WO2021014884A1 - Occupant sensing device and seat - Google Patents

Occupant sensing device and seat Download PDF

Info

Publication number
WO2021014884A1
WO2021014884A1 PCT/JP2020/025217 JP2020025217W WO2021014884A1 WO 2021014884 A1 WO2021014884 A1 WO 2021014884A1 JP 2020025217 W JP2020025217 W JP 2020025217W WO 2021014884 A1 WO2021014884 A1 WO 2021014884A1
Authority
WO
WIPO (PCT)
Prior art keywords
piezoelectric element
detection
support member
occupant
seat cushion
Prior art date
Application number
PCT/JP2020/025217
Other languages
French (fr)
Japanese (ja)
Inventor
敦彦 大井川
Original Assignee
Joyson Safety Systems Japan株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Joyson Safety Systems Japan株式会社 filed Critical Joyson Safety Systems Japan株式会社
Publication of WO2021014884A1 publication Critical patent/WO2021014884A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47CCHAIRS; SOFAS; BEDS
    • A47C7/00Parts, details, or accessories of chairs or stools
    • A47C7/62Accessories for chairs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60NSEATS SPECIALLY ADAPTED FOR VEHICLES; VEHICLE PASSENGER ACCOMMODATION NOT OTHERWISE PROVIDED FOR
    • B60N2/00Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles
    • B60N2/90Details or parts not otherwise provided for

