WO2019068066A1 - Methods and compositions enhancing survival and functionality of anti-tumor and anti-viral t cells - Google Patents
Methods and compositions enhancing survival and functionality of anti-tumor and anti-viral t cells Download PDFInfo
- Publication number
- WO2019068066A1 WO2019068066A1 PCT/US2018/053692 US2018053692W WO2019068066A1 WO 2019068066 A1 WO2019068066 A1 WO 2019068066A1 US 2018053692 W US2018053692 W US 2018053692W WO 2019068066 A1 WO2019068066 A1 WO 2019068066A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- ctls
- cell
- cells
- liver
- akt
- Prior art date
Links
- 210000001744 T-lymphocyte Anatomy 0.000 title claims abstract description 104
- 238000000034 method Methods 0.000 title claims abstract description 17
- 239000000203 mixture Substances 0.000 title claims description 14
- 230000000259 anti-tumor effect Effects 0.000 title abstract description 12
- 230000004083 survival effect Effects 0.000 title abstract description 10
- 230000000840 anti-viral effect Effects 0.000 title abstract description 9
- 230000002708 enhancing effect Effects 0.000 title description 2
- 108091008611 Protein Kinase B Proteins 0.000 claims abstract description 54
- 210000004027 cell Anatomy 0.000 claims abstract description 51
- 206010028980 Neoplasm Diseases 0.000 claims abstract description 35
- 230000009385 viral infection Effects 0.000 claims abstract description 12
- 108010019670 Chimeric Antigen Receptors Proteins 0.000 claims description 26
- 239000013612 plasmid Substances 0.000 claims description 20
- 108091008874 T cell receptors Proteins 0.000 claims description 19
- 102000016266 T-Cell Antigen Receptors Human genes 0.000 claims description 19
- 101150107888 AKT2 gene Proteins 0.000 claims description 18
- 206010073071 hepatocellular carcinoma Diseases 0.000 claims description 18
- 231100000844 hepatocellular carcinoma Toxicity 0.000 claims description 18
- 238000000338 in vitro Methods 0.000 claims description 13
- 108010029485 Protein Isoforms Proteins 0.000 claims description 11
- 102000001708 Protein Isoforms Human genes 0.000 claims description 11
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 11
- 239000011324 bead Substances 0.000 claims description 9
- 230000026683 transduction Effects 0.000 claims description 9
- 238000010361 transduction Methods 0.000 claims description 9
- 241001430294 unidentified retrovirus Species 0.000 claims description 9
- 230000003612 virological effect Effects 0.000 claims description 9
- 241000701161 unidentified adenovirus Species 0.000 claims description 7
- 108090000695 Cytokines Proteins 0.000 claims description 6
- 102000004127 Cytokines Human genes 0.000 claims description 6
- 241000700605 Viruses Species 0.000 claims description 6
- 239000013598 vector Substances 0.000 claims description 6
- 101150051155 Akt3 gene Proteins 0.000 claims description 5
- 108700019146 Transgenes Proteins 0.000 claims description 4
- 201000011510 cancer Diseases 0.000 claims description 4
- 230000012010 growth Effects 0.000 claims description 4
- 210000003958 hematopoietic stem cell Anatomy 0.000 claims description 4
- 108091032973 (ribonucleotides)n+m Proteins 0.000 claims description 3
- 208000014018 liver neoplasm Diseases 0.000 claims description 3
- 210000001778 pluripotent stem cell Anatomy 0.000 claims description 3
- 241000702421 Dependoparvovirus Species 0.000 claims description 2
- 241000713666 Lentivirus Species 0.000 claims description 2
- 230000003321 amplification Effects 0.000 claims description 2
- 230000015572 biosynthetic process Effects 0.000 claims description 2
- 210000000170 cell membrane Anatomy 0.000 claims description 2
- 238000004520 electroporation Methods 0.000 claims description 2
- 230000010354 integration Effects 0.000 claims description 2
- 239000002502 liposome Substances 0.000 claims description 2
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 2
- 239000000126 substance Substances 0.000 claims description 2
- 238000003786 synthesis reaction Methods 0.000 claims description 2
- 238000013518 transcription Methods 0.000 claims description 2
- 230000035897 transcription Effects 0.000 claims description 2
- 238000001890 transfection Methods 0.000 claims description 2
- 239000003981 vehicle Substances 0.000 claims description 2
- 108091033319 polynucleotide Proteins 0.000 claims 3
- 102000040430 polynucleotide Human genes 0.000 claims 3
- 239000002157 polynucleotide Substances 0.000 claims 3
- 201000010099 disease Diseases 0.000 claims 2
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims 2
- 210000001671 embryonic stem cell Anatomy 0.000 claims 2
- 239000012634 fragment Substances 0.000 claims 2
- 201000007270 liver cancer Diseases 0.000 claims 2
- 206010004593 Bile duct cancer Diseases 0.000 claims 1
- 208000007207 Epithelioid hemangioendothelioma Diseases 0.000 claims 1
- 206010067388 Hepatic angiosarcoma Diseases 0.000 claims 1
- 201000007180 bile duct carcinoma Diseases 0.000 claims 1
- 208000006454 hepatitis Diseases 0.000 claims 1
- 231100000283 hepatitis Toxicity 0.000 claims 1
- 230000006058 immune tolerance Effects 0.000 claims 1
- 201000010995 liver angiosarcoma Diseases 0.000 claims 1
- 238000004519 manufacturing process Methods 0.000 claims 1
- 230000004936 stimulating effect Effects 0.000 claims 1
- 239000013589 supplement Substances 0.000 claims 1
- 230000014509 gene expression Effects 0.000 abstract description 67
- 239000000427 antigen Substances 0.000 abstract description 50
- 108091007433 antigens Proteins 0.000 abstract description 50
- 102000036639 antigens Human genes 0.000 abstract description 50
- 102000037982 Immune checkpoint proteins Human genes 0.000 abstract description 23
- 108091008036 Immune checkpoint proteins Proteins 0.000 abstract description 23
- 230000007730 Akt signaling Effects 0.000 abstract description 16
- 208000036142 Viral infection Diseases 0.000 abstract description 10
- 230000002018 overexpression Effects 0.000 abstract description 10
- 230000001684 chronic effect Effects 0.000 abstract description 7
- 230000036210 malignancy Effects 0.000 abstract description 7
- 210000002865 immune cell Anatomy 0.000 abstract description 6
- 238000002659 cell therapy Methods 0.000 abstract description 3
- 230000001506 immunosuppresive effect Effects 0.000 abstract description 3
- 210000001151 cytotoxic T lymphocyte Anatomy 0.000 abstract description 2
- 241000699670 Mus sp. Species 0.000 description 126
- 210000004185 liver Anatomy 0.000 description 117
- 238000012546 transfer Methods 0.000 description 77
- 210000000952 spleen Anatomy 0.000 description 31
- 101710089372 Programmed cell death protein 1 Proteins 0.000 description 29
- 102100040678 Programmed cell death protein 1 Human genes 0.000 description 29
- 108010058846 Ovalbumin Proteins 0.000 description 25
- 229940092253 ovalbumin Drugs 0.000 description 25
- 238000010186 staining Methods 0.000 description 25
- 102000017578 LAG3 Human genes 0.000 description 24
- 101150030213 Lag3 gene Proteins 0.000 description 22
- 102100034458 Hepatitis A virus cellular receptor 2 Human genes 0.000 description 18
- 101710083479 Hepatitis A virus cellular receptor 2 homolog Proteins 0.000 description 18
- 108060001084 Luciferase Proteins 0.000 description 18
- 239000005089 Luciferase Substances 0.000 description 18
- 229940126547 T-cell immunoglobulin mucin-3 Drugs 0.000 description 18
- 208000015181 infectious disease Diseases 0.000 description 18
- 210000002966 serum Anatomy 0.000 description 17
- 230000006870 function Effects 0.000 description 16
- 230000002494 anti-cea effect Effects 0.000 description 15
- 238000000684 flow cytometry Methods 0.000 description 15
- 210000003494 hepatocyte Anatomy 0.000 description 14
- 230000035755 proliferation Effects 0.000 description 14
- 230000011664 signaling Effects 0.000 description 13
- 210000004988 splenocyte Anatomy 0.000 description 13
- 101000831007 Homo sapiens T-cell immunoreceptor with Ig and ITIM domains Proteins 0.000 description 12
- 102100024834 T-cell immunoreceptor with Ig and ITIM domains Human genes 0.000 description 12
- 239000012636 effector Substances 0.000 description 12
- 210000004698 lymphocyte Anatomy 0.000 description 12
- 230000002085 persistent effect Effects 0.000 description 12
- 230000004044 response Effects 0.000 description 12
- 108010088751 Albumins Proteins 0.000 description 11
- 102000009027 Albumins Human genes 0.000 description 11
- 230000004913 activation Effects 0.000 description 11
- 102000003952 Caspase 3 Human genes 0.000 description 10
- 108090000397 Caspase 3 Proteins 0.000 description 10
- 230000029918 bioluminescence Effects 0.000 description 10
- 238000005415 bioluminescence Methods 0.000 description 10
- 230000003013 cytotoxicity Effects 0.000 description 10
- 231100000135 cytotoxicity Toxicity 0.000 description 10
- 238000001727 in vivo Methods 0.000 description 10
- 210000004985 myeloid-derived suppressor cell Anatomy 0.000 description 10
- 230000000638 stimulation Effects 0.000 description 10
- 238000012762 unpaired Student’s t-test Methods 0.000 description 10
- 101710132601 Capsid protein Proteins 0.000 description 9
- 241000699666 Mus <mouse, genus> Species 0.000 description 9
- 230000016396 cytokine production Effects 0.000 description 8
- 238000010172 mouse model Methods 0.000 description 8
- 101150084750 1 gene Proteins 0.000 description 7
- 101100322918 Mus musculus Akt1 gene Proteins 0.000 description 7
- 108700026244 Open Reading Frames Proteins 0.000 description 7
- 238000003501 co-culture Methods 0.000 description 7
- 230000002062 proliferating effect Effects 0.000 description 7
- 108090000623 proteins and genes Proteins 0.000 description 7
- 239000007787 solid Substances 0.000 description 7
- 231100000433 cytotoxic Toxicity 0.000 description 6
- 230000001472 cytotoxic effect Effects 0.000 description 6
- 230000002440 hepatic effect Effects 0.000 description 6
- 238000002991 immunohistochemical analysis Methods 0.000 description 6
- 239000007924 injection Substances 0.000 description 6
- 238000002347 injection Methods 0.000 description 6
- 210000000066 myeloid cell Anatomy 0.000 description 6
- 238000011002 quantification Methods 0.000 description 6
- 230000003248 secreting effect Effects 0.000 description 6
- 230000003393 splenic effect Effects 0.000 description 6
- 210000004881 tumor cell Anatomy 0.000 description 6
- 101710142246 External core antigen Proteins 0.000 description 5
- 101000914514 Homo sapiens T-cell-specific surface glycoprotein CD28 Proteins 0.000 description 5
- 102100027213 T-cell-specific surface glycoprotein CD28 Human genes 0.000 description 5
- 230000008859 change Effects 0.000 description 5
- 238000007490 hematoxylin and eosin (H&E) staining Methods 0.000 description 5
- 230000003834 intracellular effect Effects 0.000 description 5
- 210000005087 mononuclear cell Anatomy 0.000 description 5
- 230000007498 myristoylation Effects 0.000 description 5
- 230000026731 phosphorylation Effects 0.000 description 5
- 238000006366 phosphorylation reaction Methods 0.000 description 5
- 230000001105 regulatory effect Effects 0.000 description 5
- 206010061218 Inflammation Diseases 0.000 description 4
- 102000000588 Interleukin-2 Human genes 0.000 description 4
- 108010002350 Interleukin-2 Proteins 0.000 description 4
- 101100162368 Mus musculus Akt2 gene Proteins 0.000 description 4
- 108700020796 Oncogene Proteins 0.000 description 4
- 102100032315 RAC-beta serine/threonine-protein kinase Human genes 0.000 description 4
- 238000009825 accumulation Methods 0.000 description 4
- 230000001640 apoptogenic effect Effects 0.000 description 4
- 230000001419 dependent effect Effects 0.000 description 4
- 238000001514 detection method Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 229940126546 immune checkpoint molecule Drugs 0.000 description 4
- 230000004054 inflammatory process Effects 0.000 description 4
- 210000005228 liver tissue Anatomy 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 210000001519 tissue Anatomy 0.000 description 4
- 238000011144 upstream manufacturing Methods 0.000 description 4
- WOVKYSAHUYNSMH-RRKCRQDMSA-N 5-bromodeoxyuridine Chemical compound C1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C(Br)=C1 WOVKYSAHUYNSMH-RRKCRQDMSA-N 0.000 description 3
- 108010021064 CTLA-4 Antigen Proteins 0.000 description 3
- 229940045513 CTLA4 antagonist Drugs 0.000 description 3
- 102100025475 Carcinoembryonic antigen-related cell adhesion molecule 5 Human genes 0.000 description 3
- 108091007741 Chimeric antigen receptor T cells Proteins 0.000 description 3
- 102100039498 Cytotoxic T-lymphocyte protein 4 Human genes 0.000 description 3
- 230000006820 DNA synthesis Effects 0.000 description 3
- 102000001398 Granzyme Human genes 0.000 description 3
- 108060005986 Granzyme Proteins 0.000 description 3
- 101000798015 Homo sapiens RAC-beta serine/threonine-protein kinase Proteins 0.000 description 3
- 102000043276 Oncogene Human genes 0.000 description 3
- 102100032314 RAC-gamma serine/threonine-protein kinase Human genes 0.000 description 3
- 230000006044 T cell activation Effects 0.000 description 3
- 108010065917 TOR Serine-Threonine Kinases Proteins 0.000 description 3
- 102000013530 TOR Serine-Threonine Kinases Human genes 0.000 description 3
- 241001492404 Woodchuck hepatitis virus Species 0.000 description 3
- 238000011467 adoptive cell therapy Methods 0.000 description 3
- 230000033228 biological regulation Effects 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- 230000004069 differentiation Effects 0.000 description 3
- 230000036039 immunity Effects 0.000 description 3
- 230000001771 impaired effect Effects 0.000 description 3
- 238000010348 incorporation Methods 0.000 description 3
- 230000001124 posttranscriptional effect Effects 0.000 description 3
- 102000004196 processed proteins & peptides Human genes 0.000 description 3
- 230000001681 protective effect Effects 0.000 description 3
- 230000001177 retroviral effect Effects 0.000 description 3
- 238000001262 western blot Methods 0.000 description 3
- 238000011740 C57BL/6 mouse Methods 0.000 description 2
- 101000741929 Caenorhabditis elegans Serine/threonine-protein phosphatase 2A catalytic subunit Proteins 0.000 description 2
- 101100322915 Caenorhabditis elegans akt-1 gene Proteins 0.000 description 2
- 206010052360 Colorectal adenocarcinoma Diseases 0.000 description 2
- 108020004414 DNA Proteins 0.000 description 2
- 241000283070 Equus zebra Species 0.000 description 2
- 101000914324 Homo sapiens Carcinoembryonic antigen-related cell adhesion molecule 5 Proteins 0.000 description 2
- 101000914321 Homo sapiens Carcinoembryonic antigen-related cell adhesion molecule 7 Proteins 0.000 description 2
- 101001137987 Homo sapiens Lymphocyte activation gene 3 protein Proteins 0.000 description 2
- 101000798007 Homo sapiens RAC-gamma serine/threonine-protein kinase Proteins 0.000 description 2
- 101100162374 Mus musculus Akt3 gene Proteins 0.000 description 2
- 108010067390 Viral Proteins Proteins 0.000 description 2
- 230000003416 augmentation Effects 0.000 description 2
- 238000002619 cancer immunotherapy Methods 0.000 description 2
- 230000003828 downregulation Effects 0.000 description 2
- 229930004094 glycosylphosphatidylinositol Natural products 0.000 description 2
- 239000001963 growth medium Substances 0.000 description 2
- 208000002672 hepatitis B Diseases 0.000 description 2
- 230000006450 immune cell response Effects 0.000 description 2
- 238000009169 immunotherapy Methods 0.000 description 2
- 230000002401 inhibitory effect Effects 0.000 description 2
- 238000010212 intracellular staining Methods 0.000 description 2
- 230000002147 killing effect Effects 0.000 description 2
- 210000002540 macrophage Anatomy 0.000 description 2
- 239000003550 marker Substances 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 230000037361 pathway Effects 0.000 description 2
- 230000003389 potentiating effect Effects 0.000 description 2
- 230000009696 proliferative response Effects 0.000 description 2
- 230000007115 recruitment Effects 0.000 description 2
- 230000008685 targeting Effects 0.000 description 2
- 230000003614 tolerogenic effect Effects 0.000 description 2
- 230000009261 transgenic effect Effects 0.000 description 2
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 description 1
- 238000012756 BrdU staining Methods 0.000 description 1
- 206010006187 Breast cancer Diseases 0.000 description 1
- 208000026310 Breast neoplasm Diseases 0.000 description 1
- 108010022366 Carcinoembryonic Antigen Proteins 0.000 description 1
- 208000017667 Chronic Disease Diseases 0.000 description 1
- 206010009944 Colon cancer Diseases 0.000 description 1
- 238000002965 ELISA Methods 0.000 description 1
- YQYJSBFKSSDGFO-UHFFFAOYSA-N Epihygromycin Natural products OC1C(O)C(C(=O)C)OC1OC(C(=C1)O)=CC=C1C=C(C)C(=O)NC1C(O)C(O)C2OCOC2C1O YQYJSBFKSSDGFO-UHFFFAOYSA-N 0.000 description 1
- 101000740462 Escherichia coli Beta-lactamase TEM Proteins 0.000 description 1
- 108090000288 Glycoproteins Proteins 0.000 description 1
- 102000003886 Glycoproteins Human genes 0.000 description 1
- 241000700721 Hepatitis B virus Species 0.000 description 1
- 101100322917 Homo sapiens AKT1 gene Proteins 0.000 description 1
- 101100162367 Homo sapiens AKT2 gene Proteins 0.000 description 1
- 206010067125 Liver injury Diseases 0.000 description 1
- 241000712899 Lymphocytic choriomeningitis mammarenavirus Species 0.000 description 1
- 241001529936 Murinae Species 0.000 description 1
- 208000037581 Persistent Infection Diseases 0.000 description 1
- 108091030071 RNAI Proteins 0.000 description 1
- 230000005867 T cell response Effects 0.000 description 1
- 108091036066 Three prime untranslated region Proteins 0.000 description 1
- IQFYYKKMVGJFEH-XLPZGREQSA-N Thymidine Chemical class O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 IQFYYKKMVGJFEH-XLPZGREQSA-N 0.000 description 1
- 102100033019 Tyrosine-protein phosphatase non-receptor type 11 Human genes 0.000 description 1
- 101710116241 Tyrosine-protein phosphatase non-receptor type 11 Proteins 0.000 description 1
- 102100021657 Tyrosine-protein phosphatase non-receptor type 6 Human genes 0.000 description 1
- 101710128901 Tyrosine-protein phosphatase non-receptor type 6 Proteins 0.000 description 1
- 108050003627 Wnt Proteins 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000006023 anti-tumor response Effects 0.000 description 1
- 229940121357 antivirals Drugs 0.000 description 1
- 230000006907 apoptotic process Effects 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 239000013592 cell lysate Substances 0.000 description 1
- 230000004186 co-expression Effects 0.000 description 1
- 239000002299 complementary DNA Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 230000004940 costimulation Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 101150046266 foxo gene Proteins 0.000 description 1
- 238000012239 gene modification Methods 0.000 description 1
- 230000009368 gene silencing by RNA Effects 0.000 description 1
- 230000005017 genetic modification Effects 0.000 description 1
- 235000013617 genetically modified food Nutrition 0.000 description 1
- 231100000234 hepatic damage Toxicity 0.000 description 1
- 238000010562 histological examination Methods 0.000 description 1
- 102000044469 human AKT1 Human genes 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 230000005746 immune checkpoint blockade Effects 0.000 description 1
- 238000011532 immunohistochemical staining Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000028709 inflammatory response Effects 0.000 description 1
- 239000007928 intraperitoneal injection Substances 0.000 description 1
- 210000000265 leukocyte Anatomy 0.000 description 1
- 230000008818 liver damage Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 230000003278 mimic effect Effects 0.000 description 1
- 230000003990 molecular pathway Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 210000000581 natural killer T-cell Anatomy 0.000 description 1
- 210000000822 natural killer cell Anatomy 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000002246 oncogenic effect Effects 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 101800000638 p2A Proteins 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 230000022532 regulation of transcription, DNA-dependent Effects 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 230000008672 reprogramming Effects 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 230000028327 secretion Effects 0.000 description 1
- 102000035025 signaling receptors Human genes 0.000 description 1
- 108091005475 signaling receptors Proteins 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 230000010473 stable expression Effects 0.000 description 1
- 210000000130 stem cell Anatomy 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 210000001550 testis Anatomy 0.000 description 1
- 230000000451 tissue damage Effects 0.000 description 1
- 231100000827 tissue damage Toxicity 0.000 description 1
- 230000017423 tissue regeneration Effects 0.000 description 1
- 230000004614 tumor growth Effects 0.000 description 1
- 230000005909 tumor killing Effects 0.000 description 1
- 210000004981 tumor-associated macrophage Anatomy 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K35/00—Medicinal preparations containing materials or reaction products thereof with undetermined constitution
- A61K35/12—Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
- A61K35/14—Blood; Artificial blood
- A61K35/17—Lymphocytes; B-cells; T-cells; Natural killer cells; Interferon-activated or cytokine-activated lymphocytes
-
- A61K39/4611—
-
- A61K39/4631—
-
- A61K39/4632—
-
- A61K39/4636—
-
- A61K39/464482—
-
- A61K39/464838—
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
- A61P1/16—Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/705—Receptors; Cell surface antigens; Cell surface determinants
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/85—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
- C12N15/86—Viral vectors
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/10—Transferases (2.)
