all colorants which are customary for such purposes. In this context it is possible to use not only pigments, which are of low solubility in water, but also water-soluble dyes. Examples include the colorants known under the designations Rhodamin B, C.I. Pigment Red 112, and C.I. Solvent Red 1.
[000359] Wetters which may be present in the seed-dressing formulations which can be used in accordance with the invention include all of the substances which promote wetting and which are customary in the formulation of active agrochemical ingredients. Use may be made preferably of alkylnaphthalenesulphonates, such as diisopropyl- or diisobutylnaphthalenesulphonates.
[000360] Dispersants and/or emulsifiers which may be present in the seed-dressing formulations which can be used in accordance with the invention include all of the nonionic, anionic and cationic dispersants that are customary in the formulation of active agrochemical ingredients. Use may be made preferably of nonionic or anionic dispersants or of mixtures of
nonionic or anionic dispersants. Suitable nonionic dispersants are, in particular, ethylene oxidepropylene oxide block polymers, alkylphenol poly glycol ethers and also tristryrylphenol polyglycol ethers, and the phosphated or sulphated derivatives of these. Suitable anionic dispersants are, in particular, lignosulphonates, salts of polyacrylic acid, and arylsulphonateformaldehyde condensates.
[000361] Antifoams which may be present in the seed-dressing formulations which can be used in accordance with the invention include all of the foam inhibitors that are customary in the formulation of active agrochemical ingredients. Use may be made preferably of silicone antifoams and magnesium stearate.
[000362] Preservatives which may be present in the seed-dressing formulations which can be used in accordance with the invention include all of the substances which can be employed for such purposes in agrochemical compositions. Examples include dichlorophen and benzyl alcohol hemiformal.
[000363] Secondary thickeners which may be present in the seed-dressing formulations which can be used in accordance with the invention include all substances which can be used for such purposes in agrochemical compositions. Those contemplated with preference include cellulose derivatives, acrylic acid derivatives, xanthan, modified clays and highly disperse silica.
[000364] Stickers which may be present in the seed-dressing formulations which can be used in accordance with the invention include all customary binders which can be used in seeddressing products. Preferred mention may be made of polyvinylpyrrolidone, polyvinyl acetate, polyvinyl alcohol and tylose.
[000365] Gibberellins which may be present in the seed-dressing formulations which can be used in accordance with the invention include preferably the gibberellins Al, A3 (= gibberellic acid), A4 and A7, with gibberellic acid being used with particular preference. The gibberellins are known (cf. R. Wegler, “Chemie der Pflanzenschutz- und Schadlingsbekampfungsmittel”, Volume 2, Springer Verlag, 1970, pp. 401-412).
[000366] The seed-dressing formulations which can be used in accordance with the invention may be used, either directly or after prior dilution with water, to treat seed of any of a wide variety of types. Accordingly, the concentrates or the preparations obtainable from them by dilution with water may be employed to dress the seed of cereals, such as wheat, barley, rye, oats and triticale, and also the seed of maize, rice, oilseed rape, peas, beans, cotton, sunflowers and beets, or else the seed of any of a very wide variety of vegetables. The seed-dressing formulations which can be used in accordance with the invention, or their diluted preparations,
may also be used to dress seed of transgenic plants. In that case, additional synergistic effects may occur in interaction with the substances formed through expression.
[000367] For the treatment of seed with the seed-dressing formulations which can be used in accordance with the invention, or with the preparations produced from them by addition of water, suitable mixing equipment includes all such equipment which can typically be employed for seed dressing. More particularly, the procedure when carrying out seed dressing is to place the seed in a mixer, to add the particular desired amount of seed-dressing formulations, either as such or following dilution with water beforehand, and to carry out mixing until the distribution of the formulation on the seed is uniform. This may be followed by a drying operation.
[000368] The application rate of the seed-dressing formulations which can be used in accordance with the invention may be varied within a relatively wide range. It is guided by the particular amount of the recombinant exosporium-producing Bacillus cereus family memberbased biological control agent and the at least one particular insecticide disclosed herein in the formulations, and by the seed. The application rates in the case of the composition are situated generally at between 0.001 and 50 g per kilogram of seed, preferably between 0.01 and 15 g per kilogram of seed.
[000369] The compositions according to the invention, in case they exhibit insecticidal and miticidal and/or nematicidal activity, in combination with good plant tolerance and favourable toxicity to warm-blooded animals and being tolerated well by the environment, are suitable for protecting plants and plant organs, for increasing harvest yields, for improving the quality of the harvested material and for controlling animal pests, in particular insects, mites, arachnids, helminths, nematodes and molluscs, which are encountered in agriculture, in horticulture, in animal husbandry, in forests, in gardens and leisure facilities, in protection of stored products and of materials, and in the hygiene sector. They can be preferably employed as plant protection agents. In particular, the present invention relates to the use of the composition according to the invention as insecticide and/or fungicide.
[000370] They are active against normally sensitive and resistant species and against all or some stages of development. The abovementioned pests include:
[000371] pests from the phylum Arthropoda, especially from the class Arachnida, for example, Acarus spp., Aceria sheldoni, Aculops spp., Aculus spp., Amblyomma spp., Amphitetranychus viennensis, Argas spp., Boophilus spp., Brevipalpus spp., Bryobia graminum, Bryobia praetiosa, Centruroides spp., Chorioptes spp., Dermanyssus gallinae, Dermatophagoides pteronyssinus, Dermatophagoides farinae, Dermacentor spp., Eotetranychus
spp., Epitrimerus pyri, Eutetr any chits spp., Eriophyes spp., Glycyphagus domesticus, Halotydeus destructor, Hemitarsonemus spp., Hyalomma spp., Ixodes spp., Latrodectus spp., Loxosceles spp., Metatetranychus spp., Neutrombicula autumnalis, Nuphersa spp., Oligonychus spp., Ornithodorus spp., Ornithonyssus spp., Panonychus spp., Phyllocoptruta oleivora, Polyphagotarsonemus latus, Psoroptes spp., Rhipicephalus spp., Rhizoglyphus spp., Sarcoptes spp., Scorpio maurus, Steneotarsonemus spp., Steneotarsonemus spinki, Tarsonemus spp., Tetranychus spp., Trombicula alfreddugesi, Vaejovis spp., Vasates lycopersici;
[000372] in particular clover mite, brown mite, hazelnut spider mite, asparagus spider mite, brown wheat mite, legume mite, oxalis mite, boxwood mite, Texas citrus mite, Oriental red mite, citrus red mite, European red mite, yellow spider mite, fig spider mite, Lewis spider mite, six-spotted spider mite, Willamette mite, Yuma spider mite, web-spinning mite, pineapple mite, citrus green mite, honey-locust spider mite, tea red spider mite, southern red mite, avocado brown mite, spruce spider mite, avocado red mite, Banks grass mite, carmine spider mite, desert spider mite, vegetable spider mite, tumid spider mite, strawberry spider mite, two-spotted spider mite, McDaniel mite, Pacific spider mite, hawthorn spider mite, four-spotted spider mite, Schoenei spider mite, Chilean false spider mite, citrus flat mite, privet mite, flat scarlet mite, white-tailed mite, pineapple tarsonemid mite, West Indian sugar cane mite, bulb scale mite, cyclamen mite, broad mite, winter grain mite, red-legged earth mite, filbert big-bud mite, grape erineum mite, pear blister leaf mite, apple leaf edgeroller mite, peach mosaic vector mite, alder bead gall mite, Perian walnut leaf gall mite, pecan leaf edgeroll mite, fig bud mite, olive bud mite, citrus bud mite, litchi erineum mite, wheat curl mite, coconut flower and nut mite, sugar cane blister mite, buffalo grass mite, bermuda grass mite, carrot bud mite, sweet potato leaf gall mite, pomegranate leaf curl mite, ash sprangle gall mite, maple bladder gall mite, alder erineum mite, redberry mite, cotton blister mite, blueberry bud mite, pink tea rust mite, ribbed tea mite, grey citrus mite, sweet potato rust mite, horse chestnut rust mite, citrus rust mite, apple rust mite, grape rust mite, pear rust mite, flat needle sheath pine mite, wild rose bud and fruit mite, dryberry mite, mango rust mite, azalea rust mite, plum rust mite, peach silver mite, apple rust mite, tomato russet mite, pink citrus rust mite, cereal rust mite, rice rust mite;
[000373] from the class Chilopoda, for example, Geophilus spp., Scutigera spp.;
[000374] from the order or the class Collembola, for example, Onychiurus armatus;
[000375] from the class Diplopoda, for example, Blaniulus guttulatus;
[000376] from the class Insecta, e.g., from the order Blattodea, for example, Blattella asahinai, Blattella germanica, Blatta orientalis, Leucophaea maderae, Panchlora spp., Parcoblatta spp., Periplaneta spp., Supella longipalpa',
