WO2023084586A1 - Swing motor - Google Patents
Swing motor Download PDFInfo
- Publication number
- WO2023084586A1 WO2023084586A1 PCT/JP2021/041146 JP2021041146W WO2023084586A1 WO 2023084586 A1 WO2023084586 A1 WO 2023084586A1 JP 2021041146 W JP2021041146 W JP 2021041146W WO 2023084586 A1 WO2023084586 A1 WO 2023084586A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- coil
- stator
- oscillating motor
- motor according
- rotor
- Prior art date
Links
- 238000004804 winding Methods 0.000 claims abstract description 36
- 230000004907 flux Effects 0.000 claims abstract description 14
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 4
- 229910052782 aluminium Inorganic materials 0.000 claims description 4
- 230000002093 peripheral effect Effects 0.000 claims description 3
- 230000004043 responsiveness Effects 0.000 abstract description 10
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 8
- 230000004048 modification Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000005405 multipole Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B06—GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
- B06B—METHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
- B06B1/00—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
- B06B1/02—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
- B06B1/04—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with electromagnetism
Definitions
- the present disclosure relates to an oscillating motor that does not rotate once, such as a galvanometer motor.
- a laser processing machine that processes a workpiece by irradiating it with a laser beam.
- a laser processing machine includes, for example, a galvanometer scanner that emits laser light at the tip of an arm of a multi-axis robot.
- a galvanometer scanner includes a galvanometer motor, which is an example of a swing motor, and a plurality of mirrors rotatable around the rotation axis of the galvanometer motor.
- the galvanometer scanner scans by reflecting the laser light emitted from the laser light source on the mirrors by rotationally driving the plurality of mirrors with a galvanometer motor.
- An oscillating motor such as a galvano motor, for example, differs from a servomotor of a machine tool in that it does not make one rotation and only oscillates within a range of about ⁇ 20 degrees.
- an oscillating motor having a radial gap structure is generally used from the viewpoint of ease of manufacture.
- the swing motor is required to obtain high torque to drive the mirror.
- conventional oscillating motors with a radial gap structure in order to obtain high torque while maintaining high responsiveness by reducing the inertia of the rotor, it is necessary to extend the magnets and coils in the direction of the rotation axis. There is a problem of making
- An object of the present disclosure is to provide a small oscillating motor with high responsiveness and high torque.
- One aspect of the present disclosure is an oscillating motor used in an industrial machine, comprising a rotating shaft, a rotor having one of a magnet and a coil, and a stator having the other of the magnet and the coil,
- the magnet is arranged such that the magnetic flux is parallel to the rotating shaft
- the coil is an oscillating motor having windings, at least a part of which extends in the radial direction of the rotating shaft.
- FIG. 1 is a perspective view of a galvanometer motor according to a first embodiment; FIG. It is a perspective view which shows a laser light source and a galvanometer scanner roughly.
- 1 is a cross-sectional view schematically showing a galvanometer motor according to a first embodiment;
- FIG. 3 is a perspective view showing magnets and coils of the galvanometer motor according to the first embodiment;
- FIG. 1 is a plan view of a galvanometer motor according to a first embodiment;
- FIG. 4 is an enlarged plan view of the coil of the galvano motor according to the first embodiment;
- FIG. 1 is a side view of a galvanometer motor according to a first embodiment;
- FIG. It is a perspective view of a galvanometer motor according to a second embodiment.
- FIG. 11 is a cross-sectional view schematically showing a galvanometer motor according to a third embodiment; It is a sectional view showing typically the galvanometer motor concerning a 4th embodiment.
- the oscillating motor of the present disclosure is an oscillating motor that does not make one rotation and is used in industrial machines such as machine tools and robots.
- a galvanometer motor is applied as an example of the swing motor of the present disclosure.
- the galvano-motor according to the present embodiment is, for example, a single-phase drive galvano-motor that scans with laser light.
- the galvano-motor according to the present embodiment is a galvano-motor with an axial gap structure, unlike a galvano-motor with a radial gap structure that is conventionally used as a galvano-motor. Therefore, the galvanometer motor according to the present embodiment can obtain high responsiveness and high torque in spite of its small size.
- FIG. 1 is a perspective view of the galvanometer motor 1 according to the first embodiment.
- the galvanometer motor 1 according to this embodiment includes a rotating shaft 2 , a rotor 3 , a stator 4 and a yoke 5 .
- the rotor 3 is connected to and fixed to the rotating shaft 2, and the stator 4 and the yoke 5 have circular holes formed at their centers with clearances, and the rotating shaft 2 is rotatably inserted therethrough.
- the stator 4 has a first stator 41 and a second stator 42
- the yoke 5 has a first yoke 51 and a second yoke 52 .
- the rotor 3 , the first stator 41 , the second stator 42 , the first yoke 51 and the second yoke 52 each have a disk shape and are arranged in a concentric circle along the axial direction of the rotating shaft 2 .
- the rotor 3 is arranged substantially in the center of the rotating shaft 2 in the axial direction.
- a first stator 41 and a first yoke 51 are arranged in this order from the rotor 3 side on one side of the rotor 3 in the axial direction, and a second stator 42 and a first yoke 51 are arranged in this order from the rotor 3 side on the other side of the rotor 3 in the axial direction.
- 2 yokes 52 are arranged.
- the galvanometer motor 1 is housed in, for example, a motor case (not shown).
- FIG. 2 is a perspective view schematically showing the laser light source 11 and the galvanometer scanner 10.
- FIG. 2 the laser light source 11 and the galvanometer scanner 10 are arranged above the table T on which the workpiece W is placed during laser processing.
- the laser light source 11 is composed of various laser oscillators including a laser medium, an optical resonator, an excitation source, etc., and emits laser light toward the galvanometer scanner 10 .
- the galvanometer scanner 10 relates to the present embodiment, in which a plurality of mirrors 12, 12 for sequentially reflecting laser light emitted from a laser light source 11 and rotationally driving the plurality of mirrors 12, 12 around rotation axes Ra and Rb, respectively.
- Galvano motors 1, 1 are provided.
- the number and arrangement of the mirror 12 and the galvano motor 1 are not particularly limited.
- the laser light emitted from the laser light source 11 reaches the work W on the table T after being sequentially reflected by the two mirrors 12 , 12 .
- the two galvano motors 1, 1 rotate the two mirrors 12, 12, respectively, the incident angle of the laser light incident on each mirror 12, 12 changes continuously.
- the laser beam reaching the workpiece W can be scanned along a predetermined scanning path on the upper surface of the workpiece W.
- FIG. 3 is a cross-sectional view schematically showing the galvanometer motor 1 according to the first embodiment.
- illustration of the yoke 5 consisting of the first yoke 51 and the second yoke 52 is omitted.
- the rotor 3 includes magnets
- the stator 4 includes coils.
- the galvano motor 1 since the galvano motor 1 according to the present embodiment has an axial gap structure, the rotor 3 and the stator 4 (the first stator 41 and the second stator 42) that rotate relatively around the rotation axis 2 are opposed to each other across a predetermined gap in the axial direction of the rotating shaft 2 .
- the magnetic gap generated between the rotor 3 having magnets and the stator 4 having coils, that is, the direction of the magnetic flux M is parallel to the axial direction of the rotating shaft 2 .
- the rotor 3 since the rotor 3 is sandwiched between the first stator 41 and the second stator 42 with a gap, both sides of the magnets constituting the rotor 3 can be effectively used in the axial direction. High torque can be obtained.
- the rotating shaft 2 is arranged on the central axis of the cylindrical galvano motor 1 .
- the rotating shaft 2 functions as an output shaft that outputs the rotational driving force of the galvano motor 1 .
- the rotating shaft 2 is connected with the mirror 12 of the galvanometer scanner 10 described above. As a result, the rotation of the rotating shaft 2 changes the angle of the mirror 12 , thereby changing the incident angle of the laser beam incident on the mirror 12 .
- FIG. 4 is a perspective view showing magnets and coils of the galvanometer motor 1 according to the first embodiment.
- FIG. 5 is a plan view of the galvanometer motor 1 according to the first embodiment.
- FIG. 6 is an enlarged plan view of the coil of the galvanometer motor according to the first embodiment.
- FIG. 7 is a side view of the galvanometer motor 1 according to the first embodiment. Note that FIG. 5 omits illustration of a first yoke 51, which constitutes the yoke 5 and will be described later.
- the rotor 3 is formed in a disc shape, and is connected and fixed to the rotating shaft 2 passing through its center. More specifically, the rotor 3 is fixed substantially in the center of the rotating shaft 2 in the axial direction, so that the rotor 3 and the rotating shaft 2 are rotatable relative to the stator 4 and the yoke 5. It has become. By making the rotor 3 disk-shaped with a small thickness in the axial direction of the rotating shaft 2, the inertia of the rotor 3 can be reduced, and high responsiveness can be obtained.
- the rotor 3 is configured including magnets.
- a permanent magnet is preferably used as the magnet.
- the rotor 3 has S poles 3a and N poles 3b equidistantly spaced in the circumferential direction so that the fan-shaped magnets adjacent to each other in the circumferential direction have opposite polarities.
- Disc-shaped magnets arranged alternately.
- the example shown in FIG. 4 has a four-pole structure in which two fan-shaped S poles 3a and two fan-shaped N poles 3b with a central angle of 90 degrees are alternately arranged in the circumferential direction.
- the number of poles is not limited within the range in which the maximum swing angle can be operated, and for example, an 8-pole structure may be used.
- the rotor 3 is magnetized in both one and the other axial direction of the rotating shaft 2 .
- the rotor 3 has a double-sided multi-pole structure, which makes it possible to effectively utilize the magnetic force of the magnets and obtain higher torque.
- Both the first stator 41 and the second stator 42 constituting the stator 4 are formed in a disc shape, and have a circular hole formed in the center thereof with a gap so that the rotating shaft 2 can rotate. is inserted.
- FIGS. 4 and 5 show only the fan-shaped stator piece 40 that constitutes the disk-shaped first stator 41 .
- both the first stator 41 and the second stator 42 constituting the stator 4 are preferably configured by connecting a plurality of fan-shaped stator pieces 40 in the circumferential direction.
- FIGS. 4 to 7 four fan-shaped stator pieces 40 with a central angle of 90 degrees are connected in the circumferential direction to form a first stator 41 and a second stator 42, respectively.
- the number of poles of the rotor 3 is not limited to this. may be concatenated.