- C12N9/12—Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y207/00—Transferases transferring phosphorus-containing groups (2.7)
- C12Y207/11—Protein-serine/threonine kinases (2.7.11)
- C12Y207/11001—Non-specific serine/threonine protein kinase (2.7.11.1), i.e. casein kinase or checkpoint kinase
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K2239/00—Indexing codes associated with cellular immunotherapy of group A61K40/00
- A61K2239/38—Indexing codes associated with cellular immunotherapy of group A61K40/00 characterised by the dose, timing or administration schedule
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K2239/00—Indexing codes associated with cellular immunotherapy of group A61K40/00
- A61K2239/46—Indexing codes associated with cellular immunotherapy of group A61K40/00 characterised by the cancer treated
- A61K2239/50—Colon
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K2239/00—Indexing codes associated with cellular immunotherapy of group A61K40/00
- A61K2239/46—Indexing codes associated with cellular immunotherapy of group A61K40/00 characterised by the cancer treated
- A61K2239/53—Liver
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/705—Receptors; Cell surface antigens; Cell surface determinants
- C07K14/70503—Immunoglobulin superfamily
- C07K14/7051—T-cell receptor (TcR)-CD3 complex
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/01—Fusion polypeptide containing a localisation/targetting motif
- C07K2319/03—Fusion polypeptide containing a localisation/targetting motif containing a transmembrane segment
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/01—Fusion polypeptide containing a localisation/targetting motif
- C07K2319/033—Fusion polypeptide containing a localisation/targetting motif containing a motif for targeting to the internal surface of the plasma membrane, e.g. containing a myristoylation motif
Definitions
- the present invention relates to adoptive cell therapy using
- Akt-overexpressing immune cells More specifically, the Akt-overexpressing immune cells can be utilized for treatment of viral infection and malignancies in immunosuppressive microenvironment.
- Adoptive cell therapy utilizing gene engineering to introduce antigen specificity or to enhance effector functions or survival of immune cells is feasible and high clinical values for treatment of chronic infections or malignancies since virus- or tumor-specific immune cell response is usually impaired or missing in patients with most of these chronic diseases.
- T cell exhaustion features the gradual loss of proliferative capability and cytokine production, impaired cytotoxicity, surface expression of various immune checkpoints and increase of apoptotic rate[l, 2].
- Immune checkpoints e.g. PD-1 and CTLA-4 are molecules up-regulated on T cells in response to TCR signaling to modulate the extent of T-cell activation and are highly expressed on exhausted T cells. It has been shown in several studies that signaling through immune checkpoints on T cells can impair metabolic reprogramming during T-cell activation and differentiation[3-6].
- Akt is shown to have a great influence on T-cell growth, proliferation, and survival and also demonstrated to be a signal integrator for T-cell differentiation through regulation of Foxo, mTOR and Wnt/E-catenin pathways[8-11].
- Akt is shown to have a great influence on T-cell growth, proliferation, and survival and also demonstrated to be a signal integrator for T-cell differentiation through regulation of Foxo, mTOR and Wnt/E-catenin pathways[8-11].
- Akt and mTOR signaling in CTLs is impaired, which results in T-cell exhaustion through PD-1 signaling in virus-specific CTLs[12].
- the present invention demonstrates that reinforcement of Akt/mTOR pathway in anti-viral or anti-tumor CTLs may rescue them from T cell exhaustion and has the potential to be further applied on recombinant TCR technology or chimeric antigen receptor (CAR) technology [13]to enhance the survival and effector functions of engineered T cells for treatment of patients with malignancy or chronic viral infection.
- CAR chimeric antigen receptor
- the present invention provides a method able to enhance survival and functionality of anti-tumor or anti-viral T cells through overexpression of Akt molecules in CTLs.
- the Akt-overexpressing CTLs are shown to have high proliferative capability and superior effector functions during encounter with the antigen in the liver, which suggests that the Akt molecules can help the CTLs to overcome T-cell exhaustion in the inhibitory microenvironment.
- We further show expression of Akt molecules can facilitate anti-viral and anti-tumor CTL responses e.g. proliferation, cytokine production and cytotoxicity. Moreover, it enables the CTLs resistance to proliferative arrest induced by MDSCs.
- constitutively active Akt molecules enable T cells to gain the privilege to survive and to kill in the tolerogenic liver or tumor microenvironments.
- the active Akt molecules only when in combination with TCR signaling can trigger massive proliferative response of CTLs and therefore are safe to be applied to T-cell engineering of CTLs.
- this present invention demonstrates that the myristorylated Akt molecules are able to anchor on cell membrane and can be phosphorylated. After being adoptive transfer into the recipient mice, Aktl- and Akt2- CTL populations expand vigorously in the liver and the spleen. It indicates overexpression of Akt is related to intrahepatic survival or secondary expansion of CTLs in response to antigen stimulation.
- T cell exhaustion features surface expression of various immune checkpoints.
- the immune checkpoint blockade can rescue T cell exhaustion of CTLs and further enhance the anti-tumor responses.
- this present invention demonstrated that Akt signaling prevents the expression of immune checkpoints, especially LAG-3 and TIGIT on HBV-specific CTLs.
- this present invention demonstrates that Aktl/2-engineered CTLs clear intrahepatic viral infections efficiently in two different models and persist and provide protective memory immunity in the recovered individuals.
- Akt2-engineered CTLs are able to eradicate established liver cancers in an oncogene-induced HCC mouse model.
- AKTl and AKT2 genes can be utilized in T-cell engineering of adoptive T-cell therapy for treatment of hepatic chronic viral infection and malignancies since Akt signaling is able to reverse T-cell exhaustion of CTLs in immunosuppressive microenvironment.
- FIG. 1 depicts the HBV-specific CTLs undergo T-cell exhaustion after adoptive transfer into HBV carrier mice.
- FIG. 1 depicts the HBV-specific CTLs undergo T-cell exhaustion after adoptive transfer into HBV carrier mice.
- HBc 93-100 -specific CTLs Gating (B) and quantification (C) of CD45.1 + transferred CTLs in the liver and the spleen of HBV carrier mice at indicated time points post adoptive transfer into AdHBV-infected mice. 5xl0 5 in-vitro activated HBc 93-100 CD8 + T cells are adoptively transferred into CD45.2 + recipient mice infected with AdHBV. Histograms show the expression of PD-1 (D, H, L), TIM-3 (E, I, M) and LAG-3 (F, J, N), on transferred CTLs in the liver and in the spleen of AdHBV-infected mice from day 3, 7 and 14 post adoptive transfer.
- D D, H, L
- TIM-3 E, I, M
- LAG-3 LAG-3
- the isotype control staining is shown in solid gray histogram whereas the specific staining is shown in open histogram.
- FIG. 2 depicts the regulation of intrahepatic CTL expansion by different Akt isoforms.
- A Schematic representation of MSCV retroviral constructs used for T-cell engineering contain 5' and 3 'long terminal repeats (LTR), P2A linker peptide sequence (2A) (SEQ ID NO: 10), CD90.1 gene and woodchuck hepatitis virus posttranscriptional regulatory element (WPRE).
- LTR 5' and 3 'long terminal repeats
- 2A P2A linker peptide sequence
- WPRE woodchuck hepatitis virus posttranscriptional regulatory element
- src myristoylation sequence (myr) (SEQ ID NO: 8) and mouse AKT1 (SEQ ID NO: 2), AKT2 (SEQ ID NO: 4) or AKT3 (SEQ ID NO: 6) gene are placed upstream of 2 A sequence.
- A-CD90.1, mAktl -2A-CD90.1 , mAkt2-2A-CD90.1 and mAkt3-2A-CD90.1 respectively or mock.
- CD90.1 as a marker for successful transduction is detected by flow cytometric analysis.
- C Western blot for detection of phospho-Akt, total Akt, E-actin and phospho-S6 proteins in the cell lysate of Ctrl, Aktl, Akt2 and Akt3 -transduced CD8 + T cells.
- D Quantification of transferred CTLs in the liver and spleen of the mice with intrahepatic expression of the cognate antigen. 1x10 5 transduced OT-I CTLs are adoptively transferred into recipient mice receiving
- HDI hydrodynamic injection
- FIG. 3 depicts the local expansion of Akt2-engrafted OT-I CTLs.
- A Kinetics of hepatic in vivo bioluminescence in mice receiving HDI of a plasmid encoding OVA under the control of albumin promoter or a Ctrl vector (ctrl) one day before adoptive transfer of 2A-luc-engineered (ctrl) OT-I or mAkt2-2A-luc-engineered (Akt2) OT-I cells. The bioluminescence of individual mouse is monitored at dayl, 4, 8, 10, 12, 15, 18 and 25 after adoptive transfer and plotted in (B).
- FIG. 4 comprising FIGS. A-T, depicts the Akt-engineered
- HBc 93-100 -specific CTLs overcame T-cell exhaustion in the liver.
- the isotype control staining is shown in solid gray histogram whereas the specific staining is shown in open histogram.
- D Mean fluorescence intensity (MFI) of the staining results from A-C is shown in bar graph.
- E PD- 1 ,
- F TIGIT and
- G LAG-3 on CD90.1 -engineered (ctrl) CTLs and
- Aktl-CD90.1 -engineered CTLs after 24-hours re-stimulation with anti-CD3/CD28 beads.
- the isotype control staining is shown in solid gray histogram whereas the specific staining is shown in open histogram.
- (H) MFI of the staining results from E-G is shown in bar graph.
- 5xl0 5 Aktl-CD90.1- or CD90.1 -engineered (ctrl) are adoptively transferred into CD45.2 + recipient mice being infected with AdHBV.
- the liver-associated lymphocytes and splenocytes are isolated at day 6 or day 19 post adoptive transfer and subjected to flow cytometric analysis of the expression of immune checkpoints by the transferred CTLs.
- CD8 + CD45.1 + cells are gated and defined as transferred CTLs.
- *P ⁇ 0.05, **P ⁇ 0.01 and ***P ⁇ 0.001 unpaired Student's t- test
- FIG. 5 depicts the influence of Akt signaling in the expression of immune checkpoints in vitro. Histograms of expression of (A) PD-1, (B) TIGIT and (C) LAG-3 on CD90.1 -engineered (ctrl) CTLs, Aktl-CD90.1- and Akt2-CD90.1 CTLs after 3-days stimulation with anti-CD3/CD28 beads. The isotype control staining is shown in solid gray histogram whereas the specific staining is shown in open histogram. (D) MFI of the staining results from A-C is shown in bar graph.
- FIG. 6 depicts the Akt2 -engineered HBc 93-100 -specific CTLs prevent T-cell exhaustion in a persistent HBV mouse model.
- 2xl0 6 Akt2-CD90.1- or CD90.1 -engineered (ctrl) is adoptively transferred into CD45.2 + recipient mice infected with AdHBV.
- the liver-associated lymphocytes and splenocytes are isolated at day 19 post adoptive transfer and subjected to flow cytometric analysis of the expression levels of immune checkpoints.
- the isotype control staining is shown in solid gray histogram whereas the specific staining is shown in open histogram.
- FIG. 7 depicts the Akt-engineered
- HBc 93-100 -specific CTLs developed protective immunity against HBV in a persistent HBV mouse model.
- 5x 10 5 Akt 1 -CD90.1 - or CD90.1 -engineered (ctrl) are adoptively transferred into CD45.2 + recipient mice being infected with AdHBV 2.5 months ago.
- the liver-associated lymphocytes and splenocytes are isolated at day 6 or day 19 post adoptive transfer and subjected to flow cytometric analysis of the percentage and the number of the transferred CTLs.
- CD8 + CD45.1 + cells are gated and defined as transferred CTLs.
- D Kinetics of serum HBeAg of recipient mice as in C.
- E Kinetics of serum ALT of recipient mice as in C.
- F Hematoxylin-and-eosin staining of the liver tissues from B. Immunohistochemical analysis of HBcAg (G), cleaved caspase 3 (H), Gr-1 (I) and CD45.1 (J) in the liver from B.
- K Hematoxylin-and-eosin staining of the liver tissues from C.
- FIG. 8 depicts the Akt2-engineered
- HBc 93-100 -specific CTLs develope protective immunity against HBV in a persistent HBV mouse model.
- 2x10 6 Akt2-CD90.1- or CD90.1 -engineered (ctrl) HBc 93-100 -specific CTLs are adoptively transferred into CD45.2 + recipient mice infected with AdHBV.
- liver-associated lymphocytes and splenocytes are isolated day 19 post adoptive transfer and subjected to flow cytometric analysis of the percentage and the number of the transferred CTLs.
- CD8 + CD45.1 + cells are gated and defined as transferred CTLs.
- FIG. 9 depicts the cytokine production in HBV-specific CTLs after adoptive transfer into HBV carrier mice.
- A Zebra plots of intracellular expression of and TNF- ⁇ in adoptively transferred HBV-specific CTLs. 5xl0 5 Aktl-CD90.1- or CD90.1 -engineered (ctrl) HBc 93-100 -specific CTLs are adoptively transferred into CD45.2 + recipient mice infected with AdHBV.