[000377] from the order Coleoptera, for example, Acalymma vittatum, Acanthoscelides obtectus, Adoretus spp., Agelastica alni, Agriotes spp., Alphitobius diaperinus, Amphimallon solstitialis , Anobium punctatum, Anoplophora spp., Anthonomus spp., Anthrenus spp., Apion spp., Apogonia spp., Atomaria spp., Attagenus spp., Bruchidius obtectus, Bruchus spp., Cassida spp., Cerotoma trifurcata, Ceutorrhynchus spp., Chaetocnema spp., Cleonus mendicus, Conoderus spp., Cosmopolites spp., Costelytra zealandica, Ctenicera spp., Curculio spp., Cryptolestes ferruginous, Crypt orhynchus lapathi, Cylindr ocopturus spp., Dermestes spp., Diabrotica spp., Dichocrocis spp., Dicladispa armigera, Diloboderus spp., Epilachna spp., Epitrix spp., Faustinas spp., Gibbium psylloides, Gnathocerus cornutus, Hellula undalis, Heteronychus arator, Heteronyx spp., Hylamorpha elegans, Hylotrupes bajulus, Hypera postica, Elypomeces squamosus, Hypothenemus spp., Lachnosterna consanguinea, Lasioderma serricorne, Latheticus oryzae, Lathridius spp., Lerna spp., Leptinotarsa decemlineata, Leucoptera spp., Lissorhoptrus oryzophilus, Lixus spp., Luperodes spp., Lyctus spp., Megascelis spp., Melanotus spp., Meligethes aeneus, Melolontha spp., Migdolus spp., Monochamus spp., Naupactus xanthographus, Necrobia spp., Niptus hololeucus, Oryctes rhinoceros, Oryzaephilus surinamensis, Oryzaphagus oryzae, Otiorrhynchus spp., Oxycetonia jucunda, Phaedon cochleariae, Phyllophaga spp., Phyllophaga helleri, Phyllotreta spp., Popillia japonica, Premnotrypes spp., Prostephanus truncatus, Psylliodes spp., Ptinus spp., Rhiz.obius ventralis, Rhizopertha dominica, Sitophilus spp., Sitophilus oryzae, Sphenophorus spp., Stegobium paniceum, Sternechus spp., Symphyletes spp., Tanymecus spp., Tenebrio molitor, Tenebrioides mauretanicus, Tribolium spp., Trogoderma spp., Tychius spp., Xylotrechus spp., Zabrus spp.;
[000378] preferably from Banded cucumber beetle (Diabrotica balteata), Northern com rootworm (Diabrotica barberi), Southern com rootworm (Diabrotica undecimpunctata howardi), Western cucumber beetle (Diabrotica undecimpunctata tenella), Western spotted cucumber beetle (Diabrotica undecimpunctata undecimpunctata), Western corn rootworm (Diabrotica virgifera virgifera), Mexican com rootworm (Diabrotica virgifera zeaef,
[000379] from the order Diptera, for example, Aedes spp., Agromyza spp., Anastrepha spp., Anopheles spp., Asphondylia spp., Bactrocera spp., Bibio hortulanus, Calliphora erythrocephala, Calliphora vicina, Ceratitis capitata, Chironomus spp., Chrysomyia spp., Chrysops spp., Chrysozona pluvialis, Cochliomyia spp., Contarinia spp., Cordylobia anthropophaga, Cricotopus sylvestris, Culex spp., Culicoides spp., Culiseta spp., Cuterebra spp., Dacus oleae, Dasyneura spp., Delia spp., Dermatobia hominis, Drosophila spp., Echinocnemus spp., Fannia spp., Gasterophilus spp., Glossina spp., Haematopota spp., Hydrellia spp., Hydrellia griseola, Hylemya spp., Hippobosca spp., Hypoderma spp., Liriomyza
spp., Lucilia spp., Lutzomyia spp., Mansonia spp., Musca spp., Oestrus spp., Oscinella frit, Paratanytarsus spp., Paralauterborniella subcincta, Pegomyia spp., Phlebotomus spp., Phorbia spp., Phormia spp., Piophila casei, Prodiplosis spp., Psila rosae, Rhagoletis spp., Sarcophaga spp., Simulium spp., Stomoxys spp., Tabanus spp., Tetanops spp., Tipula spp.;
[000380] from the order Heteroptera, for example, Anasa tristis, Antestiopsis spp., Boisea spp., Blissus spp., Calocoris spp., Campylomma livida, Cavelerius spp., Cimex spp., Collaria spp., Creontiades dilutus, Dasynus piperis, Dichelops furcatus, Diconocoris hewetti, Dysdercus spp., Euschistus spp., Eurygaster spp., Eleliopeltis spp., Horcias nobilellus, Leptocorisa spp., Leptocorisa varicornis, Leptoglossus phyllopus, Lygus spp., Macropes excavatus, Miridae, Monalonion atratum, Nezara spp., Oebalus spp., Pentomidae, Piesma quadrata, Piezodorus spp., Psallus spp., Pseudacysta persea, Rhodnius spp., Sahlbergella singularis, Scaptocoris castanea, Scotinophora spp., Stephanitis nashi, Tibraca spp., Triatoma spp.;
[000381] from the order Homoptera, for example, Acizzia acaciaebaileyanae, Acizzia dodonaeae, Acizzia uncatoides, Acrida turrita, Acyrthosipon spp., Acrogonia spp., Aeneolamia spp., Agonoscena spp., Aleyrodes proletella, Aleurolobus barodensis, Aleurothrixus floccosus, Allocaridara malayensis, Amrasca spp., Anuraphis cardui, Aonidiella spp., Aphanostigma piri, Aphis spp., Arboridia apicalis, Arytainilla spp., Aspidiella spp., Aspidiotus spp., Alarms spp., Aulacorthum solani, Bemisia tabaci, Blastopsylla occidentalis, Boreioglycaspis melaleucae, Brachycaudus helichrysi, Brachycolus spp., Brevicoryne brassicae, Cacopsylla spp., Calligypona marginata, Carneocephala fulgida, Ceratovacuna lanigera, Cercopidae, Ceroplastes spp., Chaetosiphon fragaefolii, Chionaspis tegalensis, Chlorita onukii, Chondracris rosea, Chromaphis juglandicola, Chrysomphalus ficus, Cicadulina mbila, Coccomytilus halli, Coccus spp., Cryptomyzus ribis, Cryptoneossa spp., Ctenarytaina spp., Dalbulus spp., Dialeurodes citri, Diaphorina citri, Diaspis spp., Drosicha spp., Dysaphis spp., Dysmicoccus spp., Empoasca spp., Eriosoma spp., Erythroneura spp., Eucalyptolyma spp., Euphyllura spp., Euscelis bilobatus, Ferrisia spp., Geococcus coffeae, Glycaspis spp., Heteropsylla cubana, Heteropsylla spinulosa, Homalodisca coagulata, Hyalopterus arundinis, leery a spp., Idiocerus spp., Idioscopus spp., Laodelphax striatellus, Lecanium spp., Lepidosaphes spp., Lipaphis erysimi, Macrosiphum spp., Macrosteles facifrons, Mahanarva spp., Melanaphis sacchari, Metcalfiella spp., Metopolophium dirhodum, Monellia costalis, Monelliopsis pecanis, Myzus spp., Nasonovia ribisnigri, Nephotettix spp., Nettigoniclla spectra, Nilaparvata lugens, Oncometopia spp., Orthezia praelonga, Oxya chinensis, Pachypsylla spp., Parabemisia myricae, Paratrioza spp., Parlatoria spp., Pemphigus spp., Peregrinus maidis, Phenacoccus
spp., Phloeomyzus passerinii, Phorodon humuli, Phylloxera spp., Pinnaspis aspidistrae, Pianococcus spp., Prosopidopsylla flava, Protopulvinaria pyriformis, Pseudaulacaspis pentagona, Pseudococcus spp., Psyllopsis spp., Psylla spp., Pteromalus spp., Pyrilla spp., Quadraspidiotus spp., Quesada gigas, Rastrococcus spp., Rhopalosiphum spp., Saissetia spp., Scaphoideus titanus, Schizaphis graminum, Selenaspidus articulatus, Sogata spp., Sogatella furcifera, Sogatodes spp., Stictocephala festina, Siphoninus phillyreae, Tenalaphara malayensis, Tetragonocephela spp., Tinocallis caryaefoliae, Tomaspis spp., Toxoptera spp., Trialeurodes vaporariorum, Trioza spp., Typhlocyba spp., Unaspis spp., Viteus vitifolii, Zygina spp.;
[000382] from the order Hymenoptera, for example, Acromyrmex spp., Athalia spp., Atta spp., Diprion spp., Hoplocampa spp., Lasius spp., Monomorium pharaonis, Sirex spp., Solenopsis invicta, Tapinoma spp., Urocerus spp., Vespa spp., Xeris spp.;
[000383] from the order Isopoda, for example, Armadillidium vulgare, Oniscus asellus, Porcellio scaber,
[000384] from the order Isoptera, for example, Coptotermes spp., Cornitermes cumulans, Cryptotermes spp., Incisitermes spp., Microtermes obesi, Odontotermes spp., Reticulitermes spp.;
[000385] from the order Lepidoptera, for example, Achroia grisella, Acronicta major, Adoxophyes spp., Aedia leucomelas, Agrotis spp., Alabama spp., Amyelois transitella, Anarsia spp., Anticarsia spp., Argyroploce spp., Barathra brassicae, Borbo cinnara, Bucculatrix thurberiella, Bupalus piniarius, Busseola spp., Cacoecia spp., Caloptilia theivora, Capua reticulana, Carpocapsa pomonella, Carposina niponensis, Cheimatobia brumata, Chilo spp., Choristoneura spp., Clysia ambiguella, Cnaphalocerus spp., Cnaphalocrocis medinalis, Cnephasia spp., Conopomorpha spp., Conotrachelus spp., Copitarsia spp., Cydia spp., Dalaca noctuides, Diaphania spp., Diatraea saccharalis, Earias spp., Ecdytolopha aurantium, Elasmopalpus lignosellus, Eldana saccharina, Ephestia spp., Epinotia spp., Epiphyas postvittana, Etiella spp., Eulia spp., Eupoecilia ambiguella, Euproctis spp., Euxoa spp., Feltia spp., Galleria mellonella, Gracillaria spp., Grapholitha spp., Hedylepta spp., Helicoverpa spp., Heliothis spp., Hofmannophila pseudospretella, Homoeosoma spp., Homona spp., Hyponomeuta padella, Kakivoria flavofasciata, Laphygma spp., Laspeyresia molesta, Leucinodes orbonalis, Leucoptera spp., Lithocolletis spp., Lithophane antennata, Lobesia spp., Loxagrotis albicosta, Lymantria spp., Lyonetia spp., Malacosoma neustria, Maruca testulalis, Mamstra brassicae, Melanitis leda, Mods spp., Monopis obviella, Mythimna separata, Nemapogon cloacellus, Nymphula spp., Oiketicus spp., Oria spp., Orthaga spp., Ostrinia spp., Oulema oryzae, Panolis flammea, Parnara spp., Pectinophora spp., Perileucoptera spp., Phthorimaea spp., Phyllocnistis
citrella, Phyllonorycter spp., Pieris spp., Platynota stultana, Plodia interpunctella, Plusia spp., Plutella xylostella, Prays spp., Prodenia spp., Protoparce spp., Pseudaletia spp., Pseudaletia unipuncta, Pseudoplusia includens, Pyrausta nubilalis, Rachiplusia nu, Schoenobius spp., Scirpophaga spp., Scirpophaga innotata, Scotia segetum, Sesamia spp., Sesamia inferens, Sparganothis spp., Spodoptera spp., Spodoptera praefica, Stathmopoda spp., Stomopteryx subsecivella, Synanthedon spp., Tecia solanivora, Thermesia gemmatalis, Tinea cloacella, Tinea pellionella, Tineola bisselliella, Tortrix spp., Trichophaga tapetzella, Trichoplusia spp., Tryporyza incertulas, Tula absoluta, Virachola spp.;
[000386] from the order Orthoptera or Saltatoria, for example, Acheta domesticus, Dichroplus spp., Gryllotalpa spp., Hieroglyphic spp., Locusta spp., Melanoplus spp., Schistocerca gregaria',
[000387] from the order Phthiraptera, for example, Damalinia spp., Haematopinus spp., Linognathus spp., Pediculus spp., Ptirus pubis, Trichodectes spp.;
[000388] from the order Psocoptera for example Lepinatus spp., Liposcelis spp.;
[000389] from the order Siphonaptera, for example, Ceratophyllus spp., Ctenocephalides spp., Pulex irritans, Tunga penetrans, Xenopsylla cheopsis',