- the stator 4 is configured including a coil. As shown in FIGS. 4 and 5, each stator piece 40 of the first stator 41 and the second stator 42 constituting the stator 4 has a fan-like outer shape as described above, and the rotating shaft 2 has a through-hole 4a passing through in the axial direction. That is, the stator 4 is a coreless coil that does not include an iron core inside the coil. As a result, according to the galvanometer motor 1 according to the present embodiment, it is possible to avoid the occurrence of cogging due to the attractive force between the core (iron core) and the magnet, so high responsiveness can be obtained.
- stator pieces 40 made up of a plurality of fan-shaped coils are arranged to face the above-described plurality of fan-shaped magnets.
- stator 4 of this embodiment has windings at least partially extending in the rotation radial direction D of the rotating shaft 2, as shown in FIGS.
- a coil is wound along the fan-shaped outer shape in a fan-like manner. More specifically, as shown in FIG. 9 described later, the coil is wound a plurality of times from the outer circumference toward the inner circumference of the fan shape, and is also wound a plurality of times in the axial direction of the rotating shaft 2 while shifting the position.
- a portion of the winding direction CW of the coil extends along the radial direction D of rotation, and the winding portion of the coil wound along the radial direction D of rotation contributes to the generation of torque.
- a coil formed by printing (etching) a coil pattern on a printed circuit board may be used as the coil that constitutes the stator 4 of the present embodiment.
- the coil can be made thinner.
- the thickness of the winding can be changed arbitrarily. Therefore, as shown in FIG. 6, the circumferential windings 4c that do not contribute to torque can be made thicker than the radial windings 4d that contribute to torque, thereby reducing the resistance. can be done.
- Both the first yoke 51 and the second yoke 52 that constitute the yoke 5 are formed in a disk shape, and the rotary shaft 2 is rotatably inserted into a circular hole formed in the center with a gap. .
- the yoke 5 is connected to the stator 4 and fixed together. Specifically, the first yoke 51 is fixed to the first stator 41 and the second yoke 52 is fixed to the second stator 42 .
- the yoke 5 improves the magnetic flux density and provides high torque.
- the yoke 5 has a larger diameter than the stator 4, which has a larger diameter than the rotor 3. Therefore, the yoke 5 composed of the first yoke 51 and the second yoke 52 is arranged to rotate in the axial direction of the rotating shaft 2 of the rotor 3 through the stator 4 while exposing the radial outer peripheral surface of the rotor 3 . are arranged to cover both sides of the As a result, the magnetic flux density can be further improved and a higher torque can be obtained.
- the galvanometer motor 1 having the above configuration operates as follows. First, a single-phase current is passed through a plurality of coils forming the stator 4 of the galvanometer motor 1 according to this embodiment. Then, a rotating magnetic field is generated between the stator 4 made up of coils and the rotor 3 made up of magnets. Specifically, torque is generated between the winding portion of the coil wound around the stator 4 along the rotation radial direction D and the rotor 3 made of a magnet. As a result, the rotor 3 and the rotating shaft 2 rotate integrally with respect to the yoke 5 and the stator 4 .
- the magnets are arranged so that the magnetic flux M is parallel to the rotating shaft 2 .
- the coil is wound so that at least a part of the winding extends in the rotation radial direction D of the rotating shaft 2 . That is, since the galvano-motor 1 according to the present embodiment employs the galvano-motor with the axial gap structure, high responsiveness and high torque can be obtained in spite of its small size.
- a coreless coil that does not include an iron core is used as the coil.
- a single-phase drive galvano motor 1 is applied as the swing motor of the present disclosure. Since the oscillating motor of the present disclosure does not need to make one revolution, a single-phase driven galvano motor can be used, thereby allowing a compact and simple structure.
- the rotor 3 is composed of disk-shaped magnets, so the inertia of the rotor 3 can be reduced, and higher responsiveness can be obtained.
- both surfaces of the rotor 3 in the axial direction of the rotating shaft 2 are magnetized with different magnetic poles, higher torque can be obtained.
- the stator 4 is composed of coils composed of a plurality of fan-shaped stator pieces 40, and is arranged to face the rotor 3 composed of magnets. As a result, torque can be generated more efficiently, so that higher torque can be obtained.
- the magnetic flux density is further improved, and a higher torque can be obtained.
- a pair of disc-shaped first yoke 51 and second yoke 52 are arranged so as to cover both sides of the rotating shaft 2 of the rotor 3 in the axial direction while the outer peripheral surface of the rotor 3 in the radial direction is exposed. Therefore, the magnetic flux density can be further improved, and a higher torque can be obtained.
- the galvano-motor according to the second embodiment differs from the galvano-motor 1 according to the first embodiment in that the stator is composed of rectangular coils. Another difference is that the yoke is composed of a plurality of fan-shaped yoke pieces divided in the circumferential direction. Other than these, the configuration is the same as that of the first embodiment.
- FIG. 8 is a perspective view of a galvanometer motor 1A according to the second embodiment.
- FIG. 9 is a diagram for explaining the relationship between the winding direction of the coil and the torque.
- FIG. 10 is a plan view of the galvanometer motor 1A according to the second embodiment.
- the stator 6 of the present embodiment includes a plurality of rectangular first fixed portions 61 and a plurality of fixed portions 61 arranged on both sides in the axial direction of the rotating shaft 2 so as to sandwich the rotor 3 therebetween. and a rectangular second stator 62 .
- each of the first stators 61 and the second stators 62 is arranged at equal intervals in the circumferential direction.
- the number of these rectangular stators in the circumferential direction is not particularly limited, and is set according to the number of poles of the rotor 3 .
- first stators 61 and eight second stators 62 may be arranged at equal intervals in the circumferential direction.
- the rotation shaft 2 and a first yoke 71, which will be described later, are omitted, and only one of the four first stators 61 is shown.
- Both the first stator 61 and the second stator 62 are arranged such that their longitudinal directions are along the radial direction D of rotation.
- the first stator 61 and the second stator 62 are formed by winding coils around a first yoke 71 and a second yoke 72, respectively, which constitute the yoke 7 described later.
- both the first stator 61 and the second stator 62 are wound in the radial direction D of rotation, and then wound in the axial direction of the rotating shaft 2, as indicated by arrows in FIG. Then, it is wound again along the rotational radial direction D, and the coil is wound while shifting the position in the circumferential direction. That is, the central axis C of the winding of the coil is orthogonal to the magnetic flux M along the axial direction of the rotating shaft 2 .
- FIG. 9 shows an enlarged view of the stator 4 made up of fan-shaped coils of the galvano motor 1 according to the first embodiment, as a diagram for explaining the relationship between the winding direction of the coil and the torque.
- the stator 4 of the first embodiment when a coil with a large width is used, an inner turn occurs at the fan-shaped bent portion, which contributes to the torque in the rotational radial direction D The linear winding portion along the is reduced.
- the winding 40a of the inner coil has a smaller straight winding portion along the rotational radial direction D than the windings 40b and 40c of the outer coil. I understand.
- the stator 6 of the present embodiment by winding the coil as described above, the inner winding at the bent portion occurs at the winding portion in the axial direction that does not contribute to the torque. Since there is only a loss, it is possible to increase the winding portion of the coil along the rotation radial direction D that contributes to the torque, compared to the first embodiment. That is, according to the present embodiment, it is possible to reduce the wasted portion of the coil that does not contribute to the torque, and obtain higher torque.
- the yoke 7 of this embodiment has a first yoke 71 and a second yoke 72 .
- Both the first yoke 71 and the second yoke 72 are formed in a disk shape, and the rotating shaft 2 is rotatably inserted through a circular hole formed at the center of the yoke 71 with a gap.
- Both the first yoke 71 and the second yoke 72 are configured by connecting a plurality of sector-shaped yoke pieces 71a and 72a, which are divided into a disk-shaped yoke at equal intervals in the circumferential direction. Note that FIG. 10 shows only one of the four first stators 61 for convenience of explanation.
- the first yoke 71 and the second yoke 72 are each composed of four fan-shaped yoke pieces 71a and 72a that are equally spaced in the circumferential direction.
- the number of divisions in the circumferential direction is not particularly limited, and is set according to the number of poles of the rotor 3 .
- the first yoke 71 and the second yoke 72 are respectively divided into eight pieces 71a and 72a in the circumferential direction at equal intervals.
- FIG. 11 is a cross-sectional view schematically showing a modification of the galvanometer motor 1A according to the second embodiment.
- a galvanometer motor 1B of a modified example shown in FIG. 11 uses two rotors 3 used in the first and second embodiments, and rotates a rectangular stator 6 so that the direction of the magnetic flux is reversed. It is configured by sandwiching with a gap from both sides of the direction. As a result, both the front and back sides of the stator 6 can be effectively used, and a higher torque can be obtained.
- the galvano motor according to the third embodiment is different in that two galvano motors 1 according to the first embodiment are connected in the axial direction of the rotating shaft 2, and two adjacent yokes are made common to one yoke. do. Other than these, the configuration is the same as that of the first embodiment.
- FIG. 12 is a cross-sectional view schematically showing a galvanometer motor 1C according to the third embodiment.
- the galvanometer motor 1 ⁇ /b>C according to this embodiment includes two sets of units 8 each including a rotor 3 and a stator 4 in the axial direction of the rotation shaft 2 .
- the number of units 8 is not limited, and may be three or more.
- one disk-shaped yoke 53 is arranged between two sets of units 8, 8 adjacent to each other. That is, when two galvano motors 1 according to the first embodiment are connected in the axial direction of the rotating shaft 2, two adjacent yokes are made common to one yoke. Thereby, a higher torque can be obtained while suppressing an increase in size.
- the galvano-motor according to the fourth embodiment is different in that two galvano-motors 1 according to the first embodiment are connected in the axial direction of the rotating shaft 2 .
- the configuration is the same as that of the first embodiment.
- FIG. 13 is a cross-sectional view schematically showing a galvanometer motor 1D according to the fourth embodiment.
- the galvano motor 1D according to this embodiment includes two sets of units 8 each including the rotor 3 and the stator 4 in the axial direction of the rotating shaft 2 .
- the number of units 8 is not limited, and may be three or more.
- two disc-shaped yokes 52 and 51 are continuously arranged between two sets of units 8 and 8 adjacent to each other. That is, it has a structure in which two galvanometer motors 1 according to the first embodiment are connected as they are in the axial direction of the rotating shaft 2 . As a result, a higher torque can be obtained simply by connecting the galvanometer motors 1 in the axial direction.