- the liver-associated lymphocytes and splenocytes are isolated at day 19 post adoptive transfer and subjected to re-stimulation with HBc 93-100 peptides for 6 hours, which is followed by staining of surface markers and intracellular cytokines and flow cytometric analysis of the percentage of the cytokine-secreting CTLs.
- CD8 + CD45.1 + cells are gated and defined as transferred CTLs.
- B Bar graph of the percentage of -secreting CTLs (SP) and the percentage of CTLs secreting both and TNF- ⁇ (DP).
- C Zebra plots of intracellular expression of and TNF- ⁇ in adoptively transferred HBV-specific CTLs.
- HBc 93-100 -specific CTLs are adoptively transferred into CD45.2 + recipient mice infected with AdHBV.
- the liver-associated lymphocytes and splenocytes are isolated at day 19 post adoptive transfer and subjected to re-stimulation with HBc 93-100 peptides for 6 hours, which is followed by staining of surface markers and intracellular cytokines and flow cytometric analysis of the percentage of the cytokine-secreting CTLs.
- CD8 + CD45.1 + cells are gated and defined as transferred CTLs.
- FIG. 10 depicts the Akt signaling facilitates antigen-dependent expansion of CTLs and the antigen clearance in the liver.
- A The percentage of bioluminescence-positive mice equivalent to OVA-positive mice at indicated time points.
- Kinetics of accumulation of transferred CTLs in the liver B) and spleen (C) of the mice with intrahepatic expression of the cognate antigen (ovalbumin).
- 1x10 5 transduced OT-I CTLs were adoptively transferred into recipient mice receiving hydrodynamic injection (HDI) of a plasmid encoding ovalbumin and luciferase under the control of albumin promoter one day before adoptive transfer.
- HDI hydrodynamic injection
- liver-associated lymphocytes and splenocytes were isolated at day 3, 7 and 14 and subjected to flow cytometric analysis of the percentage and the number of the transferred CTLs.
- D Kinetics of serum ALT in OVA-Luc-positive mice receiving adoptive transfer of 1x10 5 2A-CD90.1 -engrafted (ctrl) or mAktl-2A-CD90.1-engrafted (Aktl) OT-I cells.
- E, F Kinetics of accumulation of transferred CTLs in the liver (E) and spleen (F) of the mice as in A.
- liver-associated lymphocytes and splenocytes were isolated at day 7, 30 and 63 and subjected to flow cytometric analysis of the percentage and the number of the transferred CTLs.
- G Hematoxylin-and-eosin staining of the liver tissues from E.
- H A representative histogram of BrdU-staining of Aktl -engrafted OT-I CTLs at day 7 and day 63 after adoptive transfer into OVA-Luc-positive recipient mice.
- I Frequency of BrdU* transferred Aktl -engrafted OT-I CTLs at day 7 and day 63 after adoptive transfer into OVA-Luc-positive recipient mice.
- mice were given 1 mg BrdU via intraperitoneal injection at day 6 or day 62 after adoptive transfer.
- the liver-associated lymphocytes and splenocytes were isolated at day 7 and 63 and subjected to flow cytometric analysis of the percentage the BrdU + transferred CTLs.
- FIG. 11 depicts in vivo bioluminescence of mice infected with Ad-Albp-OL.
- C57BL/6 mice are infected with a recombinant adenovirus carrying genes expressing ovalbumin and luciferase under the control of albumin promoter at different viral doses.
- the infected mice are monitored for the luciferase expression in the liver by IVIS at indicated time points after infection.
- FIG. 12 depicts the memory responses of Akt-engineered CD8 + T cells.
- FIG. 12 depicts the memory responses of Akt-engineered CD8 + T cells.
- Akt-engrafted CTLs The level of serum ALT in the mice receiving adenovirus carrying OVA and luciferase ORFs under the control of albumin promoter (Ad-Albp-OL) and control (ctrl) or Aktl -engrafted OT-I T cells (1x10 5 ) at indicated time points post adoptive T cell transfer.
- C The in vivo bioluminescence in mice receiving Ad-Albp-OL, adoptive T cell transfer and hydrodynamic injection (HDI) of a plasmid encoding OVA and luciferase under the control of albumin promoter (pENTRY-Albp-OL) at day 60 after adoptive transfer.
- FIG. 13 comprising FIGS. 13A-F, depicts the memory responses of
- Akt-engineered CD8 + T cells Mice are infected with Ad-Albp-OL, and receive adoptive T cell transfer and HDI of a plasmid encoding OVA and luciferase under the control of albumin promoter (pENTRY-Albp-OL) at day 64 after adoptive transfer.
- Ad-Albp-OL adoptive T cell transfer and HDI of a plasmid encoding OVA and luciferase under the control of albumin promoter (pENTRY-Albp-OL) at day 64 after adoptive transfer.
- FIG. 14 comprising FIGS. 14A-C, depicts the influence of
- Akt-engineered CTLs in HCC tumor microenvironment Immunohistochemical analysis of CD8 (A), F4/80 (B), and cleaved caspase 3 (C) in the liver/tumor of HCC-bearing mice.
- the HCC development is induced by oncogenes, Akt and N-RasV12 delivered by HDI.
- the mice are injected with 2x10 6 Akt2-engrafted OT-I TCR tg CTLs which could recognize an introduced tumor antigen on tumor cells or not (ctrl).
- the liver/tumor tissues are collected at day 10 after adoptive transfer.
- FIG. 15 depicts the anti-tumor capability of Akt-engineered CTLs.
- the HCC development is induced by oncogenes, Akt and
- N-RasV12 delivered by HDI The growth of HCC in mice is monitored by IVIS and the mice with the total flux greater than 10 9 photons/sec are used as recipients receiving adoptive T cell therapy.
- the mice are injected with 2x10 5 ctrl-, Aktl - and Akt2-engrafted HBc 93-100 -specific CTLs, respectively, which can recognize a surrogate tumor antigen on tumor cells.
- A The in vivo bioluminescence of the mice before and after receiving adoptive T cell transfer.
- liver/tumor tissues are collected from mice receiving (B) ctrl-engineered CTLs, (C) Aktl -engineered CTLs or (D) Akt2-engineered CTLs at day 19 after adoptive transfer.
- *P ⁇ 0.05, **P ⁇ 0.01 and ***P ⁇ 0.001 (unpaired Student's t- test) till 0028, FIG. 16, comprising FIGS. 16A-L, depicts the improved
- FIG. 1 Schematic representation of MSCV retroviral constructs used for T-cell engineering contain 5' and 3 'long terminal repeats (LTR), P2A linker peptide sequence (2A) and woodchuck hepatitis virus posttranscriptional regulatory element (WPRE).
- LTR 5' and 3 'long terminal repeats
- 2A P2A linker peptide sequence
- WPRE woodchuck hepatitis virus posttranscriptional regulatory element
- src myristoylation sequence myr
- mouse AKT1 or AKT2 gene are placed upstream of 2A sequence, followed by chimeric antigen receptor (CAR) ORF e.g. anti-HBs CAR (S-CAR) and anti-CEA CAR.
- CAR chimeric antigen receptor
- Aktl Aktl
- antiCEA anti-CEA CAR-engrafted
- Aktl-2A-anti-CEA CAR niAktl-antiCEA CD4 + or CD8 + T cells.
- vztro-activated mouse CD3 + T cells transduce with retroviruses carrying mAktl/mAkt2-2A-CD90.1, anti-CEA CAR or mAktl/mAkt2-2A-anti-CEA CAR ORF, respectively are co-cultured with LS174T cells.
- EdU incorporation and detection are applied to monitor the DNA synthesis of the T cells during 22 hours to 28 hours after co-culture.
- C, E IFNSand (D, F) IL-2 in the supernatant of the co-culture are detected by ELISA.
- G, I Intracellular IFNSand (H, J) granzyme B staining of the CTLs from the co-culture with LS174T cells for 1 day.
- K Proliferation capability of CTLs in the presence of MDSCs.
- 2A-CD90.1 -engrafted (ctrl) or mAktl -2A-CD90.1 -engrafted OT-I CTLs are re-stimulated with anti-CD3+anti-CD28 beads in the presence of different numbers of MDSCs derived from EL4-tumor-bearing mice.
- L Proliferation capability of CTLs in the presence of MDSCs.
- OT-I cell refers to a transgenic line of ovalbumin-specific, CD8 + T cell.
- the transgenic T cell receptor was designed to recognize ovalbumin residues 257-264 in the context of H-2K and used to study the role of peptides in positive selection and the response of CD8 + T cells to antigen.
- AdHBV refers to the adenovirus carrying HBV genome.
- HBV-infected mouse model can be established by hydrodynamic injection (HDI) of the HBV genome into the tail vein.
- HDI hydrodynamic injection
- HBcAg refers to a hepatitis B viral protein, which is an antigen that can be found on the surface of the nucleocapsid core of the hepatitis B virus.
- HBVAg refers to a hepatitis B viral protein, which is an antigen that can be detected in the serum of mice with HBV infection established by AdHBV infection or HDI of a plasmid harboring the HBV genome.
- the DNA or RNA molecules in this present invention can be amplified through plasmid amplification, in vitro transcription or in vitro synthesis and transfected into target cells through electroporation, liposome or other chemical vehicles.
- the aforementioned target cells for genetic modification can be T cells, nature killer cells, hematopoietic stem cells, embryonic stem cells and pluripotent stem cells from various species. These cells can be modified by viral transduction or DNA (or RNA) transfection.
- the recombinant viral or transposon vectors can be retroviruses, lentiviruses, adenoviruses, adeno-associated viruses, other related viruses and various transposon systems can be used in transduction or integration of transgenes.
- HBV specific CD8 + T cells are adoptively transferred into HBV carrier mice and the change of the serum level of HBV antigen in these mice is detected. It is found that most of the mice failed to eliminate persistent HBV infection within 42 days.
- the cell number and expression level of exhaustion markers including PD-1, TIM-3, and LAG-3 on the adoptively transferred CTLs in the liver and in the spleen of the HBV carrier mice are further detected.
- the cell number of adoptively transferred HBV-specific CTLs increases in the liver but not in the spleen.
- HBV-specific CTLs in both the liver and the spleen express higher levels of PD-1 and LAG-3 than endogenous CD8 + T cells; however, the splenic HBV-specific CTLs express lower levels of PD-1, TIM-3 and LAG-3 than intrahepatic compartments.
- Akt signaling is critical to intrahepatic expansion and differentiation of CD8 + T cells.
- Mouse AKT1, AKT2 and AKT3 genes are cloned, respectively, with addition of src myristoylation sequence in the upstream of AKT genes to ensure the membrane targeting and being constitutively active of the Akt molecules.
- the expression of exogenous myristoylated Akt isoforms are detected by Western blot in Akt-engineered CTLs but not in the control T cells.
- CTLs are engrafted with three different kinds of Akt, respectively, all show Akt phosphorylation at Ser473 and only those are engrafted with Aktl or Akt2 show Akt phosphorylation at Thr308.
- Aktl- and Akt2- engineered CTL populations expand vigorously in the liver and the spleen. There is more than 250,000-fold for Aktl CTLs and 950,000-fold for Akt2-CTLs cell numbers found in the liver in comparison with that of ctrl-CTLs at day 7 after adoptive transfer.
- the inventors therefore examine whether Akt signaling have an influence the expression of immune checkpoint molecules on HBV-specific CTLs per se.
- the Akt- or ctrl-engineered HBc 93-100 -specific CTLs are adoptively transferred into AdHBV-infected mice and analyzed the surface expression of immune checkpoint molecules on the CTLs at day 6 and day 19 after adoptive transfer.
- Hepatic ctrl-CTLs expressed high level of PD-1, TIM-3 and LAG-3 at day 19 after adoptive transfer, whereas Aktl -CTLs and Akt2-CTLs expressed significantly less PD-1, TIM-3 and LAG-3 at day 19 post adoptive transfer.
- Akt-CTLs are adoptively transferred into HBV carrier mice.
- Aktl-CTLs but not ctrl-CTLs eliminate persistent HBV infection within 14 days after being adoptive transferred into HBV carrier mice.
- the Aktl-CTLs are mainly in the liver rather than in the spleen and disperse to the spleen after antigen clearance.
- HBcAg-positive hepatocytes There are less HBcAg-positive hepatocytes but more cleaved caspase 3 -positive apoptotic hepatocytes detected in the liver of mice receiving Aktl-CTLs than in the liver of mice receiving ctrl-CTLs.
- the mononuclear cells After clearance of antigen, the mononuclear cells reduce and HBcAg-positive hepatocytes as well as cleaved caspase 3-positive hepatocytes are no longer detected in the liver of mice receiving Aktl-CTLs.
- the ctrl-CTLs fail to clear HBV and do not induce significant inflammation after being adoptively transferred into HBV carrier mice.
- Akt2-CTLs expand vigorously when encountering the cognate antigen in vivo, and prevent T-cell from exhaustion. Also, Akt2-CTLs exhibit strong cytotoxic function and are more efficient to clear HBV infection than Ctrl CTLs.
- Akt-engineered CTLs in killing of hepatocellular carcinoma (HCC) is further examined.
- the tumor antigen-specific Akt2-engrafted CD8 + CTLs can accumulate in the tumor sites as well as in the liver at day 10 after adoptive transfer into HCC-bearing mice.
- Akt2-CTLs change the tumor microenvironment and to attract or activate the surrounding F4/80 + macrophages in tumor sites.
- a lot of cleaved caspase 3-positive tumor cells are detected in the mice receiving Akt2-CTLs but not in ctrl mice. Elevated serum ALT in the mice with Akt2-CTLs is also observed but not in ctrl mice (118.1 U/L vs.
- Akt2 activation enables CTLs to have strong effector functions and be able to kill tumor cells in the liver. This is probably through CTLs' own cytotoxic capability or through release of cytokines to activate the anti-tumor functions of tumor-associated macrophages.
- CEA Carcinoembryonic antigen
- Akt Akt molecules
- Akt2 Akt2 genes
- anti-CEA Carcinoembryonic antigen
- CEA are glycosyl phosphatidyl inositol (GPI) cell-surface-anchored glycoproteins and are critical to the dissemination of colon carcinoma cells.
- the modified CTLs are co-cultured with a colorectal adenocarcinoma cell line, LS174T. Both CD4 + and CD8 + T cells with the engraftment of anti-CEA CAR can respond to stimulation of LS174T and proliferate.
- Aktl expression in anti-CEA CAR engrafted T cells can promote the proliferation capability of both CD4 + and CD8 + T cells. More IL-2 and are detected in the culture medium of co-culture of LS174T cell line with T cells expressing anti-CEA CAR and Aktl or Akt2 molecules compared to that of LS174T and T cells expressing solely anti-CEA CAR. Intracellular staining of and granzyme B of the CD8 + T cells co-culture with LS174T cells also proves that Aktl or Akt2 overexpression can enhance the cytokine production and cytotoxicity in CTLs.
- Aktl- and Akt2-overexpressing CTLs are shown to have the capability to overcome the proliferative arrest induced by myeloid-derived suppressor cells (MDSCs), which strongly suggests that the potential application of Akt molecules on T-cell engineering technology e.g. CAR T cells for immunotherapy.
- MDSCs myeloid-derived suppressor cells
- Endogenous CD8 + T cells are used as a reference population for evaluation of the expression level of these exhaustion markers on HBV-specific CTLs.
- the HBV-specific CTLs in both the liver and the spleen express higher levels of PD-1 and LAG-3 than endogenous CD8 + T cells but no or little TIM-3 at day 3 and day 7 post adoptive transfer (FIGS. 1D-1K).
- the splenic HBV-specific CTLs express lower levels of PD-1 and LAG-3 than intrahepatic compartments at all time points (FIGS. 1D-1O).
- HBV-specific CTLs gradually express TIM-3 after adoptive transfer and reach to a higher level of expression than endogenous CD8 + T cells at day 14 in the liver but not the spleen (FIGS. 1E, 1G, 1I, 1K, 1M and 1O).
- a 0051 , Murine stem cell retroviral (MSCV) system is chosen for delivery of genes into T lymphocytes due to its high efficiency to transduce hematopoietic cell lineages.
- a pMSCV-CD90.1 plasmid is generated from a replacement of hygromycin resistance gene by p2 A peptide sequence and mouse CD90.1 open reading frame (ORF) with the woodchuck hepatitis virus posttranscriptional regulatory element (WPRE) in the 3 ' untranslated region of CD90.1 gene to enhance the expression of the transgenes.
- the CD90.1 gene and " WPRE sequence are amplified from pLKO_TRC024 plasmid (RNAi core lab, Taipei, Taiwan).
- Mouse AKT1 (SEQ ID NO: 1), AKT2 (SEQ ID NO: 3) and AKT3 (SEQ ID NO: 5) genes are cloned, respectively, through PCR using cDNA from mouse 4T1 breast cancer cells with addition of src myristoylation sequence by PCR primer in the upstream of AKT genes to ensure the membrane targeting and being constitutively active of the Akt molecules.
- the myristoylation sequence and AKT genes are linked, respectively, to mouse CD90.1 gene by p2A peptide sequence in pMSCV-CD90.1 to result in pMSCV-mAktl-CD90.1, pMSCV-mAkt2-CD90.1 and pMSCV-mAkt3-CD90.1.
- the expression cassette is flanked by 5' and 3' MSCV long terminal repeats (LTRs).
- LTRs long terminal repeats
- the 4 plasmids are used to produce recombinant retroviruses carrying mouse AKT1, AKT2, AKT3 or control CD90.1 gene, respectively (FIG. 2 A).