Definitions

  • the present invention relates to an occupant detection device and a seat.
  • a biometric information detection device which includes a sensor composed of a piezoelectric element arranged at a place where it comes into direct or indirect contact with the human body, and detects biometric information of the human body and estimates the mass from the output of this sensor.
  • a sensor composed of a piezoelectric element arranged at a place where it comes into direct or indirect contact with the human body, and detects biometric information of the human body and estimates the mass from the output of this sensor.
  • the present disclosure provides an occupant detection device and a seat capable of detecting an occupant with high accuracy.
  • This disclosure is A vibrating part installed on a metal support member that supports the seat cushion from below, The first piezoelectric element installed on the seat cushion and A second piezoelectric element installed on the support member and A drive circuit that outputs a drive signal that vibrates the vibrating portion so that the vibration propagates to the support member.
  • Biometric detection is performed by detecting a first vibration waveform whose frequency is lower than that of the drive signal via a detection line connected to the first piezoelectric element, and a detection line connected to the second piezoelectric element.
  • an occupant detection device including a detection circuit that detects a load by detecting an amplitude change of a second vibration waveform obtained via the above.
  • this disclosure is with a seat cushion A metal support member that supports the seat cushion from below, and The vibrating part installed on the support member and The first piezoelectric element installed on the seat cushion and A second piezoelectric element installed on the support member and A drive circuit that outputs a drive signal that vibrates the vibrating portion so that the vibration propagates to the support member.
  • Biometric detection is performed by detecting a first vibration waveform whose frequency is lower than that of the drive signal via a detection line connected to the first piezoelectric element, and a detection line connected to the second piezoelectric element.
  • a sheet including a detection circuit that detects a load by detecting an amplitude change of a second vibration waveform obtained via the above.
  • FIG. 1 is a block diagram showing a configuration example of the occupant detection system according to the embodiment of the present disclosure.
  • the occupant detection system shown in FIG. 1 detects an occupant sitting on the seat 40 mounted on the vehicle and outputs the detection result to an external device.
  • This occupant detection system includes a seat 40 installed in the vehicle interior and an occupant detection device 100 that detects an occupant sitting on the seat 40.
  • FIG. 2 is a diagram schematically showing a configuration example of the occupant detection system according to the embodiment of the present disclosure.
  • the seat 40 has a seat cushion 44, a seat back 45, and a support member 41.
  • the seat cushion 44 is a seat portion that supports the buttocks and thighs of the occupant sitting on the seat 40 from below.
  • the seating surface of the seat cushion 44 comes into contact with the buttocks and thighs of the occupant sitting on the seat 40.
  • the seat cushion 44 has a cushion pad 43 and a seat trim 42.
  • the cushion pad 43 is a cushioning member that is supported from below by the support member 41.
  • the cushion pad 43 is formed of, for example, urethane foam.
  • the seat trim 42 is a base material that covers the cushion pad 43 and forms a seating surface of the seat cushion 44.
  • the seat trim 42 is, for example, a skin member formed of fabric or leather.
  • the seat back 45 is a backrest portion that rises from the rear portion of the seat cushion 44 and supports the back of the occupant sitting on the seat 40 from the rear.
  • the backrest surface of the seat back 45 comes into contact with the back of the occupant sitting on the seat 40.
  • the support member 41 is a metal member that supports the seat cushion 44 from below.
  • the support member 41 has a cushion support portion such as an S spring that contacts the lower surface of the seat cushion 44.
  • FIG. 3 is an exploded perspective view showing a configuration example of the seat cushion and the support member.
  • the seat cushion 44 has a cushion pad 43 having cushioning properties, and a seat trim 42 installed on the upper surface of the cushion pad 43.
  • the support member 41 has a pair of side frames 41a and 41b, a front frame 41c, a rear frame 41d, and a plurality of S springs 41e.
  • the pair of side frames 41a and 41b are arranged apart from each other in the left-right direction corresponding to the vehicle width direction.
  • the front frame 41c connects the front portions of the pair of side frames 41a and 41b
  • the rear frame 41d connects the rear portions of the pair of side frames 41a and 41b.
  • the S spring 41e is an example of a cushion support portion that supports the seat cushion 44 from below, and comes into contact with the lower surface of the cushion pad 43.
  • the S spring 41e is a metal elastic wire having S-shaped portions that are repeatedly continuous.
  • FIG. 3 illustrates a form in which a plurality of S springs 41e arranged in the left-right direction are erected between the front frame 41c and the rear frame 41d, but the plurality of S springs 41e arranged in the front-rear direction are illustrated. May be erected between a pair of side frames 41a, 41b.
  • the occupant detection device 100 includes a vibration unit 10, a first piezoelectric element 121, a second piezoelectric element 122, and a control device 30.
  • the control device 30 is an ECU (Electronic Control Unit) having a drive circuit 31 and a detection circuit 37.
  • the vibrating portion 10 is installed on a metal support member 41 that supports the seat cushion 44 from below, and is installed on a cushion support portion such as the S spring 41e described above, for example.
  • the vibrating unit 10 is connected to the drive circuit 31 via the drive line 11.
  • the vibrating unit 10 vibrates according to the drive signal D supplied from the drive circuit 31 via the drive line 11.
  • the vibration generated in the vibrating unit 10 propagates to the metal support member 41.
  • the vibrating unit 10 is, for example, a piezoelectric element that vibrates when a drive signal D from the drive circuit 31 is supplied.
  • the vibrating portion 10 may be any of a bimorph type, a laminated type or a monomorph type piezoelectric element. Further, the vibrating portion 10 may use a piezoelectric polymer.
  • the drive circuit 31 supplies a drive signal D that vibrates the vibrating unit 10 to the vibrating unit 10 via the drive line 11 so that the vibration propagates to the support member 41.
  • the drive circuit 31 sends a drive signal D that vibrates the vibrating unit 10 so that the vibrating unit 10 vibrates with a size that does not cause the occupant on the seat cushion 44 to feel the vibration during the period of biological detection and load detection.
  • the waveform of the drive signal D (drive waveform) has a constant amplitude and a constant frequency (for example, 5 kHz).
  • the drive waveform may be a square wave or a sine wave.
  • the first piezoelectric element 121 is a piezoelectric element for biological detection installed on the seat cushion 44.
  • the second piezoelectric element 122 is a load detecting piezoelectric element installed on the support member 41.
  • the detection circuit 37 performs biological detection by detecting the first vibration waveform Sa whose frequency is lower than the drive signal D via the detection line 13 connected to the first piezoelectric element 121. Further, the detection circuit 37 detects the load by detecting the amplitude change of the second vibration waveform Sb obtained via the detection line 13 connected to the second piezoelectric element 122. In the embodiment of FIG. 1, the detection circuit 37 first performs frequency decomposition of the detection waveform S obtained via the detection line 13 commonly connected to the first piezoelectric element 121 and the second piezoelectric element 122. The vibration waveform Sa and the second vibration waveform Sb of the above are extracted (see FIG. 4). The first vibration waveform Sa has a lower frequency than the second vibration waveform Sb.
  • the vibration generated in the vibrating unit 10 propagates to the metal support member 41, the vibration is detected by the second piezoelectric element 122 installed in the support member 41.
  • the detection circuit 37 determines the presence or absence of an object on the seat cushion 44 and the seat cushion based on the amplitude change of the second vibration waveform Sb obtained via the detection line 13 connected to the second piezoelectric element 122. It is possible to detect the load of an object existing on the 44.
  • the detection circuit 37 detects whether or not the frequency of the first vibration waveform Sa obtained via the detection line 13 connected to the first piezoelectric element 121 matches the frequency of the biological signal. It is possible to detect whether or not the object on the seat cushion 44 is a living body. Since the frequency of the drive signal D is set sufficiently higher than the frequency of the biological signal, the detection circuit 37 does not erroneously detect the frequency of the drive signal D as the frequency of the biological signal.
  • both load detection and biological detection can be performed, so that not only can the presence / absence and load of an object on the seat cushion 44 be detected, but also whether or not the object is a living body. It is possible to separate the objects. Further, since the load is detected by applying a predetermined vibration to the support member 41 by the vibrating unit 10 and detecting the change in the amplitude of the vibration, the influence of external noise (for example, road noise or engine vibration) is affected. It is difficult to receive and can continuously perform highly accurate load detection. In this way, since the load detection and the biological detection can be performed with high accuracy, the occupant can be detected with high accuracy.
  • the detection circuit 37 includes an amplification unit 32, an A / D (Analog to Digital) conversion unit 33, a signal processing unit 34, and an arithmetic processing unit 36.
  • the amplification unit 32 amplifies the detection waveform S input from the detection line 13, and supplies the amplified detection waveform S to the A / D conversion unit 33.
  • the A / D conversion unit 33 converts the analog detection waveform S supplied from the amplification unit 32 into a digital detection waveform S.
  • the signal processing unit 34 extracts the first vibration waveform Sa and the second vibration waveform Sb whose frequency is higher than that of the first vibration waveform Sa by frequency-decomposing the digital detection waveform S.
  • the arithmetic processing unit 36 performs biological detection based on the first vibration waveform Sa, and performs load detection based on the second vibration waveform Sb.
  • the arithmetic processing unit 36 detects whether or not the object on the seat cushion 44 is a living body by detecting whether or not the frequency of the first vibration waveform Sa matches the frequency of the biological signal.
  • the arithmetic processing unit 36 detects the presence or absence of an object on the seat cushion 44 and the load of the object existing on the seat cushion 44 based on the amount of change in the amplitude of the second vibration waveform Sb.
  • the arithmetic processing unit 36 When the biological signal is detected by the biological detection based on the first vibration waveform Sa, the arithmetic processing unit 36 restrains the signal A corresponding to the load value obtained by the load detection based on the second vibration waveform Sb. Output to the control device that controls the device. On the other hand, the arithmetic processing unit 36 does not output the signal A to the control device when the biological signal is not detected by the biological detection based on the first vibration waveform Sa. As a result, the control device can perform appropriate occupant restraint control according to the weight of the occupant on the seat cushion 44. Further, when the object on the seat cushion 44 is a non-living object, it is possible to prevent the control device from malfunctioning the occupant restraint device. Specific examples of the occupant restraint device include airbags and seat belts.
  • the detection circuit 37 is realized, for example, by operating the CPU (Central Processing Unit) by a program readable and stored in the memory.
  • CPU Central Processing Unit
  • FIG. 5 is a diagram illustrating a change in amplitude of the second vibration waveform due to a load.
  • load M1 0 kg.
  • the support member 41 is pressed by the seat cushion 44, so that the vibration propagating to the support member 41 is suppressed by the vibrating portion 10, and the amplitude of the second vibration waveform Sb is attenuated. Since the amplitude of the second vibration waveform Sb is attenuated as the load increases, it is possible to perform load detection using this damping characteristic.
  • a threshold value Vth is set between V1 and V3.
  • the arithmetic processing unit 36 when the amplitude V is Vth or more and V1 or less, the arithmetic processing unit 36 outputs a signal A indicating that the load M is smaller than the reference value, and the arithmetic processing unit 36 outputs the signal A in which the amplitude V is V3 or more and Vth or less. In this case, a signal A indicating that the load M is larger than the reference value is output.
  • a plurality of threshold values Vth having different levels may be set. Thereby, for example, the arithmetic processing unit 36 can determine whether the occupant on the seat cushion 44 is a child or an adult, and can provide the determination result to the control device controlling the occupant restraint device by the signal A.
  • the support member 41 on which the second piezoelectric element 122 is installed may be a plate-shaped sheet pan, but is an S spring that is more easily bent than the sheet pan in that it facilitates detection of an amplitude change of the second vibration waveform Sb. Is preferable.
  • the S spring functions as a spring among the seat parts, and the cushioning property is ensured by the combination of the S spring and the seat cushion. When a load is applied to the seat cushion, the S spring gradually bends, and the vibration propagating to the support member 41 can be suppressed stepwise by the vibrating portion 10. As a result, the damping characteristic of the amplitude of the second vibration waveform Sb with respect to the load can be brought close to linear, and the accuracy of the load detection is improved.
  • FIG. 6 is a diagram showing an example of attaching the first piezoelectric element to the seat cushion.
  • the first piezoelectric element 121 shown in FIG. 6 is a piezoelectric line meanderingly attached to the seat trim 42 of the seat cushion 44.
  • the meandering direction may be the front-rear direction in the vehicle or the left-right direction in the vehicle.
  • the piezoelectric line is a flexible piezoelectric element that uses a polymer piezoelectric material, and outputs a voltage signal of a magnitude corresponding to the applied tension.
  • the piezoelectric line is laid on the front surface or the back surface of the seat trim 42, and detects a weak movement (vibration) of the human body surface.
  • the first piezoelectric element 121 is not limited to the piezoelectric line attached to the seat trim 42 covering the cushion pad 43, but is attached to another base material (for example, a heater for warming the buttocks of a person) that covers the cushion pad 43. It may be a piezoelectric line.
  • FIG. 7 is a diagram showing an example of attaching a load sensor for load detection to an S spring.
  • FIG. 8 is a diagram showing a configuration example of the load sensor.
  • the load sensor 17 shown in FIGS. 7 and 8 includes a vibrating portion 10 and a second piezoelectric element 122. It is preferable to select a position where the load sensor 17 is attached to the S spring 41e so that wiring on the S spring 41e is easy and the wiring length is relatively short. As the distance between the vibrating unit 10 and the second piezoelectric element 122 increases, the amplitude of the vibration waveform output from the second piezoelectric element 122 becomes smaller. Therefore, the vibrating unit 10 and the second piezoelectric element 122 are separated from each other. , It is preferable to make them as close as possible to each other. Therefore, the second piezoelectric element 122 can be attached to the S spring 41e in one package with the vibrating portion 10 to stabilize the output signal of the second piezoelectric element 122.
  • the second piezoelectric element 122 is preferably a piezoelectric line that can be easily handled from the viewpoint of facilitating attachment to the S spring 41e that meanders continuously to the left and right. Further, in order to prevent the amplitude of the second vibration waveform Sb from becoming excessively small, the second piezoelectric element 122 is an S spring to which the vibrating portion 10 is attached among the plurality of S springs 41e supporting the seat cushion 44. It is preferably attached to 41e. That is, it is preferable that the second piezoelectric element 122 and the vibrating portion 10 are attached to the same S spring 41e.
  • the vibrating portion 10 and the second piezoelectric element 122 are adhered to one surface of the double-sided adhesive film 14. By adhering the other surface of the double-sided adhesive film 14 to the S spring 41e, the vibrating portion 10 and the second piezoelectric element 122 can be fixed to the S spring 41e.
  • the drive line 11 is a signal line through which the drive signal D that vibrates the vibrating unit 10 passes.
  • the detection line 13 is a signal line through which the second vibration waveform Sb passes.
  • the ground wire 12 connects the grounds of the vibrating portion 10 and the second piezoelectric element 122 with the grounds of the drive circuit 31 that outputs the drive signal D.
  • FIG. 9 is a diagram showing a first specific mounting example of the first piezoelectric element.
  • the first piezoelectric element 121 is a piezoelectric line sewn with a thread 46 at a plurality of locations on the back side of the seat trim 42. By sewing to the seat trim 42, the first piezoelectric element 121 can be firmly fixed to the seat trim 42, and the disturbance of the first vibration waveform Sa can be suppressed.
  • FIG. 10 is a diagram showing a second specific mounting example of the first piezoelectric element.
  • FIG. 11 is a diagram showing a third specific mounting example of the first piezoelectric element.
  • the first piezoelectric element 121 is a piezoelectric line attached to the cushion pad 43. By attaching to the cushion pad 43 having cushioning properties, the first piezoelectric element 121 is buried in the cushion pad 43, so that the feeling of foreign matter on the buttocks due to the attachment of the first piezoelectric element 121 can be reduced or eliminated.
  • FIG. 10 is a diagram showing a second specific mounting example of the first piezoelectric element.
  • FIG. 11 is a diagram showing a third specific mounting example of the first piezoelectric element.
  • the first piezoelectric element 121 is a piezoelectric line attached to the cushion pad 43. By attaching to the cushion pad 43 having cushioning properties, the first piezoelectric element 121 is buried in the cushion pad 43, so that the feeling of foreign matter on the
  • the first piezoelectric element 121 is laminated with the film 47 along the meandering first piezoelectric element 121, and is attached to the cushion pad 43 with double-sided tape.
  • the entire meandering first piezoelectric element 121 is laminated with a film 47 and attached to the cushion pad 43 with double-sided tape.
  • the cushion pad 43 has a groove 48 that accommodates a part or all of the first piezoelectric element 121.
  • the groove 48 is a hanging groove for suspending the seam allowance of the seat trim 42, the first piezoelectric element 121 can be pressed into the groove 48 by the seam allowance of the seat trim 42, so that the first piezoelectric element 121 is cushioned. Can be firmly fixed to the pad 43.
  • FIG. 12 is a cross-sectional view showing a first specific mounting example of the vibrating portion and the second piezoelectric element.
  • the vibrating portion 10 and the second piezoelectric element 122 are molded with an epoxy resin 18 and adhered to the curved surface of the S spring 41e by an adhesive member 15 such as a double-sided tape or an adhesive.
  • FIG. 13 is a cross-sectional view showing a second specific mounting example of the vibrating portion and the second piezoelectric element.
  • the vibrating portion 10 and the second piezoelectric element 122 are molded with an epoxy resin 18 and are attached to a metal or resin clip 16 with an adhesive member such as double-sided tape or an adhesive.
  • an adhesive member such as double-sided tape or an adhesive.
  • FIG. 14 is a diagram showing a first wiring example in which the first vibration waveform and the second vibration waveform are acquired via a common detection line.
  • the control device 30 is an ECU having a drive circuit 31 and a detection circuit 37 (see FIG. 1).
  • the control device 30 has terminals 131, 132, 133.
  • the drive line 11 connected to the drive signal output unit of the drive circuit 31 via the terminal 131 is connected to the drive signal input unit of the vibration unit 10.
  • the ground wire 12 connected to the ground of the drive circuit 31 and the detection circuit 37 via the terminal 132 is connected to the ground of the first piezoelectric element 121 via the ground wire 12a, and is connected to the ground of the first piezoelectric element 121 via the ground wire 12b. And is connected to each ground of the second piezoelectric element 122.
  • the detection line 13 connected to the signal input unit of the detection circuit 37 via the terminal 133 is connected to the signal output unit of the first piezoelectric element 121 via the detection line 13a, and is connected to the signal output unit of the first piezoelectric element 121 via the detection line 13b. It is connected to the signal output section of the piezoelectric element 122.
  • FIG. 17 is a diagram showing a second wiring example in which the first vibration waveform and the second vibration waveform are acquired via separate detection lines.
  • the control device 30 has terminals 131, 132, 133a, 133b.
  • the detection circuit 37 performs biological detection by detecting the first vibration waveform Sa via the detection line 13a connected to the first piezoelectric element 121, and the detection line 13b connected to the second piezoelectric element 122.
  • the load is detected by detecting the second vibration waveform Sb via the above.
  • the detection line 13a connects the signal output unit of the first piezoelectric element 121 and the terminal 133a into which the first vibration waveform Sa is input.
  • the detection line 13b connects the signal output unit of the second piezoelectric element 122 and the terminal 133b to which the second vibration waveform Sb is input.
  • FIG. 18 is a diagram showing a configuration example of a piezoelectric line.
  • the above-mentioned piezoelectric line has, for example, the same structure as the piezoelectric line 20 shown in FIG.
  • the piezoelectric line 20 has a coaxial structure including an inner conductor 26, a piezoelectric material 25 surrounding the inner conductor 26, and an outer conductor 24 surrounding the piezoelectric material 25.
  • a voltage signal corresponding to the load applied to the piezoelectric line is output from the internal conductor 26.
  • the outer conductor 24 functions as a shield against noise.
  • the number of vibrating portions 10 installed on the support member 41 is not limited to one, and may be plural.
  • the vibration unit 10 is not limited to the piezoelectric element, and may be another vibration generator such as a vibration motor or a vibration actuator.
  • the vibrating unit 10 may be a piezoelectric line that vibrates according to the drive signal D. By using the vibrating portion 10 as a piezoelectric line, the degree of freedom of attachment to the support member 41 is improved.
  • the vibrating unit 10 may be used for both load detection by vibration and alerting by vibration. That is, when the drive circuit 31 detects the load, the drive circuit 31 vibrates the vibrating portion 10 with a constant amplitude and frequency so that the vibrating portion 10 vibrates with a size such that the occupant on the seat cushion 44 does not feel the vibration. Output the drive signal. On the other hand, in the drive circuit 31, when the occupant on the seat cushion 44 is alerted by vibrating the support member 41, the vibrating portion 10 vibrates to such an extent that the occupant on the seat cushion 44 feels vibration. As a result, a drive signal that vibrates the vibrating unit 10 is output.
  • the vibrating part for load detection and the vibrating part for calling attention can be shared, so that the circuit configuration is simplified.
  • vibration alerting is performed when an event that should alert the occupant, such as falling asleep, lane departure, or vehicle collision prediction, is detected.
  • the piezoelectric element is not limited to the piezoelectric line, but may be a strip-shaped piezoelectric film.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Seats For Vehicles (AREA)
  • Chair Legs, Seat Parts, And Backrests (AREA)