- the rotor 3 is formed in a disc shape in the above embodiment, it is not limited to this.
- the rotor 3 may be fan-shaped. In this case, it is preferable to arrange the fan-shaped rotors 3 symmetrically with respect to the rotation axis 2 .
- the rotor 3 is composed of magnets and the stator 4 is composed of coils, but the present invention is not limited to this.
- the rotor 3 may be composed of coils, and the stator 4 may be composed of magnets.
- the rotor 3 When the rotor 3 is composed of coils, aluminum electric wires can be used as the coils. In this case, the weight of the coil can be reduced as compared with conventional general copper wire, so the inertia of the coil can be reduced. In addition, since aluminum is cheaper than copper and has a stable price, the use of aluminum for coils has a great cost advantage.
- the coils may be formed by, for example, printing (etching) a coil pattern on a printed circuit board.
- the coil can be made thinner, so the inertia of the coil can be reduced.
- the circumferential windings that do not contribute to the torque can be made thicker than the radial windings that contribute to the torque, thereby reducing the resistance. .
- a coreless coil that does not contain an iron core is used as the coil, but it is not limited to this.
- a core coil including an iron core within the coil may be used.
- the yoke 5 is provided, but the present invention is not limited to this. A configuration without the yoke 5 may be used.
- a galvano motor is applied to the swing motor of the present disclosure, but it is not limited to this.
- a swing motor for industrial machinery such as one used for a gripper of a robot hand, can be used.
- the oscillating motor of the present disclosure is a single-phase drive type, but it is not limited to this.
- the oscillating motor of the present disclosure may be of a three-phase drive type.
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Reciprocating, Oscillating Or Vibrating Motors (AREA)
Abstract
Provided is a small swing motor with which high responsiveness and high torque can be obtained. This swing motor used for industrial equipment includes a rotary shaft, a rotor having one of a magnet and a coil, and a stator having the other of the magnet and the coil. The magnet is arranged in such a manner that the magnetic flux thereof is parallel to the rotary shaft. The coil has a winding wire at least a part of which extends in the radial direction of rotation of the rotary shaft.
Description
本開示は、ガルバノモータ等の一回転しない揺動モータに関する。
The present disclosure relates to an oscillating motor that does not rotate once, such as a galvanometer motor.
従来、ワークにレーザ光を照射して加工するレーザ加工機が知られている。レーザ加工機は、例えば、多軸ロボットのアームの先端に、レーザ光を出射するガルバノスキャナを備える。
Conventionally, a laser processing machine that processes a workpiece by irradiating it with a laser beam is known. A laser processing machine includes, for example, a galvanometer scanner that emits laser light at the tip of an arm of a multi-axis robot.
ガルバノスキャナは、揺動モータの一例として挙げられるガルバノモータと、ガルバノモータの回転軸まわりに回転可能なミラーを複数備える。ガルバノスキャナは、これら複数のミラーをガルバノモータで回転駆動することにより、レーザ光源から出射されたレーザ光をミラーで反射させて走査する。
A galvanometer scanner includes a galvanometer motor, which is an example of a swing motor, and a plurality of mirrors rotatable around the rotation axis of the galvanometer motor. The galvanometer scanner scans by reflecting the laser light emitted from the laser light source on the mirrors by rotationally driving the plurality of mirrors with a galvanometer motor.
ガルバノモータ等の揺動モータは、例えば工作機械のサーボモータとは異なり、1回転せずに、±20度程度の範囲内で揺動動作のみを行う特徴がある。このような揺動モータとしては、作り易さの観点から、ラジアルギャップ構造の揺動モータが一般的に利用されている。
An oscillating motor such as a galvano motor, for example, differs from a servomotor of a machine tool in that it does not make one rotation and only oscillates within a range of about ±20 degrees. As such an oscillating motor, an oscillating motor having a radial gap structure is generally used from the viewpoint of ease of manufacture.
ところで揺動モータでは、ミラーを駆動するために高トルクが得られることが求められる。しかしながら、従来のラジアルギャップ構造の揺動モータでは、回転子のイナーシャを小さくして高応答性を維持しつつ高トルクを得ようとすると、磁石やコイルを回転軸方向に延ばす必要があるため大型化するという課題がある。
By the way, the swing motor is required to obtain high torque to drive the mirror. However, in conventional oscillating motors with a radial gap structure, in order to obtain high torque while maintaining high responsiveness by reducing the inertia of the rotor, it is necessary to extend the magnets and coils in the direction of the rotation axis. There is a problem of making
本開示は、高応答性及び高トルクが得られる小型の揺動モータを提供することを目的とする。
An object of the present disclosure is to provide a small oscillating motor with high responsiveness and high torque.
本開示の一態様は、産業機械に用いられる揺動モータであって、回転軸と、磁石及びコイルの一方を有する回転子と、前記磁石及びコイルの他方を有する固定子と、を備え、前記磁石は、前記回転軸に対して磁束が平行となるように配置され、前記コイルは、少なくとも一部が前記回転軸の回転径方向に延びる巻線を有する、揺動モータである。
One aspect of the present disclosure is an oscillating motor used in an industrial machine, comprising a rotating shaft, a rotor having one of a magnet and a coil, and a stator having the other of the magnet and the coil, The magnet is arranged such that the magnetic flux is parallel to the rotating shaft, and the coil is an oscillating motor having windings, at least a part of which extends in the radial direction of the rotating shaft.
本開示によれば、高応答性及び高トルクが得られる小型の揺動モータを提供することができる。
According to the present disclosure, it is possible to provide a small oscillating motor with high responsiveness and high torque.
以下、本開示の実施形態について、図面を参照して詳細に説明する。なお、第2実施形態以降の説明において、他の実施形態と共通する構成については同一の符号を付し、他の実施形態と相違する構成、動作及び効果についてのみ説明する。
Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. In the description of the second and subsequent embodiments, the same reference numerals are given to the configurations common to the other embodiments, and only the configurations, operations, and effects that are different from the other embodiments will be described.
[第1実施形態]
本開示の揺動モータは、工作機械やロボット等の産業機械に用いられる一回転しない揺動モータである。本実施形態では、本開示の揺動モータの一例として、ガルバノモータを適用したものである。本実施形態に係るガルバノモータは、例えばレーザ光を走査する単相駆動式のガルバノモータである。また、本実施形態に係るガルバノモータは、従来、ガルバノモータとして一般的なラジアルギャップ構造のガルバノモータとは異なり、アキシャルギャップ構造のガルバノモータである。そのため、本実施形態に係るガルバノモータは、小型であるにも関わらず、高応答性及び高トルクが得られる。 [First embodiment]
The oscillating motor of the present disclosure is an oscillating motor that does not make one rotation and is used in industrial machines such as machine tools and robots. In this embodiment, a galvanometer motor is applied as an example of the swing motor of the present disclosure. The galvano-motor according to the present embodiment is, for example, a single-phase drive galvano-motor that scans with laser light. Further, the galvano-motor according to the present embodiment is a galvano-motor with an axial gap structure, unlike a galvano-motor with a radial gap structure that is conventionally used as a galvano-motor. Therefore, the galvanometer motor according to the present embodiment can obtain high responsiveness and high torque in spite of its small size.
本開示の揺動モータは、工作機械やロボット等の産業機械に用いられる一回転しない揺動モータである。本実施形態では、本開示の揺動モータの一例として、ガルバノモータを適用したものである。本実施形態に係るガルバノモータは、例えばレーザ光を走査する単相駆動式のガルバノモータである。また、本実施形態に係るガルバノモータは、従来、ガルバノモータとして一般的なラジアルギャップ構造のガルバノモータとは異なり、アキシャルギャップ構造のガルバノモータである。そのため、本実施形態に係るガルバノモータは、小型であるにも関わらず、高応答性及び高トルクが得られる。 [First embodiment]
The oscillating motor of the present disclosure is an oscillating motor that does not make one rotation and is used in industrial machines such as machine tools and robots. In this embodiment, a galvanometer motor is applied as an example of the swing motor of the present disclosure. The galvano-motor according to the present embodiment is, for example, a single-phase drive galvano-motor that scans with laser light. Further, the galvano-motor according to the present embodiment is a galvano-motor with an axial gap structure, unlike a galvano-motor with a radial gap structure that is conventionally used as a galvano-motor. Therefore, the galvanometer motor according to the present embodiment can obtain high responsiveness and high torque in spite of its small size.
図1は、第1実施形態に係るガルバノモータ1の斜視図である。図1に示されるように、本実施形態に係るガルバノモータ1は、回転軸2と、回転子3と、固定子4と、ヨーク5と、を備える。回転子3は回転軸2に連結されて固定されており、固定子4及びヨーク5は、中心部にそれぞれ形成された円孔に隙間を有して回転軸2が回転可能に挿通されている。固定子4は、第1固定子41及び第2固定子42を有し、ヨーク5は、第1ヨーク51及び第2ヨーク52を有する。
FIG. 1 is a perspective view of the galvanometer motor 1 according to the first embodiment. As shown in FIG. 1 , the galvanometer motor 1 according to this embodiment includes a rotating shaft 2 , a rotor 3 , a stator 4 and a yoke 5 . The rotor 3 is connected to and fixed to the rotating shaft 2, and the stator 4 and the yoke 5 have circular holes formed at their centers with clearances, and the rotating shaft 2 is rotatably inserted therethrough. . The stator 4 has a first stator 41 and a second stator 42 , and the yoke 5 has a first yoke 51 and a second yoke 52 .
回転子3、第1固定子41、第2固定子42、第1ヨーク51及び第2ヨーク52は、それぞれ円盤状を有し、回転軸2の軸方向に並んで同心円状に配置される。具体的には、回転軸2の軸方向の略中央に回転子3が配置される。回転子3の軸方向の一方側には、回転子3側から順に第1固定子41と第1ヨーク51が配置され、他方側には、回転子3側から順に第2固定子42と第2ヨーク52が配置される。即ち、回転子3は、第1固定子41と第2固定子42の間に挟まれて配置され、これら第1固定子41と第2固定子42の軸方向外側を覆うように第1ヨーク51と第2ヨーク52が配置されている。ガルバノモータ1は、例えば、図示しないモータケースに収容される。
The rotor 3 , the first stator 41 , the second stator 42 , the first yoke 51 and the second yoke 52 each have a disk shape and are arranged in a concentric circle along the axial direction of the rotating shaft 2 . Specifically, the rotor 3 is arranged substantially in the center of the rotating shaft 2 in the axial direction. A first stator 41 and a first yoke 51 are arranged in this order from the rotor 3 side on one side of the rotor 3 in the axial direction, and a second stator 42 and a first yoke 51 are arranged in this order from the rotor 3 side on the other side of the rotor 3 in the axial direction. 2 yokes 52 are arranged. That is, the rotor 3 is sandwiched between the first stator 41 and the second stator 42, and the first yoke is arranged so as to cover the outer sides of the first stator 41 and the second stator 42 in the axial direction. 51 and a second yoke 52 are arranged. The galvanometer motor 1 is housed in, for example, a motor case (not shown).