- Splenic ovalbumin-specific TCR tg OT-I CD8 + T cells are activated by anti-CD3+anti-CD28 beads, subsequently transduced by recombinant retroviruses and are subjected to surface marker staining using antibody recognizing CD90.1 as a tag for transgene expression followed by flow cytometric analysis.
- CD90.1 as a tag for transgene expression followed by flow cytometric analysis.
- Aktl SEQ ID NO: 1
- Akt2 SEQ ID NO: 3
- Akt3 SEQ ID NO: 5
- the tissue specific expression manner of Akt isoforms may explain the low expression of Akt3 by the CD8 + T cells.
- the expression of exogenous myristoylated Akt isoforms is detected by Western blot in Akt-engineered CTLs but not in the control T cells.
- Akt signaling facilitates antigen-dependent expansion of CTLs in the liver.
- Ovalbumin (OVA) and luciferase expression are induced in the liver of recipient mice by hydrodynamic injection (HDI) of a plasmid encoding OVA and luciferase under the control of albumin promoter (pENTRY-Albp-OL).
- HDI hydrodynamic injection
- Aktl- and Akt2- but not Akt3 -engineered CTL or CD90.1 -engineered (ctrl) populations expanded vigorously in the liver and the spleen.
- Aktl- or Akt2-CTLs underwent vigorous proliferation and yielded 23 million (Aktl) and 113 million (Akt2) splenic and intrahepatic CTLs in total, respectively, after antigen stimulation in the liver (FIG. 2D) despite that there only 0.1 million activated CD8 + T cells are originally injected into the recipient mice. Most of the ctrl CTLs disappear after adoptive transfer probably due to the lack of co-stimulation, growth signals or the suppressive liver microenvironment.
- Akt2-CTLs are found to be more potent in expansion in the liver and in the spleen than ctrl- or Aktl -CTLs (FIGS. 2D-F). Moreover, Aktl -CTLs preferentially locate in the liver rather than the spleen (FIGS. 2D-F).
- Akt constructs with co-expression of luciferase instead of CD90.1 are designed for monitoring the distribution and expansion of Akt-engineered CTLs.
- Control (ctrl) Luc-CTLs and Akt2-Luc-CTLs are delivered respectively, to mice with or without OVA expression in their livers and only observed TCR signaling-dependent Akt2-Luc-CTL accumulation in the liver but not in other organs or in mice without antigen expression in the liver (FIG. 3), which suggests that signaling through constitutively active Akt can assist massive CTL expansion only in combination with TCR triggering and these Akt-CTLs undergo T-cell contraction after the clearance of antigen.
- the Ctrl CTLs fail to expand in respond to antigen stimulation in the liver (FIG. 3).
- Aktl/2 does not change the surface expression of PD-1 and TIGIT (FIGS. 4A, 4B and 4D, FIGS. 5A, 5B and 5D); however, it significantly reduces the expression of LAG-3 on the surface of Aktl- and Akt2-CTLs (FIGS. 4C and 4D, FIGS. 5C and 5D).
- Akt2-CTLs the expression of PD-1 on Akt2-CTLs is lower than ctrl-CTLs (FIGS. 5E and 5H).
- the Aktl - or Akt2-CTLs maintain relatively lower expression of LAG-3 and TIGIT than ctrl-CTLs after re-stimulation with anti-CD3/CD28 beads for 24 hours (FIGS. 4F-H, FIGS. 5F-H).
- Aktl -CTLs expressed high level of TIM-3, whereas splenic CTLs and ctrl-CTLs in liver express lower level of TIM-3 at this time point, which suggests a stronger TCR triggering in Aktl -CTLs than in ctrl-CTLs (FIGS. 4M and 4N).
- the expression of TIM-3 decreases in hepatic Aktl -CTLs, whereas it increases dramatically in the ctrl-CTLs in liver but not in the CTLs in spleen (FIGS. 4M-P).
- Hepatic ctrl-CTLs express high level of LAG-3 at both day 6 and day 19 after adoptive transfer, whereas Aktl -CTLs express less LAG-3 on their surface during the whole period (FIGS. 4R-T). Akt2-CTLs also show dramatic down-regulation of PD-1, TIM-3 and TIGIT (FIG. 6).
- Akt-CTLs The higher expression of PD-1 and TEM-3 on Akt-CTLs than on ctrl-CTLs after re-stimulation in vitro and in vivo strongly suggests a stronger TCR triggering in Akt-CTLs than that in ctrl-CTLs and also excludes the lack of antigen stimulation at this early time point, which results in down-regulation of LAG-3 and TIGIT.
- the early expression of TIM-3 on Akt-CTLs may additionally involve in the augmentation of effector functions of Akt- CTLs to combat HBV infection.
- the reduced expression of immune checkpoints on Akt-engineered CTLs at the later time point may result from the lack of antigen stimulation due to the intense effector functions of Akt-CTLs, which facilitates the early removal of the HBV antigen from the liver.
- Aktl-CTLs but not ctrl-CTLs eliminate persistent HBV infection within 14 days after being adoptive transferred into HBV carrier mice (FIG. 7D). These Aktl-CTLs have better cytotoxic functions than ctrl-CTLs, which is revealed by the elevated serum ALT level from day 3 to day 7 (FIG. 7E).
- the Aktl-CTLs are mainly in the liver rather than the spleen at day 6 post adoptive transfer and dispersed to the spleen after antigen clearance (FIGS. 7B and 7C). From the H&E staining of the liver sections, a huge number of mononuclear cells in the liver sinusoid of mice receiving Aktl-CTLs at day 6 are observed after adoptive transfer (FIG. 7F).
- Immunohistochemical staining is performed to visualize the HBcAg or cleaved caspase 3 expression by hepatocytes and immune cells in the liver of HBV carrier mice. There are less HBcAg-positive hepatocytes but more cleaved caspase 3-positive apoptotic hepatocytes detected in the liver of mice receiving Aktl-CTLs than in the liver of mice receiving ctrl-CTLs at day 6 after adoptive transfer (FIGS. 7G and 7H).
- the apoptotic hepatocytes or HBcAg + hepatocytes are surrounded by mononuclear cells in the liver of mice receiving Aktl-CTLs which suggests a cytotoxic role of these Aktl-CTLs against HBV-infected hepatocytes (FIGS. 7G and 7H).
- Aktl-CTLs The apoptotic hepatocytes or HBcAg + hepatocytes are surrounded by mononuclear cells in the liver of mice receiving Aktl-CTLs which suggests a cytotoxic role of these Aktl-CTLs against HBV-infected hepatocytes (FIGS. 7G and 7H).
- Akt2-CTLs also expand vigorously when encountering the cognate antigen in vivo (FIGS. 8A and 8B), prevent T-cell exhaustion (FIG. 6), exhibited strong cytotoxic function (FIG. 8C) and are more efficient to clear HBV infection than ctrl CTLs (FIG. 8D).
- Aktl- and Akt2-CTLs are found more capable to produce IFN-S and TNF- ⁇ than ctrl-CTLs after ex vivo re-stimulation with the specific HBc peptide (FIGS. 9A-D), which is consistent with their capability to induce inflammatory responses as seen in FIG. 7.
- Aktl-OT-I CTLs were more capable to execute cytotoxicity toward OVA-expressing hepatocytes than ctrl CTLs did, which was revealed by the elevated serum ALT level of mice receiving Aktl-CTLs at day 7 post adoptive transfer (FIG. 10D).
- CTLs may potentially induced oncogenic property of the transduced cells, we therefore monitored the numbers of intrahepatic and splenic transferred CTLs and serum ALT levels in the mice receiving ctrl-CTLs and Aktl-CTLs for a longer period of time.
- the serum ALT levels of mice receiving Aktl-CTLs decreased to normal levels after the clearance of antigens and cell numbers of Aktl-CTL also dropped at least 5000-fold from day 7 to day 63 (FIGS. 10D-F).
- FIG. 10G. 10G We detected a lot of mononuclear cells lying in the liver sinusoid of mice receiving Aktl-CTLs but not ctrl-CTLs at day7 post adoptive transfer (FIG. 10G).
- the architecture of the livers of mice receiving Aktl-CTLs returned to normal at day 32 and day 63 after clearance of antigen (FIG. 10G).
- Akt signaling facilitates development of T cell memory till 0078, It has been shown that virus-infected hepatocytes were highly sensitive to CTL-induced cytotoxicity. The liver microenvironment after HDI may not completely mimic that during viral infection. We therefore established an adenovirus (Ad-Albp-OL)-based liver infection mouse model with persistent expression of OVA and luciferase only in the liver under the transcriptional control of albumin promoter in order to study the functions of Akt in CTLs under the circumstance of intrahepatic persistent viral infection.
- Ad-Albp-OL adenovirus
- Akt2-CTLs than ctrl-CTLs detected in the liver and in the spleen of Ad-Albp-OL-infected mice at day 7 after adoptive transfer (FIG. 13A).
- the inflammation induced by Aktl- or Akt2-CTLs further promoted the innate immune cell response.
- mice receiving control OT-I CTLs did not show ALT elevation nor viral clearance after the adoptive transfer (FIGS. 12B and 12C).
- the mice were re-challenged by HDI of pENTRY-OL or pENTRY vector as HDI control to examine whether they developed antigen-specific T-cell memory.
- the mice receiving Aktl -CTLs showed mild liver damage as revealed by the ALT elevation during day 4 to day 7 after re-challenge. The ALT level in these mice was much less than that in their primary response (FIG. 12B).
- mice receiving Aktl -OT-I CTLs re-expressed antigen as revealed by luciferase activity at day 61 and rapidly eliminated antigen within 3 days whereas the mice receiving ctrl-OT-I CTLs could not eliminate antigen after re-challenge (FIG. 12C).
- Akt-engineered CTLs in killing of hepatocellular carcinoma (HCC) is further examined and demonstrated that the tumor antigen-specific Akt2-engrafted CD8 + CTLs can accumulate in the tumor sites as well as in the liver at day 10 after adoptive transfer into HCC-bearing mice (FIG. 14A).
- Akt2-CTLs change the tumor microenvironment and attract or activate the surrounding F4/80 + macrophages in tumor sites (FIG. 14B).
- Akt molecules on cancer immunotherapy
- plasmids carrying human or mouse Aktl or Akt2 genes are constructed and the ORF encoding anti-CEA chimeric antigen receptor (CAR) (FIG. 16A).
- CAR anti-CEA chimeric antigen receptor
- the construction of the recombinant anti-CEA chimeric antigen receptor used in this present invention were described in Hombach et al. (Hombach, A.; Wieczarkowiecz, A.; Marquardt, T.; Heuser, C; Usai, L.; Pohl, C; Seliger, B.; Abken, H., Tumor-specific T cell activation by recombinant immunoreceptors: signaling and CD28 costimulation are described in Hombach et al. (Hombach, A.; Wieczarkowiecz, A.; Marquardt, T.; Heuser, C; Usai, L.; Pohl, C; Seliger, B
- mouse CD3 + T cells are modified by recombinant retroviruses carrying mouse AKT1 gene, anti-CEA CAR ORF or both and then are monitored for their proliferation capability, cytokine production and cytotoxicity.
- the modified CTLs are co-cultured with a colorectal adenocarcinoma cell line with the expression of CEA, LS174T, and the proliferation of the CTLs is monitored through detection of incorporation of a thymidine analog, EdU.
- a thymidine analog EdU.
- Both CD4 + and CD8 + T cells with the engraftment of anti-CEA CAR can respond to stimulation of LS174T and proliferate.
- Akt signaling further enhances the proliferative capability of anti-CEA CAR-engrafted CD4 + and CD8 + T cells (FIG. 16B).
- Aktl-overexpressing and Akt2-overexpressing CTLs are shown to have the capability to overcome the proliferative arrest induced by myeloid-derived suppressor cells (MDSCs) (FIGS. 16K and 16L), which strongly suggests that the potential application of Akt molecules on T-cell engineering technology e.g. CAR T cells for immunotherapy.
- MDSCs myeloid-derived suppressor cells
- This present invention provides a method able to enhance survival and functionality of anti-tumor or anti- viral T cells through overexpression of Akt molecules in CTLs.
- the Akt-overexpressing CTLs are shown to have high proliferation capability and superior effector functions during encounter with the antigen in the liver, which suggests that the Akt molecules can help the CTLs to overcome T-cell exhaustion in the inhibitory microenvironment.
- This present invention further shows expression of Akt molecules can facilitate anti-viral and anti-tumor CTL responses e.g. proliferation, cytokine production and cytotoxicity. Moreover, it enables the CTLs resistance to proliferative arrest induced by MDSCs.
- constitutively active Akt molecules enable T cells to gain the privilege to survive and to kill in the tolerogenic liver or tumor microenvironments.
- the active Akt molecules only when in combination with TCR signaling can trigger massive proliferative response of CTLs and therefore are safe to be applied to T-cell engineering of CTLs.
- Inventors therefore have the following claims for the compositions comprising the anti-tumor or anti-viral engineered T cells and the methods using thereof for treatment of chronic viral infections and malignancies.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Genetics & Genomics (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- General Health & Medical Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Wood Science & Technology (AREA)
- Medicinal Chemistry (AREA)
- Biochemistry (AREA)
- Molecular Biology (AREA)
- General Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Biotechnology (AREA)
- Immunology (AREA)
- Cell Biology (AREA)
- Veterinary Medicine (AREA)
- Pharmacology & Pharmacy (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Virology (AREA)
- Biophysics (AREA)
- Microbiology (AREA)
- General Chemical & Material Sciences (AREA)
- Gastroenterology & Hepatology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Toxicology (AREA)
- Physics & Mathematics (AREA)
- Plant Pathology (AREA)
- Hematology (AREA)
- Developmental Biology & Embryology (AREA)
- Epidemiology (AREA)
- Oncology (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
The present invention relates to a method able to enhance survival and functionality of anti-tumor or anti-viral immune cells through overexpression of Akt molecules in the cells. Akt signaling prevented the expression of immune checkpoints and therefore rescued antigen-specific cytotoxic T lymphocytes from exhaustion in immunosuppressive microenvironment. This present invention also demostrated that AKT genes have the potential to be utilized in T-cell engineering of adoptive T-cell therapy for treatment of chronic viral infection and malignancies
Description
Methods and compositions enhancing survival and functionality of anti-tumor and anti-viral T cells
CROSS-REFERENCE TO RELATED APPLICATION
This application claims priority to U.S. Provisional Application No. 62/565,820, filed on SEP 29, 2017, the entire content of which is hereby incorporated by reference herein in its entirety.
BACKGROUND OF THE INVENTION
Technical Field of the Invention
0001, The present invention relates to adoptive cell therapy using
Akt-overexpressing immune cells. More specifically, the Akt-overexpressing immune cells can be utilized for treatment of viral infection and malignancies in immunosuppressive microenvironment.
Background
0002, Adoptive cell therapy (ACT) utilizing gene engineering to introduce antigen specificity or to enhance effector functions or survival of immune cells is feasible and high clinical values for treatment of chronic infections or malignancies since virus- or tumor-specific immune cell response is usually impaired or missing in patients with most of these chronic diseases.
0003, However, during chronic viral infections or malignancies, there are usually monoclonal T cell response detected and most of the antigen-specific T cells undergo exhaustion or apoptosis rapidly after activation. It is often observed that the virus or tumor-specific cytotoxicity T lymphocytes (CTLs) undergo T-cell exhaustion due to persistent T-cell receptor (TCR) signaling and lack of suitable co-stimulation. T cell exhaustion features the gradual loss of proliferative capability and cytokine production,
impaired cytotoxicity, surface expression of various immune checkpoints and increase of apoptotic rate[l, 2].
0004, Immune checkpoints e.g. PD-1 and CTLA-4 are molecules up-regulated on T cells in response to TCR signaling to modulate the extent of T-cell activation and are highly expressed on exhausted T cells. It has been shown in several studies that signaling through immune checkpoints on T cells can impair metabolic reprogramming during T-cell activation and differentiation[3-6].
0005, The molecular pathways by which most of the immune checkpoints signal remain poorly understood except that PP2A and SHP2 activated by PD-1 and CTLA-4 signaling, respectively, can suppress Akt activation of T cells upon TCR stimulation, being revealed[7].
0006, Akt is shown to have a great influence on T-cell growth, proliferation, and survival and also demonstrated to be a signal integrator for T-cell differentiation through regulation of Foxo, mTOR and Wnt/E-catenin pathways[8-11]. During chronic LCMV infection, the activation of Akt and mTOR signaling in CTLs is impaired, which results in T-cell exhaustion through PD-1 signaling in virus-specific CTLs[12].
0007, Therefore, the present invention demonstrates that reinforcement of Akt/mTOR pathway in anti-viral or anti-tumor CTLs may rescue them from T cell exhaustion and has the potential to be further applied on recombinant TCR technology or chimeric antigen receptor (CAR) technology [13]to enhance the survival and effector functions of engineered T cells for treatment of patients with malignancy or chronic viral infection.
SUMMARY OF INVENTION
0008, The present invention provides a method able to enhance survival and functionality of anti-tumor or anti-viral T cells through overexpression of Akt molecules in
CTLs. The Akt-overexpressing CTLs are shown to have high proliferative capability and superior effector functions during encounter with the antigen in the liver, which suggests that the Akt molecules can help the CTLs to overcome T-cell exhaustion in the inhibitory microenvironment. We further show expression of Akt molecules can facilitate anti-viral and anti-tumor CTL responses e.g. proliferation, cytokine production and cytotoxicity. Moreover, it enables the CTLs resistance to proliferative arrest induced by MDSCs. the expression of constitutively active Akt molecules enable T cells to gain the privilege to survive and to kill in the tolerogenic liver or tumor microenvironments. The active Akt molecules only when in combination with TCR signaling can trigger massive proliferative response of CTLs and therefore are safe to be applied to T-cell engineering of CTLs.