[000390] from the order Thysanoptera, for example, Anaphothrips obscurus, Baliothrips biformis, Drepanothrips reuteri, Enneothrips flavens, Frankliniella spp., Heliothrips spp., Hercinothrips femoralis, Rhipiphorothrips cruentatus, Scirtothrips spp., Taeniothrips cardamomi, Thrips spp.;
[000391] from the order Zygentoma (=Thysanura), for example, Ctenolepisma spp., Lepisma saccharina, Lepismodes inquilinus, Thermobia domestica',
[000392] from the class Symphyla, for example, Scutigerella spp.;
[000393] pests from the phylum Mollusca, especially from the class Bivalvia, for example, Dreissena spp., and from the class Gastropoda, for example, Arion spp., Biomphalaria spp., Bulinus spp., Deroceras spp., Galba spp., Lymnaea spp., Oncomelania spp., Pomacea spp., Succinea spp.;
[000394] animal pests from the phylums Plathelminthes and Nematoda, for example, Ancylostoma duodenale, Ancylostoma ceylanicum, Acylostoma braziliensis, Ancylostoma spp., Ascaris spp., Brugia malayi, Brugia timori, Bunostomum spp., Chabertia spp., Clonorchis spp., Cooperia spp., Dicrocoelium spp., Dictyocaulus filaria, Diphyllobothrium latum, Dracunculus medinensis, Echinococcus granulosus, Echinococcus multilocularis, Enterobius vermicularis , Faciola spp., Haemonchus spp., Heterakis spp., Hymenolepis nana, Hyostrongulus spp., Loa Loa, Nematodirus spp., Oesophagostomum spp., Opisthorchis spp., Onchocerca volvulus,
Ostertagia spp., Paragonimus spp., Schistosomen spp., Strongyloides fuelleborni, Strongyloides stercoralis, Stronyloides spp., Taenia saginata, Taenia solium, Trichinella spiralis, Trichinella nativa, Trichinella britovi, Trichinella nelsoni, Trichinella pseudopsiralis, Trichostrongulus spp., Trichuris trichuria, Wuchereria bancrofti;
[000395] phytoparasitic pests from the phylum Nematoda, for example, Aphelenchoides spp., Bursaphelenchus spp., Ditylenchus spp., Globodera spp., Heterodera spp., Longidorus spp., Meloidogyne spp., Pratylenchus spp., Radopholus spp., Trichodorus spp., Tylenchulus spp., Xiphinema spp., Helicotylenchus spp., Tylenchorhynchus spp., Scutellonema spp., Paratrichodorus spp., Meloinema spp., Paraphelenchus spp., Aglenchus spp., Belonolaimus spp., Nacobbus spp., Rotylenchulus spp., Rotylenchus spp., Neotylenchus spp., Paraphelenchus spp., Dolichodorus spp., Hoplolaimus spp., Punctodera spp., Criconemella spp., Quinisulcius spp., Hemicycliophora spp., Anguina spp., Subanguina spp., Hemicriconemoides spp., Psilenchus spp., Pseudohalenchus spp., Criconemoides spp., Cacopaurus spp., Hirschmaniella spp, Tetylenchus spp.
[000396] The fact that the composition is well tolerated by plants at the concentrations required for controlling plant diseases and pests allows the treatment of above-ground parts of plants, of propagation stock and seeds, and of the soil.
[000397] According to the invention all plants and plant parts can be treated. By plants is meant all plants and plant populations such as desirable and undesirable wild plants, cultivars and plant varieties (whether or not protectable by plant variety or plant breeder’s rights). Cultivars and plant varieties can be plants obtained by conventional propagation and breeding methods which can be assisted or supplemented by one or more biotechnological methods such as by use of double haploids, protoplast fusion, random and directed mutagenesis, molecular or genetic markers or by bioengineering and genetic engineering methods. By plant parts is meant all above ground and below ground parts and organs of plants such as shoot, leaf, blossom and root, whereby for example leaves, needles, stems, branches, blossoms, fruiting bodies, fruits and seed as well as roots, corms and rhizomes are listed. Crops and vegetative and generative propagating material, for example cuttings, corms, rhizomes, runners and seeds also belong to plant parts.
[000398] The inventive composition, when it is well tolerated by plants, has favourable homeotherm toxicity and is well tolerated by the environment, is suitable for protecting plants and plant organs, for enhancing harvest yields, for improving the quality of the harvested material. It can preferably be used as crop protection composition. It is active against normally sensitive and resistant species and against all or some stages of development.
[000399] Plants which can be treated in accordance with the invention include the following main crop plants: maize, soya bean, alfalfa, cotton, sunflower, Brassica oil seeds such as Brassica napus (e.g., canola, rapeseed), Brassica rapa, B. juncea (e.g., (field) mustard) and Brassica carinata, Arecaceae sp. (e.g., oilpalm, coconut), rice, wheat, sugar beet, sugar cane, oats, rye, barley, millet and sorghum, triticale, flax, nuts, grapes and vine and various fruit and vegetables from various botanic taxa, e.g., Rosaceae sp. (e.g., pome fruits such as apples and pears, but also stone fruits such as apricots, cherries, almonds, plums and peaches, and berry fruits such as strawberries, raspberries, red and black currant and gooseberry), Ribesioidae sp., Juglandaceae sp., Betulaceae sp., Anacardiaceae sp., Fagaceae sp., Moraceae sp., Oleaceae sp. (e.g., olive tree), Actinidaceae sp., Lauraceae sp. (e.g., avocado, cinnamon, camphor), Musaceae sp. (e.g., banana trees and plantations), Rubiaceae sp. (e.g., coffee), Theaceae .sp. (e.g., tea), Sterculiceae sp., Rutaceae sp. (e.g., lemons, oranges, mandarins and grapefruit); Solanaceae sp. (e.g., tomatoes, potatoes, peppers, capsicum, aubergines, tobacco), Liliaceae sp., Compositae sp. (e.g., lettuce, artichokes and chicory - including root chicory, endive or common chicory), Umbelliferae sp. (e.g., carrots, parsley, celery and celeriac), Cucurbitaceae sp. (e.g., cucumbers - including gherkins, pumpkins, watermelons, calabashes and melons), Alliaceae sp. (e.g., leeks and onions), Cruciferae sp. (e.g., white cabbage, red cabbage, broccoli, cauliflower, Brussels sprouts, pak choi, kohlrabi, radishes, horseradish, cress and Chinese cabbage), Leguminosae sp. (e.g., peanuts, peas, lentils and beans - e.g., common beans and broad beans), Chenopodiaceae sp. (e.g., Swiss chard, fodder beet, spinach, beetroot), Linaceae sp. (e.g., hemp), Cannabeacea sp. (e.g., cannabis), Malvaceae sp. (e.g., okra, cocoa), Papaveraceae (e.g., poppy), Asparagaceae (e.g., asparagus); useful plants and ornamental plants in the garden and woods including turf, lawn, grass and Stevia rebaudiana’, and in each case genetically modified types of these plants.
[000400] Depending on the plant species or plant cultivars, their location and growth conditions (soils, climate, vegetation period, diet), using or employing the composition according to the present invention the treatment according to the invention may also result in super-additive (“synergistic”) effects. Thus, for example, by using or employing inventive composition in the treatment according to the invention, reduced application rates and/or a widening of the activity spectrum and/or an increase in the activity better plant growth, increased tolerance to high or low temperatures, increased tolerance to drought or to water or soil salt content, increased flowering performance, easier harvesting, accelerated maturation, higher harvest yields, bigger fruits, larger plant height, greener leaf color, earlier flowering, higher quality and/or a higher nutritional value of the harvested products, higher sugar
concentration within the fruits, better storage stability and/or processability of the harvested products are possible, which exceed the effects which were actually to be expected.
[000401] At certain application rates of the inventive composition in the treatment according to the invention may also have a strengthening effect in plants. The defense system of the plant against attack by unwanted phytopathogenic fungi and/ or microorganisms and/or viruses is mobilized. Plant- strengthening (resistance-inducing) substances are to be understood as meaning, in the present context, those substances or combinations of substances which are capable of stimulating the defense system of plants in such a way that, when subsequently inoculated with unwanted phytopathogenic fungi and/or microorganisms and/or viruses, the treated plants display a substantial degree of resistance to these phytopathogenic fungi and/or microorganisms and/or viruses. Thus, by using or employing composition according to the present invention in the treatment according to the invention, plants can be protected against attack by the abovementioned pathogens within a certain period of time after the treatment. The period of time within which protection is effected generally extends from 1 to 10 days, preferably 1 to 7 days, after the treatment of the plants with the active compounds.
[000402] Plants and plant cultivars which are also preferably to be treated according to the invention are resistant against one or more biotic stresses, i.e., said plants show a better defense against animal and microbial pests, such as against nematodes, insects, mites, phytopathogenic fungi, bacteria, viruses and/or viroids.
[000403] Plants and plant cultivars which may also be treated according to the invention are those plants which are resistant to one or more abiotic stresses, i.e., that already exhibit an increased plant health with respect to stress tolerance. Abiotic stress conditions may include, for example, drought, cold temperature exposure, heat exposure, osmotic stress, flooding, increased soil salinity, increased mineral exposure, ozone exposure, high light exposure, limited availability of nitrogen nutrients, limited availability of phosphorus nutrients, shade avoidance. Preferably, the treatment of these plants and cultivars with the composition of the present invention additionally increases the overall plant health (cf. above).