先ず、本実施形態に係るガルバノモータ1を適用したガルバノスキャナについて説明する。図2は、レーザ光源11及びガルバノスキャナ10を概略的に示す斜視図である。図2に示されるように、レーザ光源11及びガルバノスキャナ10は、レーザ加工時において、ワークWが載置されたテーブルTの上方に配置される。
First, a galvanometer scanner to which the galvanometer motor 1 according to this embodiment is applied will be described. FIG. 2 is a perspective view schematically showing the laser light source 11 and the galvanometer scanner 10. FIG. As shown in FIG. 2, the laser light source 11 and the galvanometer scanner 10 are arranged above the table T on which the workpiece W is placed during laser processing.
レーザ光源11は、レーザ媒質、光共振器及び励起源等を備える種々のレーザ発振器で構成され、ガルバノスキャナ10に向かってレーザ光を出射する。ガルバノスキャナ10は、レーザ光源11から出射されたレーザ光を順次反射させる複数のミラー12,12と、複数のミラー12,12のそれぞれを回転軸線Ra,Rbまわりで回転駆動する本実施形態に係るガルバノモータ1,1と、を備える。なお、ミラー12及びガルバノモータ1の個数及び配置等は、特に制限されない。
The laser light source 11 is composed of various laser oscillators including a laser medium, an optical resonator, an excitation source, etc., and emits laser light toward the galvanometer scanner 10 . The galvanometer scanner 10 relates to the present embodiment, in which a plurality of mirrors 12, 12 for sequentially reflecting laser light emitted from a laser light source 11 and rotationally driving the plurality of mirrors 12, 12 around rotation axes Ra and Rb, respectively. Galvano motors 1, 1 are provided. The number and arrangement of the mirror 12 and the galvano motor 1 are not particularly limited.
図2に示されるように、レーザ光源11から出射されたレーザ光は、2つのミラー12,12で順次反射された後、テーブルT上のワークWに到達する。2つのガルバノモータ1,1が2つのミラー12,12をそれぞれ回転駆動すると、各ミラー12,12に入射するレーザ光の入射角が連続的に変化する。その結果、ワークWに到達するレーザ光を、ワークWの上面において所定の走査経路に沿って走査可能となる。
As shown in FIG. 2, the laser light emitted from the laser light source 11 reaches the work W on the table T after being sequentially reflected by the two mirrors 12 , 12 . When the two galvano motors 1, 1 rotate the two mirrors 12, 12, respectively, the incident angle of the laser light incident on each mirror 12, 12 changes continuously. As a result, the laser beam reaching the workpiece W can be scanned along a predetermined scanning path on the upper surface of the workpiece W. FIG.
図3は、第1実施形態に係るガルバノモータ1を模式的に示す断面図である。図3では、第1ヨーク51及び第2ヨーク52からなるヨーク5の記載を省略して示している。本実施形態では、回転子3は磁石を含んで構成され、固定子4はコイルを含んで構成される。
FIG. 3 is a cross-sectional view schematically showing the galvanometer motor 1 according to the first embodiment. In FIG. 3, illustration of the yoke 5 consisting of the first yoke 51 and the second yoke 52 is omitted. In this embodiment, the rotor 3 includes magnets, and the stator 4 includes coils.
上述したように本実施形態に係るガルバノモータ1はアキシャルギャップ構造を有するため、回転軸2まわりに相対的に回転する回転子3と固定子4(第1固定子41及び第2固定子42)が、回転軸2の軸方向に所定のギャップを挟んで対向配置される。これにより、磁石を有する回転子3と、コイルを有する固定子4との間に発生する磁気ギャップ、即ち磁束Mの方向は、回転軸2の軸方向に平行となる。また、回転子3を第1固定子41と第2固定子42とでギャップを有して挟み込む構造のため、回転子3を構成する磁石の軸方向の両面を有効利用でき、小型でありながら高トルクが得られるようになっている。
As described above, since the galvano motor 1 according to the present embodiment has an axial gap structure, the rotor 3 and the stator 4 (the first stator 41 and the second stator 42) that rotate relatively around the rotation axis 2 are opposed to each other across a predetermined gap in the axial direction of the rotating shaft 2 . As a result, the magnetic gap generated between the rotor 3 having magnets and the stator 4 having coils, that is, the direction of the magnetic flux M is parallel to the axial direction of the rotating shaft 2 . In addition, since the rotor 3 is sandwiched between the first stator 41 and the second stator 42 with a gap, both sides of the magnets constituting the rotor 3 can be effectively used in the axial direction. High torque can be obtained.
図1及び図3に示されるように、回転軸2は、円柱状のガルバノモータ1の中心軸上に配置される。回転軸2は、ガルバノモータ1の回転駆動力を出力する出力軸として機能する。回転軸2には、上述のガルバノスキャナ10のミラー12が連結される。これにより、回転軸2が回転することでミラー12の角度が変化し、ミラー12に入射するレーザ光の入射角が変化する。
As shown in FIGS. 1 and 3 , the rotating shaft 2 is arranged on the central axis of the cylindrical galvano motor 1 . The rotating shaft 2 functions as an output shaft that outputs the rotational driving force of the galvano motor 1 . The rotating shaft 2 is connected with the mirror 12 of the galvanometer scanner 10 described above. As a result, the rotation of the rotating shaft 2 changes the angle of the mirror 12 , thereby changing the incident angle of the laser beam incident on the mirror 12 .
本実施形態の回転子3、固定子4及びヨーク5について、図4~図7を参照して詳しく説明する。図4は、第1実施形態に係るガルバノモータ1の磁石及びコイルを示す斜視図である。図5は、第1実施形態に係るガルバノモータ1の平面図である。図6は、第1実施形態に係るガルバノモータのコイルの拡大平面図である。図7は、第1実施形態に係るガルバノモータ1の側面図である。なお、図5では、ヨーク5を構成する後述の第1ヨーク51の記載を省略して示している。
The rotor 3, stator 4 and yoke 5 of this embodiment will be described in detail with reference to FIGS. 4 to 7. FIG. FIG. 4 is a perspective view showing magnets and coils of the galvanometer motor 1 according to the first embodiment. FIG. 5 is a plan view of the galvanometer motor 1 according to the first embodiment. FIG. 6 is an enlarged plan view of the coil of the galvanometer motor according to the first embodiment. FIG. 7 is a side view of the galvanometer motor 1 according to the first embodiment. Note that FIG. 5 omits illustration of a first yoke 51, which constitutes the yoke 5 and will be described later.
回転子3は、円盤状に形成され、その中心を貫通する回転軸2に連結されて固定される。より詳しくは、回転子3は、回転軸2の軸方向の略中央に固定されており、これにより、回転子3及び回転軸2は、固定子4及びヨーク5に対して相対的に回転可能となっている。回転子3を、回転軸2の軸方向の厚みが薄い円盤状とすることにより、回転子3のイナーシャを低減でき、高い応答性が得られる。
The rotor 3 is formed in a disc shape, and is connected and fixed to the rotating shaft 2 passing through its center. More specifically, the rotor 3 is fixed substantially in the center of the rotating shaft 2 in the axial direction, so that the rotor 3 and the rotating shaft 2 are rotatable relative to the stator 4 and the yoke 5. It has become. By making the rotor 3 disk-shaped with a small thickness in the axial direction of the rotating shaft 2, the inertia of the rotor 3 can be reduced, and high responsiveness can be obtained.
回転子3は、磁石を含んで構成される。磁石としては、永久磁石が好ましく用いられる。図4や図5等に示されるように、回転子3は、周方向に隣り合う扇状の磁石が互いに逆の極性となるように、S極3aとN極3bとが周方向に等間隔で交互に配置されたディスク型磁石である。図4に示す例では、中心角が90度の扇状のS極3aとN極3bとが周方向に交互に2つずつ配置された4極構造を有する。ただし、最大揺動角を動作可能な範囲内において極数は限定されず、例えば8極構造でもよい。
The rotor 3 is configured including magnets. A permanent magnet is preferably used as the magnet. As shown in FIGS. 4 and 5, the rotor 3 has S poles 3a and N poles 3b equidistantly spaced in the circumferential direction so that the fan-shaped magnets adjacent to each other in the circumferential direction have opposite polarities. Disc-shaped magnets arranged alternately. The example shown in FIG. 4 has a four-pole structure in which two fan-shaped S poles 3a and two fan-shaped N poles 3b with a central angle of 90 degrees are alternately arranged in the circumferential direction. However, the number of poles is not limited within the range in which the maximum swing angle can be operated, and for example, an 8-pole structure may be used.
また図4や図5等に示されるように、回転子3の着磁方向は、回転軸2の軸方向の一方側と他方側の両方向である。即ち、回転子3は、両面多極構造を有し、磁石の磁力をより有効利用でき、より高いトルクを得ることができる。
Also, as shown in FIGS. 4 and 5, the rotor 3 is magnetized in both one and the other axial direction of the rotating shaft 2 . In other words, the rotor 3 has a double-sided multi-pole structure, which makes it possible to effectively utilize the magnetic force of the magnets and obtain higher torque.
固定子4を構成する第1固定子41及び第2固定子42はいずれも、円盤状に形成され、その中心部に形成された円孔に、隙間を有して回転軸2が回転可能に挿通される。なお、説明の便宜上、図4及び図5では、円盤状の第1固定子41を構成する、外形が扇状の固定子片40のみを示している。このように、固定子4を構成する第1固定子41及び第2固定子42はいずれも、複数の扇状の固定子片40が周方向に連結されて構成されることが好ましい。
Both the first stator 41 and the second stator 42 constituting the stator 4 are formed in a disc shape, and have a circular hole formed in the center thereof with a gap so that the rotating shaft 2 can rotate. is inserted. For convenience of explanation, FIGS. 4 and 5 show only the fan-shaped stator piece 40 that constitutes the disk-shaped first stator 41 . In this manner, both the first stator 41 and the second stator 42 constituting the stator 4 are preferably configured by connecting a plurality of fan-shaped stator pieces 40 in the circumferential direction.