. 0009, In one embodiment, this present invention demonstrates that the myristorylated Akt molecules are able to anchor on cell membrane and can be phosphorylated. After being adoptive transfer into the recipient mice, Aktl- and Akt2- CTL populations expand vigorously in the liver and the spleen. It indicates overexpression of Akt is related to intrahepatic survival or secondary expansion of CTLs in response to antigen stimulation.
A 0010, T cell exhaustion features surface expression of various immune checkpoints. The immune checkpoint blockade can rescue T cell exhaustion of CTLs and further enhance the anti-tumor responses. In another embodiment, this present invention demonstrated that Akt signaling prevents the expression of immune checkpoints, especially LAG-3 and TIGIT on HBV-specific CTLs.
. 0011, In some embodiments, this present invention demonstrates that Aktl/2-engineered CTLs clear intrahepatic viral infections efficiently in two different models and persist and provide protective memory immunity in the recovered individuals.
. 0012, In some embodiments, Akt2-engineered CTLs are able to eradicate
established liver cancers in an oncogene-induced HCC mouse model. AKTl and AKT2 genes can be utilized in T-cell engineering of adoptive T-cell therapy for treatment of hepatic chronic viral infection and malignancies since Akt signaling is able to reverse T-cell exhaustion of CTLs in immunosuppressive microenvironment. BREIF DESCRIPTION OF THE DRAWINGS
0013, FIG. 1, comprising FIGS. lA-O, depicts the HBV-specific CTLs undergo T-cell exhaustion after adoptive transfer into HBV carrier mice. (A) Kinetics of serum HBeAg of AdHBV-infected mice receiving adoptive transfer of 2xl05
HBc93-100-specific CTLs. Gating (B) and quantification (C) of CD45.1+ transferred CTLs in the liver and the spleen of HBV carrier mice at indicated time points post adoptive transfer into AdHBV-infected mice. 5xl05 in-vitro activated HBc93-100 CD8+ T cells are adoptively transferred into CD45.2+ recipient mice infected with AdHBV. Histograms show the expression of PD-1 (D, H, L), TIM-3 (E, I, M) and LAG-3 (F, J, N), on transferred CTLs in the liver and in the spleen of AdHBV-infected mice from day 3, 7 and 14 post adoptive transfer. The isotype control staining is shown in solid gray histogram whereas the specific staining is shown in open histogram. Mean fluorescence intensity (MFI) of PD-1, TIM-3 and LAG-3 staining on endogenous CD8+ T cells and on adoptively transferred CD45.1+ CD8+ T cells (gating as shown in B) in the liver and in the spleen of AdHBV-infected mice from day 3(G), 7 (K) and 14 (O) post adoptive transfer of 5xl05 HBc93-100-specific CTLs. **P < 0.01 and ***P < 0.001 (unpaired Student's t-test).
0014, FIG. 2, comprising FIGS. 2A-F, depicts the regulation of intrahepatic CTL expansion by different Akt isoforms. (A) Schematic representation of MSCV retroviral constructs used for T-cell engineering contain 5' and 3 'long terminal repeats (LTR), P2A linker peptide sequence (2A) (SEQ ID NO: 10), CD90.1 gene and woodchuck hepatitis virus posttranscriptional regulatory element (WPRE). In
pMSCV-mAktl/Akt2/Akt3-2A-CD90.1 plasmid, src myristoylation sequence (myr) (SEQ ID NO: 8) and mouse AKT1 (SEQ ID NO: 2), AKT2 (SEQ ID NO: 4) or AKT3 (SEQ ID NO: 6) gene are placed upstream of 2 A sequence. (B) Transduction efficiency of in vitro-activated CD45.1+OT-I cells transduced with retroviruses carrying 2A-CD90.1, mAktl -2A-CD90.1 , mAkt2-2A-CD90.1 and mAkt3-2A-CD90.1 , respectively or mock. At day 2 after transduction, the surface expression of CD90.1 as a marker for successful transduction is detected by flow cytometric analysis. (C) Western blot for detection of phospho-Akt, total Akt, E-actin and phospho-S6 proteins in the cell lysate of Ctrl, Aktl, Akt2 and Akt3 -transduced CD8+ T cells. (D) Quantification of transferred CTLs in the liver and spleen of the mice with intrahepatic expression of the cognate antigen. 1x105 transduced OT-I CTLs are adoptively transferred into recipient mice receiving
hydrodynamic injection (HDI) of a plasmid encoding ovalbumin and luciferase under the control of albumin promoter one day before adoptive transfer. The liver-associated lymphocytes and splenocytes are isolated at day 7 after adoptive transfer and subjected to flow cytometric analysis of the percentage and the number of the transferred CTLs.
Kinetics of accumulation of transferred CTLs in the liver (E) and spleen (F) of the mice with intrahepatic expression of the cognate antigen (ovalbumin). 1x105 transduced OT-I CTLs are adoptively transferred into recipient mice receiving HDI of a plasmid encoding ovalbumin and luciferase under the control of albumin promoter one day before adoptive transfer. The liver-associated lymphocytes and splenocytes are isolated at day 3, 7 and 15 and subjected to flow cytometric analysis of the percentage and the number of the transferred CTLs. *P< 0.05, **P < 0.01 and ***P< 0.001 (unpaired Student's i-test)
0015, FIG. 3, comprising FIGS. 3 A-B, depicts the local expansion of Akt2-engrafted OT-I CTLs. (A) Kinetics of hepatic in vivo bioluminescence in mice receiving HDI of a plasmid encoding OVA under the control of albumin promoter or a Ctrl
vector (ctrl) one day before adoptive transfer of 2A-luc-engineered (ctrl) OT-I or mAkt2-2A-luc-engineered (Akt2) OT-I cells. The bioluminescence of individual mouse is monitored at dayl, 4, 8, 10, 12, 15, 18 and 25 after adoptive transfer and plotted in (B).
0016, FIG. 4, comprising FIGS. A-T, depicts the Akt-engineered
HBc93-100-specific CTLs overcame T-cell exhaustion in the liver. Histograms of expression of PD-1 (A), TIGIT (B) and LAG-3 (C) on Aktl-CD90.1- or CD90.1 -engineered (ctrl) CTLs before adoptive transfer. The isotype control staining is shown in solid gray histogram whereas the specific staining is shown in open histogram. (D) Mean fluorescence intensity (MFI) of the staining results from A-C is shown in bar graph. (E) PD- 1 , (F) TIGIT and (G) LAG-3 on CD90.1 -engineered (ctrl) CTLs and
Aktl-CD90.1 -engineered CTLs after 24-hours re-stimulation with anti-CD3/CD28 beads. The isotype control staining is shown in solid gray histogram whereas the specific staining is shown in open histogram. (H) MFI of the staining results from E-G is shown in bar graph. 5xl05 Aktl-CD90.1- or CD90.1 -engineered (ctrl) are adoptively transferred into CD45.2+ recipient mice being infected with AdHBV. The liver-associated lymphocytes and splenocytes are isolated at day 6 or day 19 post adoptive transfer and subjected to flow cytometric analysis of the expression of immune checkpoints by the transferred CTLs. CD8+CD45.1+ cells are gated and defined as transferred CTLs. Expression of immune checkpoints, PD-1 (I, J), TIM-3 (M, N) and LAG3 (Q, R), on transferred CTLs from day 6 post adoptive transfer. Expression of immune checkpoints, PD-1 (K, L), TIM-3 (O, P) and LAG3 (S, T), on transferred CTLs from day 19 post adoptive transfer. The isotype control staining is shown in solid gray histogram whereas the specific staining is shown in open histogram. MFI of the staining results are shown in J, L, N, P, R and T, (n=3 per group). *P < 0.05, **P < 0.01 and ***P < 0.001 (unpaired Student's t- test)
0017, FIG. 5, comprising FIGS. 5A-H, depicts the influence of Akt signaling
in the expression of immune checkpoints in vitro. Histograms of expression of (A) PD-1, (B) TIGIT and (C) LAG-3 on CD90.1 -engineered (ctrl) CTLs, Aktl-CD90.1- and Akt2-CD90.1 CTLs after 3-days stimulation with anti-CD3/CD28 beads. The isotype control staining is shown in solid gray histogram whereas the specific staining is shown in open histogram. (D) MFI of the staining results from A-C is shown in bar graph.
Histograms of expression of (E) PD-1, (F) TIGIT and (G) LAG-3 on CD90.1 -engineered (ctrl) CTLs and Akt2-CD90.1 -engineered CTLs after 24-hours re-stimulation with anti-CD3/CD28 beads. The isotype control staining is shown in solid gray histogram whereas the specific staining is shown in open histogram. (H) MFI of the staining results from E-G is shown in bar graph. *P < 0.05, **P < 0.01 and ***P < 0.001 (unpaired Student's t-test)
0018, FIG. 6, comprising FIGS. 6A-F, depicts the Akt2 -engineered HBc93-100-specific CTLs prevent T-cell exhaustion in a persistent HBV mouse model. 2xl06 Akt2-CD90.1- or CD90.1 -engineered (ctrl) is adoptively transferred into CD45.2+ recipient mice infected with AdHBV. The liver-associated lymphocytes and splenocytes are isolated at day 19 post adoptive transfer and subjected to flow cytometric analysis of the expression levels of immune checkpoints. Histograms of expression of PD-1 (A), TIM-3 (C) and TIGIT (E) on transferred CTLs in the spleen or liver of recipient mice at day 19 post adoptive transfer. The isotype control staining is shown in solid gray histogram whereas the specific staining is shown in open histogram. MFI of the staining results is shown in B, D and F. (n=3 per group). *P < 0.05, **P < 0.01 and ***P < 0.001 (unpaired Student's t- test)
0019, FIG. 7, comprising FIGS. 7A-0, depicts the Akt-engineered
HBc93-100-specific CTLs developed protective immunity against HBV in a persistent HBV mouse model. Gating (A) and quantification (B, C) of CD45.1+ transferred CTLs in the
liver and the spleen of HBV carrier mice at day 6 (B) or day 19 (C) post adoptive transfer into AdHBV-infected mice. 5x 105 Akt 1 -CD90.1 - or CD90.1 -engineered (ctrl) are adoptively transferred into CD45.2+ recipient mice being infected with AdHBV 2.5 months ago. The liver-associated lymphocytes and splenocytes are isolated at day 6 or day 19 post adoptive transfer and subjected to flow cytometric analysis of the percentage and the number of the transferred CTLs. CD8+CD45.1+ cells are gated and defined as transferred CTLs. (D) Kinetics of serum HBeAg of recipient mice as in C. (E) Kinetics of serum ALT of recipient mice as in C. (F) Hematoxylin-and-eosin staining of the liver tissues from B. Immunohistochemical analysis of HBcAg (G), cleaved caspase 3 (H), Gr-1 (I) and CD45.1 (J) in the liver from B. (K) Hematoxylin-and-eosin staining of the liver tissues from C. Immunohistochemical analysis of HBcAg (L), cleaved caspase 3 (M), Gr-1 (N) and CD45.1 (O) in the liver from C. (n=3-4 per group). *P < 0.05, **P < 0.01 and ***P< 0.001 (unpaired Student's t- test). Scale bars, 100 or 40 Γίη.
0020, FIG. 8, comprising FIGS. 8A-D, depicts the Akt2-engineered
HBc93-100-specific CTLs develope protective immunity against HBV in a persistent HBV mouse model. Gating (A) and quantification (B) of CD45.1+ transferred CTLs in the liver and the spleen of HBV carrier mice at day 19 post adoptive transfer into AdHBV-infected mice. 2x106 Akt2-CD90.1- or CD90.1 -engineered (ctrl) HBc93-100-specific CTLs are adoptively transferred into CD45.2+ recipient mice infected with AdHBV. The
liver-associated lymphocytes and splenocytes are isolated day 19 post adoptive transfer and subjected to flow cytometric analysis of the percentage and the number of the transferred CTLs. CD8+CD45.1+ cells are gated and defined as transferred CTLs. (C)
Kinetics of serum ALT of recipient mice as in B. (D) Kinetics of serum HBeAg of recipient mice as in B. *P < 0.05, **P < 0.01 and ***P < 0.001 (unpaired Student's t- test)
0021, FIG. 9, comprising FIGS. 9A-D, depicts the cytokine production in
HBV-specific CTLs after adoptive transfer into HBV carrier mice. (A) Zebra plots of intracellular expression of
and TNF-Δ in adoptively transferred HBV-specific CTLs. 5xl05 Aktl-CD90.1- or CD90.1 -engineered (ctrl) HBc93-100-specific CTLs are adoptively transferred into CD45.2+ recipient mice infected with AdHBV. The liver-associated lymphocytes and splenocytes are isolated at day 19 post adoptive transfer and subjected to re-stimulation with HBc93-100 peptides for 6 hours, which is followed by staining of surface markers and intracellular cytokines and flow cytometric analysis of the percentage of the cytokine-secreting CTLs. CD8+CD45.1+ cells are gated and defined as transferred CTLs. (B) Bar graph of the percentage of
-secreting CTLs (SP) and the percentage of CTLs secreting both
and TNF-Δ (DP). (C) Zebra plots of intracellular expression of
and TNF-Δ in adoptively transferred HBV-specific CTLs. 5xl05 Akt2-CD90.1- or CD90.1 -engineered (ctrl) HBc93-100-specific CTLs are adoptively transferred into CD45.2+ recipient mice infected with AdHBV. The liver-associated lymphocytes and splenocytes are isolated at day 19 post adoptive transfer and subjected to re-stimulation with HBc93-100 peptides for 6 hours, which is followed by staining of surface markers and intracellular cytokines and flow cytometric analysis of the percentage of the cytokine-secreting CTLs. CD8+CD45.1+ cells are gated and defined as transferred CTLs. (D) Bar graph of the percentage of IFN-S-secreting CTLs (SP) and the percentage of CTLs secreting both IFN-θ and TNF-Δ (DP). *P< 0.05, **P < 0.01 and *** < 0.001 (unpaired Student's t- test)
0022. FIG. 10, comprising FIGS. 10A-J, depicts the Akt signaling facilitates antigen-dependent expansion of CTLs and the antigen clearance in the liver. (A) The percentage of bioluminescence-positive mice equivalent to OVA-positive mice at indicated time points. Kinetics of accumulation of transferred CTLs in the liver (B) and spleen (C) of the mice with intrahepatic expression of the cognate antigen (ovalbumin). 1x105 transduced OT-I CTLs were adoptively transferred into recipient mice receiving
hydrodynamic injection (HDI) of a plasmid encoding ovalbumin and luciferase under the control of albumin promoter one day before adoptive transfer. The liver-associated lymphocytes and splenocytes were isolated at day 3, 7 and 14 and subjected to flow cytometric analysis of the percentage and the number of the transferred CTLs. (D) Kinetics of serum ALT in OVA-Luc-positive mice receiving adoptive transfer of 1x105 2A-CD90.1 -engrafted (ctrl) or mAktl-2A-CD90.1-engrafted (Aktl) OT-I cells. (E, F) Kinetics of accumulation of transferred CTLs in the liver (E) and spleen (F) of the mice as in A. The liver-associated lymphocytes and splenocytes were isolated at day 7, 30 and 63 and subjected to flow cytometric analysis of the percentage and the number of the transferred CTLs. (G) Hematoxylin-and-eosin staining of the liver tissues from E. (H) A representative histogram of BrdU-staining of Aktl -engrafted OT-I CTLs at day 7 and day 63 after adoptive transfer into OVA-Luc-positive recipient mice. (I) Frequency of BrdU* transferred Aktl -engrafted OT-I CTLs at day 7 and day 63 after adoptive transfer into OVA-Luc-positive recipient mice. The recipient mice were given 1 mg BrdU via intraperitoneal injection at day 6 or day 62 after adoptive transfer. The liver-associated lymphocytes and splenocytes were isolated at day 7 and 63 and subjected to flow cytometric analysis of the percentage the BrdU+ transferred CTLs. (J)
Immunohistochemical analysis of Ki-67 in the liver of OVA-Luc-positive mice receiving adoptive transfer of 2A-CD90.1 -engrafted (ctrl) or mAktl-2A-CD90.1-engrafted (Aktl) OT-I cells. The liver was collected at day 7, day 32 and day 63 after adoptive transfer of 1x105 OT-I CTLs. Scale bars,
*P < 0.05, **P < 0.01 and < 0.001 (unpaired Student's t-test), Scale bars, 100 or
0023, FIG. 11 depicts in vivo bioluminescence of mice infected with Ad-Albp-OL. C57BL/6 mice are infected with a recombinant adenovirus carrying genes expressing ovalbumin and luciferase under the control of albumin promoter at different
viral doses. The infected mice are monitored for the luciferase expression in the liver by IVIS at indicated time points after infection.