[000404] Plants and plant cultivars which may also be treated according to the invention, are those plants characterized by enhanced yield characteristics, i.e., that already exhibit an increased plant health with respect to this feature. Increased yield in said plants can be the result of, for example, improved plant physiology, growth and development, such as water use efficiency, water retention efficiency, improved nitrogen use, enhanced carbon assimilation, improved photosynthesis, increased germination efficiency and accelerated maturation.
[000405] Yield can furthermore be affected by improved plant architecture (under stress and non-stress conditions), including but not limited to, early flowering, flowering control for hybrid seed production, seedling vigor, plant size, internode number and distance, root growth, seed size, fruit size, pod size, pod or ear number, seed number per pod or ear, seed mass, enhanced seed filling, reduced seed dispersal, reduced pod dehiscence and lodging resistance. Further yield traits include seed composition, such as carbohydrate content, protein content, oil content and composition, nutritional value, reduction in anti-nutritional compounds, improved processability and better storage stability. Preferably, the treatment of these plants and cultivars with the composition of the present invention additionally increases the overall plant health (cf. above).
[000406] Plants that may be treated according to the invention are hybrid plants that already express the characteristic of heterosis or hybrid vigor which results in generally higher yield, vigor, health and resistance towards biotic and abiotic stress factors. Such plants are typically made by crossing an inbred male-sterile parent line (the female parent) with another inbred male-fertile parent line (the male parent). Hybrid seed is typically harvested from the male sterile plants and sold to growers. Male sterile plants can sometimes (e.g., in com) be produced by detasseling, i.e., the mechanical removal of the male reproductive organs (or males flowers) but, more typically, male sterility is the result of genetic determinants in the plant genome. In that case, and especially when seed is the desired product to be harvested from the hybrid plants it is typically useful to ensure that male fertility in the hybrid plants is fully restored. This can be accomplished by ensuring that the male parents have appropriate fertility restorer genes which are capable of restoring the male fertility in hybrid plants that contain the genetic determinants responsible for male-sterility. Genetic determinants for male sterility may be located in the cytoplasm. Examples of cytoplasmic male sterility (CMS) were for instance described in Brassica species. However, genetic determinants for male sterility can also be located in the nuclear genome. Male sterile plants can also be obtained by plant biotechnology methods such as genetic engineering. A particularly useful means of obtaining male-sterile plants is described in WO 89/10396 in which, for example, a ribonuclease such as bamase is selectively expressed in the tapetum cells in the stamens. Fertility can then be restored by expression in the tapetum cells of a ribonuclease inhibitor such as barstar.
[000407] Plants or plant cultivars (obtained by plant biotechnology methods such as genetic engineering) which may be treated according to the invention are herbicide-tolerant plants, i.e., plants made tolerant to one or more given herbicides. Such plants can be obtained
either by genetic transformation, or by selection of plants containing a mutation imparting such herbicide tolerance.
Methods for Stimulating Plant Growth and/or Promoting Plant Health and/or Controlling Plant Pathogens
[000408] A method for stimulating plant growth and/or promoting plant health and/or controlling plant pests, such as nematodes, and/or controlling plant pathogens is provided. The method comprises applying the compositions of the present invention to a plant growth medium, a plant, a plant seed, or an area surrounding a plant or a plant seed contacting the plant pest with the compositions of the present invention.
[000409] Yet another method for stimulating plant growth and/or promoting plant health and/or controlling plant pests, such as nematodes, and/or controlling plant pathogens is provided. The method comprises applying a formulation to a plant growth medium, a plant, a plant seed, or an area surrounding a plant or a plant seed. The formulation can comprise any of the formulations described herein.
[000410] In any of the methods described herein, the method can comprise applying a composition comprising an insecticide or plant growth promoting active ingredient and the recombinant Bacillus cereus family member, the exosporium fragments, or the formulation to the plant growth medium.
[000411] In any of the methods described herein involving the use of a plant growth medium, the plant growth medium can comprise soil, water, an aqueous solution, sand, gravel, a polysaccharide, mulch, compost, peat moss, straw, logs, clay, soybean meal, yeast extract, or a combination thereof.
[000412] The plant growth medium can comprise a fertilizer.
[000413] Any of the methods described herein can further comprise supplementing the plant growth medium with a substrate for an enzyme. Suitable substrates include, but are not limited to protein meal, casein, gelatin, albumin, or a combination of any thereof.
[000414] For example, the method can comprise applying any of the compositions of the present invention to roots of the plant.
[000415] Alternatively or in addition, the method can comprise applying the compositions of the present invention foliarly.
[000416] In any of the methods described herein, the method can comprise applying the compositions of the present invention to the plant seed.
[000417] In any of the methods described herein, the plant pest that are controlled can be phytoparasitic pests from the phylum Nematoda, for example, Aglenchus spp., Anguina spp., Aphelenchoides spp., Belonolaimus spp., Bursaphelenchus spp., Cacopaurus spp., Criconemella spp., Criconemoides spp., Ditylenchus spp., Dolichodorus spp., Globodera spp., Helicotylenchus spp., Hemicriconemoides spp., Hemicycliophora spp., Heterodera spp., Hoplolaimus spp., Longidorus spp., Lygus spp., Meloidogyne spp., Meloinema spp., Nacobbus spp., Neotylenchus spp., Paralongidorus spp., Paraphelenchus spp., Paratrichodorus spp., Pratylenchus spp., Pseudohalenchus spp., Psilenchus spp., Punctodera spp., Quinisulcius spp., Radopholus spp., Rotylenchulus spp., Rotylenchus spp., Scutellonema spp., Subanguina spp., Trichodorus spp., Tylenchulus spp., Tylenchorhynchus spp., Xiphinema spp.
[000418] In any of the methods described herein, plants grown in the presence of any of the compositions of the present invention can exhibit increased growth as compared to plants grown in the absence of the composition under the same conditions.
[000419] In any of the methods described herein, seeds to which any of the compositions of the present invention has been applied can exhibit increased germination rates as compared to seeds to which the composition has not been applied, under the same conditions.
[000420] In any of the methods described herein, plants grown in the presence of any of the compositions of the present invention can exhibit increased nutrient uptake as compared to plants grown in the absence of the composition, under the same conditions.
[000421] In any of the methods described herein, plants grown in the presence of any of the compositions of the present invention can exhibit decreased susceptibility to a pest, such as nematodes, as compared to plants grown in the absence of the composition, under the same conditions.
[000422] In any of the methods described herein, plants grown in the presence of any of the compositions of the present invention can exhibit decreased nematode damage, including reduced galling, reduced cysts, and/or reduced nematodes per weight of root, as compared to plants grown in the absence of the composition, under the same conditions.
[000423] In any of the methods described herein, plants or the locus in which the plant is grown, such as soil, to which any of the compositions of the present invention has been applied can exhibit reduced nematode eggs and/or reduced nematodes per volume of soil, as compared to plants grown in the absence of composition, under the same conditions.
[000424] In one embodiment, the compositons of the present invention decrease nematodes and/or nematode damage by at least about 0.5%, or by at least about 1%, or by at least about 2%, or by at least about 3%, or by at least about 5%, or by at least about 6%, or by at
least about 7%, or by at least about 8%, or by at least about 9%, or by at least about 10%, or by at least about 11%, or by at least about 12% when compared to plants produced under the same conditions but without treatment by a recombinant Bacillus cereus family member.
[000425] In any of the methods described herein, plants grown in the presence of any of the compositions of the present invention can exhibit decreased susceptibility to a pathogen as compared to plants grown in the absence of the composition, under the same conditions.
[000426] In any of the methods described herein, plants grown in the presence of any of the compositions of the present invention can exhibit decreased susceptibility to an environmental stress (e.g., drought, flood, heat, freezing, salt, heavy metals, low pH, high pH, or a combination of any thereof) as compared to plants grown in the absence of the composition, under the same conditions.
[000427] In any of the methods described herein, plants grown in the presence of any of the compositions of the present invention can exhibit increased root nodulation as compared to plants grown in the absence of the composition, under the same conditions.
[000428] In any of the methods described herein, plants grown in the presence of any of the compositions of the present invention can exhibit greater crop yield as compared to plants grown in the absence of the composition, under the same conditions. In one embodiment, the composition of the present invention increases yield or total plant weight by at least about 0.5%, or by at least about 1%, or by at least about 2%, or by at least about 3%, or by at least about 5%, or by at least about 6%, or by at least about 7%, or by at least about 8%, or by at least about 9%, or by at least about 10%, or by at least about 11%, or by at least about 12% when compared to plants produced under the same conditions but without treatment by the compositions of the present invention. In another embodiment, the compositions of the present invention improve some aspect of plant vigor, such as germination, by at least about 0.5%, or by at least about 1%, or by at least about 2%, or by at least about 3%, or by at least about 5%, or by at least about 6%, or by at least about 7%, or by at least about 8%, or by at least about 9%, or by at least about 10%, or by at least about 11%, or by at least about 12% when compared to plants produced under the same conditions but without treatment by a composition of the present invention.
[000429] In any of the methods described herein, plants grown in the presence of any of the compositions of the present invention can exhibit altered leaf senescence as compared to plants grown in the absence of such compositions, under the same conditions.
[000430] Having described the invention in detail, it will be apparent that modifications and variations are possible without departing from the scope of the invention defined in the appended claims.
EXAMPLES
[000431] The following non-limiting examples are provided to further illustrate the present invention.