図4~図7に示す例では、中心角が90度の扇状の固定子片40が周方向に4つ連結されることにより、第1固定子41及び第2固定子42がそれぞれ形成されている。ただし、これに限定されず、回転子3の極数に応じて、例えば回転子3が8極構造である場合には、中心角が45度の扇状の固定子片40を周方向に8つ連結してもよい。
In the examples shown in FIGS. 4 to 7, four fan-shaped stator pieces 40 with a central angle of 90 degrees are connected in the circumferential direction to form a first stator 41 and a second stator 42, respectively. there is However, the number of poles of the rotor 3 is not limited to this. may be concatenated.
固定子4は、コイルを含んで構成される。図4及び図5に示されるように、固定子4を構成する第1固定子41及び第2固定子42の各固定子片40は、上述したように外形が扇状であるとともに、回転軸2の軸方向に貫通する貫通孔4aを内部に有する。即ち、固定子4は、コイル内に鉄芯を含まないコアレスコイルである。これにより、本実施形態に係るガルバノモータ1によれば、コア(鉄心)と磁石の吸引力に起因するコギングの発生を回避できるため、高い応答性を得ることができる。
The stator 4 is configured including a coil. As shown in FIGS. 4 and 5, each stator piece 40 of the first stator 41 and the second stator 42 constituting the stator 4 has a fan-like outer shape as described above, and the rotating shaft 2 has a through-hole 4a passing through in the axial direction. That is, the stator 4 is a coreless coil that does not include an iron core inside the coil. As a result, according to the galvanometer motor 1 according to the present embodiment, it is possible to avoid the occurrence of cogging due to the attractive force between the core (iron core) and the magnet, so high responsiveness can be obtained.
本実施形態では、複数の扇状のコイルからなる固定子片40が、上述した複数の扇状の磁石に対向して配置される。これにより、本実施形態に係るガルバノモータ1によれば、より効率良くトルクを発生させることができるため、より高いトルクを得ることが可能となる。
In this embodiment, the stator pieces 40 made up of a plurality of fan-shaped coils are arranged to face the above-described plurality of fan-shaped magnets. As a result, according to the galvanometer motor 1 according to the present embodiment, torque can be generated more efficiently, so that higher torque can be obtained.
また、本実施形態の固定子4は、図4及び図5に示されるように、少なくとも一部が回転軸2の回転径方向Dに延びる巻線を有する。図5に示されるように扇状の固定子片40では、扇状の外形に沿って扇状に周回するようにコイルが巻かれる。より詳しくは、コイルは、後述の図9に示されるように扇状の外周側から内周側に向かって複数周回巻かれるとともに、回転軸2の軸方向にも位置をずらしながら複数回巻かれる。これにより、コイルの巻線方向CWの一部が回転径方向Dに沿うようになっており、この回転径方向Dに沿って巻かれるコイルの巻線部分がトルクの発生に寄与する。
In addition, the stator 4 of this embodiment has windings at least partially extending in the rotation radial direction D of the rotating shaft 2, as shown in FIGS. As shown in FIG. 5, in the fan-shaped stator piece 40, a coil is wound along the fan-shaped outer shape in a fan-like manner. More specifically, as shown in FIG. 9 described later, the coil is wound a plurality of times from the outer circumference toward the inner circumference of the fan shape, and is also wound a plurality of times in the axial direction of the rotating shaft 2 while shifting the position. As a result, a portion of the winding direction CW of the coil extends along the radial direction D of rotation, and the winding portion of the coil wound along the radial direction D of rotation contributes to the generation of torque.
なお、本実施形態の固定子4を構成するコイルとして、例えばプリント基板上にコイルのパターンを印刷(エッチング)することにより形成したものを用いてもよい。この場合には、コイルを薄型化することができる。
It should be noted that a coil formed by printing (etching) a coil pattern on a printed circuit board, for example, may be used as the coil that constitutes the stator 4 of the present embodiment. In this case, the coil can be made thinner.
またこの場合には、プリント基板上にコイルを印刷するため、任意に巻線の太さを変更することができる。そのため、図6に示されるように、トルクに寄与する径方向の巻線4dよりも、トルクに寄与しない周方向の巻線4cの線を太くすることができ、これにより、抵抗を小さくすることができる。
Also, in this case, since the coil is printed on the printed circuit board, the thickness of the winding can be changed arbitrarily. Therefore, as shown in FIG. 6, the circumferential windings 4c that do not contribute to torque can be made thicker than the radial windings 4d that contribute to torque, thereby reducing the resistance. can be done.
ヨーク5を構成する第1ヨーク51及び第2ヨーク52はいずれも、円盤状に形成され、その中心部に形成された円孔に、隙間を有して回転軸2が回転可能に挿通される。図6に示されるように、ヨーク5は、固定子4に接続されて互いに固定される。具体的に、第1ヨーク51は第1固定子41に固定され、第2ヨーク52は第2固定子42に固定される。このヨーク5により、磁束密度が向上するとともに、高トルクが得られる。
Both the first yoke 51 and the second yoke 52 that constitute the yoke 5 are formed in a disk shape, and the rotary shaft 2 is rotatably inserted into a circular hole formed in the center with a gap. . As shown in FIG. 6, the yoke 5 is connected to the stator 4 and fixed together. Specifically, the first yoke 51 is fixed to the first stator 41 and the second yoke 52 is fixed to the second stator 42 . The yoke 5 improves the magnetic flux density and provides high torque.
また図6に示されるように、ヨーク5は、回転子3より大径な固定子4よりも、大きな径を有する。そのため、第1ヨーク51及び第2ヨーク52で構成されるヨーク5は、固定子4を介して、回転子3の径方向の外周面を露出した状態で回転子3の回転軸2の軸方向の両面を覆うように配置されている。これにより、磁束密度がより向上するとともに、より高いトルクが得ることが可能である。
Also, as shown in FIG. 6, the yoke 5 has a larger diameter than the stator 4, which has a larger diameter than the rotor 3. Therefore, the yoke 5 composed of the first yoke 51 and the second yoke 52 is arranged to rotate in the axial direction of the rotating shaft 2 of the rotor 3 through the stator 4 while exposing the radial outer peripheral surface of the rotor 3 . are arranged to cover both sides of the As a result, the magnetic flux density can be further improved and a higher torque can be obtained.
以上の構成を備える本実施形態に係るガルバノモータ1は、次のように動作する。
先ず、本実施形態に係るガルバノモータ1の固定子4を構成する複数のコイルに、単相電流を流す。すると、コイルからなる固定子4と、磁石からなる回転子3との間で回転磁界が発生する。具体的には、回転径方向Dに沿って固定子4に巻かれたコイルの巻線部分と、磁石からなる回転子3との間においてトルクが発生する。これにより、ヨーク5及び固定子4に対して、相対的に回転子3及び回転軸2が一体回転する。 Thegalvanometer motor 1 according to this embodiment having the above configuration operates as follows.
First, a single-phase current is passed through a plurality of coils forming thestator 4 of the galvanometer motor 1 according to this embodiment. Then, a rotating magnetic field is generated between the stator 4 made up of coils and the rotor 3 made up of magnets. Specifically, torque is generated between the winding portion of the coil wound around the stator 4 along the rotation radial direction D and the rotor 3 made of a magnet. As a result, the rotor 3 and the rotating shaft 2 rotate integrally with respect to the yoke 5 and the stator 4 .
先ず、本実施形態に係るガルバノモータ1の固定子4を構成する複数のコイルに、単相電流を流す。すると、コイルからなる固定子4と、磁石からなる回転子3との間で回転磁界が発生する。具体的には、回転径方向Dに沿って固定子4に巻かれたコイルの巻線部分と、磁石からなる回転子3との間においてトルクが発生する。これにより、ヨーク5及び固定子4に対して、相対的に回転子3及び回転軸2が一体回転する。 The
First, a single-phase current is passed through a plurality of coils forming the
本実施形態に係るガルバノモータ1の効果を纏めると、以下の通りである。
The effects of the galvano motor 1 according to this embodiment are summarized as follows.
本実施形態では、回転軸2に対して磁束Mが平行となるように磁石を配置した。また、少なくとも一部が回転軸2の回転径方向Dに延びる巻線を有するようにコイルを巻く構成とした。即ち、本実施形態に係るガルバノモータ1では、アキシャルギャップ構造のガルバノモータを採用したため、小型であるにも関わらず、高応答性及び高トルクを得ることができる。
In this embodiment, the magnets are arranged so that the magnetic flux M is parallel to the rotating shaft 2 . Also, the coil is wound so that at least a part of the winding extends in the rotation radial direction D of the rotating shaft 2 . That is, since the galvano-motor 1 according to the present embodiment employs the galvano-motor with the axial gap structure, high responsiveness and high torque can be obtained in spite of its small size.
また本実施形態では、コイルとして、コイル内に鉄芯を含まないコアレスコイルを用いた。これにより、本実施形態に係るガルバノモータ1によれば、コア(鉄心)と磁石の吸引力に起因するコギングの発生を回避できるため、高い応答性を得ることができる。
In addition, in this embodiment, a coreless coil that does not include an iron core is used as the coil. As a result, according to the galvanometer motor 1 according to the present embodiment, it is possible to avoid the occurrence of cogging due to the attractive force between the core (iron core) and the magnet, so high responsiveness can be obtained.
また本実施形態では、本開示の揺動モータとして、単相駆動式のガルバノモータ1を適用した。本開示の揺動モータでは、一回転する必要は無いため、単相駆動式のガルバノモータを用いることができ、これにより、小型で簡単な構造とすることができる。
In addition, in this embodiment, a single-phase drive galvano motor 1 is applied as the swing motor of the present disclosure. Since the oscillating motor of the present disclosure does not need to make one revolution, a single-phase driven galvano motor can be used, thereby allowing a compact and simple structure.
また本実施形態では、円盤状の磁石で回転子3を構成したため、回転子3のイナーシャを低減でき、より高い応答性を得ることができる。加えて、回転軸2の軸方向の回転子3の両面が異なる磁極で着磁される構成としたため、より高いトルクを得ることができる。
In addition, in this embodiment, the rotor 3 is composed of disk-shaped magnets, so the inertia of the rotor 3 can be reduced, and higher responsiveness can be obtained. In addition, since both surfaces of the rotor 3 in the axial direction of the rotating shaft 2 are magnetized with different magnetic poles, higher torque can be obtained.