Abstract

Provided is an occupant sensing device comprising: a vibration unit which is installed in a metal support member supporting a seat cushion from below; a first piezoelectric element which is installed in the seat cushion; a second piezoelectric element which is installed in the support member; a drive circuit which outputs a drive signal for causing the vibration unit to vibrate such that vibrations are propagated to the support member; and a sensing circuit which carries out living body sensing by detecting a first vibration waveform of a lower frequency than the drive signal via a sensing line connected to the first piezoelectric element, and which carries out load sensing by detecting an amplitude change in a second vibration waveform obtained via a sensing line connected to the second piezoelectric element.

Description

乗員検知装置及びシートCrew detection device and seat
 本発明は、乗員検知装置及びシートに関する。 The present invention relates to an occupant detection device and a seat.
 従来、人体と直接または間接的に接触する場所に配置される圧電素子により成るセンサを備え、このセンサの出力から、人体の生体情報の検出および質量推定を行う生体情報検出装置が知られている(例えば、特許文献1参照)。 Conventionally, a biometric information detection device is known which includes a sensor composed of a piezoelectric element arranged at a place where it comes into direct or indirect contact with the human body, and detects biometric information of the human body and estimates the mass from the output of this sensor. (See, for example, Patent Document 1).
特開2001-204694号公報Japanese Unexamined Patent Publication No. 2001-204694
 しかしながら、従来の技術は、センサの出力波形の減衰期間での値を質量推定に使用するので、センサの出力波形が大きく減衰した状態では、質量推定を精度良く行うことが難しい。 However, since the conventional technology uses the value of the sensor output waveform during the attenuation period for mass estimation, it is difficult to accurately estimate the mass when the sensor output waveform is greatly attenuated.
 そこで、本開示は、乗員を高精度に検知可能な乗員検知装置及びシートを提供する。 Therefore, the present disclosure provides an occupant detection device and a seat capable of detecting an occupant with high accuracy.
 本開示は、
 シートクッションを下方から支持する金属製の支持部材に設置される振動部と、
 前記シートクッションに設置される第1の圧電素子と、
 前記支持部材に設置される第2の圧電素子と、
 前記支持部材に振動が伝播するように前記振動部を振動させる駆動信号を出力する駆動回路と、
 前記第1の圧電素子に接続される検知ラインを介して周波数が前記駆動信号よりも低い第1の振動波形を検出することによって生体検知を行い、前記第2の圧電素子に接続される検知ラインを介して得られる第2の振動波形の振幅変化を検出することによって荷重検知を行う検知回路とを備える、乗員検知装置を提供する。
This disclosure is
A vibrating part installed on a metal support member that supports the seat cushion from below,
The first piezoelectric element installed on the seat cushion and
A second piezoelectric element installed on the support member and
A drive circuit that outputs a drive signal that vibrates the vibrating portion so that the vibration propagates to the support member.
Biometric detection is performed by detecting a first vibration waveform whose frequency is lower than that of the drive signal via a detection line connected to the first piezoelectric element, and a detection line connected to the second piezoelectric element. Provided is an occupant detection device including a detection circuit that detects a load by detecting an amplitude change of a second vibration waveform obtained via the above.
 また、本開示は、
 シートクッションと、
 前記シートクッションを下方から支持する金属製の支持部材と、
 前記支持部材に設置される振動部と、
 前記シートクッションに設置される第1の圧電素子と、
 前記支持部材に設置される第2の圧電素子と、
 前記支持部材に振動が伝播するように前記振動部を振動させる駆動信号を出力する駆動回路と、
 前記第1の圧電素子に接続される検知ラインを介して周波数が前記駆動信号よりも低い第1の振動波形を検出することによって生体検知を行い、前記第2の圧電素子に接続される検知ラインを介して得られる第2の振動波形の振幅変化を検出することによって荷重検知を行う検知回路とを備える、シートを提供する。
In addition, this disclosure is
With a seat cushion
A metal support member that supports the seat cushion from below, and
The vibrating part installed on the support member and
The first piezoelectric element installed on the seat cushion and
A second piezoelectric element installed on the support member and
A drive circuit that outputs a drive signal that vibrates the vibrating portion so that the vibration propagates to the support member.
Biometric detection is performed by detecting a first vibration waveform whose frequency is lower than that of the drive signal via a detection line connected to the first piezoelectric element, and a detection line connected to the second piezoelectric element. Provided is a sheet including a detection circuit that detects a load by detecting an amplitude change of a second vibration waveform obtained via the above.
 本開示の技術によれば、乗員を高精度に検知可能な乗員検知装置及びシートを提供できる。 According to the technology of the present disclosure, it is possible to provide an occupant detection device and a seat capable of detecting an occupant with high accuracy.
乗員検知システムの構成例を示すブロック図である。It is a block diagram which shows the configuration example of an occupant detection system. 乗員検知システムの構成例を模式的に示す図である。It is a figure which shows typically the configuration example of the occupant detection system. シートクッション及び支持部材の構成例を示す分解斜視図である。It is an exploded perspective view which shows the structural example of a seat cushion and a support member. 第1の振動波形及び第2の振動波形を例示する図である。It is a figure which illustrates the 1st vibration waveform and the 2nd vibration waveform. 荷重による第2の振動波形の振幅変化を例示する図である。It is a figure which illustrates the amplitude change of the 2nd vibration waveform by a load. 第1の圧電素子のシートクッションへの取り付け例を示す図である。It is a figure which shows the example of attaching the 1st piezoelectric element to a seat cushion. 荷重検知用の荷重センサのSバネへの取り付け例を示す図である。It is a figure which shows the example of attachment to the S spring of the load sensor for load detection. 荷重センサの構成例を示す図である。It is a figure which shows the structural example of the load sensor. 第1の圧電素子の第1の具体的な取り付け例を示す図である。It is a figure which shows the 1st specific mounting example of the 1st piezoelectric element. 第1の圧電素子の第2の具体的な取り付け例を示す図である。It is a figure which shows the 2nd specific mounting example of the 1st piezoelectric element. 第1の圧電素子の第3の具体的な取り付け例を示す図である。It is a figure which shows the 3rd specific mounting example of the 1st piezoelectric element. 振動部及び第2の圧電素子の第1の具体的な取り付け例を示す断面図である。It is sectional drawing which shows the 1st specific mounting example of the vibrating part and the 2nd piezoelectric element. 振動部及び第2の圧電素子の第2の具体的な取り付け例を示す断面図である。It is sectional drawing which shows the 2nd specific mounting example of the vibrating part and the 2nd piezoelectric element. 第1の振動波形及び第2の振動波形を共通の検知ラインを介して取得する第1の配線例を示す図である。It is a figure which shows the 1st wiring example which acquires the 1st vibration waveform and the 2nd vibration waveform through a common detection line. 第1の配線例の詳細を示す図である。It is a figure which shows the detail of the 1st wiring example. 第1の配線例を詳細に示す図である。It is a figure which shows the 1st wiring example in detail. 第1の振動波形及び第2の振動波形を別々の検知ラインを介して取得する第2の配線例を示す図である。It is a figure which shows the 2nd wiring example which acquires the 1st vibration waveform and the 2nd vibration waveform through separate detection lines. 圧電ラインの構成例を示す図である。It is a figure which shows the structural example of a piezoelectric line.
 以下、本開示に係る実施形態における乗員検知システムを図面を参照して説明する。 Hereinafter, the occupant detection system according to the embodiment according to the present disclosure will be described with reference to the drawings.
 図1は、本開示に係る実施形態における乗員検知システムの構成例を示すブロック図である。図1に示す乗員検知システムは、車両に搭載されるシート40に座る乗員を検知し、その検知結果を外部装置に出力する。この乗員検知システムは、車室内に設置されるシート40と、シート40に座る乗員を検知する乗員検知装置100とを備える。 FIG. 1 is a block diagram showing a configuration example of the occupant detection system according to the embodiment of the present disclosure. The occupant detection system shown in FIG. 1 detects an occupant sitting on the seat 40 mounted on the vehicle and outputs the detection result to an external device. This occupant detection system includes a seat 40 installed in the vehicle interior and an occupant detection device 100 that detects an occupant sitting on the seat 40.
 図2は、本開示に係る実施形態における乗員検知システムの構成例を模式的に示す図である。シート40は、シートクッション44、シートバック45及び支持部材41を有する。 FIG. 2 is a diagram schematically showing a configuration example of the occupant detection system according to the embodiment of the present disclosure. The seat 40 has a seat cushion 44, a seat back 45, and a support member 41.
 シートクッション44は、シート40に座る乗員の臀部及び大腿部を下方から支持する座部である。シートクッション44の座面は、シート40に座る乗員の臀部及び大腿部と接触する。シートクッション44は、クッションパッド43及びシートトリム42を有する。クッションパッド43は、支持部材41に下方から支持される緩衝部材である。クッションパッド43は、例えば、ウレタンフォームから形成される。シートトリム42は、クッションパッド43を覆う基材であり、シートクッション44の座面を形成する。シートトリム42は、例えば、布地又は皮革から形成される表皮部材である。 The seat cushion 44 is a seat portion that supports the buttocks and thighs of the occupant sitting on the seat 40 from below. The seating surface of the seat cushion 44 comes into contact with the buttocks and thighs of the occupant sitting on the seat 40. The seat cushion 44 has a cushion pad 43 and a seat trim 42. The cushion pad 43 is a cushioning member that is supported from below by the support member 41. The cushion pad 43 is formed of, for example, urethane foam. The seat trim 42 is a base material that covers the cushion pad 43 and forms a seating surface of the seat cushion 44. The seat trim 42 is, for example, a skin member formed of fabric or leather.
 シートバック45は、シートクッション44の後部から立ち上がり、シート40に座る乗員の背中を後方から支持する背もたれ部である。シートバック45の背もたれ面は、シート40に座る乗員の背中と接触する。 The seat back 45 is a backrest portion that rises from the rear portion of the seat cushion 44 and supports the back of the occupant sitting on the seat 40 from the rear. The backrest surface of the seat back 45 comes into contact with the back of the occupant sitting on the seat 40.
 支持部材41は、シートクッション44を下方から支持する金属製の部材である。支持部材41は、シートクッション44の下面に接触するSバネ等のクッション支持部を有する。 The support member 41 is a metal member that supports the seat cushion 44 from below. The support member 41 has a cushion support portion such as an S spring that contacts the lower surface of the seat cushion 44.
 図3は、シートクッション及び支持部材の構成例を示す分解斜視図である。シートクッション44は、クッション性を有するクッションパッド43と、クッションパッド43の上面に設置されるシートトリム42とを有する。図3に示す形態では、支持部材41は、一対のサイドフレーム41a,41bと、フロントフレーム41cと、リアフレーム41dと、複数のSバネ41eとを有する。 FIG. 3 is an exploded perspective view showing a configuration example of the seat cushion and the support member. The seat cushion 44 has a cushion pad 43 having cushioning properties, and a seat trim 42 installed on the upper surface of the cushion pad 43. In the form shown in FIG. 3, the support member 41 has a pair of side frames 41a and 41b, a front frame 41c, a rear frame 41d, and a plurality of S springs 41e.