Example 1. Construction of a Bacillus cercus Family Member Displaying a Serine Protease or Serine Protease Variant
[000432] To construct a Bacillus cercus family member displaying the serine protease of SEQ ID NO: 4 or SEQ ID NO: 5 or the serine protease variant of SEQ ID NO: 6, the pSUPER plasmid was generated through fusion of the pUC57 plasmid (containing an ampicillin resistance cassette and a ColEl origin of replication) with the pBC16-l plasmid from Bacillus cercus (containing a tetracycline resistance gene, repU replication gene and oriU origin of replication). This 5.8 kb plasmid can replicate in both E. coli and Bacillus spp. and can be selected by conferring resistance to P-lactam antibiotics in E. coli and resistance to tetracycline in Bacillus spp. The basal pSUPER plasmid was modified by insertion of a PCR-generated fragment that fused the BclA promoter (SEQ ID NO: 11), a start codon, amino acids 20-35 of BclA (amino acids 20-35 of SEQ ID NO: 1) and an alanine linker sequence in frame with SEQ ID NO: 4, SEQ ID NO: 5, or SEQ ID NO: 6, resulting in a plasmid termed pSUPER-BclA 20- 35-SEQ ID NO: 4, pSUPER-BclA 20-35-SEQ ID NO: 5, or pSUPER-BclA 20-35-SEQ ID NO: 6, respectively. This construct was transformed into E. coli and plated on Lysogeny broth plates plus ampicillin (100 pg/mL) to obtain single colonies. Individual colonies were used to inoculate Lysogeny broth plus ampicillin and incubated overnight at 37°C, 300 rpm. Plasmids from resulting cultures were extracted using a commercial plasmid purification kit. DNA concentrations of these plasmid extracts were determined via spectrophotometry, and obtained plasmids subjected to analytical digests with appropriate combinations of restriction enzymes. The resulting digestion patterns were visualized by agarose gel electrophoresis to investigate plasmid size and presence of distinct plasmid features. Relevant sections, such as the SEQ ID NO: 4, SEQ ID NO: 5 or SEQ ID NO: 6 expression cassette, of the purified pSUPER derivatives were further investigated by Sanger sequencing.
[000433] Additionally and alternatively, a derivative plasmid of the pSUPER plasmids described above was created as follows. The pBC fragment (pBC 16-1 -derived section of pSUPER including BclA/serine protease variant expression cassette and tetracycline resistance) of the pSUPER plasmids described above was amplified by PCR and subsequently circularized by blunt-end ligation.
[000434] pSUPER, verified as described above, and pBC plasmid ligations were introduced by electroporation into Bacillus thuringiensis BT013A. Single transformed colonies were isolated by plating on nutrient broth plates containing tetracycline (10 pg/mL). Individual positive colonies were used to inoculate brain heart infusion broth containing tetracycline (10 pg/mL) and incubated overnight at 30°C, 300 rpm. Genomic DNA of resulting cultures was purified and relevant sections of the pSUPER plasmid or the pBC plasmid were re-sequenced to confirm genetic purity of the cloned sequences and, for pBC, the correct ligation site. Verified colonies were grown overnight in brain heart infusion broth with 10 pg/mL tetracycline and induced to sporulate through incubation in a yeast extract-based media at 30°C for 48 hours. Short names for BT013A carrying the above-described plasmids are described in Table 5, below.
[000435] Bacillus thuringiensis BT013A was deposited with the United States Department of Agriculture (USDA) Agricultural Research Service (ARS), having the address 1815 North University Street, Peoria, Illinois 61604, U.S.A., on March 10, 2014, and assigned accession number NRRL B-50924. Bacillus thuringiensis BT013A is also known as Bacillus thuringiensis 4Q7.
Example 2. Construction and Purification of Exosporium Fragments from a Bacillus cercus Family Member Expressing Serine Protease Variant
[000436] Knock out (KO) Mutants: To make exsY knockout (KO) mutant strains of Bacillus thuringiensis BT013A, the plasmid pKOKI shuttle and integration vector was constructed that contained the pUC57 backbone, which is able to replicate in E. coli, as well as the origin of replication and the erythromycin resistance cassette from pE194. This construct is able to replicate in both E. coli and Bacillus spp. A construct was made that contained the 1 kb DNA region that corresponded to the upstream region of the exsY gene and a 1 kb region that corresponded to the downstream region of the gene exsY. both of which were PCR amplified from Bacillus thuringiensis BT013A. For each construct, the two 1 kb regions were then spliced together using homologous recombination with overlapping regions to each other and with the pKOKI plasmid, respectively. This plasmid construct was verified by digestion and DNA sequencing. Clones were screened for erythromycin resistance.
[000437] Clones were passaged under high temperature (40°C) in brain heart infusion broth. Individual colonies were toothpicked onto LB agar plates containing erythromycin 5 pg/mL, grown at 30°C, and screened for the presence of the pKOKI plasmid integrated into the chromosome by colony PCR. Colonies that had an integration event were continued through
passaging to screen for single colonies that lost erythromycin resistance (signifying loss of the plasmid by recombination and removal of the exsY gene). Verified deletions were confirmed by PCR amplification and sequencing of the target region of the chromosome. Finally, the PCR- amplified, circularized pBC section of the pSUPER-BclA 20-35 SEQ ID NO: 4 plasmid, pSUPER-BclA 20-35 SEQ ID NO: 5 plasmid or pSUPER-BclA 20-35 SEQ ID NO: 6 plasmid (described above in Example 1) was transformed into this exsY mutant strain of BT013A.
[000438] For each esxYKO mutant expressing the serine protease of SEQ ID NO: 4 or 5 or the serine protease variant of SEQ ID NO: 6, an overnight culture was grown in BHI media at 30°C, 300 rpm, in baffled flasks with antibiotic selection. One milliliter of this overnight culture was inoculated into a yeast extract-based media (50 mL) in a baffled flask and grown at 30°C for 2 days. An aliquot of spores was removed and the spores were agitated by vortexing. The spores were collected via centrifugation at 8,000 x g for 10 minutes, and supernatant containing the exosporium fragments was filtered through a 0.22 pm filter to remove any residual spores. No spores were found in the filtrate.
[000439] Short names for BTO ISAc sTKO carrying the above-described plasmids are described in Table 5, below.
Example 3. Use of an Expression Cassette Comprising a Non-Antibiotic Selectable Marker to Express the Serine Protease Variant on the Surface of Bacillus cerus Family Member Spores
[000440] SEQ ID NO: 6 was cloned into a derivative of the pSUPER plasmid described in Example 1. In this derivative, the tetracycline resistance marker had previously been exchanged with a non- antibiotic selectable marker. The pBC fragment of this derivative pSUPER plasmid was created as described in Example 1. The resulting pBC ligation, referred to as pBCnam212, was introduced using electroporation into a Bacillus thuringiensis BT013A derivative strain that had been modified to support the use of the non- antibiotic selectable marker. Single colonies of transformations were obtained by plating on suitable selection media on petri plates. Individual colonies were used to inoculate a suitable selection media and incubated overnight at 30°C, 300 rpm. Genomic DNA of resulting cultures was purified and the pBC plasmid re-sequenced to verify genetic purity. Verified colonies were grown overnight in suitable selection media and induced to sporulate through incubation in a yeast extract-based media at 30°C for 48 hours.
Table 5. Short Names for Bacteria Carrying Various Plasmids
Example 4: Formula for the Efficacy of the Combination of Multiple Active Ingredients
[000441] A synergistic effect of active ingredients is present when the activity of the active ingredient combinations exceeds the total of the activities of the active ingredients when applied individually. The expected activity for a given combination of two active ingredients can be calculated as follows (cf. Colby, S.R., “Calculating Synergistic and Antagonistic Responses of Herbicide Combinations,” Weeds, 1967, 15, 20-22):
If
X is the efficacy when active ingredient A is applied at an application rate of m ppm (or g/ha),
Y is the efficacy when active ingredient B is applied at an application rate of n ppm (or g/ha),
E is the efficacy when the active ingredients A and B are applied at application rates of m and n ppm (or g/ha), respectively, and then
X Y
E = X + Y -
100
[000442] If the actual activity exceeds the calculated value, then the activity of the combination is superadditive, i.e., a synergistic effect exists. In this case, the efficacy which was actually observed must be greater than the value for the expected efficacy (E) calculated from the above-mentioned formula.
[000443] For instance, the formula and analysis can be applied to an evaluation of plant growth promotion. Such an assay is evaluated several days after the applications to plants. 100% means plant weight which corresponds to that of the untreated control plant. Efficacy means in this case the additional % of plant weight in comparison to that of the untreated control. For example, a treatment that resulted in plant weights that were 120% compared to the untreated control plant would have an efficacy of 20%. If the plant growth promotion effect for the combination (i.e., the observed efficacy for % plant weights of plants treated with the combination) exceeds the calculated value, then the activity of the combination is superadditive, i.e., a synergistic effect exists.
[000444] The formula and analysis can also be used to evaluate synergy in disease control and insect control assays. The degree of efficacy expressed in % is denoted. 0% means an efficacy which corresponds to that of the control while an efficacy of 100% means that no disease is observed.
[000445] If the actual insecticidal or fungicidal activity exceeds the calculated value, then the activity of the combination is superadditive, i.e., a synergistic effect exists. In this case, the efficacy which is actually observed must be greater than the value for the expected efficacy (E) calculated from the above-mentioned formula.
[000446] A further way of demonstrating a synergistic effect is the method of Tammes (cf. “Isoboles, A Graphic Representation of Synergism in Pesticides” in Neth. J. Plant Path., 1964, 70, 73-80).
Example 5. Control of Soybean Cyst Nematodes
[000447] Experiments can be conducted to test the activity of a whole broth culture of BT013A-pBCnam212 or exosporium fragments of BT013Aex5TKO-pBC212, preparation of which is described in the examples, above, either alone or in combination with fluopyram. Seed is treated with (i) 234.8 mL/100 kg of the whole broth culture of BT013A-pBCnam212, which is equivalent to 1 x 1010 colony forming units (of the recombinant cell expressing the serine protease variant) (“CFU”)/100 kg seed or 234.8 mL/100 kg of the exosporium fragments of BTO I Acxs lzKO- pBC212 and/or (ii) fluopyram. The concentration of each whole broth culture is 5 x 106 CFU/mL. The same volume of the exosporium fragment preparation as whole broth is applied to seeds to achieve a comparable application rate to that of the whole broth, as very little liquid is lost during the
centrifugation and filtration processes that are used to separate exosporium fragments from cells. The fluopyram is applied to the seed, alone or in combination with the whole broth culture or exosporium fragments, at or below its label rate. All treatments are planted into a sandy loam soil. Ten days post emergence, soybean plants are inoculated with 2,000 second stage juvenile soybean cyst nematodes (Heterodera glycine). Plants are harvested four weeks later and cysts are removed and collected using a system of sieves, centrifugation, and a sucrose solution. Cysts are then crushed to release the eggs which are enumerated by taking three sub-samples from the total solution collected from each of ten plants from each treatment. It is expected that the seeds treated with the recombinant Bacillus thuringiensis in combination with the fluopyram or the exosporium fragments in combination with the fluopyram will show a greater reduction in both the total number of nematode eggs and the number of eggs per gram of root, than the seed treated with only one active ingredient; i.e., a synergistic effect will be shown.