また本実施形態では、複数の扇状の固定子片40からなるコイルで固定子4を構成し、これを磁石からなる回転子3に対して対向配置する構成とした。これにより、より効率良くトルクを発生させることができるため、より高いトルクを得ることができる。
In addition, in this embodiment, the stator 4 is composed of coils composed of a plurality of fan-shaped stator pieces 40, and is arranged to face the rotor 3 composed of magnets. As a result, torque can be generated more efficiently, so that higher torque can be obtained.
また本実施形態では、固定子4と接続されるヨーク5を設けたため、磁束密度がより向上し、より高いトルクを得ることができる。加えて、回転子3の径方向の外周面を露出した状態で、回転子3の回転軸2の軸方向の両面を覆うように一対の円盤状の第1ヨーク51及び第2ヨーク52を配置したため、磁束密度をさらに向上でき、さらに高いトルクを得ることができる。
Also, in this embodiment, since the yoke 5 connected to the stator 4 is provided, the magnetic flux density is further improved, and a higher torque can be obtained. In addition, a pair of disc-shaped first yoke 51 and second yoke 52 are arranged so as to cover both sides of the rotating shaft 2 of the rotor 3 in the axial direction while the outer peripheral surface of the rotor 3 in the radial direction is exposed. Therefore, the magnetic flux density can be further improved, and a higher torque can be obtained.
[第2実施形態]
第2実施形態に係るガルバノモータは、第1実施形態に係るガルバノモータ1と比べて、固定子が矩形状のコイルで構成される点が相違する。また、ヨークが周方向に分割された複数の扇状のヨーク片からなる点が相違する。これら以外は、第1実施形態と同一の構成である。 [Second embodiment]
The galvano-motor according to the second embodiment differs from the galvano-motor 1 according to the first embodiment in that the stator is composed of rectangular coils. Another difference is that the yoke is composed of a plurality of fan-shaped yoke pieces divided in the circumferential direction. Other than these, the configuration is the same as that of the first embodiment.
第2実施形態に係るガルバノモータは、第1実施形態に係るガルバノモータ1と比べて、固定子が矩形状のコイルで構成される点が相違する。また、ヨークが周方向に分割された複数の扇状のヨーク片からなる点が相違する。これら以外は、第1実施形態と同一の構成である。 [Second embodiment]
The galvano-motor according to the second embodiment differs from the galvano-
第2実施形態に係るガルバノモータについて、図8~図10を参照して詳しく説明する。図8は、第2実施形態に係るガルバノモータ1Aの斜視図である。図9は、コイルの巻線方向とトルクとの関係を説明するための図である。図10は、第2実施形態に係るガルバノモータ1Aの平面図である。
A galvanometer motor according to the second embodiment will be described in detail with reference to FIGS. 8 to 10. FIG. FIG. 8 is a perspective view of a galvanometer motor 1A according to the second embodiment. FIG. 9 is a diagram for explaining the relationship between the winding direction of the coil and the torque. FIG. 10 is a plan view of the galvanometer motor 1A according to the second embodiment.
図8に示されるように、本実施形態の固定子6は、回転子3を挟み込むように回転軸2の軸方向の両側にそれぞれ配置された、複数の矩形状の第1固定61と複数の矩形状の第2固定子62と、を有する。図8に示す例では、第1固定子61及び第2固定子62はいずれも、周方向に等間隔で4つずつ配置されている。ただし、これら矩形状の固定子の周方向の数は特に限定されず、回転子3の極数に応じて設定される。例えば、回転子3が周方向に8極であれば、それに応じて第1固定子61及び第2固定子62をそれぞれ周方向に等間隔で8つ配置してもよい。なお図8では、説明の便宜上、回転軸2及び後述の第1ヨーク71を省略して示しており、4つの第1固定子61のうち1つのみを示している。
As shown in FIG. 8, the stator 6 of the present embodiment includes a plurality of rectangular first fixed portions 61 and a plurality of fixed portions 61 arranged on both sides in the axial direction of the rotating shaft 2 so as to sandwich the rotor 3 therebetween. and a rectangular second stator 62 . In the example shown in FIG. 8, each of the first stators 61 and the second stators 62 is arranged at equal intervals in the circumferential direction. However, the number of these rectangular stators in the circumferential direction is not particularly limited, and is set according to the number of poles of the rotor 3 . For example, if the rotor 3 has eight poles in the circumferential direction, eight first stators 61 and eight second stators 62 may be arranged at equal intervals in the circumferential direction. 8, for convenience of explanation, the rotation shaft 2 and a first yoke 71, which will be described later, are omitted, and only one of the four first stators 61 is shown.
第1固定子61及び第2固定子62はいずれも、その長手方向が回転径方向Dに沿うように配置されている。第1固定子61及び第2固定子62は、後述のヨーク7を構成する第1ヨーク71及び第2ヨーク72にそれぞれコイルが巻かれることで形成される。具体的に、第1固定子61及び第2固定子62はいずれも、図8中に矢印で示すように、コイルを回転径方向Dに沿って巻いた後、回転軸2の軸方向に引き回してから再度、回転径方向Dに沿うように巻き、これを周方向の位置をずらしながらコイルが巻かれる。即ち、コイルの巻線の中心軸Cが、回転軸2の軸方向に沿う磁束Mと直交している。
Both the first stator 61 and the second stator 62 are arranged such that their longitudinal directions are along the radial direction D of rotation. The first stator 61 and the second stator 62 are formed by winding coils around a first yoke 71 and a second yoke 72, respectively, which constitute the yoke 7 described later. Specifically, both the first stator 61 and the second stator 62 are wound in the radial direction D of rotation, and then wound in the axial direction of the rotating shaft 2, as indicated by arrows in FIG. Then, it is wound again along the rotational radial direction D, and the coil is wound while shifting the position in the circumferential direction. That is, the central axis C of the winding of the coil is orthogonal to the magnetic flux M along the axial direction of the rotating shaft 2 .
ここで、図9は、コイルの巻線方向とトルクとの関係を説明するための図として、第1実施形態に係るガルバノモータ1の扇状のコイルからなる固定子4の拡大図を示している。この図9に示されるように、第1実施形態の扇状の固定子4では、幅の大きいコイルを用いた場合には、扇状の屈曲部で内回りが発生し、トルクに寄与する回転径方向Dに沿う直線状の巻線部分が減少する。図9に示す例では、内回りのコイルの巻線40aは、これよりも外回りのコイルの巻線40b,40cよりも、トルクに寄与する回転径方向Dに沿う直線状の巻線部分が減少することが分かる。
Here, FIG. 9 shows an enlarged view of the stator 4 made up of fan-shaped coils of the galvano motor 1 according to the first embodiment, as a diagram for explaining the relationship between the winding direction of the coil and the torque. . As shown in FIG. 9, in the fan-shaped stator 4 of the first embodiment, when a coil with a large width is used, an inner turn occurs at the fan-shaped bent portion, which contributes to the torque in the rotational radial direction D The linear winding portion along the is reduced. In the example shown in FIG. 9, the winding 40a of the inner coil has a smaller straight winding portion along the rotational radial direction D than the windings 40b and 40c of the outer coil. I understand.
これに対して本実施形態の固定子6では、上述したようにしてコイルを巻くことにより、屈曲部分における内回りはトルクに寄与しない軸方向の巻線部分で生じることとなり、コイルの線径分のロスのみとなるため、第1実施形態と比べて、トルクに寄与する回転径方向Dに沿うコイルの巻線部分をより多くすることができる。即ち、本実施形態によれば、トルクに寄与しないコイルの無駄部分を低減でき、より高いトルクを得ることができる。
On the other hand, in the stator 6 of the present embodiment, by winding the coil as described above, the inner winding at the bent portion occurs at the winding portion in the axial direction that does not contribute to the torque. Since there is only a loss, it is possible to increase the winding portion of the coil along the rotation radial direction D that contributes to the torque, compared to the first embodiment. That is, according to the present embodiment, it is possible to reduce the wasted portion of the coil that does not contribute to the torque, and obtain higher torque.
本実施形態のヨーク7は、第1ヨーク71及び第2ヨーク72を有する。これら第1ヨーク71及び第2ヨーク72はいずれも、円盤状に形成され、その中心部に形成された円孔に、隙間を有して回転軸2が回転可能に挿通される。また、第1ヨーク71及び第2ヨーク72はいずれも、円盤状のヨークが周方向に等間隔で分割された複数の扇状のヨーク片71a,72aを連結することで構成される。なお図10では、説明の便宜上、4つの第1固定子61のうち1つのみを示している。
The yoke 7 of this embodiment has a first yoke 71 and a second yoke 72 . Both the first yoke 71 and the second yoke 72 are formed in a disk shape, and the rotating shaft 2 is rotatably inserted through a circular hole formed at the center of the yoke 71 with a gap. Both the first yoke 71 and the second yoke 72 are configured by connecting a plurality of sector-shaped yoke pieces 71a and 72a, which are divided into a disk-shaped yoke at equal intervals in the circumferential direction. Note that FIG. 10 shows only one of the four first stators 61 for convenience of explanation.
図8及び図10に示す例では、第1ヨーク71及び第2ヨーク72はそれぞれ、周方向に等間隔に4つに分割された扇状のヨーク片71a,72aで構成されている。ただし、周方向の分割の数は特に限定されず、回転子3の極数に応じて設定される。例えば、回転子3が周方向に8極であれば、それに応じて第1ヨーク71及び第2ヨーク72をそれぞれ周方向に等間隔に8つに分割した扇状のヨーク片71a,72aで構成してもよい。
In the examples shown in FIGS. 8 and 10, the first yoke 71 and the second yoke 72 are each composed of four fan-shaped yoke pieces 71a and 72a that are equally spaced in the circumferential direction. However, the number of divisions in the circumferential direction is not particularly limited, and is set according to the number of poles of the rotor 3 . For example, if the rotor 3 has 8 poles in the circumferential direction, the first yoke 71 and the second yoke 72 are respectively divided into eight pieces 71a and 72a in the circumferential direction at equal intervals. may
上述したような本実施形態のコイルの巻き方において、回転軸2が挿通される中心部に円孔が形成された環状のヨークを用いる場合、円孔にコイルを挿通する必要があり、コイルの巻線作業が容易ではない。これに対して本実施形態では、扇状に分割された複数のヨーク片71a,72aのそれぞれに対してコイルを巻いた後、コイルが巻かれた複数のヨーク片71a,72aを連結することで第1ヨーク71及び第2ヨーク72を得ることができる。即ち、本実施形態のヨーク7であれば、コイルの巻線が容易である。
In the coil winding method of the present embodiment as described above, when using an annular yoke having a circular hole formed in the central portion through which the rotating shaft 2 is inserted, it is necessary to insert the coil through the circular hole. Winding work is not easy. On the other hand, in this embodiment, after winding a coil on each of the plurality of fan-shaped yoke pieces 71a and 72a, the plurality of yoke pieces 71a and 72a around which the coil is wound are connected to form a second coil. One yoke 71 and a second yoke 72 can be obtained. That is, with the yoke 7 of the present embodiment, coil winding is easy.