0024, FIG. 12, comprising FIGS. 12A-G, depicts the memory responses of Akt-engineered CD8+ T cells. (A) Experimental scheme of re-call response of
Akt-engrafted CTLs. (B) The level of serum ALT in the mice receiving adenovirus carrying OVA and luciferase ORFs under the control of albumin promoter (Ad-Albp-OL) and control (ctrl) or Aktl -engrafted OT-I T cells (1x105) at indicated time points post adoptive T cell transfer. (C) The in vivo bioluminescence in mice receiving Ad-Albp-OL, adoptive T cell transfer and hydrodynamic injection (HDI) of a plasmid encoding OVA and luciferase under the control of albumin promoter (pENTRY-Albp-OL) at day 60 after adoptive transfer. (D) Quantification of transferred CTLs in the liver and spleen of the mice receiving Ad-Albp-OL infection and adoptive transfer of ctrl 2A-CD90.1 engrafted OT-I or Aktl -engrafted OT-I followed by HDI of pENTRY-Albp-OL at day 60 after adoptive transfer. The liver-associated lymphocytes and splenocytes were isolated at day 7 after HDI and subjected to flow cytometric analysis of the number of the transferred CTLs. (E) Hematoxylin-and-eosin staining of the liver tissues from D. (F) Immunohistochemical analysis of CD8 in the liver from D. (G) Immunohistochemical analysis of Gr-1 in the liver from D. *P < 0.05, **P < 0.01 and ***P < 0.001 (unpaired Student's t-test), Scale bars, 100 or 40 Γίη.
0025, FIG. 13, comprising FIGS. 13A-F, depicts the memory responses of
Akt-engineered CD8+ T cells. Mice are infected with Ad-Albp-OL, and receive adoptive T cell transfer and HDI of a plasmid encoding OVA and luciferase under the control of albumin promoter (pENTRY-Albp-OL) at day 64 after adoptive transfer. Quantification of (A) transferred CTLs, (B) CD 1 lb¾Kl .1 " myeloid cells, (C) K1.1+CD3" NK cells and (D) NK1.1+CD3+ NKT cells in the liver and spleen of the mice receiving Ad-Albp-OL
infection and adoptive transfer of Ctrl 2A-CD90.1, Aktl or Akt2 engrafted OT-I CTLs. The liver-associated leukocytes and splenocytes are isolated at day 7 after adoptive transfer and subjected to flow cytometric analysis of the number of cells. (E) The level of serum ALT in the mice receiving Ad- Albp-OL and Ctrl or Akt2-engrafted OT-I T cells (1x105) at indicated time points post adoptive T cell transfer. (F) The in vivo bioluminescence in mice receiving Ad-Albp-OL, adoptive T cell transfer and HDI of a plasmid encoding OVA and luciferase under the control of albumin promoter (pENTRY- Albp-OL) at day 64 after adoptive transfer. *P < 0.05, **P< 0.01 and ***P < 0.001 (unpaired Student's /-test)
0026, FIG. 14, comprising FIGS. 14A-C, depicts the influence of
Akt-engineered CTLs in HCC tumor microenvironment. Immunohistochemical analysis of CD8 (A), F4/80 (B), and cleaved caspase 3 (C) in the liver/tumor of HCC-bearing mice. The HCC development is induced by oncogenes, Akt and N-RasV12 delivered by HDI. At day 31 after HCC induction, the mice are injected with 2x106 Akt2-engrafted OT-I TCR tg CTLs which could recognize an introduced tumor antigen on tumor cells or not (ctrl). The liver/tumor tissues are collected at day 10 after adoptive transfer.
0027, FIG. 15, comprising FIGS. 15A-D, depicts the anti-tumor capability of Akt-engineered CTLs. The HCC development is induced by oncogenes, Akt and
N-RasV12 delivered by HDI. The growth of HCC in mice is monitored by IVIS and the mice with the total flux greater than 109 photons/sec are used as recipients receiving adoptive T cell therapy. The mice are injected with 2x105 ctrl-, Aktl - and Akt2-engrafted HBc93-100-specific CTLs, respectively, which can recognize a surrogate tumor antigen on tumor cells. (A) The in vivo bioluminescence of the mice before and after receiving adoptive T cell transfer. The liver/tumor tissues are collected from mice receiving (B) ctrl-engineered CTLs, (C) Aktl -engineered CTLs or (D) Akt2-engineered CTLs at day 19 after adoptive transfer. *P < 0.05, **P < 0.01 and ***P < 0.001 (unpaired Student's t- test)
„ 0028, FIG. 16, comprising FIGS. 16A-L, depicts the improved
tumor-specific proliferation, cytokine production and cytotoxicity of CAR T cells through overexpression of Akt molecules. (A) Schematic representation of MSCV retroviral constructs used for T-cell engineering contain 5' and 3 'long terminal repeats (LTR), P2A linker peptide sequence (2A) and woodchuck hepatitis virus posttranscriptional regulatory element (WPRE). In pMSCV-mAktl/Akt2-2A-CAR plasmid, src myristoylation sequence (myr) and mouse AKT1 or AKT2 gene are placed upstream of 2A sequence, followed by chimeric antigen receptor (CAR) ORF e.g. anti-HBs CAR (S-CAR) and anti-CEA CAR. In pMSCV-hAktl/hAkt2-2A-CAR plasmids, the mouse AKT1 or AKT2 gene is replaced by human AKT1 or AKT2 gene. (B) Proliferation of Aktl -engrafted (mAktl), anti-CEA CAR-engrafted (antiCEA) and Aktl-2A-anti-CEA CAR (niAktl-antiCEA) CD4+ or CD8+ T cells. In vztro-activated mouse CD3+ T cells transduce with retroviruses carrying mAktl/mAkt2-2A-CD90.1, anti-CEA CAR or mAktl/mAkt2-2A-anti-CEA CAR ORF, respectively are co-cultured with LS174T cells. EdU incorporation and detection are applied to monitor the DNA synthesis of the T cells during 22 hours to 28 hours after co-culture. (C, E) IFNSand (D, F) IL-2 in the supernatant of the co-culture are detected by ELISA. (G, I) Intracellular IFNSand (H, J) granzyme B staining of the CTLs from the co-culture with LS174T cells for 1 day. (K) Proliferation capability of CTLs in the presence of MDSCs. 2A-CD90.1 -engrafted (ctrl) or mAktl -2A-CD90.1 -engrafted OT-I CTLs are re-stimulated with anti-CD3+anti-CD28 beads in the presence of different numbers of MDSCs derived from EL4-tumor-bearing mice. (L) Proliferation capability of CTLs in the presence of MDSCs. 2A-CD90.1 -engrafted (ctrl) or
mAkt2-2A-CD90.1 -engrafted HBc93-100 specific CTLs are re-stimulated with
anti-CD3+anti-CD28 beads in the presence of different numbers of MDSCs derived from mouse HCC tumor mass. EdU incorporation and detection are performed to monitor the
DNA synthesis of the T cells during 22 hours to 28 hours after co-culture. *P < 0.05, **P < 0.01 and ***P < 0.001 (unpaired Student's f-test)
DETAILED DESCRIPTION OF THE INVENTION
0029, Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by a person skilled in the art to which this invention belongs.
0030, As used herein, the term "OT-I cell" refers to a transgenic line of ovalbumin-specific, CD8+ T cell. The transgenic T cell receptor was designed to recognize ovalbumin residues 257-264 in the context of H-2K and used to study the role of peptides in positive selection and the response of CD8+ T cells to antigen.
0031 , As used herein, the term "AdHBV" refers to the adenovirus carrying HBV genome. HBV-infected mouse model can be established by hydrodynamic injection (HDI) of the HBV genome into the tail vein.
0032, As used herein, the term "HBcAg" refers to a hepatitis B viral protein, which is an antigen that can be found on the surface of the nucleocapsid core of the hepatitis B virus.
0033, As used herein, the term "HBeAg" refers to a hepatitis B viral protein, which is an antigen that can be detected in the serum of mice with HBV infection established by AdHBV infection or HDI of a plasmid harboring the HBV genome..
0034, The DNA or RNA molecules in this present invention can be amplified through plasmid amplification, in vitro transcription or in vitro synthesis and transfected into target cells through electroporation, liposome or other chemical vehicles.
0035, The aforementioned target cells for genetic modification can be T cells, nature killer cells, hematopoietic stem cells, embryonic stem cells and pluripotent stem cells from various species. These cells can be modified by viral transduction or DNA (or
RNA) transfection.
0036 , The recombinant viral or transposon vectors can be retroviruses, lentiviruses, adenoviruses, adeno-associated viruses, other related viruses and various transposon systems can be used in transduction or integration of transgenes.
0037, To investigate the mechanism of how liver microenvironment can influence secondary expansion of virus-specific CTL population in the liver, in vitro-activated HBV specific CD8+ T cells are adoptively transferred into HBV carrier mice and the change of the serum level of HBV antigen in these mice is detected. It is found that most of the mice failed to eliminate persistent HBV infection within 42 days. The cell number and expression level of exhaustion markers including PD-1, TIM-3, and LAG-3 on the adoptively transferred CTLs in the liver and in the spleen of the HBV carrier mice are further detected. The cell number of adoptively transferred HBV-specific CTLs increases in the liver but not in the spleen. The HBV-specific CTLs in both the liver and the spleen express higher levels of PD-1 and LAG-3 than endogenous CD8+ T cells; however, the splenic HBV-specific CTLs express lower levels of PD-1, TIM-3 and LAG-3 than intrahepatic compartments. Those results demonstrate that the exposure to HBV antigens expressed in the liver microenvironment induces T-cell exhaustion of HBV-specific CTLs.
0038, The immune checkpoints PD-1 and CTLA-4 are shown to prevent Akt phosphorylation/activation during TCR triggering through recruitment of SHP-1/2 and activation of PP2A, respectively. We therefore examine whether Akt signaling is critical to intrahepatic expansion and differentiation of CD8+ T cells. Mouse AKT1, AKT2 and AKT3 genes are cloned, respectively, with addition of src myristoylation sequence in the upstream of AKT genes to ensure the membrane targeting and being constitutively active of the Akt molecules. The expression of exogenous myristoylated Akt isoforms are
detected by Western blot in Akt-engineered CTLs but not in the control T cells. CTLs are engrafted with three different kinds of Akt, respectively, all show Akt phosphorylation at Ser473 and only those are engrafted with Aktl or Akt2 show Akt phosphorylation at Thr308.
0039, To examine whether overexpression of Akt is related to intrahepatic survival or secondary expansion of CTLs in response to antigen stimulation, the ovalbumin (OVA) and luciferase expression are induced in the liver of recipient mice by hydrodynamic injection (HDI) of a plasmid encoding OVA and luciferase. After being adoptive transfer into the recipient mice, Aktl- and Akt2- engineered CTL populations expand vigorously in the liver and the spleen. There is more than 250,000-fold for Aktl CTLs and 950,000-fold for Akt2-CTLs cell numbers found in the liver in comparison with that of ctrl-CTLs at day 7 after adoptive transfer.
0040, Owing to the huge contribution of immune checkpoints on T-cell exhaustion in the liver during chronic viral infection, the inventors therefore examine whether Akt signaling have an influence the expression of immune checkpoint molecules on HBV-specific CTLs per se. After in-vitro activation and transduction, the Akt- or ctrl-engineered HBc93-100-specific CTLs are adoptively transferred into AdHBV-infected mice and analyzed the surface expression of immune checkpoint molecules on the CTLs at day 6 and day 19 after adoptive transfer. Hepatic ctrl-CTLs expressed high level of PD-1, TIM-3 and LAG-3 at day 19 after adoptive transfer, whereas Aktl -CTLs and Akt2-CTLs expressed significantly less PD-1, TIM-3 and LAG-3 at day 19 post adoptive transfer.
0041, To further investigate whether these Akt-CTLs can overcome the suppressive mechanisms in the liver and mediate clearance of persistent HBV infection, the ctrl- or Aktl -engineered HBc93-100-specific CTLs are adoptively transferred into HBV carrier mice. Aktl-CTLs but not ctrl-CTLs eliminate persistent HBV infection within 14
days after being adoptive transferred into HBV carrier mice. The Aktl-CTLs are mainly in the liver rather than in the spleen and disperse to the spleen after antigen clearance. There are less HBcAg-positive hepatocytes but more cleaved caspase 3 -positive apoptotic hepatocytes detected in the liver of mice receiving Aktl-CTLs than in the liver of mice receiving ctrl-CTLs. After clearance of antigen, the mononuclear cells reduce and HBcAg-positive hepatocytes as well as cleaved caspase 3-positive hepatocytes are no longer detected in the liver of mice receiving Aktl-CTLs. The ctrl-CTLs fail to clear HBV and do not induce significant inflammation after being adoptively transferred into HBV carrier mice. Akt2-CTLs expand vigorously when encountering the cognate antigen in vivo, and prevent T-cell from exhaustion. Also, Akt2-CTLs exhibit strong cytotoxic function and are more efficient to clear HBV infection than Ctrl CTLs.
0042, The capability of Akt-engineered CTLs in killing of hepatocellular carcinoma (HCC) is further examined. The tumor antigen-specific Akt2-engrafted CD8+ CTLs can accumulate in the tumor sites as well as in the liver at day 10 after adoptive transfer into HCC-bearing mice. These Akt2-CTLs change the tumor microenvironment and to attract or activate the surrounding F4/80+ macrophages in tumor sites. Furthermore, a lot of cleaved caspase 3-positive tumor cells are detected in the mice receiving Akt2-CTLs but not in ctrl mice. Elevated serum ALT in the mice with Akt2-CTLs is also observed but not in ctrl mice (118.1 U/L vs. 22.8 U/L). It can be concluded that Akt2 activation enables CTLs to have strong effector functions and be able to kill tumor cells in the liver. This is probably through CTLs' own cytotoxic capability or through release of cytokines to activate the anti-tumor functions of tumor-associated macrophages.
0043, To further explore the potential application of Akt molecules on cancer immunotherapy, the plasmids carrying human or mouse Aktl or Akt2 genes and anti-CEA (Carcinoembryonic antigen) chimeric antigen receptor (CAR) are constructed. CEA are
glycosyl phosphatidyl inositol (GPI) cell-surface-anchored glycoproteins and are critical to the dissemination of colon carcinoma cells. The modified CTLs are co-cultured with a colorectal adenocarcinoma cell line, LS174T. Both CD4+ and CD8+ T cells with the engraftment of anti-CEA CAR can respond to stimulation of LS174T and proliferate. Additional active Aktl expression in anti-CEA CAR engrafted T cells can promote the proliferation capability of both CD4+ and CD8+ T cells. More IL-2 and
are detected in the culture medium of co-culture of LS174T cell line with T cells expressing anti-CEA CAR and Aktl or Akt2 molecules compared to that of LS174T and T cells expressing solely anti-CEA CAR. Intracellular staining of
and granzyme B of the CD8+ T cells co-culture with LS174T cells also proves that Aktl or Akt2 overexpression can enhance the cytokine production and cytotoxicity in CTLs. Strikingly, Aktl- and Akt2-overexpressing CTLs, respectively are shown to have the capability to overcome the proliferative arrest induced by myeloid-derived suppressor cells (MDSCs), which strongly suggests that the potential application of Akt molecules on T-cell engineering technology e.g. CAR T cells for immunotherapy.
„ 0044, The following examples are offered by way of illustration and not by way of limitation. The mAkt isoforms are utilized in the mouse model as a demonstration in this present invention, but is not intended to limit the scope of the invention.
A 0045, Example 1: Cytotoxic T lymphocytes undergo exhaustion in the liver
„ 0046, In vitro-activated CD45.1+ HBc93-100 specific CD8+ T cells are adoptively transferred into congenic C57BL/6 mice infected with the adenovirus carrying HBV genome (AdHBV), and the change of the serum level of HBeAg in these mice is detected. It is found that most of the mice failed to eliminate persistent HBV infection within 42 days (FIG. 1A).
Λ 0047, The cell number and expression level of exhaustion markers are further detected, which including PD-1, TIM-3, and LAG-3 on the adoptively transferred CTLs in the liver and in the spleen of the HBV carrier mice at day 3, day 7 and day 14 post adoptive transfer. The cell number of adoptively transferred HBV-specific CTLs increases from day 3 to day 14 in the liver but not in the spleen (FIGS. 1B and 1C).
A 0048, Endogenous CD8+ T cells are used as a reference population for evaluation of the expression level of these exhaustion markers on HBV-specific CTLs. The HBV-specific CTLs in both the liver and the spleen express higher levels of PD-1 and LAG-3 than endogenous CD8+ T cells but no or little TIM-3 at day 3 and day 7 post adoptive transfer (FIGS. 1D-1K).
„ 0049, The splenic HBV-specific CTLs express lower levels of PD-1 and LAG-3 than intrahepatic compartments at all time points (FIGS. 1D-1O). The
HBV-specific CTLs gradually express TIM-3 after adoptive transfer and reach to a higher level of expression than endogenous CD8+ T cells at day 14 in the liver but not the spleen (FIGS. 1E, 1G, 1I, 1K, 1M and 1O).
A 0050, Example 2: Expression of constitutively active Akt isoforms in
CTLs
A 0051 , Murine stem cell retroviral (MSCV) system is chosen for delivery of genes into T lymphocytes due to its high efficiency to transduce hematopoietic cell lineages. A pMSCV-CD90.1 plasmid is generated from a replacement of hygromycin resistance gene by p2 A peptide sequence and mouse CD90.1 open reading frame (ORF) with the woodchuck hepatitis virus posttranscriptional regulatory element (WPRE) in the 3 ' untranslated region of CD90.1 gene to enhance the expression of the transgenes. The CD90.1 gene and "WPRE sequence are amplified from pLKO_TRC024 plasmid (RNAi core lab, Taipei, Taiwan). Mouse AKT1 (SEQ ID NO: 1), AKT2 (SEQ ID NO: 3) and
AKT3 (SEQ ID NO: 5) genes are cloned, respectively, through PCR using cDNA from mouse 4T1 breast cancer cells with addition of src myristoylation sequence by PCR primer in the upstream of AKT genes to ensure the membrane targeting and being constitutively active of the Akt molecules. The myristoylation sequence and AKT genes are linked, respectively, to mouse CD90.1 gene by p2A peptide sequence in pMSCV-CD90.1 to result in pMSCV-mAktl-CD90.1, pMSCV-mAkt2-CD90.1 and pMSCV-mAkt3-CD90.1. The expression cassette is flanked by 5' and 3' MSCV long terminal repeats (LTRs). The 4 plasmids are used to produce recombinant retroviruses carrying mouse AKT1, AKT2, AKT3 or control CD90.1 gene, respectively (FIG. 2 A).