[000448] In view of the above, it will be seen that the several objects of the invention are achieved and other advantageous results attained. As various changes could be made in the above compositions, formulations, and methods without departing from the scope of the invention, it is intended that all matter contained in the above description shall be interpreted as illustrative and not in a limiting sense.
Claims
1. A composition comprising:
(a) a recombinant Bacillus cereus family member that expresses a fusion protein comprising:
(i) an enzyme having serine protease activity comprising an amino acid sequence having at least 95% identity to any one of SEQ ID NOs: 4-5 or an amino acid sequence having at least 95% identity to SEQ ID NO: 6; and
(ii) a targeting sequence, exosporium protein, or exosporium protein fragment that targets the fusion protein to the exosporium of a recombinant Bacillus cereus family member; and
(b) at least one insecticide or plant growth promoter, in a synergistically effective amount.
2. A composition comprising:
(a) exosporium fragments from a recombinant Bacillus cereus family member that expresses a fusion protein comprising:
(i) an enzyme having serine protease activity comprising an amino acid sequence having at least 95% identity to any one of SEQ ID NOs: 4-5 or an amino acid sequence having at least 95% identity to SEQ ID NO: 6; and
(ii) a targeting sequence, exosporium protein, or exosporium protein fragment that targets the fusion protein to the exosporium of a recombinant Bacillus cereus family member; and
(b) at least one insecticide or plant growth promoter, in a synergistically effective amount, wherein the Bacillus cereus family member comprises a mutation that results in an exosporium that is easier to remove from the spore as compared to the exopsorium of a wildtype spore.
3. The composition of Claim 1 or 2, wherein the targeting sequence or exosporium protein comprises:
(a) an amino acid sequence having at least about 43% identity with amino acids 20-35 of SEQ ID NO: 1, wherein the identity with amino acids 25-35 is at least about 54%;
(b) amino acids 1-35 of SEQ ID NO: 1;
(c) amino acids 20-35 of SEQ ID NO: 1;
(d) SEQ ID NO: 1;
(e) SEQ ID NO: 2; or
(f) an amino acid sequence having at least 85% identity with SEQ ID NO: 3.
4. The composition of Claim 1 or 2, wherein the targeting sequence comprises the sequence X1-X2-X3-X4-X5-X6-X7-X8-X9-X10-X11-X12-X13-X14-X15-X16, wherein:
Xi is any amino acid or absent;
X2 is phenylalanine (F), leucine (L), isoleucine (I), or methionine (M);
X3 is any amino acid;
X4 is proline (P) or serine (S);
X5 is any amino acid;
Xe is leucine (L), asparagine (N), serine (S), or isoleucine (I);
X7 is valine (V) or isoleucine (I);
Xs is glycine (G);
X9 is proline (P);
X10 is threonine (T) or proline (P);
Xu is leucine (L) or phenylalanine (F);
X12 is proline (P);
X13 is any amino acid;
X14 is any amino acid;
X15 is proline (P), glutamine (Q), or threonine (T); and
Xi6 is proline (P), threonine (T), or serine (S).
5. The composition of any one of Claims 1-3, wherein the targeting sequence, exosporium protein, or exosporium protein fragment further comprises a methionine, serine, or threonine residue at the amino acid position immediately preceding the first amino acid of the targeting sequence, exosporium protein, or exosporium protein fragment.
6. The composition of any one of Claims 1-4, wherein the fusion protein further comprises an amino acid linker between the targeting sequence, the exosporium protein, or the exosporium protein fragment and the enzyme having serine protease activity.
7. The composition of Claim 6, wherein the linker comprises a polyalanine linker, a polyglycine linker, or a linker comprising a mixture of both alanine and glycine residues.
8. A composition of any one of Claims 1-7, wherein the enzyme comprises SEQ ID NO: 4.
9. A composition of any one of Claims 1-7, wherein the enzyme comprises SEQ ID NO: 5.
10. A composition of any one of Claims 1-7, wherein the enzyme comprises SEQ ID NO: 6.
11. The composition of Claim 1 or Claim 2 wherein the recombinant Bacillus cereus family member is derived from Bacillus thuringiensis BT013A.
12. The composition of Claim 2, wherein the recombinant Bacillus cereus family member comprises:
(i) a mutation in a CotE gene;
(ii) a mutation in an ExsY gene;
(iii) a mutation in a CotY gene;
(iv) a mutation in a ExsA gene; and
(v) a mutation in a CotO gene.
13. The composition of Claim 12, wherein the recombinant Bacillus cereus family member comprises a mutation in the ExsY gene.
14. The recombinant Bacillus cereus family member of Claim 13 wherein the recombinant Bacillus cereus family member comprises a knock-out of the ExsY gene.
15. The composition of any one of the preceding claims and an agriculturally acceptable carrier.
16. The composition of any one of the preceding claims wherein the insecticide is selected from the group consisting of acetamiprid, aldicarb, amitraz, beta-cyfluthrin, carbaryl, clothianidin, cyfluthrin, cypermethrin, deltamethrin, endosulfan, ethion, ethiprole, ethoprophos, fenamiphos, fenobucarb, fenthion, fipronil, flubendiamide, fluopyram, flupyradifurone, formetanate, heptanophos, imidacloprid, methamidophos, methiocarb, methomyl, niclosamide, oxydemeton-methyl, phosalone, silafluofen, spirodiclofen, spiromesifen, spirotetramat, thiacloprid, thiodicarb, tralomethrin, triazophos, triflumuron, vamidothion, Bacillus firmus CNMC 1-1582, and Purpureocillium lilacinum strain 251.
17. The composition of any one of the preceding claims wherein the insecticide is clothianidin or fluopyram.
18. A plant seed treated with the composition of any one of the preceding claims.
19. A method for stimulating plant growth and/or promoting plant health and/or controlling nematodes, comprising applying the composition of any one of Claims 1-17 to a plant growth medium, a plant, a plant seed, or an area surrounding a plant or a plant seed.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US202163281648P | 2021-11-20 | 2021-11-20 | |
US63/281,648 | 2021-11-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023092050A1 true WO2023092050A1 (en) | 2023-05-25 |
Family
ID=84488678
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2022/080101 WO2023092050A1 (en) | 2021-11-20 | 2022-11-18 | Beneficial combinations with recombinant bacillus cells expressing a serine protease |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2023092050A1 (en) |
Citations (57)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2906507A1 (en) | 1979-02-20 | 1980-08-28 | Bayer Ag | Plant growth regulating compsn. - contg. alpha amino cyclo:alkanoic acid derivs., e.g. for dwarfing cereals |
US4245432A (en) | 1979-07-25 | 1981-01-20 | Eastman Kodak Company | Seed coatings |
US4272417A (en) | 1979-05-22 | 1981-06-09 | Cargill, Incorporated | Stable protective seed coating |
EP0030287A1 (en) | 1979-11-29 | 1981-06-17 | Bayer Ag | 1-Aminocyclopropanecarboxylic acid derivatives, methods for their production, their use as plant-growth regulators and compositions containing such derivatives |
DE3335514A1 (en) | 1983-09-30 | 1985-04-18 | Bayer Ag, 5090 Leverkusen | 1-METHYLAMINO-CYCLOPROPAN-1-CARBONIC ACID DERIVATIVES |
US4808430A (en) | 1987-02-27 | 1989-02-28 | Yazaki Corporation | Method of applying gel coating to plant seeds |
WO1989010396A1 (en) | 1988-04-28 | 1989-11-02 | Plant Genetic Systems N.V. | Plants with modified stamen cells |
US5123951A (en) | 1986-03-31 | 1992-06-23 | Rhone-Poulenc Nederland B.V. | Synergistic plant growth regulator compositions |
US5876739A (en) | 1996-06-13 | 1999-03-02 | Novartis Ag | Insecticidal seed coating |
US6060051A (en) | 1997-05-09 | 2000-05-09 | Agraquest, Inc. | Strain of bacillus for controlling plant diseases and corn rootworm |
WO2002028186A2 (en) | 2000-10-06 | 2002-04-11 | Monsanto Technology, Llc | Seed treatment with combinations of insecticides |
US6406690B1 (en) | 1995-04-17 | 2002-06-18 | Minrav Industries Ltd. | Bacillus firmus CNCM I-1582 or Bacillus cereus CNCM I-1562 for controlling nematodes |
WO2002080675A1 (en) | 2001-03-21 | 2002-10-17 | Monsanto Technology, Llc | Treated plant seeds with controlled release of active agents |
US20030176428A1 (en) | 1998-11-16 | 2003-09-18 | Schneidersmann Ferdinand Martin | Pesticidal composition for seed treatment |
WO2003076415A1 (en) | 2002-03-12 | 2003-09-18 | Sumitomo Chemical Company, Limited | Pyrimidine compounds and their use as pesticides |
WO2003106457A1 (en) | 2002-06-14 | 2003-12-24 | Syngenta Limited | Spiroindolinepiperidine derivatives |