 一対のサイドフレーム41a,41bは、車幅方向に対応する左右方向に互いに離れて配置されている。フロントフレーム41cは、一対のサイドフレーム41a,41bの各々の前部同士を連結し、リアフレーム41dは、一対のサイドフレーム41a,41bの各々の後部同士を連結する。Sバネ41eは、シートクッション44を下方から支持するクッション支持部の一例であり、クッションパッド43の下面に接触する。Sバネ41eは、S字状の部分が繰り返し連続する金属製の弾性線材である。 The pair of side frames 41a and 41b are arranged apart from each other in the left-right direction corresponding to the vehicle width direction. The front frame 41c connects the front portions of the pair of side frames 41a and 41b, and the rear frame 41d connects the rear portions of the pair of side frames 41a and 41b. The S spring 41e is an example of a cushion support portion that supports the seat cushion 44 from below, and comes into contact with the lower surface of the cushion pad 43. The S spring 41e is a metal elastic wire having S-shaped portions that are repeatedly continuous.
 図3には、左右方向に配列された複数のSバネ41eがフロントフレーム41cとリアフレーム41dとの間に架設された形態が例示されているが、前後方向に配列された複数のSバネ41eが一対のサイドフレーム41a,41bの間に架設されてもよい。 FIG. 3 illustrates a form in which a plurality of S springs 41e arranged in the left-right direction are erected between the front frame 41c and the rear frame 41d, but the plurality of S springs 41e arranged in the front-rear direction are illustrated. May be erected between a pair of side frames 41a, 41b.
 図1において、乗員検知装置100は、振動部10、第1の圧電素子121、第2の圧電素子122及び制御装置30を備える。制御装置30は、駆動回路31及び検知回路37を有するECU(Electronic Control Unit)である。 In FIG. 1, the occupant detection device 100 includes a vibration unit 10, a first piezoelectric element 121, a second piezoelectric element 122, and a control device 30. The control device 30 is an ECU (Electronic Control Unit) having a drive circuit 31 and a detection circuit 37.
 振動部10は、シートクッション44を下方から支持する金属製の支持部材41に設置され、例えば、上述のSバネ41e等のクッション支持部に設置されている。振動部10は、駆動ライン11を介して駆動回路31に接続されている。 The vibrating portion 10 is installed on a metal support member 41 that supports the seat cushion 44 from below, and is installed on a cushion support portion such as the S spring 41e described above, for example. The vibrating unit 10 is connected to the drive circuit 31 via the drive line 11.
 振動部10は、駆動回路31から駆動ライン11を介して供給される駆動信号Dによって振動する。振動部10で発生する振動は、金属製の支持部材41に伝播する。 The vibrating unit 10 vibrates according to the drive signal D supplied from the drive circuit 31 via the drive line 11. The vibration generated in the vibrating unit 10 propagates to the metal support member 41.
 振動部10は、例えば、駆動回路31からの駆動信号Dが供給されることによって振動する圧電素子である。振動部10は、バイモルフ型、積層型又はモノモルフ型のいずれの圧電素子でもよい。また、振動部10は、圧電性高分子を利用するものでもよい。 The vibrating unit 10 is, for example, a piezoelectric element that vibrates when a drive signal D from the drive circuit 31 is supplied. The vibrating portion 10 may be any of a bimorph type, a laminated type or a monomorph type piezoelectric element. Further, the vibrating portion 10 may use a piezoelectric polymer.
 駆動回路31は、支持部材41に振動が伝播する大きさで振動部10を振動させる駆動信号Dを駆動ライン11を介して振動部10に供給する。駆動回路31は、生体検知及び荷重検知を行う期間では、シートクッション44上の乗員に振動を感じさせない程度の大きさで振動部10が振動するように、振動部10を振動させる駆動信号Dを出力する。駆動信号Dの波形(駆動波形)は、一定の振幅及び一定の周波数(例えば、5kHz)を有する。駆動波形は、方形波でも正弦波でもよい。 The drive circuit 31 supplies a drive signal D that vibrates the vibrating unit 10 to the vibrating unit 10 via the drive line 11 so that the vibration propagates to the support member 41. The drive circuit 31 sends a drive signal D that vibrates the vibrating unit 10 so that the vibrating unit 10 vibrates with a size that does not cause the occupant on the seat cushion 44 to feel the vibration during the period of biological detection and load detection. Output. The waveform of the drive signal D (drive waveform) has a constant amplitude and a constant frequency (for example, 5 kHz). The drive waveform may be a square wave or a sine wave.
 第1の圧電素子121は、シートクッション44に設置される生体検知用の圧電素子である。第2の圧電素子122は、支持部材41に設置される荷重検知用の圧電素子である。 The first piezoelectric element 121 is a piezoelectric element for biological detection installed on the seat cushion 44. The second piezoelectric element 122 is a load detecting piezoelectric element installed on the support member 41.
 検知回路37は、第1の圧電素子121に接続される検知ライン13を介して周波数が駆動信号Dよりも低い第1の振動波形Saを検出することによって生体検知を行う。また、検知回路37は、第2の圧電素子122に接続される検知ライン13を介して得られる第2の振動波形Sbの振幅変化を検出することによって荷重検知を行う。図1の形態では、検知回路37は、第1の圧電素子121と第2の圧電素子122に共通に接続される検知ライン13を介して得られる検知波形Sを周波数分解することによって、第1の振動波形Saと第2の振動波形Sbとを抽出する(図4参照)。第1の振動波形Saは、第2の振動波形Sbよりも低い周波数を有する。 The detection circuit 37 performs biological detection by detecting the first vibration waveform Sa whose frequency is lower than the drive signal D via the detection line 13 connected to the first piezoelectric element 121. Further, the detection circuit 37 detects the load by detecting the amplitude change of the second vibration waveform Sb obtained via the detection line 13 connected to the second piezoelectric element 122. In the embodiment of FIG. 1, the detection circuit 37 first performs frequency decomposition of the detection waveform S obtained via the detection line 13 commonly connected to the first piezoelectric element 121 and the second piezoelectric element 122. The vibration waveform Sa and the second vibration waveform Sb of the above are extracted (see FIG. 4). The first vibration waveform Sa has a lower frequency than the second vibration waveform Sb.
 振動部10で発生する振動は、金属製の支持部材41に伝播するので、その振動は、支持部材41に設置される第2の圧電素子122により検知される。物体がシートクッション44上に載ると、シートクッション44と接する支持部材41に伝播する振動波形は、荷重に応じて変化する。したがって、検知回路37は、第2の圧電素子122に接続される検知ライン13を介して得られる第2の振動波形Sbの振幅変化に基づいて、シートクッション44上の物体の存否と、シートクッション44上に存在する物体の荷重とを検知できる。 Since the vibration generated in the vibrating unit 10 propagates to the metal support member 41, the vibration is detected by the second piezoelectric element 122 installed in the support member 41. When the object is placed on the seat cushion 44, the vibration waveform propagating to the support member 41 in contact with the seat cushion 44 changes according to the load. Therefore, the detection circuit 37 determines the presence or absence of an object on the seat cushion 44 and the seat cushion based on the amplitude change of the second vibration waveform Sb obtained via the detection line 13 connected to the second piezoelectric element 122. It is possible to detect the load of an object existing on the 44.
 一方、シートクッション44に接する物体が生体であると、その生体の呼吸や脈拍等の生体信号が、シートクッション44に設置される第1の圧電素子121により検知される。したがって、検知回路37は、第1の圧電素子121に接続される検知ライン13を介して得られる第1の振動波形Saの周波数が生体信号の周波数に一致するか否かを検出することにより、シートクッション44上の物体が生体か否かを検知できる。駆動信号Dの周波数は、生体信号の周波数よりも十分に高く設定されているので、検知回路37は、駆動信号Dの周波数を生体信号の周波数と誤検知しない。 On the other hand, when the object in contact with the seat cushion 44 is a living body, biological signals such as respiration and pulse of the living body are detected by the first piezoelectric element 121 installed on the seat cushion 44. Therefore, the detection circuit 37 detects whether or not the frequency of the first vibration waveform Sa obtained via the detection line 13 connected to the first piezoelectric element 121 matches the frequency of the biological signal. It is possible to detect whether or not the object on the seat cushion 44 is a living body. Since the frequency of the drive signal D is set sufficiently higher than the frequency of the biological signal, the detection circuit 37 does not erroneously detect the frequency of the drive signal D as the frequency of the biological signal.
 したがって、本実施形態における乗員検知装置100によれば、荷重検知と生体検知の両方を行うことができるので、シートクッション44上の物体の存否と荷重を検知できるだけでなく、当該物体が生体か否かの切り分けを行うことができる。また、振動部10によって所定の振動を支持部材41に与え、その振動の振幅変化を検出することで荷重検知を行うので、外部からのノイズ(例えば、ロードノイズやエンジンの振動など)の影響を受けにくく、高精度な荷重検知を継続的に実施できる。このように、荷重検知と生体検知を高精度に行うことができるので、乗員を高精度に検知できる。 Therefore, according to the occupant detection device 100 in the present embodiment, both load detection and biological detection can be performed, so that not only can the presence / absence and load of an object on the seat cushion 44 be detected, but also whether or not the object is a living body. It is possible to separate the objects. Further, since the load is detected by applying a predetermined vibration to the support member 41 by the vibrating unit 10 and detecting the change in the amplitude of the vibration, the influence of external noise (for example, road noise or engine vibration) is affected. It is difficult to receive and can continuously perform highly accurate load detection. In this way, since the load detection and the biological detection can be performed with high accuracy, the occupant can be detected with high accuracy.
 次に、本実施形態における乗員検知装置100の構成例について、より詳細に説明する。 Next, a configuration example of the occupant detection device 100 according to the present embodiment will be described in more detail.
 図1に示す形態では、検知回路37は、増幅部32、A/D(Analog to Digital)変換部33、信号処理部34及び演算処理部36を有する。増幅部32は、検知ライン13から入力される検知波形Sを増幅し、増幅後の検知波形SをA/D変換部33に供給する。A/D変換部33は、増幅部32から供給されるアナログの検知波形Sをデジタルの検知波形Sに変換する。信号処理部34は、デジタルの検知波形Sを周波数分解することによって、第1の振動波形Saと、周波数が第1の振動波形Saよりも高い第2の振動波形Sbとを抽出する。 In the form shown in FIG. 1, the detection circuit 37 includes an amplification unit 32, an A / D (Analog to Digital) conversion unit 33, a signal processing unit 34, and an arithmetic processing unit 36. The amplification unit 32 amplifies the detection waveform S input from the detection line 13, and supplies the amplified detection waveform S to the A / D conversion unit 33. The A / D conversion unit 33 converts the analog detection waveform S supplied from the amplification unit 32 into a digital detection waveform S. The signal processing unit 34 extracts the first vibration waveform Sa and the second vibration waveform Sb whose frequency is higher than that of the first vibration waveform Sa by frequency-decomposing the digital detection waveform S.
 演算処理部36は、第1の振動波形Saに基づいて生体検知を行い、第2の振動波形Sbに基づいて荷重検知を行う。演算処理部36は、第1の振動波形Saの周波数が、生体信号の周波数に一致するか否かを検出することにより、シートクッション44上の物体が生体か否かを検知する。演算処理部36は、第2の振動波形Sbの振幅変化量に基づいて、シートクッション44上の物体の存否と、シートクッション44上に存在する物体の荷重とを検知する。 The arithmetic processing unit 36 performs biological detection based on the first vibration waveform Sa, and performs load detection based on the second vibration waveform Sb. The arithmetic processing unit 36 detects whether or not the object on the seat cushion 44 is a living body by detecting whether or not the frequency of the first vibration waveform Sa matches the frequency of the biological signal. The arithmetic processing unit 36 detects the presence or absence of an object on the seat cushion 44 and the load of the object existing on the seat cushion 44 based on the amount of change in the amplitude of the second vibration waveform Sb.