なお、本実施形態の変形例として、矩形状の固定子6を、磁束の向きを逆にした一対の磁石で軸方向の両側から挟み込む構造が挙げられる。図11は、第2実施形態に係るガルバノモータ1Aの変形例を概略的に示す断面図である。図11に示される変形例のガルバノモータ1Bは、第1実施形態及び第2実施形態で用いた回転子3を2つ用いて、矩形状の固定子6を、磁束の向きを逆にして軸方向の両側から隙間を有して挟み込むことで構成される。これにより、固定子6の裏表の両面を有効に利用することができ、より高いトルクを得ることができる。
As a modification of this embodiment, there is a structure in which the rectangular stator 6 is sandwiched from both sides in the axial direction by a pair of magnets having magnetic fluxes opposite to each other. FIG. 11 is a cross-sectional view schematically showing a modification of the galvanometer motor 1A according to the second embodiment. A galvanometer motor 1B of a modified example shown in FIG. 11 uses two rotors 3 used in the first and second embodiments, and rotates a rectangular stator 6 so that the direction of the magnetic flux is reversed. It is configured by sandwiching with a gap from both sides of the direction. As a result, both the front and back sides of the stator 6 can be effectively used, and a higher torque can be obtained.
[第3実施形態]
第3実施形態に係るガルバノモータは、第1実施形態に係るガルバノモータ1を、回転軸2の軸方向に2つ連結するとともに、隣り合う2つのヨークを1つのヨークに共通化した点が相違する。これら以外は、第1実施形態と同一の構成である。 [Third embodiment]
The galvano motor according to the third embodiment is different in that twogalvano motors 1 according to the first embodiment are connected in the axial direction of the rotating shaft 2, and two adjacent yokes are made common to one yoke. do. Other than these, the configuration is the same as that of the first embodiment.
第3実施形態に係るガルバノモータは、第1実施形態に係るガルバノモータ1を、回転軸2の軸方向に2つ連結するとともに、隣り合う2つのヨークを1つのヨークに共通化した点が相違する。これら以外は、第1実施形態と同一の構成である。 [Third embodiment]
The galvano motor according to the third embodiment is different in that two
図12は、第3実施形態に係るガルバノモータ1Cを模式的に示す断面図である。図12に示されるように、本実施形態に係るガルバノモータ1Cは、回転子3及び固定子4で構成されるユニット8を、回転軸2の軸方向に2組備える。ただし、ユニット8の数は限定されず、3組以上であってもよい。
FIG. 12 is a cross-sectional view schematically showing a galvanometer motor 1C according to the third embodiment. As shown in FIG. 12 , the galvanometer motor 1</b>C according to this embodiment includes two sets of units 8 each including a rotor 3 and a stator 4 in the axial direction of the rotation shaft 2 . However, the number of units 8 is not limited, and may be three or more.
図12に示されるように、本実施形態に係るガルバノモータ1Cでは、互いに隣り合う2組のユニット8,8間には、円盤状のヨーク53が1つ配置されている。即ち、第1実施形態に係るガルバノモータ1を回転軸2の軸方向に2つ連結したときに、隣り合う2つのヨークを1つのヨークに共通化している。これにより、大型化を抑制しつつ、より高いトルクを得ることができる。
As shown in FIG. 12, in the galvano motor 1C according to this embodiment, one disk-shaped yoke 53 is arranged between two sets of units 8, 8 adjacent to each other. That is, when two galvano motors 1 according to the first embodiment are connected in the axial direction of the rotating shaft 2, two adjacent yokes are made common to one yoke. Thereby, a higher torque can be obtained while suppressing an increase in size.
[第4実施形態]
第4実施形態に係るガルバノモータは、第1実施形態に係るガルバノモータ1を、回転軸2の軸方向に2つ連結した点が相違する。これ以外は、第1実施形態と同一の構成である。 [Fourth embodiment]
The galvano-motor according to the fourth embodiment is different in that two galvano-motors 1 according to the first embodiment are connected in the axial direction of the rotating shaft 2 . Other than this, the configuration is the same as that of the first embodiment.
第4実施形態に係るガルバノモータは、第1実施形態に係るガルバノモータ1を、回転軸2の軸方向に2つ連結した点が相違する。これ以外は、第1実施形態と同一の構成である。 [Fourth embodiment]
The galvano-motor according to the fourth embodiment is different in that two galvano-
図13は、第4実施形態に係るガルバノモータ1Dを模式的に示す断面図である。図13に示されるように、本実施形態に係るガルバノモータ1Dは、回転子3及び固定子4で構成されるユニット8を、回転軸2の軸方向に2組備える。ただし、ユニット8の数は限定されず、3組以上であってもよい。
FIG. 13 is a cross-sectional view schematically showing a galvanometer motor 1D according to the fourth embodiment. As shown in FIG. 13 , the galvano motor 1D according to this embodiment includes two sets of units 8 each including the rotor 3 and the stator 4 in the axial direction of the rotating shaft 2 . However, the number of units 8 is not limited, and may be three or more.
図13に示されるように、本実施形態に係るガルバノモータ1Dでは、互いに隣り合う2組のユニット8,8間には、円盤状のヨーク52,51が2つ連続して配置されている。即ち、第1実施形態に係るガルバノモータ1を回転軸2の軸方向にそのまま2つ連結した構造を有する。これにより、ガルバノモータ1を軸方向に連結するだけで簡単により高いトルクを得ることができる。
As shown in FIG. 13, in the galvano motor 1D according to the present embodiment, two disc-shaped yokes 52 and 51 are continuously arranged between two sets of units 8 and 8 adjacent to each other. That is, it has a structure in which two galvanometer motors 1 according to the first embodiment are connected as they are in the axial direction of the rotating shaft 2 . As a result, a higher torque can be obtained simply by connecting the galvanometer motors 1 in the axial direction.
なお、本開示は上記の各態様に限定されるものではなく、本開示の目的を達成できる範囲での変形、改良は本開示に含まれる。
It should be noted that the present disclosure is not limited to each of the above aspects, and modifications and improvements within the scope of achieving the purpose of the present disclosure are included in the present disclosure.
上記実施形態では、回転子3を円盤状に形成したが、これに限定されない。例えば、回転子3を扇状に形成してもよい。この場合、複数の扇状の回転子3を、回転軸2に対して対称に配置することが好ましい。
Although the rotor 3 is formed in a disc shape in the above embodiment, it is not limited to this. For example, the rotor 3 may be fan-shaped. In this case, it is preferable to arrange the fan-shaped rotors 3 symmetrically with respect to the rotation axis 2 .
上記実施形態では、回転子3を磁石で構成し、固定子4をコイルで構成したが、これに限定されない。回転子3をコイルで構成し、固定子4を磁石で構成してもよい。
In the above embodiment, the rotor 3 is composed of magnets and the stator 4 is composed of coils, but the present invention is not limited to this. The rotor 3 may be composed of coils, and the stator 4 may be composed of magnets.
回転子3をコイルで構成する場合には、コイルとしてアルミ電線を用いることができる。この場合、コイルとして従来一般的な銅線と比べて軽量化できるため、コイルのイナーシャを低減することができる。また、アルミは銅と比べて安価であり、価格も安定しているため、コイルとしてアルミを用いることによるコストメリットは大きい。
When the rotor 3 is composed of coils, aluminum electric wires can be used as the coils. In this case, the weight of the coil can be reduced as compared with conventional general copper wire, so the inertia of the coil can be reduced. In addition, since aluminum is cheaper than copper and has a stable price, the use of aluminum for coils has a great cost advantage.
また、回転子3をコイルで構成する場合において、コイルとして、例えばプリント基板上にコイルのパターンを印刷(エッチング)することにより形成したものを用いてもよい。この場合には、コイルを薄型化することができるため、コイルのイナーシャを低減することができる。またこの場合には、上述したようにトルクに寄与する径方向の巻線よりも、トルクに寄与しない周方向の巻線の線を太くすることができ、これにより、抵抗を小さくすることができる。
In addition, when the rotor 3 is composed of coils, the coils may be formed by, for example, printing (etching) a coil pattern on a printed circuit board. In this case, the coil can be made thinner, so the inertia of the coil can be reduced. In this case, as described above, the circumferential windings that do not contribute to the torque can be made thicker than the radial windings that contribute to the torque, thereby reducing the resistance. .
上記実施形態では、コイルとして、コイル内に鉄芯を含まないコアレスコイルを用いたが、これに限定されない。コイルとして、コイル内に鉄芯を含むコアコイルを用いてもよい。
In the above embodiment, a coreless coil that does not contain an iron core is used as the coil, but it is not limited to this. As the coil, a core coil including an iron core within the coil may be used.
上記実施形態では、ヨーク5を備える構成としたが、これに限定されない。ヨーク5を備えていない構成としてもよい。
In the above embodiment, the yoke 5 is provided, but the present invention is not limited to this. A configuration without the yoke 5 may be used.
上記実施形態では、本開示の揺動モータにガルバノモータを適用したが、これに限定されない。例えば、本開示の揺動モータとして、ロボットのハンドのグリッパに用いられるような産業機械向けの揺動モータを用いることもできる。
In the above embodiment, a galvano motor is applied to the swing motor of the present disclosure, but it is not limited to this. For example, as the swing motor of the present disclosure, a swing motor for industrial machinery, such as one used for a gripper of a robot hand, can be used.
上記実施形態では、本開示の揺動モータを単相駆動式としたが、これに限定されない。本開示の揺動モータを、三相駆動式としてもよい。
In the above embodiment, the oscillating motor of the present disclosure is a single-phase drive type, but it is not limited to this. The oscillating motor of the present disclosure may be of a three-phase drive type.
1,1A,1B,1C,1D ガルバノモータ
2 回転軸
3 回転子
4,6 固定子
4a 貫通孔
4c 周方向の巻線
4d 径方向の巻線
5,7 ヨーク(継鉄)
8 ユニット
3a S極
3b N極
40 固定子片
40a,40b,40c コイルの巻線
41,61 第1固定子
42,62 第2固定子
51,71 第1ヨーク
52,72 第2ヨーク
C コイルの巻線の中心軸
CW コイルの巻線方向
D 回転径方向
M 磁束 1, 1A, 1B, 1C,1D Galvano motor 2 Rotating shaft 3 Rotors 4, 6 Stator 4a Through hole 4c Circumferential winding 4d Radial winding 5, 7 Yoke (yoke)
8unit 3a south pole 3b north pole 40 stator pieces 40a, 40b, 40c coil windings 41, 61 first stators 42, 62 second stators 51, 71 first yokes 52, 72 second yoke C coil Central axis of winding CW Winding direction of coil D Radial direction of rotation M Magnetic flux
2 回転軸
3 回転子
4,6 固定子
4a 貫通孔
4c 周方向の巻線
4d 径方向の巻線
5,7 ヨーク(継鉄)
8 ユニット
3a S極
3b N極
40 固定子片
40a,40b,40c コイルの巻線
41,61 第1固定子
42,62 第2固定子
51,71 第1ヨーク
52,72 第2ヨーク
C コイルの巻線の中心軸
CW コイルの巻線方向
D 回転径方向
M 磁束 1, 1A, 1B, 1C,
8
Claims (15)
- 産業機械に用いられる揺動モータであって、
回転軸と、
磁石及びコイルの一方を有する回転子と、
前記磁石及びコイルの他方を有する固定子と、を備え、
前記磁石は、前記回転軸に対して磁束が平行となるように配置され、
前記コイルは、少なくとも一部が前記回転軸の回転径方向に延びる巻線を有する、揺動モータ。 An oscillating motor for use in industrial machinery,
a rotating shaft;
a rotor having one of a magnet and a coil;
a stator having the other of the magnet and the coil;
The magnet is arranged so that the magnetic flux is parallel to the rotation axis,
The oscillating motor, wherein the coil has windings at least partially extending in a rotational radial direction of the rotating shaft. - 前記コイルは、コアレスコイルであり、
前記揺動モータは、単相駆動式のガルバノモータである、請求項1に記載の揺動モータ。 The coil is a coreless coil,
2. The oscillating motor according to claim 1, wherein the oscillating motor is a single-phase drive galvanometer motor. - 前記回転子は、円盤状の磁石又は複数の扇状の磁石を有する、請求項1又は2に記載の揺動モータ。 The oscillating motor according to claim 1 or 2, wherein the rotor has a disk-shaped magnet or a plurality of fan-shaped magnets.
- 前記磁石は、円盤状の磁石又は複数の扇状の磁石で構成され且つ前記回転軸方向の両面が異なる磁極で着磁される、請求項1から3いずれかに記載の揺動モータ。 The oscillating motor according to any one of claims 1 to 3, wherein the magnet is composed of a disc-shaped magnet or a plurality of fan-shaped magnets, and is magnetized with different magnetic poles on both sides in the rotation axis direction.
- 前記コイルは、複数の扇状のコイルで構成され且つ前記磁石に対して対向配置される、請求項1から4いずれかに記載の揺動モータ。 The oscillating motor according to any one of claims 1 to 4, wherein the coil is composed of a plurality of fan-shaped coils and arranged to face the magnet.
- 前記コイルは、複数の矩形状のコイルで構成され且つ前記巻線の中心軸が前記磁束と直交する、請求項1から4いずれかに記載の揺動モータ。 The oscillating motor according to any one of claims 1 to 4, wherein the coil is composed of a plurality of rectangular coils, and the central axis of the winding is perpendicular to the magnetic flux.
- 前記固定子と接続される継鉄をさらに備える、請求項1から6いずれかに記載の揺動モータ。 The oscillating motor according to any one of claims 1 to 6, further comprising a yoke connected to said stator.
- 前記継鉄は、前記回転子の径方向の外周面を露出した状態で前記回転子の前記回転軸方向の両面を覆うように配置される一対の円盤状の継鉄で構成される、請求項7に記載の揺動モータ。 3. The yoke comprises a pair of disc-shaped yokes arranged to cover both surfaces of the rotor in the direction of the rotation axis with a radial outer peripheral surface of the rotor exposed. 8. The swing motor according to 7.
- 前記継鉄は、複数の扇状の継鉄で構成される、請求項7又は8に記載の揺動モータ。 The oscillating motor according to claim 7 or 8, wherein the yoke comprises a plurality of fan-shaped yokes.
- 前記回転子及び前記固定子は、いずれも前記回転軸方向に複数設けられる、請求項7から9いずれかに記載の揺動モータ。 The oscillating motor according to any one of claims 7 to 9, wherein a plurality of said rotors and said stators are provided in said rotating shaft direction.
- 前記回転子及び前記固定子で構成されるユニットを前記回転軸方向に複数組備え、
互いに隣り合う2組の前記ユニット間には、円盤状の前記継鉄が1つ配置される、請求項7から10いずれかに記載の揺動モータ。 A plurality of sets of units composed of the rotor and the stator are provided in the direction of the rotation axis,
11. The oscillating motor according to any one of claims 7 to 10, wherein one disk-shaped yoke is arranged between two sets of units adjacent to each other. - 前記回転子及び前記固定子で構成されるユニットを前記回転軸方向に複数組備え、
互いに隣り合う2組の前記ユニット間には、円盤状の前記継鉄が2つ連続して配置される、請求項7から10いずれかに記載の揺動モータ。 A plurality of sets of units composed of the rotor and the stator are provided in the direction of the rotation axis,
11. The oscillating motor according to any one of claims 7 to 10, wherein two disc-shaped yokes are continuously arranged between two sets of said units adjacent to each other. - 前記コイルは、アルミ電線により形成される、請求項1から12いずれかに記載の揺動モータ。 The oscillating motor according to any one of claims 1 to 12, wherein the coil is made of an aluminum electric wire.
- 前記コイルは、プリント基板上にコイルのパターンを印刷することにより形成される、請求項1から12いずれかに記載の揺動モータ。 The oscillating motor according to any one of claims 1 to 12, wherein the coil is formed by printing a coil pattern on a printed circuit board.
- 前記コイルは、径方向の巻線の太さよりも周方向の巻線の太さの方が大きい、請求項14に記載の揺動モータ。 15. The oscillating motor according to claim 14, wherein the thickness of the coil in the circumferential direction is larger than the thickness of the winding in the radial direction.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2021/041146 WO2023084586A1 (en) | 2021-11-09 | 2021-11-09 | Swing motor |
JP2023559220A JPWO2023084586A1 (en) | 2021-11-09 | 2021-11-09 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2021/041146 WO2023084586A1 (en) | 2021-11-09 | 2021-11-09 | Swing motor |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023084586A1 true WO2023084586A1 (en) | 2023-05-19 |
Family
ID=86335282
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/041146 WO2023084586A1 (en) | 2021-11-09 | 2021-11-09 | Swing motor |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2023084586A1 (en) |
WO (1) | WO2023084586A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59177059A (en) * | 1983-03-28 | 1984-10-06 | 高橋 義照 | Artificial heart |
JPH08322194A (en) * | 1995-05-22 | 1996-12-03 | Agency Of Ind Science & Technol | Axial magnetic levitation motor and rotating machine employing it |
JP2010246171A (en) * | 2009-03-31 | 2010-10-28 | Hitachi Industrial Equipment Systems Co Ltd | Axial gap type dynamo-electric machine |
JP2019187124A (en) * | 2018-04-12 | 2019-10-24 | 株式会社デンソー | Electric motor |
-
2021
- 2021-11-09 WO PCT/JP2021/041146 patent/WO2023084586A1/en active Application Filing
- 2021-11-09 JP JP2023559220A patent/JPWO2023084586A1/ja active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59177059A (en) * | 1983-03-28 | 1984-10-06 | 高橋 義照 | Artificial heart |
JPH08322194A (en) * | 1995-05-22 | 1996-12-03 | Agency Of Ind Science & Technol | Axial magnetic levitation motor and rotating machine employing it |
JP2010246171A (en) * | 2009-03-31 | 2010-10-28 | Hitachi Industrial Equipment Systems Co Ltd | Axial gap type dynamo-electric machine |
JP2019187124A (en) * | 2018-04-12 | 2019-10-24 | 株式会社デンソー | Electric motor |
Also Published As
Publication number | Publication date |
---|---|
JPWO2023084586A1 (en) | 2023-05-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5804896A (en) | High speed spindle motor and apparatus equipped with high speed spindle motor | |
JP2005143276A (en) | Axial gap rotating electric machine | |
JP4727509B2 (en) | Beam scanner | |
US5834866A (en) | Motor structure | |
JP5117813B2 (en) | Rotating electric machine | |
JPH09182405A (en) | Hybrid-type stepping motor | |
JP2003134788A (en) | Permanent magnet rotary electric machine | |
WO2023084586A1 (en) | Swing motor | |
JP4482708B2 (en) | Permanent magnet rotating electric machine | |
JP2002199682A (en) | Hollow motor and light wave range finder | |
JPS61191248A (en) | Concentrated winding induction machine with teeth at large pitch | |
JP2002112521A (en) | Rotor construction for stepping motor | |
JP2003125568A (en) | Brushless motor | |
KR20030046763A (en) | Stepping motor | |
JP2017063594A (en) | Brushless motor | |
JP6192788B2 (en) | Stepping motor, lens device, and imaging device | |
JP4392417B2 (en) | Permanent magnet type rotating electric machine with coil on rotor side | |
WO2023101029A1 (en) | Axial gap motor | |
WO2021149753A1 (en) | Magnetic geared dynamo-electric machine, and method for manufacturing stator | |
JPH027270B2 (en) | ||
WO2023228582A1 (en) | Electric motor, core block, and stator core | |
JP2019122084A (en) | Rotor for motor and motor | |
US20240380296A1 (en) | Electric axial flux machine | |
JP3594731B2 (en) | Stepping motor | |
JP3045935B2 (en) | Permanent magnet type stepping motor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21963951 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023559220 Country of ref document: JP |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21963951 Country of ref document: EP Kind code of ref document: A1 |