WO2004099160A1 (en) | 2003-05-12 | 2004-11-18 | Sumitomo Chemical Company, Limited | Pyrimidine compounds and pests controlling composition containing the same |
WO2005085216A1 (en) | 2004-03-05 | 2005-09-15 | Nissan Chemical Industries, Ltd. | Isoxazoline-substituted benzamide compound and noxious organism control agent |
WO2006003494A2 (en) | 2004-06-28 | 2006-01-12 | Syngenta Participations Ag | Piperidine derivatives and their use as insecticides, acaricides, molluscicides or nematicides |
WO2006043635A1 (en) | 2004-10-20 | 2006-04-27 | Kumiai Chemical Industry Co., Ltd. | 3-triazolylphenyl sulfide derivative and insecticide/acaricide/nematicide containing the same as active ingredient |
WO2008134969A1 (en) | 2007-04-30 | 2008-11-13 | Sinochem Corporation | Benzamide compounds and applications thereof |
CN101337940A (en) | 2008-08-12 | 2009-01-07 | 国家农药创制工程技术研究中心 | Nitrogen heterocyclic ring dichlorin allyl ether compounds with insecticidal activity |
CN101337937A (en) | 2008-08-12 | 2009-01-07 | 国家农药创制工程技术研究中心 | N-benz-3-substituted amino pyrazoles compounds with insecticidal activity |
WO2009049851A1 (en) | 2007-10-15 | 2009-04-23 | Syngenta Participations Ag | Spiroheterocyclic pyrrolidine dione derivatives useful as pesticides |
WO2009080250A2 (en) | 2007-12-24 | 2009-07-02 | Syngenta Participations Ag | Insecticidal compounds |
WO2009099929A1 (en) | 2008-02-06 | 2009-08-13 | E. I. Du Pont De Nemours And Company | Mesoionic pesticides |
WO2009116106A1 (en) | 2008-03-21 | 2009-09-24 | Trentino Sviluppo S.P.A. | Trichoderma atroviride sc1 for biocontrol of fungal diseases in plants |
WO2010051926A2 (en) | 2008-11-05 | 2010-05-14 | Bayer Cropscience Aktiengesellschaft | New halogen-substituted bonds |
CN101715774A (en) | 2008-10-09 | 2010-06-02 | 浙江化工科技集团有限公司 | Preparation and use of compound having insecticidal activity |
US20100233124A1 (en) | 2008-02-22 | 2010-09-16 | The Curators Of The University Of Missouri | Bacillus based delivery system and methods of use |
EP2248421A1 (en) | 2009-05-07 | 2010-11-10 | GMI - Gregor-Mendel-Institut für Molekulare Pflanzenbiologie GmbH | Accumulation of biomass in plants |
CN102057925A (en) | 2011-01-21 | 2011-05-18 | 陕西上格之路生物科学有限公司 | Insecticidal composition containing thiacloprid amide and biogenic insecticide |
CN102060818A (en) | 2011-01-07 | 2011-05-18 | 青岛科技大学 | Novel spirodiclofen compound and preparation method and application thereof |
WO2011085575A1 (en) | 2010-01-15 | 2011-07-21 | 江苏省农药研究所股份有限公司 | Ortho-heterocyclyl formanilide compounds, their synthesis methods and use |
WO2011106491A2 (en) | 2010-02-25 | 2011-09-01 | Marrone Bio Innovations, Inc. | Isolated bacterial strain of the genus burkholderia and pesticidal metabolites therefrom |
WO2012000896A2 (en) | 2010-06-28 | 2012-01-05 | Bayer Cropscience Ag | Heterocyclic compounds as agents for pest control |
WO2012029672A1 (en) | 2010-08-31 | 2012-03-08 | Meiji Seikaファルマ株式会社 | Noxious organism control agent |
WO2012034403A1 (en) | 2010-09-14 | 2012-03-22 | 中化蓝天集团有限公司 | Fluoromethoxypyrazole anthranilamide compounds, synthesization methods and uses thereof |
CN102391261A (en) | 2011-10-14 | 2012-03-28 | 上海交通大学 | N-substituted dioxazine compound as well as preparation method and application thereof |
WO2013032693A2 (en) | 2011-08-27 | 2013-03-07 | Marrone Bio Innovations, Inc. | Isolated bacterial strain of the genus burkholderia and pesticidal metabolites therefrom-formulations and uses |
WO2013050317A1 (en) | 2011-10-03 | 2013-04-11 | Syngenta Limited | Polymorphs of an isoxazoline derivative |
CN103109816A (en) | 2013-01-25 | 2013-05-22 | 青岛科技大学 | Thiobenzamide compounds and application thereof |
CN103232431A (en) | 2013-01-25 | 2013-08-07 | 青岛科技大学 | Dihalogenated pyrazole amide compound and its use |
WO2013144213A1 (en) | 2012-03-30 | 2013-10-03 | Basf Se | N-substituted pyridinylidene compounds and derivatives for combating animal pests |
WO2013162716A2 (en) | 2012-04-27 | 2013-10-31 | Dow Agrosciences Llc | Pesticidal compositions and processes related thereto |
CN103524422A (en) | 2013-10-11 | 2014-01-22 | 中国农业科学院植物保护研究所 | Benzimidazole derivative, and preparation method and purpose thereof |
US20140213448A1 (en) | 2012-04-27 | 2014-07-31 | Dow Agrosciences Llc | Pesticidal compositions and processes related thereto |
US20160031948A1 (en) | 2013-03-15 | 2016-02-04 | Spogen Biotech Inc. | Fusion proteins and methods for stimulating plant growth, protecting plants, and immobilizing bacillus spores on plants |
WO2016044661A1 (en) | 2014-09-17 | 2016-03-24 | Spogen Biotech Inc. | Fusion proteins, recombinant bacteria, and methods for using recombinant bacteria |
WO2017066094A1 (en) | 2015-10-12 | 2017-04-20 | Pioneer Hi-Bred International, Inc. | Biologicals and their use in plants |
US20170290339A1 (en) * | 2014-09-17 | 2017-10-12 | Bayer Cropscience Lp | Compositions comprising recombinant bacillus cells and an insecticide |
US20170295798A1 (en) * | 2014-09-17 | 2017-10-19 | Bayer Cropscience Lp | Compositions comprising recombinant bacillus cells and a fungicide |
WO2017205258A1 (en) | 2016-05-26 | 2017-11-30 | Novozymes Bioag A/S | Bacillus and lipochitooligosaccharide for improving plant growth |
US20190387738A1 (en) * | 2014-09-17 | 2019-12-26 | Basf Corporation | Compositions comprising recombinant bacillus cells and an insecticide |
US20200029573A1 (en) * | 2017-02-17 | 2020-01-30 | Bayer Cropscience Lp | Compositions comprising recombinant bacillus cells and an insecticide |
US20200296960A1 (en) * | 2019-03-19 | 2020-09-24 | Bayer Cropscience Lp | Fusion proteins, recombinant bacteria, and exosporium fragments for pest control and plant health |
WO2021102380A1 (en) * | 2019-11-22 | 2021-05-27 | Bayer Cropscience Lp | Methods of fermentation of recombinant bacillus spores |
-
2022
- 2022-11-18 WO PCT/US2022/080101 patent/WO2023092050A1/en unknown
Patent Citations (61)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2906507A1 (en) | 1979-02-20 | 1980-08-28 | Bayer Ag | Plant growth regulating compsn. - contg. alpha amino cyclo:alkanoic acid derivs., e.g. for dwarfing cereals |
US4272417A (en) | 1979-05-22 | 1981-06-09 | Cargill, Incorporated | Stable protective seed coating |
US4245432A (en) | 1979-07-25 | 1981-01-20 | Eastman Kodak Company | Seed coatings |
EP0030287A1 (en) | 1979-11-29 | 1981-06-17 | Bayer Ag | 1-Aminocyclopropanecarboxylic acid derivatives, methods for their production, their use as plant-growth regulators and compositions containing such derivatives |
DE3335514A1 (en) | 1983-09-30 | 1985-04-18 | Bayer Ag, 5090 Leverkusen | 1-METHYLAMINO-CYCLOPROPAN-1-CARBONIC ACID DERIVATIVES |
US5123951A (en) | 1986-03-31 | 1992-06-23 | Rhone-Poulenc Nederland B.V. | Synergistic plant growth regulator compositions |
US4808430A (en) | 1987-02-27 | 1989-02-28 | Yazaki Corporation | Method of applying gel coating to plant seeds |
WO1989010396A1 (en) | 1988-04-28 | 1989-11-02 | Plant Genetic Systems N.V. | Plants with modified stamen cells |
US6406690B1 (en) | 1995-04-17 | 2002-06-18 | Minrav Industries Ltd. | Bacillus firmus CNCM I-1582 or Bacillus cereus CNCM I-1562 for controlling nematodes |
US5876739A (en) | 1996-06-13 | 1999-03-02 | Novartis Ag | Insecticidal seed coating |
US6060051A (en) | 1997-05-09 | 2000-05-09 | Agraquest, Inc. | Strain of bacillus for controlling plant diseases and corn rootworm |
US20030176428A1 (en) | 1998-11-16 | 2003-09-18 | Schneidersmann Ferdinand Martin | Pesticidal composition for seed treatment |
WO2002028186A2 (en) | 2000-10-06 | 2002-04-11 | Monsanto Technology, Llc | Seed treatment with combinations of insecticides |
WO2002080675A1 (en) | 2001-03-21 | 2002-10-17 | Monsanto Technology, Llc | Treated plant seeds with controlled release of active agents |
WO2003076415A1 (en) | 2002-03-12 | 2003-09-18 | Sumitomo Chemical Company, Limited | Pyrimidine compounds and their use as pesticides |
WO2003106457A1 (en) | 2002-06-14 | 2003-12-24 | Syngenta Limited | Spiroindolinepiperidine derivatives |
WO2004099160A1 (en) | 2003-05-12 | 2004-11-18 | Sumitomo Chemical Company, Limited | Pyrimidine compounds and pests controlling composition containing the same |
WO2005085216A1 (en) | 2004-03-05 | 2005-09-15 | Nissan Chemical Industries, Ltd. | Isoxazoline-substituted benzamide compound and noxious organism control agent |
WO2006003494A2 (en) | 2004-06-28 | 2006-01-12 | Syngenta Participations Ag | Piperidine derivatives and their use as insecticides, acaricides, molluscicides or nematicides |
WO2006043635A1 (en) | 2004-10-20 | 2006-04-27 | Kumiai Chemical Industry Co., Ltd. | 3-triazolylphenyl sulfide derivative and insecticide/acaricide/nematicide containing the same as active ingredient |