 演算処理部36は、第1の振動波形Saに基づく生体検知により生体信号が検知された場合、第2の振動波形Sbに基づく荷重検知により得られた荷重値に対応する信号Aを、乗員拘束装置を制御する制御装置に対して出力する。一方、演算処理部36は、第1の振動波形Saに基づく生体検知により生体信号が検知されない場合、信号Aを当該制御装置に対して出力しない。これにより、当該制御装置は、シートクッション44上の乗員の体重に応じた適切な乗員拘束制御を実施できる。また、シートクッション44上の物体が非生体物であるときに、当該制御装置が乗員拘束装置を誤作動させることを防止できる。乗員拘束装置の具体例として、エアバッグ、シートベルトなどがある。 When the biological signal is detected by the biological detection based on the first vibration waveform Sa, the arithmetic processing unit 36 restrains the signal A corresponding to the load value obtained by the load detection based on the second vibration waveform Sb. Output to the control device that controls the device. On the other hand, the arithmetic processing unit 36 does not output the signal A to the control device when the biological signal is not detected by the biological detection based on the first vibration waveform Sa. As a result, the control device can perform appropriate occupant restraint control according to the weight of the occupant on the seat cushion 44. Further, when the object on the seat cushion 44 is a non-living object, it is possible to prevent the control device from malfunctioning the occupant restraint device. Specific examples of the occupant restraint device include airbags and seat belts.
 なお、検知回路37の一部又は全部の機能は、例えば、メモリに読み出し可能に記憶されたプログラムによってCPU(Central Processing Unit)が動作することにより実現される。 Note that some or all of the functions of the detection circuit 37 are realized, for example, by operating the CPU (Central Processing Unit) by a program readable and stored in the memory.
 図5は、荷重による第2の振動波形の振幅変化を例示する図である。荷重検知用の第2の振動波形Sbの振幅は、荷重が支持部材41に付加されていない状態では(荷重M1=0kg)、最大の振幅V1が検出される。シートクッション44に荷重が加わることで、支持部材41がシートクッション44によって押さえつけられるので、振動部10により支持部材41に伝播する振動が抑制され、第2の振動波形Sbの振幅が減衰する。第2の振動波形Sbの振幅は、荷重が大きくなるにつれて減衰するため、この減衰特性を用いて、荷重検知を行うことが可能となる。 FIG. 5 is a diagram illustrating a change in amplitude of the second vibration waveform due to a load. As for the amplitude of the second vibration waveform Sb for load detection, the maximum amplitude V1 is detected when the load is not applied to the support member 41 (load M1 = 0 kg). When a load is applied to the seat cushion 44, the support member 41 is pressed by the seat cushion 44, so that the vibration propagating to the support member 41 is suppressed by the vibrating portion 10, and the amplitude of the second vibration waveform Sb is attenuated. Since the amplitude of the second vibration waveform Sb is attenuated as the load increases, it is possible to perform load detection using this damping characteristic.
 シートクッション44上の物体の荷重Mが、M1,M2,M3と大きくなると、第2の振動波形Sbの振幅Vは、V1,V2,V3と小さくなる。例えば、V1とV3との間に閾値Vthが設定される。この場合、演算処理部36は、振幅VがVth以上V1以下の場合、荷重Mが基準値よりも小さいことを表す信号Aを出力し、演算処理部36は、振幅VがV3以上Vth以下の場合、荷重Mが基準値よりも大きいことを表す信号Aを出力する。レベルの異なる複数の閾値Vthが、設定されてもよい。これにより、例えば、演算処理部36は、シートクッション44上の乗員が子供か大人かを判別でき、その判別結果を、乗員拘束装置を制御する制御装置に対して信号Aにより提供できる。 When the load M of the object on the seat cushion 44 becomes large as M1, M2, M3, the amplitude V of the second vibration waveform Sb becomes small as V1, V2, V3. For example, a threshold value Vth is set between V1 and V3. In this case, when the amplitude V is Vth or more and V1 or less, the arithmetic processing unit 36 outputs a signal A indicating that the load M is smaller than the reference value, and the arithmetic processing unit 36 outputs the signal A in which the amplitude V is V3 or more and Vth or less. In this case, a signal A indicating that the load M is larger than the reference value is output. A plurality of threshold values Vth having different levels may be set. Thereby, for example, the arithmetic processing unit 36 can determine whether the occupant on the seat cushion 44 is a child or an adult, and can provide the determination result to the control device controlling the occupant restraint device by the signal A.
 第2の圧電素子122が設置される支持部材41は、板状のシートパンでもよいが、第2の振動波形Sbの振幅変化の検出を容易にする点で、シートパンよりも撓みやすいSバネが好ましい。Sバネは、シート部品の中でスプリングの機能を果たしており、Sバネとシートクッションとの組合せによりクッション性を確保している。シートクッションに荷重が加わることで、Sバネが徐々に撓み、振動部10により支持部材41に伝播する振動の抑制を段階的に行うことができる。これにより、荷重に対する第2の振動波形Sbの振幅の減衰特性をリニアに近づけることができ、荷重検知の精度が向上する。 The support member 41 on which the second piezoelectric element 122 is installed may be a plate-shaped sheet pan, but is an S spring that is more easily bent than the sheet pan in that it facilitates detection of an amplitude change of the second vibration waveform Sb. Is preferable. The S spring functions as a spring among the seat parts, and the cushioning property is ensured by the combination of the S spring and the seat cushion. When a load is applied to the seat cushion, the S spring gradually bends, and the vibration propagating to the support member 41 can be suppressed stepwise by the vibrating portion 10. As a result, the damping characteristic of the amplitude of the second vibration waveform Sb with respect to the load can be brought close to linear, and the accuracy of the load detection is improved.
 図6は、第1の圧電素子のシートクッションへの取り付け例を示す図である。図6に示す第1の圧電素子121は、シートクッション44のシートトリム42に蛇行して取り付けられる圧電ラインである。圧電ラインを蛇行させることにより、乗員の着座ずれが発生しても、生体検知が可能となる。例えば、臀部がシートクッション44上をスライドしても、生体検知が可能となるように、一定の間隔Gで圧電ラインを蛇行させることが好ましい。蛇行させる方向は、車両における前後方向でも、車両における左右方向でもよい。 FIG. 6 is a diagram showing an example of attaching the first piezoelectric element to the seat cushion. The first piezoelectric element 121 shown in FIG. 6 is a piezoelectric line meanderingly attached to the seat trim 42 of the seat cushion 44. By meandering the piezoelectric line, it is possible to detect the living body even if the occupant is displaced. For example, it is preferable to meander the piezoelectric lines at regular intervals G so that even if the buttocks slide on the seat cushion 44, biological detection is possible. The meandering direction may be the front-rear direction in the vehicle or the left-right direction in the vehicle.
 圧電ラインは、高分子圧電材を使う柔軟性のある圧電素子であり、印加される張力に応じた大きさの電圧信号を出力する。圧電ラインは、シートトリム42の表面又は裏面に敷設されており、人の体表の微弱な動き(振動)を検知する。 The piezoelectric line is a flexible piezoelectric element that uses a polymer piezoelectric material, and outputs a voltage signal of a magnitude corresponding to the applied tension. The piezoelectric line is laid on the front surface or the back surface of the seat trim 42, and detects a weak movement (vibration) of the human body surface.
 なお、第1の圧電素子121は、クッションパッド43を覆うシートトリム42に取り付けられる圧電ラインに限られず、クッションパッド43を覆う別の基材(例えば、人の臀部を温めるためのヒータ)に取り付けられる圧電ラインでもよい。 The first piezoelectric element 121 is not limited to the piezoelectric line attached to the seat trim 42 covering the cushion pad 43, but is attached to another base material (for example, a heater for warming the buttocks of a person) that covers the cushion pad 43. It may be a piezoelectric line.
 図7は、荷重検知用の荷重センサのSバネへの取り付け例を示す図である。図8は、荷重センサの構成例を示す図である。図7,8に示す荷重センサ17は、振動部10及び第2の圧電素子122を備える。荷重センサ17をSバネ41eに取り付ける位置は、Sバネ41e上での配線が容易で且つ配線長が比較的短い場所を選択することが好ましい。振動部10と第2の圧電素子122との間の距離が離れるほど、第2の圧電素子122から出力される振動波形の振幅が小さくなるので、振動部10と第2の圧電素子122とは、できるだけ近づけて隣接させることが好ましい。よって、第2の圧電素子122は、振動部10とワンパッケージでSバネ41eに取り付けられることで、第2の圧電素子122の出力信号を安定させることができる。 FIG. 7 is a diagram showing an example of attaching a load sensor for load detection to an S spring. FIG. 8 is a diagram showing a configuration example of the load sensor. The load sensor 17 shown in FIGS. 7 and 8 includes a vibrating portion 10 and a second piezoelectric element 122. It is preferable to select a position where the load sensor 17 is attached to the S spring 41e so that wiring on the S spring 41e is easy and the wiring length is relatively short. As the distance between the vibrating unit 10 and the second piezoelectric element 122 increases, the amplitude of the vibration waveform output from the second piezoelectric element 122 becomes smaller. Therefore, the vibrating unit 10 and the second piezoelectric element 122 are separated from each other. , It is preferable to make them as close as possible to each other. Therefore, the second piezoelectric element 122 can be attached to the S spring 41e in one package with the vibrating portion 10 to stabilize the output signal of the second piezoelectric element 122.
 第2の圧電素子122は、左右に連続的に蛇行するSバネ41eへの取り付けを容易にする点で、取り回し自在な圧電ラインであることが好ましい。また、第2の振動波形Sbの振幅が過度に小さくなることを防ぐため、第2の圧電素子122は、シートクッション44を支持する複数のSバネ41eのうち、振動部10が取り付けられるSバネ41eに取り付けられることが好ましい。つまり、第2の圧電素子122と振動部10が同じSバネ41eに取り付けられることが好ましい。 The second piezoelectric element 122 is preferably a piezoelectric line that can be easily handled from the viewpoint of facilitating attachment to the S spring 41e that meanders continuously to the left and right. Further, in order to prevent the amplitude of the second vibration waveform Sb from becoming excessively small, the second piezoelectric element 122 is an S spring to which the vibrating portion 10 is attached among the plurality of S springs 41e supporting the seat cushion 44. It is preferably attached to 41e. That is, it is preferable that the second piezoelectric element 122 and the vibrating portion 10 are attached to the same S spring 41e.
 図8に示す形態では、振動部10及び第2の圧電素子122は、両面接着フィルム14の一方の表面に接着される。両面接着フィルム14の他方の表面をSバネ41eに接着させることで、振動部10及び第2の圧電素子122をSバネ41eに固定できる。駆動ライン11は、振動部10を振動させる駆動信号Dが通る信号線である。検知ライン13は、第2の振動波形Sbが通る信号線である。グランド線12は、振動部10及び第2の圧電素子122の各々のグランドと、駆動信号Dを出力する駆動回路31のグランドとを結んでいる。 In the form shown in FIG. 8, the vibrating portion 10 and the second piezoelectric element 122 are adhered to one surface of the double-sided adhesive film 14. By adhering the other surface of the double-sided adhesive film 14 to the S spring 41e, the vibrating portion 10 and the second piezoelectric element 122 can be fixed to the S spring 41e. The drive line 11 is a signal line through which the drive signal D that vibrates the vibrating unit 10 passes. The detection line 13 is a signal line through which the second vibration waveform Sb passes. The ground wire 12 connects the grounds of the vibrating portion 10 and the second piezoelectric element 122 with the grounds of the drive circuit 31 that outputs the drive signal D.
 図9は、第1の圧電素子の第1の具体的な取り付け例を示す図である。図9に示す形態では、第1の圧電素子121は、シートトリム42の裏側の複数の箇所で糸46で縫い付けられた圧電ラインである。シートトリム42への縫い付けにより、第1の圧電素子121をシートトリム42にしっかりと固定でき、第1の振動波形Saの乱れを抑制できる。 FIG. 9 is a diagram showing a first specific mounting example of the first piezoelectric element. In the form shown in FIG. 9, the first piezoelectric element 121 is a piezoelectric line sewn with a thread 46 at a plurality of locations on the back side of the seat trim 42. By sewing to the seat trim 42, the first piezoelectric element 121 can be firmly fixed to the seat trim 42, and the disturbance of the first vibration waveform Sa can be suppressed.
 図10は、第1の圧電素子の第2の具体的な取り付け例を示す図である。図11は、第1の圧電素子の第3の具体的な取り付け例を示す図である。図10,11に示す形態では、第1の圧電素子121は、クッションパッド43に取り付けられる圧電ラインである。クッション性を有するクッションパッド43への取り付けにより、第1の圧電素子121は、クッションパッド43に埋もれるので、第1の圧電素子121の取り付けによる臀部への異物感を低減又は無くすことができる。図10に示す形態では、蛇行する第1の圧電素子121に沿って第1の圧電素子121をフィルム47でラミネートし、両面テープでクッションパッド43に貼り付けられている。図11に示す形態では、蛇行する第1の圧電素子121の全体をフィルム47でラミネートし、両面テープでクッションパッド43に貼り付けられている。 FIG. 10 is a diagram showing a second specific mounting example of the first piezoelectric element. FIG. 11 is a diagram showing a third specific mounting example of the first piezoelectric element. In the form shown in FIGS. 10 and 11, the first piezoelectric element 121 is a piezoelectric line attached to the cushion pad 43. By attaching to the cushion pad 43 having cushioning properties, the first piezoelectric element 121 is buried in the cushion pad 43, so that the feeling of foreign matter on the buttocks due to the attachment of the first piezoelectric element 121 can be reduced or eliminated. In the form shown in FIG. 10, the first piezoelectric element 121 is laminated with the film 47 along the meandering first piezoelectric element 121, and is attached to the cushion pad 43 with double-sided tape. In the form shown in FIG. 11, the entire meandering first piezoelectric element 121 is laminated with a film 47 and attached to the cushion pad 43 with double-sided tape.
 図10,11に示す形態では、クッションパッド43は、第1の圧電素子121の一部又は全部を収容する溝48を有する。溝48に収容することで、第1の圧電素子121の取り付けによる臀部への異物感を低減又は無くすことができる。溝48は、シートトリム42の縫い代を吊り込む吊り込み溝であると、シートトリム42の縫い代で第1の圧電素子121を溝48に押さえこむことができるので、第1の圧電素子121をクッションパッド43にしっかりと固定できる。 In the form shown in FIGS. 10 and 11, the cushion pad 43 has a groove 48 that accommodates a part or all of the first piezoelectric element 121. By accommodating it in the groove 48, it is possible to reduce or eliminate the feeling of foreign matter on the buttocks due to the attachment of the first piezoelectric element 121. If the groove 48 is a hanging groove for suspending the seam allowance of the seat trim 42, the first piezoelectric element 121 can be pressed into the groove 48 by the seam allowance of the seat trim 42, so that the first piezoelectric element 121 is cushioned. Can be firmly fixed to the pad 43.
 図12は、振動部及び第2の圧電素子の第1の具体的な取り付け例を示す断面図である。振動部10及び第2の圧電素子122は、エポキシ樹脂18でモールドされ、両面テープや接着剤などの接着部材15でSバネ41eの湾曲表面に接着される。 FIG. 12 is a cross-sectional view showing a first specific mounting example of the vibrating portion and the second piezoelectric element. The vibrating portion 10 and the second piezoelectric element 122 are molded with an epoxy resin 18 and adhered to the curved surface of the S spring 41e by an adhesive member 15 such as a double-sided tape or an adhesive.
 図13は、振動部及び第2の圧電素子の第2の具体的な取り付け例を示す断面図である。振動部10及び第2の圧電素子122は、エポキシ樹脂18でモールドされ、両面テープや接着剤などの接着部材で、金属製又は樹脂製のクリップ16に取り付けられる。振動部10及び第2の圧電素子122が取り付けられたクリップ16をSバネ41eに取り付けることで、振動部10及び第2の圧電素子122をワンタッチでSバネ41eに固定できる。 FIG. 13 is a cross-sectional view showing a second specific mounting example of the vibrating portion and the second piezoelectric element. The vibrating portion 10 and the second piezoelectric element 122 are molded with an epoxy resin 18 and are attached to a metal or resin clip 16 with an adhesive member such as double-sided tape or an adhesive. By attaching the clip 16 to which the vibrating portion 10 and the second piezoelectric element 122 are attached to the S spring 41e, the vibrating portion 10 and the second piezoelectric element 122 can be fixed to the S spring 41e with one touch.
 図14は、第1の振動波形及び第2の振動波形を共通の検知ラインを介して取得する第1の配線例を示す図である。制御装置30は、駆動回路31及び検知回路37(図1参照) を有するECUである。制御装置30は、端子131,132,133を有する。 FIG. 14 is a diagram showing a first wiring example in which the first vibration waveform and the second vibration waveform are acquired via a common detection line. The control device 30 is an ECU having a drive circuit 31 and a detection circuit 37 (see FIG. 1). The control device 30 has terminals 131, 132, 133.
 図15,16は、図14に示す第1の配線例の詳細を示す図である。駆動回路31の駆動信号出力部に端子131を介して接続される駆動ライン11は、振動部10の駆動信号入力部に接続される。駆動回路31及び検知回路37のグランドに端子132を介して接続されるグランド線12は、グランド線12aを介して第1の圧電素子121のグランドに接続され、グランド線12bを介して振動部10及び第2の圧電素子122の各グランドに接続される。検知回路37の信号入力部に端子133を介して接続される検知ライン13は、検知ライン13aを介して第1の圧電素子121の信号出力部に接続され、検知ライン13bを介して第2の圧電素子122の信号出力部に接続される。 15 and 16 are diagrams showing details of the first wiring example shown in FIG. The drive line 11 connected to the drive signal output unit of the drive circuit 31 via the terminal 131 is connected to the drive signal input unit of the vibration unit 10. The ground wire 12 connected to the ground of the drive circuit 31 and the detection circuit 37 via the terminal 132 is connected to the ground of the first piezoelectric element 121 via the ground wire 12a, and is connected to the ground of the first piezoelectric element 121 via the ground wire 12b. And is connected to each ground of the second piezoelectric element 122. The detection line 13 connected to the signal input unit of the detection circuit 37 via the terminal 133 is connected to the signal output unit of the first piezoelectric element 121 via the detection line 13a, and is connected to the signal output unit of the first piezoelectric element 121 via the detection line 13b. It is connected to the signal output section of the piezoelectric element 122.
 図17は、第1の振動波形及び第2の振動波形を別々の検知ラインを介して取得する第2の配線例を示す図である。制御装置30は、端子131,132,133a,133bを有する。検知回路37は、第1の圧電素子121に接続される検知ライン13aを介して第1の振動波形Saを検出することによって生体検知を行い、第2の圧電素子122に接続される検知ライン13bを介して第2の振動波形Sbを検出することによって荷重検知を行う。検知ライン13aは、第1の圧電素子121の信号出力部と第1の振動波形Saが入力される端子133aとを結んでいる。検知ライン13bは、第2の圧電素子122の信号出力部と第2の振動波形Sbが入力される端子133bとを結んでいる。 FIG. 17 is a diagram showing a second wiring example in which the first vibration waveform and the second vibration waveform are acquired via separate detection lines. The control device 30 has terminals 131, 132, 133a, 133b. The detection circuit 37 performs biological detection by detecting the first vibration waveform Sa via the detection line 13a connected to the first piezoelectric element 121, and the detection line 13b connected to the second piezoelectric element 122. The load is detected by detecting the second vibration waveform Sb via the above. The detection line 13a connects the signal output unit of the first piezoelectric element 121 and the terminal 133a into which the first vibration waveform Sa is input. The detection line 13b connects the signal output unit of the second piezoelectric element 122 and the terminal 133b to which the second vibration waveform Sb is input.
 図18は、圧電ラインの構成例を示す図である。上述の圧電ラインは、例えば、図18に示す圧電ライン20と同じ構造を有する。圧電ライン20は、内部導体26と、内部導体26を囲む圧電材25と、圧電材25を囲む外部導体24とを備える同軸構造を有する。圧電ラインに印加された荷重に応じた電圧信号が内部導体26から出力される。外部導体24は、ノイズに対するシールドとして機能する。 FIG. 18 is a diagram showing a configuration example of a piezoelectric line. The above-mentioned piezoelectric line has, for example, the same structure as the piezoelectric line 20 shown in FIG. The piezoelectric line 20 has a coaxial structure including an inner conductor 26, a piezoelectric material 25 surrounding the inner conductor 26, and an outer conductor 24 surrounding the piezoelectric material 25. A voltage signal corresponding to the load applied to the piezoelectric line is output from the internal conductor 26. The outer conductor 24 functions as a shield against noise.
 以上、乗員検知装置及びシートを実施形態により説明したが、本発明は上記実施形態に限定されるものではない。他の実施形態の一部又は全部との組み合わせや置換などの種々の変形及び改良が、本発明の範囲内で可能である。 Although the occupant detection device and the seat have been described above by the embodiment, the present invention is not limited to the above embodiment. Various modifications and improvements, such as combinations and substitutions with some or all of the other embodiments, are possible within the scope of the present invention.
 例えば、支持部材41に設置される振動部10の個数は、一つの限られず、複数でもよい。また、振動部10は、圧電素子に限られず、振動モータや振動アクチュエータなどの他の振動発生体でもよい。振動部10は、駆動信号Dにより振動する圧電ラインでもよい。振動部10を圧電ラインとすることで、支持部材41への取り付けの自由度が向上する。 For example, the number of vibrating portions 10 installed on the support member 41 is not limited to one, and may be plural. Further, the vibration unit 10 is not limited to the piezoelectric element, and may be another vibration generator such as a vibration motor or a vibration actuator. The vibrating unit 10 may be a piezoelectric line that vibrates according to the drive signal D. By using the vibrating portion 10 as a piezoelectric line, the degree of freedom of attachment to the support member 41 is improved.
 また、振動部10は、振動による荷重検知と振動による注意喚起とに兼用されてもよい。すなわち、駆動回路31は、荷重検知を行う場合、シートクッション44上の乗員に振動を感じさせない程度の大きさで振動部10が振動するように、一定の振幅且つ周波数で振動部10を振動させる駆動信号を出力する。一方、駆動回路31は、支持部材41を振動させることによってシートクッション44上の乗員に注意喚起を行う場合、シートクッション44上の乗員に振動を感じさせる程度の大きさで振動部10が振動するように、振動部10を振動させる駆動信号を出力する。これにより、荷重検知用の振動部と注意喚起用の振動部とを共通化できるので、回路構成が簡素化する。例えば、振動による注意喚起は、居眠り、車線逸脱又は車両衝突予測など、乗員に注意喚起すべき事象が検出された場合に実行される。 Further, the vibrating unit 10 may be used for both load detection by vibration and alerting by vibration. That is, when the drive circuit 31 detects the load, the drive circuit 31 vibrates the vibrating portion 10 with a constant amplitude and frequency so that the vibrating portion 10 vibrates with a size such that the occupant on the seat cushion 44 does not feel the vibration. Output the drive signal. On the other hand, in the drive circuit 31, when the occupant on the seat cushion 44 is alerted by vibrating the support member 41, the vibrating portion 10 vibrates to such an extent that the occupant on the seat cushion 44 feels vibration. As a result, a drive signal that vibrates the vibrating unit 10 is output. As a result, the vibrating part for load detection and the vibrating part for calling attention can be shared, so that the circuit configuration is simplified. For example, vibration alerting is performed when an event that should alert the occupant, such as falling asleep, lane departure, or vehicle collision prediction, is detected.
 また、圧電素子は、圧電ラインに限らず、帯状の圧電フィルムでもよい。 The piezoelectric element is not limited to the piezoelectric line, but may be a strip-shaped piezoelectric film.
 本国際出願は、2019年7月25日に出願した日本国特許出願第2019-137168号に基づく優先権を主張するものであり、日本国特許出願第2019-137168号の全内容を本国際出願に援用する。 This international application claims priority based on Japanese Patent Application No. 2019-137168 filed on July 25, 2019, and the entire contents of Japanese Patent Application No. 2019-137168 are included in this international application. Invite to.
10 振動部
11 駆動ライン
12 グランド線
13 検知ライン
14 両面接着フィルム
15 接着部材
16 クリップ
17 荷重センサ
18 エポキシ樹脂
20 圧電ライン
24 外部導体
25 圧電材
26 内部導体
40 シート
41 支持部材
41e Sバネ
42 シートトリム
43 クッションパッド
44 シートクッション
45 シートバック
46 糸
47 フィルム
48 溝
121 第1の圧電素子
122 第2の圧電素子
S 検知波形
Sa 第1の振動波形
Sb 第2の振動波形
10 Vibrating part 11 Drive line 12 Ground line 13 Detection line 14 Double-sided adhesive film 15 Adhesive member 16 Clip 17 Load sensor 18 Epoxy resin 20 Piezoelectric line 24 External conductor 25 Piezoelectric material 26 Internal conductor 40 Sheet 41 Support member 41e S spring 42 Seat trim 43 Cushion pad 44 Seat cushion 45 Seat back 46 Thread 47 Film 48 Groove 121 First piezoelectric element 122 Second piezoelectric element S Detection waveform Sa First vibration waveform Sb Second vibration waveform

Claims (15)

  1.  シートクッションを下方から支持する金属製の支持部材に設置される振動部と、
     前記シートクッションに設置される第1の圧電素子と、
     前記支持部材に設置される第2の圧電素子と、
     前記支持部材に振動が伝播するように前記振動部を振動させる駆動信号を出力する駆動回路と、
     前記第1の圧電素子に接続される検知ラインを介して周波数が前記駆動信号よりも低い第1の振動波形を検出することによって生体検知を行い、前記第2の圧電素子に接続される検知ラインを介して得られる第2の振動波形の振幅変化を検出することによって荷重検知を行う検知回路とを備える、乗員検知装置。
    A vibrating part installed on a metal support member that supports the seat cushion from below,
    The first piezoelectric element installed on the seat cushion and
    A second piezoelectric element installed on the support member and
    A drive circuit that outputs a drive signal that vibrates the vibrating portion so that the vibration propagates to the support member.
    Biometric detection is performed by detecting a first vibration waveform whose frequency is lower than that of the drive signal via a detection line connected to the first piezoelectric element, and a detection line connected to the second piezoelectric element. An occupant detection device including a detection circuit that detects a load by detecting an amplitude change of a second vibration waveform obtained through the device.
  2.  前記検知回路は、前記第1の圧電素子と前記第2の圧電素子に共通に接続される検知ラインを介して得られる検知波形を周波数分解することによって、前記第1の振動波形と前記第2の振動波形とを抽出する、請求項1に記載の乗員検知装置。 The detection circuit frequency-decomposes a detection waveform obtained via a detection line commonly connected to the first piezoelectric element and the second piezoelectric element, thereby causing the first vibration waveform and the second vibration waveform. The occupant detection device according to claim 1, which extracts the vibration waveform of the above.
  3.  前記第1の圧電素子は、前記シートクッションに蛇行して取り付けられる圧電ラインである、請求項1に記載の乗員検知装置。 The occupant detection device according to claim 1, wherein the first piezoelectric element is a piezoelectric line meanderingly attached to the seat cushion.
  4.  前記シートクッションは、前記支持部材に下方から支持されるクッションパッドと、前記クッションパッドを覆う基材とを有し、
     前記第1の圧電素子は、前記基材に取り付けられる圧電ラインである、請求項1に記載の乗員検知装置。
    The seat cushion has a cushion pad that is supported from below by the support member, and a base material that covers the cushion pad.
    The occupant detection device according to claim 1, wherein the first piezoelectric element is a piezoelectric line attached to the base material.
  5.  前記第1の圧電素子は、前記基材に縫い付けられる、請求項4に記載の乗員検知装置。 The occupant detection device according to claim 4, wherein the first piezoelectric element is sewn on the base material.
  6.  前記基材は、シートトリムである、請求項5に記載の乗員検知装置。 The occupant detection device according to claim 5, wherein the base material is a seat trim.
  7.  前記シートクッションは、前記支持部材に下方から支持されるクッションパッドと、前記クッションパッドを覆うシートトリムとを有し、
     前記第1の圧電素子は、前記クッションパッドに取り付けられる圧電ラインである、請求項1に記載の乗員検知装置。
    The seat cushion has a cushion pad that is supported from below by the support member, and a seat trim that covers the cushion pad.
    The occupant detection device according to claim 1, wherein the first piezoelectric element is a piezoelectric line attached to the cushion pad.
  8.  前記クッションパッドは、前記第1の圧電素子を収容する溝を有する、請求項7に記載の乗員検知装置。 The occupant detection device according to claim 7, wherein the cushion pad has a groove for accommodating the first piezoelectric element.
  9.  前記溝は、前記シートトリムの縫い代を吊り込む吊り込み溝である、請求項8に記載の乗員検知装置。 The occupant detection device according to claim 8, wherein the groove is a hanging groove for suspending the seam allowance of the seat trim.
  10.  前記支持部材は、Sバネを有し、
     前記第2の圧電素子は、前記Sバネに取り付けられる圧電ラインである、請求項1に記載の乗員検知装置。
    The support member has an S spring and has an S spring.
    The occupant detection device according to claim 1, wherein the second piezoelectric element is a piezoelectric line attached to the S spring.
  11.  前記第2の圧電素子は、前記振動部が取り付けられる前記Sバネに取り付けられる、請求項10に記載の乗員検知装置。 The occupant detection device according to claim 10, wherein the second piezoelectric element is attached to the S spring to which the vibrating portion is attached.
  12.  前記第2の圧電素子は、前記振動部とワンパッケージで前記Sバネに取り付けられる、請求項11に記載の乗員検知装置。 The occupant detection device according to claim 11, wherein the second piezoelectric element is attached to the S spring in one package with the vibrating portion.
  13.  前記振動部は、前記駆動信号により振動する圧電ラインである、請求項1に記載の乗員検知装置。 The occupant detection device according to claim 1, wherein the vibrating unit is a piezoelectric line that vibrates according to the drive signal.
  14.  前記検知回路は、前記生体検知により生体信号が検知された場合、前記荷重検知により得られた荷重値に対応する信号を乗員拘束装置を制御する制御装置に対して出力し、前記生体検知により生体信号が検知されない場合、前記信号を前記制御装置に対して出力しない、請求項1に記載の乗員検知装置。 When the biological signal is detected by the biological detection, the detection circuit outputs a signal corresponding to the load value obtained by the load detection to the control device that controls the occupant restraint device, and the biological detection causes the biological signal. The occupant detection device according to claim 1, wherein when the signal is not detected, the signal is not output to the control device.
  15.  シートクッションと、
     前記シートクッションを下方から支持する金属製の支持部材と、
     前記支持部材に設置される振動部と、
     前記シートクッションに設置される第1の圧電素子と、
     前記支持部材に設置される第2の圧電素子と、
     前記支持部材に振動が伝播するように前記振動部を振動させる駆動信号を出力する駆動回路と、
     前記第1の圧電素子に接続される検知ラインを介して周波数が前記駆動信号よりも低い第1の振動波形を検出することによって生体検知を行い、前記第2の圧電素子に接続される検知ラインを介して得られる第2の振動波形の振幅変化を検出することによって荷重検知を行う検知回路とを備える、シート。
    With a seat cushion
    A metal support member that supports the seat cushion from below, and
    The vibrating part installed on the support member and
    The first piezoelectric element installed on the seat cushion and
    A second piezoelectric element installed on the support member and
    A drive circuit that outputs a drive signal that vibrates the vibrating portion so that the vibration propagates to the support member.
    Biometric detection is performed by detecting a first vibration waveform whose frequency is lower than that of the drive signal via a detection line connected to the first piezoelectric element, and a detection line connected to the second piezoelectric element. A sheet including a detection circuit that detects a load by detecting an amplitude change of a second vibration waveform obtained via the above.
PCT/JP2020/025217 2019-07-25 2020-06-26 Occupant sensing device and seat WO2021014884A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-137168 2019-07-25
JP2019137168A JP7272890B2 (en) 2019-07-25 2019-07-25 Occupant detection device and seat

Publications (1)

Publication Number Publication Date
WO2021014884A1 true WO2021014884A1 (en) 2021-01-28

Family

ID=74193170

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/025217 WO2021014884A1 (en) 2019-07-25 2020-06-26 Occupant sensing device and seat

Country Status (2)

Country Link
JP (1) JP7272890B2 (en)
WO (1) WO2021014884A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000230853A (en) * 1999-02-09 2000-08-22 Matsushita Electric Ind Co Ltd Load detector
JP2001204694A (en) * 2000-01-26 2001-07-31 Matsushita Electric Works Ltd Bio-information detector
JP2005204871A (en) * 2004-01-22 2005-08-04 Matsushita Electric Ind Co Ltd Electric motor vehicle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000230853A (en) * 1999-02-09 2000-08-22 Matsushita Electric Ind Co Ltd Load detector
JP2001204694A (en) * 2000-01-26 2001-07-31 Matsushita Electric Works Ltd Bio-information detector
JP2005204871A (en) * 2004-01-22 2005-08-04 Matsushita Electric Ind Co Ltd Electric motor vehicle

Also Published As

Publication number Publication date
JP2021020510A (en) 2021-02-18
JP7272890B2 (en) 2023-05-12

Similar Documents

Publication Publication Date Title
EP1012806B1 (en) Vehicle passenger weight sensors
JP5905413B2 (en) Vehicle seat
US7511610B2 (en) Multiple passenger vehicle seat belt notification system with force feedback
US8665103B2 (en) Seat having occupant detecting function and occupant detection device
JP4766166B2 (en) Capacitance type occupant sensor and capacitance type occupant sensor device
US20150265200A1 (en) Safety belt arrangements and methods for determining information with respect to the cardiac and/or respiratory activity of a user of a safety belt
CN104349934A (en) Vehicle seat suspension mat
JP5887875B2 (en) Biological information detection device
JP2020509970A (en) Self-adjusting vehicle seat
JP6263509B2 (en) Vehicle seat
WO2021014884A1 (en) Occupant sensing device and seat
JP2017065643A (en) Vehicle seat and alarm device for vehicle
EP0930032B1 (en) Seat
JP2001180353A (en) Sitting sensor of automobile seat
US20070235243A1 (en) Seatbelt minder
JP6600533B2 (en) Vehicle seat
US9409496B2 (en) Seat configured for occupancy state detection
JP7421079B2 (en) vehicle seat
JP2016146953A (en) Biological information detector
JP2023024251A (en) vehicle seat
JP2014230588A (en) Biological information detection device with vehicle seat
JP2010160048A (en) Load detecting device, seat, and load sensor
WO2011096144A1 (en) Biological-information detecting device
JP6054251B2 (en) Vehicle seat
JP2011156196A (en) Biological information detector

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20843529

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20843529

Country of ref document: EP

Kind code of ref document: A1