. 0052, Splenic ovalbumin-specific TCR tg OT-I CD8+ T cells are activated by anti-CD3+anti-CD28 beads, subsequently transduced by recombinant retroviruses and are subjected to surface marker staining using antibody recognizing CD90.1 as a tag for transgene expression followed by flow cytometric analysis. Around 75% to 95% of the effector CD8+T cells are transduced with retroviruses carrying CD90.1, AKT1-CD90.1 or AKT2-CD90.1 gene, positive for CD90.1, whereas only 23% of the cells are transduced with retroviruses carrying AKT3-CD90.1 gene expressed low level of CD90.1 (FIG. 2B).
A 0053 < It has been shown that the expression patterns of the three Akt isoforms are different. Aktl (SEQ ID NO: 1) and Akt2 (SEQ ID NO: 3) are ubiquitously expressed in nearly all tissues whereas Akt3 (SEQ ID NO: 5) are mainly expressed in brain and testes. The tissue specific expression manner of Akt isoforms may explain the low expression of Akt3 by the CD8+ T cells. The expression of exogenous myristoylated Akt isoforms is detected by Western blot in Akt-engineered CTLs but not in the control T cells. CTLs engrafted with three different kinds of Akt, respectively, all show Akt phosphorylation at Ser473 and only those which are engrafted with Aktl or Akt2 show Akt phosphorylation at Thr308 (FIG. 2C).
0054, Example 3: Akt signaling facilitates antigen-dependent expansion of CTLs in the liver.
0055, Ovalbumin (OVA) and luciferase expression are induced in the liver of recipient mice by hydrodynamic injection (HDI) of a plasmid encoding OVA and luciferase under the control of albumin promoter (pENTRY-Albp-OL). After being adoptive transfer into the recipient mice, Aktl- and Akt2- but not Akt3 -engineered CTL or CD90.1 -engineered (ctrl) populations expanded vigorously in the liver and the spleen.
0056, These Aktl- or Akt2-CTLs underwent vigorous proliferation and yielded 23 million (Aktl) and 113 million (Akt2) splenic and intrahepatic CTLs in total, respectively, after antigen stimulation in the liver (FIG. 2D) despite that there only 0.1 million activated CD8+T cells are originally injected into the recipient mice. Most of the ctrl CTLs disappear after adoptive transfer probably due to the lack of co-stimulation, growth signals or the suppressive liver microenvironment.
0057, The massive expansion of Aktl- or Akt-2-OT-I CTLs is further confirmed in a time kinetic experiment (FIGS. 2E and 2F). Akt2-CTLs are found to be more potent in expansion in the liver and in the spleen than ctrl- or Aktl -CTLs (FIGS. 2D-F). Moreover, Aktl -CTLs preferentially locate in the liver rather than the spleen (FIGS. 2D-F).
0058, Therefore, Akt constructs with co-expression of luciferase instead of CD90.1 are designed for monitoring the distribution and expansion of Akt-engineered CTLs. Control (ctrl) Luc-CTLs and Akt2-Luc-CTLs are delivered respectively, to mice with or without OVA expression in their livers and only observed TCR signaling-dependent Akt2-Luc-CTL accumulation in the liver but not in other organs or in mice without antigen expression in the liver (FIG. 3), which suggests that signaling through constitutively active Akt can assist massive CTL expansion only in combination
with TCR triggering and these Akt-CTLs undergo T-cell contraction after the clearance of antigen. Again, the Ctrl CTLs fail to expand in respond to antigen stimulation in the liver (FIG. 3).
„ 0059. Example 4: Akt signaling suppresses the expression of immune checkpoint molecule on CTLs
A 0060, After in-vitro activation and transduction, HBc93-100-specific CD8+ T cells at day 3 after activation are analyzed for their surface expression of various immune checkpoints. The overexpression of constitutively active Aktl/2 does not change the surface expression of PD-1 and TIGIT (FIGS. 4A, 4B and 4D, FIGS. 5A, 5B and 5D); however, it significantly reduces the expression of LAG-3 on the surface of Aktl- and Akt2-CTLs (FIGS. 4C and 4D, FIGS. 5C and 5D).
„ 0061, These CTLs at day 3 after anti-CD3/anti-CD28 bead activation may have returned to resting status with low or no expression of immune checkpoints e.g. PD-1 and TIGIT except LAG-3. Therefore, the expression level of these immune checkpoints on CTLs after re-stimulation is measured. Expression of PD-1 is rapidly detected on ctrl-, Aktl- and Akt2-CTLs (FIGS. 4E and 4H, FIGS. 5E and 5H) and slightly higher on Aktl -CTLs than ctrl-CTLs (FIGS. 4E and 4H). However, the expression of PD-1 on Akt2-CTLs is lower than ctrl-CTLs (FIGS. 5E and 5H). Notably, the Aktl - or Akt2-CTLs maintain relatively lower expression of LAG-3 and TIGIT than ctrl-CTLs after re-stimulation with anti-CD3/CD28 beads for 24 hours (FIGS. 4F-H, FIGS. 5F-H).
A 0062, To further investigate whether the regulation of immune checkpoints on CTLs by Akt signaling also happens in liver microenvironment, the Aktl- or ctrl-engineered HBc93-100-specific CTLs are adoptively transferred into AdHBV-infected mice and analyzed the surface expression of immune checkpoint molecules on the CTLs at day 6 and day 19 after adoptive transfer. The expression patterns of each examined
immune checkpoints are quite different. Both intrahepatic Aktl- and ctrl-engineered CTLs at day 6 after adoptive transfer express high level of PD-1 when encountering the cognate antigen in the liver, but the PD-1 expression is down regulated in the Aktl -CTLs at day 19 after adoptive transfer (FIGS. 4I-L).
0063, At day 6 after exposure to HBV, a certain proportion of the hepatic
Aktl -CTLs expressed high level of TIM-3, whereas splenic CTLs and ctrl-CTLs in liver express lower level of TIM-3 at this time point, which suggests a stronger TCR triggering in Aktl -CTLs than in ctrl-CTLs (FIGS. 4M and 4N). However, during day 6 to day 19, the expression of TIM-3 decreases in hepatic Aktl -CTLs, whereas it increases dramatically in the ctrl-CTLs in liver but not in the CTLs in spleen (FIGS. 4M-P).
0064, Hepatic ctrl-CTLs express high level of LAG-3 at both day 6 and day 19 after adoptive transfer, whereas Aktl -CTLs express less LAG-3 on their surface during the whole period (FIGS. 4R-T). Akt2-CTLs also show dramatic down-regulation of PD-1, TIM-3 and TIGIT (FIG. 6).
0065, These in-vitro and in-vivo data clearly demonstrate that Akt signaling possesses very few influence on PD-1 expression but positively regulates TIM-3 expression on CTLs during early TCR signaling. We further prove that augmentation of Akt signaling prevents the expression of LAG-3 and TIGIT on CTLs in the liver during persistent HBV infection, which may contribute the robust expansion and potent effector functions of Akt-CTLs against HBV.
0066, The higher expression of PD-1 and TEM-3 on Akt-CTLs than on ctrl-CTLs after re-stimulation in vitro and in vivo strongly suggests a stronger TCR triggering in Akt-CTLs than that in ctrl-CTLs and also excludes the lack of antigen stimulation at this early time point, which results in down-regulation of LAG-3 and TIGIT. The early expression of TIM-3 on Akt-CTLs may additionally involve in the augmentation
of effector functions of Akt- CTLs to combat HBV infection. The reduced expression of immune checkpoints on Akt-engineered CTLs at the later time point may result from the lack of antigen stimulation due to the intense effector functions of Akt-CTLs, which facilitates the early removal of the HBV antigen from the liver.
0067, Example 5: Akt signaling in CTLs enhances their effector functions and facilitated HBV clearance
0068, The cell number of adoptively transferred Ctrl- or Akt 1 -engineered HBc93-100-specific CTLs in the liver and in the spleen of HBV carrier mice is measured, and there are more Aktl-CTLs than ctrl-CTLs recovered from the liver at both of day 6 and day 19 after adoptive transfer (FIGS. 7A-C).
0069, Aktl-CTLs but not ctrl-CTLs eliminate persistent HBV infection within 14 days after being adoptive transferred into HBV carrier mice (FIG. 7D). These Aktl-CTLs have better cytotoxic functions than ctrl-CTLs, which is revealed by the elevated serum ALT level from day 3 to day 7 (FIG. 7E). The Aktl-CTLs are mainly in the liver rather than the spleen at day 6 post adoptive transfer and dispersed to the spleen after antigen clearance (FIGS. 7B and 7C). From the H&E staining of the liver sections, a huge number of mononuclear cells in the liver sinusoid of mice receiving Aktl-CTLs at day 6 are observed after adoptive transfer (FIG. 7F).
0070, Immunohistochemical staining is performed to visualize the HBcAg or cleaved caspase 3 expression by hepatocytes and immune cells in the liver of HBV carrier mice. There are less HBcAg-positive hepatocytes but more cleaved caspase 3-positive apoptotic hepatocytes detected in the liver of mice receiving Aktl-CTLs than in the liver of mice receiving ctrl-CTLs at day 6 after adoptive transfer (FIGS. 7G and 7H). The apoptotic hepatocytes or HBcAg+ hepatocytes are surrounded by mononuclear cells in the liver of mice receiving Aktl-CTLs which suggests a cytotoxic role of these Aktl-CTLs
against HBV-infected hepatocytes (FIGS. 7G and 7H). There are more Gr-1+ myeloid cells and adoptively transferred CTLs (CD45.1+) detected in the liver of mice receiving Aktl-CTLs than in the liver of mice receiving ctrl-CTLs at day 6 (FIGS. 7Iand 7J).
„ 0071, After clearance of antigen, the liver histology appears back to normal, the mononuclear cells reduce and HBcAg-positive hepatocytes as well as cleaved caspase 3-positive hepatocytes are no longer detected in the liver of mice receiving Aktl-CTLs (FIGS. 7K-M). The number of Gr-1+ myeloid cells also reduces whereas a significant number of CD45.1+ adoptively transferred CTLs still exists in the liver of mice receiving Aktl-CTLs (FIGS. 7N and 70). The ctrl-CTLs fail to clear HBV (FIGS. 7D, 7G and 7L) and cannot induce significant inflammation after being adoptively transferred into HBV carrier mice (FIGS. 7E-70).
A 0072, Akt2-CTLs also expand vigorously when encountering the cognate antigen in vivo (FIGS. 8A and 8B), prevent T-cell exhaustion (FIG. 6), exhibited strong cytotoxic function (FIG. 8C) and are more efficient to clear HBV infection than ctrl CTLs (FIG. 8D). Aktl- and Akt2-CTLs are found more capable to produce IFN-S and TNF-Δ than ctrl-CTLs after ex vivo re-stimulation with the specific HBc peptide (FIGS. 9A-D), which is consistent with their capability to induce inflammatory responses as seen in FIG. 7.
A 0073, Example 6: Aktl drives only TCR signaling-dependent expansion and facilitates the self-renewal of CTLs
„ 0074, We further examined the capability of the engineered CTLs to eliminate antigen from the liver through the measurement of the bioluminescence in the liver of the recipient mice. The loss of bioluminescence represented the clearance of antigen from the liver. We found that Aktl-OT-I CTLs were more efficient than ctrl OT-I CTLs to eliminate OVA from the liver (FIG. 10A). They cleared the antigen within 7 days,
which was also the peak of the expansion of the cell population in the liver (FIGS. 10B and IOC). These Aktl-OT-I CTLs were more capable to execute cytotoxicity toward OVA-expressing hepatocytes than ctrl CTLs did, which was revealed by the elevated serum ALT level of mice receiving Aktl-CTLs at day 7 post adoptive transfer (FIG. 10D).
„ 0075, Being concerned about that the overexpression of Akt molecules in
CTLs may potentially induced oncogenic property of the transduced cells, we therefore monitored the numbers of intrahepatic and splenic transferred CTLs and serum ALT levels in the mice receiving ctrl-CTLs and Aktl-CTLs for a longer period of time. The serum ALT levels of mice receiving Aktl-CTLs decreased to normal levels after the clearance of antigens and cell numbers of Aktl-CTL also dropped at least 5000-fold from day 7 to day 63 (FIGS. 10D-F). We detected a lot of mononuclear cells lying in the liver sinusoid of mice receiving Aktl-CTLs but not ctrl-CTLs at day7 post adoptive transfer (FIG. 10G). The architecture of the livers of mice receiving Aktl-CTLs returned to normal at day 32 and day 63 after clearance of antigen (FIG. 10G).
„ 0076, We further analyzed the proliferation capability of these adoptively transferred Aktl-CTLs or endogenous CD8+ T cells at day 7 and day 63, respectively and found that even in the absence of antigen, the Aktl-CTLs could still undergo higher grade DNA synthesis to sustain self-renewal than endogenous CD8+ T cells did, which explained the maintenance of the cell number after clearance of antigen (FIGS. 10H and 101). These Aktl-CTLs in the liver sinusoid were all Ki-67-positive at day 7 after adoptive transfer, which demonstrated that they were undergoing vigorous proliferation and were barely detected in the liver sinusoid at day 32 and day 63 after adoptive transfer (FIG. 10J).
A 0077, Example 7 : Akt signaling facilitates development of T cell memory „ 0078, It has been shown that virus-infected hepatocytes were highly sensitive to CTL-induced cytotoxicity. The liver microenvironment after HDI may not
completely mimic that during viral infection. We therefore established an adenovirus (Ad-Albp-OL)-based liver infection mouse model with persistent expression of OVA and luciferase only in the liver under the transcriptional control of albumin promoter in order to study the functions of Akt in CTLs under the circumstance of intrahepatic persistent viral infection. We first titrated the viral doses for infection and found that infection with 2x108 and 4x108 iu of Ad-Albp-OL, respectively, could induce stable expression of luciferase for more than 2 months (FIG. 11). We then infected mice with 4xl08 iu of Ad-Albp-OL, adoptively transferred Akt- and ctrl-CTLs, respectively, into the mice and performed several analyses following the experimental scheme showed in FIG. 12A.
„ 0079, Similar to the data from HDI model, there were more Aktl- or
Akt2-CTLs than ctrl-CTLs detected in the liver and in the spleen of Ad-Albp-OL-infected mice at day 7 after adoptive transfer (FIG. 13A). The inflammation induced by Aktl- or Akt2-CTLs further promoted the innate immune cell response. We could detect more CD1 lb+ myeloid cells, natural killer (NK) cells but not NK T cells in the liver of the mice receiving Akt-CTLs at day 7 after adoptive transfer (FIGS. 13B-D). The mice receiving Aktl-OT-I CTLs showed elevated ALT levels at day 7 and day 14 after the adoptive transfer of T cells and also cleared viruses at day 7 (FIGS. 12B and 12C). The mice receiving control OT-I CTLs did not show ALT elevation nor viral clearance after the adoptive transfer (FIGS. 12B and 12C). At day 60 after adoptive transfer, the mice were re-challenged by HDI of pENTRY-OL or pENTRY vector as HDI control to examine whether they developed antigen-specific T-cell memory. The mice receiving Aktl -CTLs showed mild liver damage as revealed by the ALT elevation during day 4 to day 7 after re-challenge. The ALT level in these mice was much less than that in their primary response (FIG. 12B). The mice receiving Aktl -OT-I CTLs re-expressed antigen as revealed by luciferase activity at day 61 and rapidly eliminated antigen within 3 days
whereas the mice receiving ctrl-OT-I CTLs could not eliminate antigen after re-challenge (FIG. 12C).
„ 0080, Similar result was observed in the mice receiving Akt2-CTLs (FIGS. 13E and 13F). We could detect antigen-specific T-cell expansion in the liver of mice receiving Aktl-CTLs at day 7 after re-challenge (FIG. 12D). The liver histological examination showed that both the mice receiving Ctrl- and Aktl-CTLs, respectively, had no obvious inflammation in the liver of mice after re-challenge (FIG. 12E). However, we could detect more CD8+ T cells as well as Gr-1+ myeloid cells in the liver sinusoid of the mice receiving Aktl-CTLs after re-challenge (FIGS. 12F and 12G). These data suggest the Akt-engineered CTLs don't only harbor strong effector functions but also are more efficient to develop T-cell memory and could eliminate antigen rapidly when re-encounter the antigen. During primary and re-call responses, we observed the recruitment of innate immune cells to the liver, which may be a reflection of tissue damage and for the purpose of tissue repair. It is also possible that the Gr-1+ myeloid cells contribute to the expansion of CTL population during the primary and re-call responses.
A 0081, Example 8: Akt signaling in CTLs enhances their cytotoxic function and facilitates tumor killing
A 0082, The capability of Akt-engineered CTLs in killing of hepatocellular carcinoma (HCC) is further examined and demonstrated that the tumor antigen-specific Akt2-engrafted CD8+ CTLs can accumulate in the tumor sites as well as in the liver at day 10 after adoptive transfer into HCC-bearing mice (FIG. 14A). These Akt2-CTLs change the tumor microenvironment and attract or activate the surrounding F4/80+ macrophages in tumor sites (FIG. 14B).
„ 0083, A lot of cleaved caspase 3 -positive tumor cells are detected in the mice receiving Akt2-CTLs but not in Ctrl mice (FIG. 14C). Serum ALT is elevated in the mice
receiving Akt2-CTLs starting from day 3 after adoptive transfer but not in Ctrl mice (118.1 U/L vs. 22.8 U/L). The level of ALT in mice receiving Akt2-CTLs is continuously increasing at least until day 10 after adoptive transfer (590.5 U/L).
„ 0084< Ctrl-, Aktl- and Akt2-engineered HBc93-100-specific CTLs are adoptively transferred into HCC-bearing mice, respectively. The oncogenes-induced HCC mouse model is engineered to express luciferase and surrogate tumor antigen- HBc93-100 peptide in the tumor. The tumor growth can be monitored using IVIS and demonstrate that Akt2- but not ctrl- or Aktl -CTLs effectively eliminate HCC as shown by the reduction of in vivo bioluminescence and the disappearance of tumor nodules in the livers of mice receiving Akt2-CTLs (FIGS. 15A-D).
„ 0085, It can be concluded that Akt2 activation enables CTLs to have strong effector functions to kill tumor cells in the liver.
„ 0086, Example 9: Anti-tumor capability of Akt-engineered chimeric antigen receptor (CAR) T cells
„ 0087, To further explore the potential application of Akt molecules on cancer immunotherapy, plasmids carrying human or mouse Aktl or Akt2 genes are constructed and the ORF encoding anti-CEA chimeric antigen receptor (CAR) (FIG. 16A). The construction of the recombinant anti-CEA chimeric antigen receptor used in this present invention were described in Hombach et al. (Hombach, A.; Wieczarkowiecz, A.; Marquardt, T.; Heuser, C; Usai, L.; Pohl, C; Seliger, B.; Abken, H., Tumor-specific T cell activation by recombinant immunoreceptors: signaling and CD28 costimulation are
simultaneously required for efficient IL-2 secretion and can be integrated into one combined
signaling receptor molecule. J Immunol 2001, 167 (11), 6123-31). Activated mouse CD3+ T cells are modified by recombinant retroviruses carrying mouse AKT1 gene, anti-CEA CAR ORF or both and then are monitored for their proliferation
capability, cytokine production and cytotoxicity.
0088, The modified CTLs are co-cultured with a colorectal adenocarcinoma cell line with the expression of CEA, LS174T, and the proliferation of the CTLs is monitored through detection of incorporation of a thymidine analog, EdU. Both CD4+ and CD8+ T cells with the engraftment of anti-CEA CAR can respond to stimulation of LS174T and proliferate. Akt signaling further enhances the proliferative capability of anti-CEA CAR-engrafted CD4+ and CD8+ T cells (FIG. 16B).
0089, Higher levels of IL-2 and IFNSare detected in the culture medium of co-culture of LS174T cell line with T cells expressing anti-CEA CAR and Aktl or Akt2 molecules compared that of T cells expressing solely anti-CEA CAR (FIGS. 16C-F). Intracellular staining of
and granzyme B of the CD8+ T cells co-cultured with LS174T cells also proves that Aktl or Akt2 overexpression can enhance the cytokine production and cytotoxicity in CTLs (FIGS. 16G-J).
0090, Aktl-overexpressing and Akt2-overexpressing CTLs are shown to have the capability to overcome the proliferative arrest induced by myeloid-derived suppressor cells (MDSCs) (FIGS. 16K and 16L), which strongly suggests that the potential application of Akt molecules on T-cell engineering technology e.g. CAR T cells for immunotherapy.
0091 , This present invention provides a method able to enhance survival and functionality of anti-tumor or anti- viral T cells through overexpression of Akt molecules in CTLs. The Akt-overexpressing CTLs are shown to have high proliferation capability and superior effector functions during encounter with the antigen in the liver, which suggests that the Akt molecules can help the CTLs to overcome T-cell exhaustion in the inhibitory microenvironment. This present invention further shows expression of Akt molecules can facilitate anti-viral and anti-tumor CTL responses e.g. proliferation, cytokine production
and cytotoxicity. Moreover, it enables the CTLs resistance to proliferative arrest induced by MDSCs. To sum up, the expression of constitutively active Akt molecules enable T cells to gain the privilege to survive and to kill in the tolerogenic liver or tumor microenvironments. The active Akt molecules only when in combination with TCR signaling can trigger massive proliferative response of CTLs and therefore are safe to be applied to T-cell engineering of CTLs. Inventors therefore have the following claims for the compositions comprising the anti-tumor or anti-viral engineered T cells and the methods using thereof for treatment of chronic viral infections and malignancies.
Claims
1. A composition for reducing immune tolerance which comprising an engineered cell overexpressing Akt molecules, the engineered cell is engineered with a polynucleotide encoding:
a. an Akt isoform; and
b. a peptide leading the Akt isoform to cell membrane of the engineered cell.
2. The composition according to claim 1, wherein the Akt isoform is selected from the group consisting of Aktl , Akt2, and Akt3, or a combination thereof.
3. The composition according to claim 1, wherein the peptide is a myristoylation-targeting sequence set forth in SEQ ID NO: 7.
4. The composition according to claim 1 , wherein the polynucleotide further comprising a fragment encoding a chimeric antigen receptor or a recombinant T cell receptor.
5. The composition according to claim 4, wherein the polynucleotide further comprising a fragment encoding a linker between the Akt isoform and the chimeric antigen receptor or the recombinant T cell receptor.
6. The composition according to claim 5, wherein the linker is a 2A peptide set forth in SEQ ID NO: 9.
7. The composition according to claim 1, wherein the engineered cell is a T cell, a nature killer cell, a hematopoietic stem cell, an embryonic stem cell or a pluripotent stem cell.
8. A method for treating a virus infection disease in a subject comprising administering to the subject an effective amount of the composition according to
claim 1.
9. The method according to claim 8, wherein the virus infection disease is hepatitis.
10. A method for treating a cancer in a subject comprising administering to the subject an effective amount of the composition according to claim 1.
11 . The method according to claim 10, wherein the cancer is a liver cancer.
12. The method according to claim 11 , wherein the liver cancer comprising hepatocellular carcinoma, bile duct carcinoma, hepatic angiosarcoma and epithelioid hemangioendothelioma.
13. A method for treating a cancer in a subject comprising administering to the subject an effective amount of the composition according to claim 4.
14. A method for producing the composition according to claim 1, which comprising transffering a recombinant viral or transposon vector into a target cell, and expanding the target cell.
15. The method according to claim 14, wherein the recombinant viral or transposon vector can be a retrovirus, a lentivirus, an adenovirus, an adeno-associated virus, or other related viruses and various transposon systems can be used in transduction or integration of transgenes.
16. The method according to claim 14, wherein the recombinant viral or transposon vector can be amplified through plasmid amplification, in vitro transcription or in vitro synthesis and transfected into the target cell through electroporation, liposome or other chemical vehicles.
17. The method according to claim 14, wherein the target cell can be a T cell, a nature killer cell, a hematopoietic stem cell, an embryonic stem cell or a pluripotent stem cell.
18. The method according to claim 14, wherein the target cell can be further modified by viral transduction and DNA or RNA transfection.
19. The method according to claim 14, wherein expanding the target cell comprising stimulating the target cell with soluble, plate-bound anti-CD3 and anti-CD28 antibodies or with anti-CD3 and anti-CD28 beads with supplement of cytokines to enhance the growth of the target cell.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020518393A JP7414714B2 (en) | 2017-09-29 | 2018-10-01 | Methods and compositions for enhancing anti-tumor and anti-viral T cell survival and functionality |
US16/652,350 US20200306303A1 (en) | 2017-09-29 | 2018-10-01 | Methods and compositions enhancing survival and functionality of anti-tumor and anti-viral t cells |
EP18860567.9A EP3687575A4 (en) | 2017-09-29 | 2018-10-01 | Methods and compositions enhancing survival and functionality of anti-tumor and anti-viral t cells |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201762565820P | 2017-09-29 | 2017-09-29 | |
US62/565,820 | 2017-09-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019068066A1 true WO2019068066A1 (en) | 2019-04-04 |
Family
ID=65902170
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2018/053692 WO2019068066A1 (en) | 2017-09-29 | 2018-10-01 | Methods and compositions enhancing survival and functionality of anti-tumor and anti-viral t cells |
Country Status (5)
Country | Link |
---|---|
US (1) | US20200306303A1 (en) |
EP (1) | EP3687575A4 (en) |
JP (1) | JP7414714B2 (en) |
TW (1) | TWI731268B (en) |
WO (1) | WO2019068066A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20210047423A1 (en) * | 2019-08-16 | 2021-02-18 | Janssen Biotech, Inc. | Therapeutic immune cells with improved function and methods for making the same |
US11926817B2 (en) | 2019-08-09 | 2024-03-12 | Nutcracker Therapeutics, Inc. | Microfluidic apparatus and methods of use thereof |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116617214B (en) * | 2023-05-29 | 2024-10-11 | 山东大学 | Application of Tim-3 targeted small molecular compound in tumor immunotherapy |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100150889A1 (en) * | 2008-12-17 | 2010-06-17 | The Uab Research Foundation | Polycistronic Vector For Human Induced Pluripotent Stem Cell Production |
US20110023137A1 (en) * | 2007-06-21 | 2011-01-27 | Helmhollz Zenlrum Munich Deulsches Forschung Fuer Gesundheit And Unwelt | Fusion protein comprising a caspase domain and a nuclear hormone receptor binding domain and methods and uses thereof |
US20140286987A1 (en) * | 2013-03-14 | 2014-09-25 | Bellicum Pharmaceuticals, Inc. | Methods for controlling t cell proliferation |
WO2016193696A1 (en) * | 2015-06-01 | 2016-12-08 | Ucl Business Plc | Cell |
WO2017040529A1 (en) * | 2015-08-31 | 2017-03-09 | Bluebird Bio, Inc. | Anti-sialyl tn chimeric antigen receptors |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5776689A (en) * | 1996-07-19 | 1998-07-07 | The Regents Of The University Of California | Protein recruitment system |
US20030144204A1 (en) * | 2001-12-19 | 2003-07-31 | Baylor College Of Medicine | Akt-based inducible survival switch |
WO2007137300A2 (en) * | 2006-05-23 | 2007-11-29 | Bellicum Pharmaceuticals, Inc. | Modified dendritic cells having enhanced survival and immunogenicity and related compositions and methods |
WO2009143239A1 (en) * | 2008-05-20 | 2009-11-26 | Fox Chase Cancer Center | Compositions and methods for the treatment and diagnosis of cancer |
WO2012074117A1 (en) * | 2010-12-03 | 2012-06-07 | 国立大学法人京都大学 | Efficient method for establishing artificial pluripotent stem cells |
EP3214091B1 (en) * | 2010-12-09 | 2018-10-03 | The Trustees of The University of Pennsylvania | Use of chimeric antigen receptor-modified t cells to treat cancer |
ES2808914T3 (en) * | 2014-09-04 | 2021-03-02 | Stemcell Tech Inc | Soluble antibody complexes for the activation and expansion of T lymphocytes or NK cells |
MA44314A (en) * | 2015-11-05 | 2018-09-12 | Juno Therapeutics Inc | CHEMERICAL RECEPTORS CONTAINING TRAF-INDUCING DOMAINS, AND ASSOCIATED COMPOSITIONS AND METHODS |
-
2018
- 2018-10-01 WO PCT/US2018/053692 patent/WO2019068066A1/en unknown
- 2018-10-01 TW TW107134650A patent/TWI731268B/en active
- 2018-10-01 EP EP18860567.9A patent/EP3687575A4/en not_active Withdrawn
- 2018-10-01 JP JP2020518393A patent/JP7414714B2/en active Active
- 2018-10-01 US US16/652,350 patent/US20200306303A1/en not_active Abandoned
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110023137A1 (en) * | 2007-06-21 | 2011-01-27 | Helmhollz Zenlrum Munich Deulsches Forschung Fuer Gesundheit And Unwelt | Fusion protein comprising a caspase domain and a nuclear hormone receptor binding domain and methods and uses thereof |
US20100150889A1 (en) * | 2008-12-17 | 2010-06-17 | The Uab Research Foundation | Polycistronic Vector For Human Induced Pluripotent Stem Cell Production |
US20140286987A1 (en) * | 2013-03-14 | 2014-09-25 | Bellicum Pharmaceuticals, Inc. | Methods for controlling t cell proliferation |
WO2016193696A1 (en) * | 2015-06-01 | 2016-12-08 | Ucl Business Plc | Cell |
WO2017040529A1 (en) * | 2015-08-31 | 2017-03-09 | Bluebird Bio, Inc. | Anti-sialyl tn chimeric antigen receptors |
Non-Patent Citations (2)
Title |
---|
SAUTTO ET AL.: "Chimeric Antigen Receptor (CAR)-Engineered T Cells Redirected Against Hepatitis C Virus (HCV) E2 Glycoprotein", GUT, vol. 65, no. 3, 1 March 2016 (2016-03-01), pages 512 - 523, XP055419345, DOI: doi:10.1136/gutjnl-2014-308316 * |
See also references of EP3687575A4 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11926817B2 (en) | 2019-08-09 | 2024-03-12 | Nutcracker Therapeutics, Inc. | Microfluidic apparatus and methods of use thereof |
US20210047423A1 (en) * | 2019-08-16 | 2021-02-18 | Janssen Biotech, Inc. | Therapeutic immune cells with improved function and methods for making the same |
WO2021033089A1 (en) * | 2019-08-16 | 2021-02-25 | Janssen Biotech, Inc. | Therapeutic immune cells with improved function and methods for making the same |
CN114761570A (en) * | 2019-08-16 | 2022-07-15 | 詹森生物科技公司 | Therapeutic immune cells with improved function and method for preparing same |
Also Published As
Publication number | Publication date |
---|---|
EP3687575A4 (en) | 2021-06-30 |
TW201924698A (en) | 2019-07-01 |
TWI731268B (en) | 2021-06-21 |
EP3687575A1 (en) | 2020-08-05 |
US20200306303A1 (en) | 2020-10-01 |
JP2020535818A (en) | 2020-12-10 |
JP7414714B2 (en) | 2024-01-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Oda et al. | A Fas-4-1BB fusion protein converts a death to a pro-survival signal and enhances T cell therapy | |
Quintarelli et al. | Co-expression of cytokine and suicide genes to enhance the activity and safety of tumor-specific cytotoxic T lymphocytes | |
DuPage et al. | Endogenous T cell responses to antigens expressed in lung adenocarcinomas delay malignant tumor progression | |
JP6884423B2 (en) | Immunocyte cells expressing immune function regulators and expression vectors | |
US20200306303A1 (en) | Methods and compositions enhancing survival and functionality of anti-tumor and anti-viral t cells | |
Jiang et al. | Magnetic-manipulated NK cell proliferation and activation enhance immunotherapy of orthotopic liver cancer | |
CN108342363A (en) | It co-expresses anti-MSLN Chimeric antigen receptors and immunologic test point inhibits the transgenosis lymphocyte and application thereof of molecule | |
Liechtenstein et al. | Immune modulation by genetic modification of dendritic cells with lentiviral vectors | |
Ascic et al. | In vivo dendritic cell reprogramming for cancer immunotherapy | |
Crittenden et al. | Pharmacologically regulated production of targeted retrovirus from T cells for systemic antitumor gene therapy | |
de Witte et al. | An inducible caspase 9 safety switch can halt cell therapy-induced autoimmune disease | |
Jackson et al. | Inflammation programs self-reactive CD8+ T cells to acquire T-box-mediated effector function but does not prevent deletional tolerance | |
Webb et al. | Expression of tumor antigens within an oncolytic virus enhances the anti-tumor T cell response | |
CN111902532A (en) | Arginase inhibition for cancer treatment | |
AU2020220242B2 (en) | Compositions and methods for enhanced lymphocyte-mediated immunotherapy | |
Kalaitsidou et al. | Signaling via a CD28/CD40 chimeric costimulatory antigen receptor (CoStAR™), targeting folate receptor alpha, enhances T cell activity and augments tumor reactivity of tumor infiltrating lymphocytes | |
EP4356970A1 (en) | Preparation and application of lox1-based chimeric antigen receptor immune cell | |
Ulaganathan et al. | A strategy for uncovering germline variants altering anti-tumor CD8 T cell response | |
KR20220165255A (en) | Composition and method for enhancing activation and cytolytic activity of CD8+ T cells through destruction of SAGA (SPT-ADA-GCN5-acetyltransferase) complex | |
CN113866416A (en) | Use of soluble form Tim3 to block resistance to therapy at immune checkpoints | |
ES2972793T3 (en) | Cells designed to induce tolerance | |
Ascic et al. | A cancer immunotherapy modality based on dendritic cell reprogramming in vivo | |
JP2023550499A (en) | Cancer-specific trans-splicing ribozymes expressing immune checkpoint inhibitors and their uses {TUMOR-TARGETING TRANS-SPLICING RIBOZYME EXPRESSING IMMUNE CHECKPOINT INHIBITOR AND USE THEREO F} | |
WO2024073775A2 (en) | Compositions and methods for enhancing adoptive t cell therapeutics | |
Lu et al. | 931. Inhibition of VEGF Signaling Pathway and Tumor Metastasis |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18860567 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020518393 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2018860567 Country of ref document: EP Effective date: 20200429 |