WO2008134969A1 (en) | 2007-04-30 | 2008-11-13 | Sinochem Corporation | Benzamide compounds and applications thereof |
WO2009049851A1 (en) | 2007-10-15 | 2009-04-23 | Syngenta Participations Ag | Spiroheterocyclic pyrrolidine dione derivatives useful as pesticides |
WO2009080250A2 (en) | 2007-12-24 | 2009-07-02 | Syngenta Participations Ag | Insecticidal compounds |
WO2009099929A1 (en) | 2008-02-06 | 2009-08-13 | E. I. Du Pont De Nemours And Company | Mesoionic pesticides |
US20100233124A1 (en) | 2008-02-22 | 2010-09-16 | The Curators Of The University Of Missouri | Bacillus based delivery system and methods of use |
US20110281316A1 (en) | 2008-02-22 | 2011-11-17 | The Curators Of The University Of Missouri | Bacillus based delivery system and methods of use |
WO2009116106A1 (en) | 2008-03-21 | 2009-09-24 | Trentino Sviluppo S.P.A. | Trichoderma atroviride sc1 for biocontrol of fungal diseases in plants |
US8431120B2 (en) | 2008-03-21 | 2013-04-30 | Trentino Sviluppo S.P.A. | Trichoderma atroviride SC1 for biocontrol of fungal diseases in plants |
CN101337937A (en) | 2008-08-12 | 2009-01-07 | 国家农药创制工程技术研究中心 | N-benz-3-substituted amino pyrazoles compounds with insecticidal activity |
CN101337940A (en) | 2008-08-12 | 2009-01-07 | 国家农药创制工程技术研究中心 | Nitrogen heterocyclic ring dichlorin allyl ether compounds with insecticidal activity |
CN101715774A (en) | 2008-10-09 | 2010-06-02 | 浙江化工科技集团有限公司 | Preparation and use of compound having insecticidal activity |
WO2010051926A2 (en) | 2008-11-05 | 2010-05-14 | Bayer Cropscience Aktiengesellschaft | New halogen-substituted bonds |
EP2248421A1 (en) | 2009-05-07 | 2010-11-10 | GMI - Gregor-Mendel-Institut für Molekulare Pflanzenbiologie GmbH | Accumulation of biomass in plants |
WO2011085575A1 (en) | 2010-01-15 | 2011-07-21 | 江苏省农药研究所股份有限公司 | Ortho-heterocyclyl formanilide compounds, their synthesis methods and use |
WO2011106491A2 (en) | 2010-02-25 | 2011-09-01 | Marrone Bio Innovations, Inc. | Isolated bacterial strain of the genus burkholderia and pesticidal metabolites therefrom |
WO2012000896A2 (en) | 2010-06-28 | 2012-01-05 | Bayer Cropscience Ag | Heterocyclic compounds as agents for pest control |
WO2012029672A1 (en) | 2010-08-31 | 2012-03-08 | Meiji Seikaファルマ株式会社 | Noxious organism control agent |
WO2012034403A1 (en) | 2010-09-14 | 2012-03-22 | 中化蓝天集团有限公司 | Fluoromethoxypyrazole anthranilamide compounds, synthesization methods and uses thereof |
CN102060818A (en) | 2011-01-07 | 2011-05-18 | 青岛科技大学 | Novel spirodiclofen compound and preparation method and application thereof |
CN102057925A (en) | 2011-01-21 | 2011-05-18 | 陕西上格之路生物科学有限公司 | Insecticidal composition containing thiacloprid amide and biogenic insecticide |
WO2013032693A2 (en) | 2011-08-27 | 2013-03-07 | Marrone Bio Innovations, Inc. | Isolated bacterial strain of the genus burkholderia and pesticidal metabolites therefrom-formulations and uses |
WO2013050317A1 (en) | 2011-10-03 | 2013-04-11 | Syngenta Limited | Polymorphs of an isoxazoline derivative |
CN102391261A (en) | 2011-10-14 | 2012-03-28 | 上海交通大学 | N-substituted dioxazine compound as well as preparation method and application thereof |
WO2013144213A1 (en) | 2012-03-30 | 2013-10-03 | Basf Se | N-substituted pyridinylidene compounds and derivatives for combating animal pests |
WO2013162715A2 (en) | 2012-04-27 | 2013-10-31 | Dow Agrosciences Llc | Pesticidal compositions and processes related thereto |
WO2013162716A2 (en) | 2012-04-27 | 2013-10-31 | Dow Agrosciences Llc | Pesticidal compositions and processes related thereto |
US20140213448A1 (en) | 2012-04-27 | 2014-07-31 | Dow Agrosciences Llc | Pesticidal compositions and processes related thereto |
CN103232431A (en) | 2013-01-25 | 2013-08-07 | 青岛科技大学 | Dihalogenated pyrazole amide compound and its use |
CN103109816A (en) | 2013-01-25 | 2013-05-22 | 青岛科技大学 | Thiobenzamide compounds and application thereof |
US20160031948A1 (en) | 2013-03-15 | 2016-02-04 | Spogen Biotech Inc. | Fusion proteins and methods for stimulating plant growth, protecting plants, and immobilizing bacillus spores on plants |
CN103524422A (en) | 2013-10-11 | 2014-01-22 | 中国农业科学院植物保护研究所 | Benzimidazole derivative, and preparation method and purpose thereof |
US20190387738A1 (en) * | 2014-09-17 | 2019-12-26 | Basf Corporation | Compositions comprising recombinant bacillus cells and an insecticide |
US20160108096A1 (en) | 2014-09-17 | 2016-04-21 | Spogen Biotech Inc. | Fusion proteins, recombinant bacteria, and methods for using recombinant bacteria |
US20170290339A1 (en) * | 2014-09-17 | 2017-10-12 | Bayer Cropscience Lp | Compositions comprising recombinant bacillus cells and an insecticide |
US20170295798A1 (en) * | 2014-09-17 | 2017-10-19 | Bayer Cropscience Lp | Compositions comprising recombinant bacillus cells and a fungicide |
WO2016044661A1 (en) | 2014-09-17 | 2016-03-24 | Spogen Biotech Inc. | Fusion proteins, recombinant bacteria, and methods for using recombinant bacteria |
WO2017066094A1 (en) | 2015-10-12 | 2017-04-20 | Pioneer Hi-Bred International, Inc. | Biologicals and their use in plants |
WO2017205258A1 (en) | 2016-05-26 | 2017-11-30 | Novozymes Bioag A/S | Bacillus and lipochitooligosaccharide for improving plant growth |
US20200029573A1 (en) * | 2017-02-17 | 2020-01-30 | Bayer Cropscience Lp | Compositions comprising recombinant bacillus cells and an insecticide |
US20200296960A1 (en) * | 2019-03-19 | 2020-09-24 | Bayer Cropscience Lp | Fusion proteins, recombinant bacteria, and exosporium fragments for pest control and plant health |
WO2021102380A1 (en) * | 2019-11-22 | 2021-05-27 | Bayer Cropscience Lp | Methods of fermentation of recombinant bacillus spores |
Non-Patent Citations (16)
Title |
---|
"Manual on Development and Use of FAO and WHO Specifications for Pesticides, FAO Plant Production and Protection Papers", 2004, article "Pesticide Specifications", pages: 173 |
"The Pesticide Manual", 2006, BRITISH CROP PROTECTION COUNCIL |
BAUR ET AL., PESTICIDE SCIENCE, vol. 51, 1997, pages 131 - 152 |
CAS , no. 1398-61-4 |
CAS , no. 9012-76-4 |
CAS, no. 1204776-60-2 |
COLBY, S.R.: "Calculating Synergistic and Antagonistic Responses of Herbicide Combinations", WEEDS, vol. 15, 1967, pages 20 - 22, XP001112961 |
DUNNE ET AL.: "Overproduction of an Inducible Extracellular Serine Protease Improves Biological Control of Pythium ultimum by Stenotrophomonas maltophilia strain W81", MICROBIOLOGY, vol. 146, 2000, pages 2069 - 2078, XP055576706, DOI: 10.1099/00221287-146-8-2069 |
GENG, C. ET AL.: "A Novel Serine Protease, Sep1, from Bacillus firmus DS-1 Has Nematicidal Activity and Degrades Multiple Intestinal-Associated Nematode Proteins", SCIENTIFIC REPORTS, vol. 6, no. 25012, 2016 |
ISOBOLES: "A Graphic Representation of Synergism in Pesticides", NETH. J. PLANT PATH., vol. 70, 1964, pages 73 - 80, XP009013480, DOI: 10.1007/BF01974412 |
PENG ET AL.: "The Regulation of Exosporium-Related Genes in Bacillus thuringiensis", NATURE SCIENTIFIC REPORTS, vol. 6, no. 19005, 2016, pages 1 - 12 |
PIETR ET AL., ZESZ. NAUK. A R W SZCZECINIE, vol. 161, 1993, pages 125 - 137 |
PRIEST ET AL.: "Population Structure and Evolution of the Bacillus cereus Group", J. BACTERIOLOGY, vol. 186, no. 23, 2004, pages 7959 - 7970, XP002542279, DOI: 10.1128/JB.186.23.7959-7970.2004 |
R. WEGLER: "Chemie der Pflanzenschutz- und Schadlingsbekampfungsmittel", vol. 2, 1970, SPRINGER VERLAG, pages: 401 - 412 |
THOMPSON ET AL.: "Targeting of the BclA and BclB Proteins to the Bacillus anthracis Spore Surface", MOLECULAR MICROBIOLOGY, vol. 70, no. 2, 2008, pages 421 - 34, XP002788681, DOI: 10.1111/j.1365-2958.2008.06420.x |
YEN, Y. ET AL.: "An Antifungal Protease Produced by Pseudomonas aeruginosa M-1001 with Shrimp and Crab Shell Powder as a Carbon Source", ENZYME AND MICROBIAL TECHNOLOGY, vol. 39, 2006, pages 311 - 317, XP025095241, DOI: 10.1016/j.enzmictec.2005.11.050 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11856956B2 (en) | Compositions comprising recombinant Bacillus cells and an insecticide | |
US12016912B2 (en) | Compositions comprising recombinant Bacillus cells and an insecticide | |
US11406107B2 (en) | Compositions comprising recombinant bacillus cells and another biological control agent | |
US10757939B2 (en) | Insecticidal and nematocidal active ingredient combinations | |
TR201808095T4 (en) | Compositions comprising a biological control agent and an insecticide. | |
US20200029573A1 (en) | Compositions comprising recombinant bacillus cells and an insecticide | |
WO2023092050A1 (en) | Beneficial combinations with recombinant bacillus cells expressing a serine protease |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22822817 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |