WO2012056792A1 - Image processing device and image processing method - Google Patents

Image processing device and image processing method Download PDF

Info

Publication number
WO2012056792A1
WO2012056792A1 PCT/JP2011/068410 JP2011068410W WO2012056792A1 WO 2012056792 A1 WO2012056792 A1 WO 2012056792A1 JP 2011068410 W JP2011068410 W JP 2011068410W WO 2012056792 A1 WO2012056792 A1 WO 2012056792A1
Authority
WO
WIPO (PCT)
Prior art keywords
noise
pixel
line
frequency distribution
circuit
Prior art date
Application number
PCT/JP2011/068410
Other languages
French (fr)
Japanese (ja)
Inventor
沼尾 孝次
合志 清一
崇志 峰
大治 澤田
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2012056792A1 publication Critical patent/WO2012056792A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/14Picture signal circuitry for video frequency region
    • H04N5/21Circuitry for suppressing or minimising disturbance, e.g. moiré or halo
    • H04N5/213Circuitry for suppressing or minimising impulsive noise

Definitions

  • the present invention relates to an image processing apparatus and an image processing method.
  • This application claims priority based on Japanese Patent Application No. 2010-244698 filed in Japan on October 29, 2010, the contents of which are incorporated herein by reference.
  • FIG. 32 is an explanatory diagram of the adaptive low-pass filter disclosed in Patent Document 1. 32 obtains a difference Diff between the input signal Di0 and the signal Im1 after noise removal one frame before. Based on the difference Diff, the motion / noise detection means 14 determines “motion” and “noise” of the video signal, and outputs a motion degree signal MDS from the determination result.
  • This signal MDS is converted into a cyclic coefficient Km for noise by the coefficient conversion means 16.
  • the noise cyclic amount Nd obtained by multiplying the cyclic coefficient Km and the output Dfn from the amplitude limiting means 13 is added to the input signal Di0 to become the output signal Do0. Since the output signal Do0 is reused as the 1-frame delayed signal Im1 after noise removal, it is called a cyclic noise removal device.
  • the cyclic noise removal device disclosed in Patent Document 1 has a problem that strong noise removal cannot be performed on a moving image, or an image may be lost if noise removal is performed.
  • No. of the ITE standard moving image shown in FIG. 19 An image of “Opening Ceremony” will be described as an example. In this “opening ceremony”, noise is conspicuous in the “lawn” in area A, so it is necessary to perform strong noise removal processing on area A.
  • strong cyclic noise removal processing is performed in order to remove noise in the “marching person” in area B, tailing appears in area B. For this reason, strong noise removal cannot be performed for area B.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide an image capable of performing strong noise removal even on a moving image, and suppressing blurring due to noise removal.
  • a processing apparatus and an image processing method are provided.
  • an image processing apparatus that removes noise from a moving image has a plurality of first lines that pass through a previous frame and a subsequent frame of the processed pixel, with the processing pixel constituting the moving image as a center.
  • a histogram generating unit that generates a frequency distribution of the magnitude of the noise component for each of the processing pixels and a histogram analyzing unit that determines a noise amount for performing noise removal based on the frequency distribution
  • a noise removal calculation unit that takes a plurality of second lines centered on the processing pixel and performs noise removal based on the amount of noise for each of the second lines.
  • the magnitude of the noise component related to one of the first lines is a pixel on the one line, and the value of the pixel in the previous frame and the subsequent frame
  • the absolute value of the difference between the average value of the pixel in the previous frame and the pixel value in the subsequent frame and the value of the processing pixel May be equal.
  • the plurality of first lines are lines connecting pixels in the previous frame and pixels in the subsequent frame at the same positions as the processing pixel and pixels adjacent to the processing pixel. However, it may be a line centered on the processing pixel.
  • one of the plurality of second lines is a time axis direction connecting a pixel in the previous frame and a pixel in the subsequent frame at the same position as the processing pixel. It may be a line.
  • one of the first lines is a line in the time axis direction
  • the histogram analysis unit includes the time in the frequency distribution related to the first line.
  • the frequency distribution related to the line in the axial direction is compared with the other frequency distribution created by the histogram creating unit, and the peak of the frequency distribution related to the line in the time axis direction is larger than the peaks of all the other frequency distributions.
  • the noise amount when performing noise removal on the line in the time axis direction may be a value larger than zero.
  • one of the first lines is a line in the time axis direction
  • the histogram analysis unit includes the time in the frequency distribution related to the first line.
  • the frequency distribution related to the axial line is compared with the other frequency distribution created by the histogram creating unit, and the peak of at least one frequency distribution of the other frequency distributions relates to the time axis line.
  • the frequency component is larger than the frequency distribution peak by a predetermined amount or more and the size of the noise component at which the one frequency distribution is peaked is smaller than the size of the noise component at which the frequency distribution related to the line in the time axis direction is peak
  • the noise amount when performing noise removal on the line in the time axis direction may be set to zero.
  • the histogram analysis unit has a peak when the noise component size is 1 in all of the frequency distributions related to the first line, and the noise component size is 1.
  • the noise amount may be set to zero.
  • one of the first lines is a line in the time axis direction
  • the histogram analysis unit is configured to perform the frequency distribution on the first line.
  • the noise amount when performing noise removal on the time axis direction line is set to the first value other than the time axis direction line. You may determine based on the frequency distribution regarding a line of.
  • a line excluding the line in the time axis direction among the plurality of second lines is in the same frame as the processing pixel and connects the pixel adjacent to the processing pixel. However, it may be a line passing through the processing pixel.
  • the histogram analysis unit determines the amount of noise according to a size of a noise component in which at least one of the frequency distributions created by the histogram creation unit has a peak. May be.
  • an image processing method for removing noise from a moving image includes a first pixel that passes through a previous frame and a subsequent frame of the processed pixel with the processing pixel constituting the moving image as a center.
  • the present invention it is possible to perform strong noise removal even with a moving image, and it is possible to suppress the loss due to noise removal.
  • FIG. No. of ITE standard moving image 19 “Opening Ceremony”. No. of ITE standard moving image. 32 “Moss and Stone Buddha”.
  • FIG. 1 is a schematic block diagram showing the configuration of the liquid crystal display device 101 according to the first embodiment.
  • the liquid crystal display device 101 includes a liquid crystal module 102, an image processing device 103, and a detection circuit 104.
  • the liquid crystal module 102 displays an image of the supplied video signal.
  • the image processing apparatus 103 removes noise from the video signal of the moving image and supplies the display video signal to the liquid crystal module 102.
  • the detection circuit 104 is connected to an antenna that receives a broadcast wave, detects a video signal from the broadcast wave received by the antenna, and supplies the video signal to the image processing apparatus 103.
  • the signal system of the broadcast wave here is an interlace signal such as NTSC system or PAL system.
  • the image processing apparatus 103 includes a Y / C separation circuit 111 and an NR (Noise Reduction) circuit 112.
  • the liquid crystal module 102 includes a TCON (Timing Controller) 106 and an LCD (Liquid Crystal Display) 105.
  • the Y / C separation circuit 111 converts the video signal detected by the detection circuit 104 from analog to digital, separates it into a luminance component and a color difference component (blue difference, red difference), and outputs the luminance signal and the color difference signal, respectively.
  • the NR circuit 112 performs noise removal processing on the luminance signal and the color difference signal output from the Y / C separation circuit 111.
  • the image processing method in the image processing apparatus of the present invention is applied to the NR circuit 112.
  • the NR circuit 112 includes a frame memory 113, an NR detection circuit 114, and an NR operation circuit 115.
  • the frame memory 113 When the luminance signal and the color difference signal output from the Y / C separation circuit 111 are input to the frame memory 113, the frame memory 113 outputs the input signal as a post-frame signal SF0.
  • the frame memory 113 outputs a signal one frame before the input luminance signal and color difference signal as the current frame signal SF1.
  • the frame memory 113 outputs a signal two frames before the input luminance signal and color difference signal as a previous frame signal SF2. That is, the frame memory 113 simultaneously outputs a signal indicating the luminance at the same pixel position in three frames and a signal indicating the color difference.
  • the NR detection circuit 114 uses the luminance signal and color difference signal for three frames output from the frame memory 113, that is, the subsequent frame signal SF0, the current frame signal SF1, and the previous frame signal SF2, over one frame period. Noise detection is performed on the current frame signal SF1, and a noise amount E and a noise sensitivity D of the luminance signal and the color difference signal are calculated.
  • the previous frame is a frame one frame before the current frame, and the rear frame is a frame one frame after the current frame.
  • the NR circuit 112 uses the noise amount E and noise sensitivity D calculated by the NR detection circuit 114 in the previous frame period, the subsequent frame signal SF0, the current frame signal SF1, and the previous frame signal SF2, to The noise removal process of SF1 is performed.
  • the luminance signal and color difference signal from which noise has been removed by the NR circuit 112 are supplied to the liquid crystal module 102 as a video signal for display.
  • the TCON 106 converts the video signal (luminance signal, color difference signal) supplied to the liquid crystal module 102 into an RGB signal and displays it on the LCD 105.
  • the pixels of the LCD 105 are arranged in a matrix and display a color corresponding to an input video signal.
  • FIG. 2 is a schematic block diagram showing the configuration of the frame memory 113.
  • the frame memory 113 includes a delay circuit 151a and a delay circuit 151b.
  • the delay circuit 151a delays the luminance signal output from the Y / C separation circuit 111 by one frame and outputs it as the current frame signal SF1.
  • the delay circuit 151b delays the luminance signal delayed by the delay circuit 151a by one frame and outputs the delayed signal as the previous frame signal SF2.
  • FIG. 3A and 3B are schematic block diagrams showing the configuration of the NR detection circuit 114.
  • FIG. The NR detection circuit 114 includes histogram generation circuits 121a to 121i corresponding to each of nine-direction lines (a plurality of first lines) shown in FIG. 4 to be described later, and a histogram generation circuit 121j corresponding to each of two-way lines (not shown). 121k and a histogram analysis circuit 122.
  • the nine-direction line shown in FIG. 4 is a line connecting the pixel in the previous frame and the pixel in the subsequent frame at the same position as the processing pixel and the pixel adjacent to the processing pixel, and has the processing pixel as the center. Is a line.
  • the processing pixel is the pixel at the position e in the current frame.
  • the upper left of the position e is referred to as a position a.
  • the position e is referred to as position b.
  • the upper right of the position e is referred to as a position c.
  • the left of the position e is referred to as a position d.
  • the right of the position e is called a position f.
  • the lower left of the position e is referred to as a position g.
  • the position below the position e is referred to as a position h.
  • the lower right of the position e is referred to as a position i.
  • the positions a to i are pixels in the same field.
  • the first direction among the nine directions is a direction (direction a ⁇ e ⁇ i) from the position a of the previous frame to the position i of the subsequent frame through the position e of the current frame.
  • the second direction is a direction (direction b ⁇ e ⁇ h) from the position b of the previous frame to the position h of the rear frame through the position e of the current frame.
  • the third direction is a direction (direction c ⁇ e ⁇ g) from the position c of the previous frame through the position e of the current frame to the position g of the rear frame.
  • the fourth direction is a direction (direction d ⁇ e ⁇ f) from the position d of the previous frame through the position e of the current frame to the position f of the rear frame.
  • the fifth direction is a direction (direction e ⁇ e ⁇ e) from the position e of the previous frame to the position e of the subsequent frame through the current frame position e, that is, the time axis direction.
  • the sixth direction is a direction (direction f ⁇ e ⁇ d) from the position f of the previous frame through the position e of the current frame to the position d of the subsequent frame.
  • the seventh direction is a direction (direction g ⁇ e ⁇ c) from the position g of the previous frame through the position e of the current frame toward the position c of the rear frame.
  • the eighth direction is a direction (direction h ⁇ e ⁇ b) from the position h of the previous frame through the position e of the current frame toward the position b of the rear frame.
  • the ninth direction is a direction (direction i ⁇ e ⁇ a) from the position i of the previous frame through the position e of the current frame to the position a of the rear frame.
  • the histogram creation circuit 121a creates a histogram related to the noise component in the first direction from the post-frame signal SF0, the current frame signal SF1, and the previous frame signal SF2 output from the frame memory 113.
  • the histogram creation circuit 121b creates a histogram related to the noise component in the second direction described above from the post-frame signal SF0, the current frame signal SF1, and the previous frame signal SF2 output from the frame memory 113.
  • the histogram creation circuit 121c creates a histogram related to the noise component in the third direction described above from the post-frame signal SF0, the current frame signal SF1, and the previous frame signal SF2 output from the frame memory 113.
  • the histogram creation circuit 121d creates a histogram related to the noise component in the fourth direction described above from the post-frame signal SF0, the current frame signal SF1, and the previous frame signal SF2 output from the frame memory 113.
  • the histogram creation circuit 121e creates a histogram related to the noise component in the fifth direction described above from the post-frame signal SF0, the current frame signal SF1, and the previous frame signal SF2 output from the frame memory 113.
  • the histogram creation circuit 121f creates a histogram related to the noise component in the sixth direction from the post-frame signal SF0, the current frame signal SF1, and the previous frame signal SF2 output from the frame memory 113.
  • the histogram creation circuit 121g creates a histogram related to the noise component in the seventh direction described above from the post-frame signal SF0, the current frame signal SF1, and the previous frame signal SF2 output from the frame memory 113.
  • the histogram creation circuit 121h creates a histogram related to the noise component in the eighth direction described above from the post-frame signal SF0, the current frame signal SF1, and the previous frame signal SF2 output from the frame memory 113.
  • the histogram creation circuit 121i creates a histogram related to the above-mentioned noise component in the ninth direction from the post-frame signal SF0, the current frame signal SF1, and the previous frame signal SF2 output from the frame memory 113.
  • the histogram creation circuit 121j passes from the current frame position d through the current frame position e to the current frame position f (see FIG. 3B).
  • a histogram relating to noise components (not shown) is created.
  • the histogram creating circuit 121k passes from the current frame position b through the current frame position e to the current frame position h (not shown). ) For the noise component.
  • the histogram creation circuit 121a includes delay circuits 131a, 132a, 133a, a condition analysis circuit 134, and a frequency calculation circuit 135. Note that the histogram creation circuits 121b to 121i differ from the histogram creation circuit 121a only in that they include delay circuits corresponding to the above-described directions instead of the delay circuits 131a, 132a, and 133a. As for the histogram creation circuits 121j and 121k, the histogram creation circuit 121j (121k) outputs the current frame signal SF1 to the three delay circuits 131j (131k), 132j (132k), and 133j (133k).
  • the histogram creating circuit 121a is different only in that the subsequent frame signal SF0, the current frame signal SF1, and the previous frame signal SF2 are output to the delay circuits 131a, 132a, and 133a, respectively. Therefore, here, only the histogram creation circuit 121a will be described as a representative.
  • the delay circuit 131a outputs the input frame signal SF0 as it is as a comparison pixel value Cij without being delayed.
  • the delay circuit 132a delays the inputted current frame signal SF1 by one horizontal line and one pixel, and outputs it as a processed pixel value Aij.
  • the delay circuit 133a delays the input previous frame signal SF2 by two horizontal lines and two pixels, and outputs it as a comparison pixel value Bij.
  • the subscripts i and j of Aij, Bij, and Cij are values corresponding to the position of the processing pixel, i is the horizontal coordinate value of the processing pixel, and j is the vertical coordinate value of the processing pixel. It is.
  • the condition analysis circuit 134 obtains a difference Eij that is the magnitude of the noise component in the first direction that the histogram creation circuit 121a is in charge of, and outputs the difference Eij to the frequency calculation circuit 135.
  • condition analysis circuit 134 determines the difference Eij as the average value of the comparison pixel values Bij and Cij when the processing pixel value Aij is greater than or smaller than either of the comparison pixel values Bij and Cij. , And the absolute value of the difference from the processing pixel value Aij. In other cases, the condition analysis circuit 134 sets the difference Eij to “0”.
  • the frequency calculation circuit 135 calculates the frequency distribution by aggregating the above difference Eij over one frame period. Note that the frequency calculation circuit 135 determines the frame period based on, for example, the vertical synchronization signal of the video signal detected by the detection circuit 104. Here, the period for summing up the differences Eij may be a plurality of frame periods.
  • the histogram analysis circuit 122 determines noise removal to be applied based on the frequency distributions calculated by the nine frequency calculation circuits 135, and calculates the noise amount E and noise sensitivity D used when noise removal is performed in the NR calculation circuit 115. To do.
  • the histogram analysis circuit 122 determines the noise amount E according to the difference Eij in which at least one of the frequency distributions calculated by the nine frequency calculation circuits 135 peaks. Note that the noise amount E is a value that is added or subtracted in the noise removal process with respect to a pixel that has been determined to contain noise, and the noise sensitivity D is used when it is determined that noise is included. Is the threshold value.
  • the histogram analysis circuit 122 has a frequency distribution (direction e ⁇ e ⁇ ) calculated by the frequency calculation circuit 135 of the histogram creation circuit 121e among the peaks of the frequency distributions calculated by the nine frequency calculation circuits 135.
  • the peak of e frequency distribution in the time axis direction
  • the histogram analysis circuit 122 determines not to perform time-axis noise removal but only to perform space-axis noise removal. Further, the histogram analysis circuit 122 determines the noise amount and noise sensitivity of each axis according to the determination result.
  • FIG. 6 is a flowchart for explaining the operation of the histogram analysis circuit 122.
  • the histogram analysis circuit 122 first compares the peaks of the frequency distributions calculated by the nine frequency calculation circuits 135, and determines whether or not the peak in the time axis direction (direction e ⁇ e ⁇ e) is maximum (Sa1). . When it is determined that the peak in the time axis direction is the maximum (Sa1-Yes), in order to perform noise removal on the time axis and the space axis, the histogram analysis circuit 122 calculates the noise amount Et and the noise sensitivity Dt on the time axis. Is calculated (Sa2).
  • the histogram analysis circuit 122 sets the difference Eij at which the frequency becomes a peak in the frequency distribution calculated by the frequency calculation circuit 135 of the histogram creation circuit 121e as the time-axis noise amount Et, and sets the noise amount Et in advance.
  • a value obtained by multiplying the set coefficient (here, “0.25”) is defined as a time-axis noise sensitivity Dt.
  • the histogram analysis circuit 122 calculates the noise amounts E1 and E2 of the first space axis and the second space axis and the noise sensitivities D1 and D2 (Sa3). Specifically, the histogram analysis circuit 122 compares the difference Eij in which the frequency peaks in the frequency distribution (current frame d ⁇ current frame e ⁇ current frame f direction) calculated by the frequency calculation circuit 135 of the histogram creation circuit 121j. Is a noise amount E1 of the first space axis, and a value obtained by multiplying the noise amount E1 by a preset coefficient (here, “0.25”) is a noise sensitivity D1 of the first space axis.
  • a preset coefficient here, “0.25”
  • the histogram analysis circuit 122 calculates a difference Eij having a peak frequency in the frequency distribution (current frame b ⁇ current frame e ⁇ current frame h direction) calculated by the frequency calculation circuit 135 of the histogram creation circuit 121k.
  • the noise amount E2 of the spatial axis is set, and a value obtained by multiplying the noise amount E2 by a preset coefficient (here, “0.25”) is set as the noise sensitivity D2 of the second spatial axis.
  • the histogram analysis circuit 122 outputs the noise amounts Et, E1, and E2 of each axis and the noise sensitivities Dt, D1, and D2 of each axis to the NR calculation circuit 115 (Sa6), and ends the process.
  • the histogram analysis circuit 122 performs noise removal Et on the time axis in order to perform noise removal only on the spatial axis. Set to 0 (Sa4).
  • the histogram analysis circuit 122 calculates the noise amounts E1 and E2 of the first and second spatial axes and the noise sensitivities D1 and D2 in the same manner as in step Sa3 (Sa5), and proceeds to step Sa6. .
  • FIG. 7 is a schematic block diagram showing the configuration of the NR operation circuit 115.
  • the NR operation circuit 115 takes a plurality of lines (a plurality of second lines) centering on the processing pixel, and performs noise removal for each of these lines based on the noise amount E calculated by the NR detection circuit 114.
  • these lines are a time axis direction line, a horizontal direction line, and a vertical direction line.
  • the lines excluding the time-axis-direction line, that is, the horizontal line and the vertical line are in the same frame as the processing pixel and connect the processing pixel and the adjacent pixel. It is a line that passes through.
  • the NR operation circuit 115 includes a time axis NR circuit 141, a first space axis NR circuit 142, and a second space axis NR circuit 143.
  • the first spatial axis NR circuit 142 includes a first spatial axis DL (Delay) circuit 144, a first spatial axis DL circuit 145, and a first spatial axis NR calculation circuit 146.
  • the second space axis NR circuit 143 includes a second space axis DL circuit 147 and a second space axis DL circuit 148.
  • the time axis NR circuit 141 uses the noise amount Et and noise sensitivity Dt calculated by the histogram analysis circuit 122 of the NR detection circuit 114, the rear frame signal SF0, the current frame signal SF1, and the previous frame signal SF2.
  • the time axis noise is removed from the current frame signal SF1.
  • the noise amount Et is “0”
  • the value to be subtracted or added for noise removal in the noise removal processing of the time axis NR circuit 141 is “0”, so the value of the current frame signal SF1 is changed. Without output.
  • Yij is a noise-processed luminance value, that is, an output of the time axis NR circuit 141.
  • Aij is a luminance value of the pixel to be processed, that is, a value indicated by the current frame signal SF1.
  • Bij is a value indicated by the rear frame signal SF0 among the luminance values of the comparison target pixels.
  • Cij is a value indicated by the previous frame signal SF2 among the luminance values of the comparison target pixels.
  • E is the time-axis noise amount Et calculated by the histogram analysis circuit 122
  • D is the time-axis noise sensitivity Dt calculated by the histogram analysis circuit 122.
  • the time axis NR circuit 141 performs processing when the processing pixel value Aij is larger than both the value obtained by adding the noise sensitivity D to the comparison pixel value Bij and the value obtained by adding the noise sensitivity D to the comparison pixel value Cij. A value obtained by subtracting the noise amount E from the pixel value Aij is output.
  • the time axis NR circuit 141 performs processing when the processing pixel value Aij is smaller than both the value obtained by subtracting the noise sensitivity D from the comparison pixel value Bij and the value obtained by subtracting the noise sensitivity D from the comparison pixel value Cij. A value obtained by adding the noise amount E to the pixel value Aij is output. Further, when neither of them is the time axis NR circuit 141, the processing pixel value Aij is output as it is. This time axis NR process suppresses noise in the frame direction.
  • the first spatial axis NR circuit 142 performs noise removal on the first spatial axis (horizontal direction in the present embodiment).
  • the first spatial axis DL circuit 144 outputs a signal SD1 obtained by delaying the signal resulting from the noise removal by the time axis NR circuit 141 by one pixel.
  • the first spatial axis DL circuit 145 outputs a signal SD2 obtained by further delaying the signal SD1 delayed by the first spatial axis DL circuit 144 by one pixel.
  • first spatial axis DL circuits 144 and 145 have been described as being delayed by one pixel, but the amount of delay may be two pixels or more, and the first spatial axis DL circuit 144 The delay amount and the delay amount of the first space axis DL circuit 145 may be different.
  • the first spatial axis NR calculation circuit 146 performs noise removal in the horizontal direction. Specifically, the first spatial axis NR calculation circuit 146 includes the signal SD0 as a result of noise removal by the time axis NR circuit 141, the signal SD1 output from the first spatial axis DL circuit 144, and the first spatial axis DL circuit 145. Based on the output signal SD2 and the noise amount E1 and noise sensitivity D1 of the first spatial axis output from the histogram analysis circuit 122, noise removal is performed on the signal SD1.
  • the first spatial axis NR calculation circuit 146 uses the value indicated by the signal SD1 as the processing target pixel value Aij, the value indicated by the signal SD0 as the comparison target pixel value Bij, and the value indicated by the signal SD2 as the comparison target pixel value.
  • the above algorithm 2 is executed with Cij, the noise amount E1 of the first space axis as the noise amount E, and the noise sensitivity D1 of the first space axis as the noise sensitivity D.
  • the second spatial axis NR circuit 143 performs noise removal on the second spatial axis (vertical direction in the present embodiment).
  • the second spatial axis DL circuit 147 outputs a signal SH1 obtained by delaying the signal resulting from the noise removal by the first spatial axis NR circuit 142 by one line.
  • the second spatial axis DL circuit 148 outputs a signal SH2 obtained by further delaying the signal SH1 delayed by the second spatial axis DL circuit 147 by one line.
  • the second spatial axis DL circuits 147 and 148 have been described as being delayed by one line, but the amount of delay may be two lines or more, and the second spatial axis DL circuit 147 The delay amount and the delay amount of the second space axis DL circuit 148 may be different. In this embodiment, since the input signal is an interlace signal, this one-line delay corresponds to a two-line delay of the progressive signal.
  • the second spatial axis NR calculation circuit 149 performs noise removal in the vertical direction.
  • the second spatial axis NR calculation circuit 149 includes the signal SH0 as a result of noise removal by the first spatial axis NR calculation circuit 146, the signal SH1 output from the second spatial axis DL circuit 147, and the second spatial axis DL.
  • noise removal is performed on the signal SH1.
  • the second spatial axis NR calculation circuit 149 uses the value indicated by the signal SH1 as the processing target pixel value Aij, the value indicated by the signal SH0 as the comparison target pixel value Bij, and the value indicated by the signal SH2 as the comparison target pixel value.
  • the above algorithm 2 is executed with Cij, the noise amount E2 of the second space axis being the noise amount E, and the noise sensitivity D2 of the second space axis being the noise sensitivity D.
  • FIG. 8 is a diagram showing the frequency distribution calculated by the frequency calculation circuit 135 for one frame in the “opening ceremony” shown in FIG.
  • the frequency distribution indicated by the symbol L1 is the frequency distribution calculated by the frequency calculation circuit 135 of the histogram creation circuit 121e. That is, the frequency distribution L1 is a frequency distribution in the direction e ⁇ e ⁇ e.
  • the histogram analysis circuit 122 compares the frequency distribution L1 with the frequency distribution in the other direction.
  • the difference Eij that peaks in any frequency distribution is substantially the same, and the frequency distribution L1 has the highest peak. When the peak of the frequency distribution L1 is the highest, it indicates that a part of the screen is moving but many others are stopped.
  • the histogram analysis circuit 122 determines to perform time-axis noise removal and spatial-axis noise removal because the peak of the frequency distribution L1 is the highest. At this time, the histogram analysis circuit 122 sets “3”, which is the difference Eij at which the frequency distribution L1 reaches a peak, as the noise amount Et of the time axis, and rounds by rounding up “3” by “0.25”. 1 ”is the time-base noise sensitivity Dt. In the frequency distribution of FIG. 8, the peak difference Eij is “3” to “4” in any direction, and the frequency where the difference Eij is “10” or more is less than half of the peak. It turns out that it is a video with little.
  • FIG. 9 is a diagram showing a frequency distribution L2 in the horizontal direction (direction d ⁇ e ⁇ f) in the frequency distribution of FIG. Since the difference Eij at which the horizontal frequency distribution L2 peaks is “4”, the histogram analysis circuit 122 sets the noise amount E1 of the first spatial axis to “4” and the noise sensitivity D1 of the first spatial axis is set to “4”. It is assumed that “1” is obtained by multiplying “4” by “0.25”.
  • FIG. 10 is a diagram showing a frequency distribution L3 in the vertical direction (direction b ⁇ e ⁇ h) in the frequency distribution of FIG.
  • the histogram analysis circuit 122 sets the noise amount E2 of the second spatial axis to “3” and the noise sensitivity D2 of the second spatial axis is set to “3”. “3” is multiplied by “0.25” and rounded to “1”.
  • FIG. 11 and FIG. 15 show the result of noise processing performed by the image processing apparatus 103 according to the present embodiment.
  • FIG. 11 is an image in which random noise is superimposed on an image taken by a camera.
  • FIG. 12 is an image obtained as a result of noise removal performed by the image processing apparatus 103 on the image of FIG. This result is the result of determining that the time-axis and space-axis noises are removed by the histogram analysis circuit 122 and performing the time-axis and space-axis noise removal. As a result, noise can be reduced as shown in FIG.
  • the histogram analysis circuit 122 analyzes the noise amount with respect to the time axis and the space axis of the input image, and determines the noise removal and the noise amount E and the noise feeling D to be performed. The effect that it can be removed is obtained. Note that noise removal may be performed only on the luminance signal in the NR circuit 112. In this case, the color difference signal is passed through the delay circuit 116 as shown in FIG. 13 to adjust the delay timing.
  • the liquid crystal display device 101 in this embodiment is different from the liquid crystal display device 101 in FIG. 1 only in that an NR detection circuit 114a is provided instead of the NR detection circuit 114.
  • Other parts are the same as those of the liquid crystal display device 101 in FIG.
  • FIG. 14 is a schematic block diagram showing the configuration of the NR detection circuit 114a.
  • the NR detection circuit 114a includes histogram creation circuits 121a to 121i and a histogram analysis circuit 122a.
  • the histogram analysis circuit 122a determines noise removal to be applied based on the frequency distribution calculated by the nine frequency calculation circuits 135, and calculates the noise amount E and noise sensitivity D used when the NR calculation circuit 115 performs noise removal. To do.
  • the histogram analysis circuit 122a includes the frequency calculation circuit of the histogram generation circuit 121e among the frequency distributions (frequency distributions other than the time axis direction) calculated by the eight frequency calculation circuits 135 other than the histogram generation circuit 121e.
  • the peak is higher than the value obtained by multiplying the peak of the frequency distribution (frequency distribution in the direction e ⁇ e ⁇ e) calculated by 135 by a preset coefficient ⁇ (1 ⁇ , for example, “2”), and the peak If there is a frequency distribution whose difference Eij is smaller than the peak difference Eij in the frequency distribution in the direction e ⁇ e ⁇ e, it is determined that noise removal on the time axis is not performed, but only noise removal on the spatial axis is performed. In other cases, the histogram analysis circuit 122a determines to perform time-axis noise removal and space-axis noise removal.
  • the calculation methods of the noise amounts Et, E1, E2 and the noise sensitivities Dt, D1, D2 are the same as those of the histogram analysis circuit 122. Further, instead of the above-mentioned condition “the peak is higher than the value obtained by multiplying the peak of the frequency distribution calculated by the frequency calculation circuit 135 of the histogram generation circuit 121e by a preset coefficient ⁇ ”, the “histogram generation circuit 121e is changed. The condition that the peak is higher than the value obtained by adding a preset constant A to the peak of the frequency distribution calculated by the frequency calculation circuit 135 of the frequency distribution circuit 135 may be used.
  • FIG. 15 is a flowchart for explaining the operation of the histogram analysis circuit 122a.
  • the same reference numerals (Sa2 to Sa6) are assigned to the portions corresponding to the respective portions in FIG. 6, and the description thereof is omitted.
  • the histogram analysis circuit 122a has a peak higher than the value obtained by multiplying the peak of the frequency distribution in the time axis direction (direction e ⁇ e ⁇ e) by a preset coefficient ⁇ (for example, “2”). It is determined whether or not there is a frequency distribution in which the difference Eij is smaller than the difference Eij that is a peak in the frequency distribution in the time axis direction (Sb1). When it is determined that there is no corresponding frequency distribution (Sb1-No), the process proceeds to step Sa2. If it is determined in step Sb1 that there is a corresponding frequency distribution (Sb1-Yes), the process proceeds to step Sa4.
  • FIG. 16 is a frequency distribution calculated by the nine frequency calculation circuits 135 for “moss and stone buddha” in FIG.
  • a graph indicated by a symbol L ⁇ b> 4 is a graph showing a frequency distribution of “direction f ⁇ e ⁇ d”.
  • the frequency distribution of the graph L4 that is, the frequency distribution of “direction f ⁇ e ⁇ d” has a smaller difference Eij that peaks than other frequency distributions, and the peak value is also the peak of other frequency distributions. There are about twice the value.
  • the peak of the frequency distribution of “direction f ⁇ e ⁇ d” is extremely high, it indicates that the entire screen is moving in that direction. In this case, it is the arrow direction (left direction) of FIG.
  • ⁇ It is determined that noise removal in the time axis direction is not performed for such images.
  • the amount of noise in the time axis direction is 0, not a value obtained from the peak value of the frequency distribution of “direction f ⁇ e ⁇ d”.
  • the value of the difference Eij that is a peak is “4”, but this value itself is highly likely to be an influence of movement.
  • the histogram analysis circuit 122a sets the time direction noise amount Et to 0 and the noise sensitivity Dt to 0.5 ⁇ noise amount E ⁇ 0.
  • FIG. 17 is a diagram showing a frequency distribution graph L5 of “direction d ⁇ e ⁇ f” (horizontal direction) in the frequency distribution shown in FIG.
  • the peak difference Eij is “6”.
  • the histogram analysis circuit 122a sets “6” as the noise amount E1 of the first space axis. Further, the histogram analysis circuit 122a sets the noise sensitivity D1 of the first space axis to a value “3” obtained by multiplying “6” by a preset coefficient “0.5”.
  • FIG. 18 is a view showing a frequency distribution graph L6 of “direction b ⁇ e ⁇ h” (vertical direction) in the frequency distribution shown in FIG.
  • the peak difference Eij is “6”.
  • the histogram analysis circuit 122a sets “6” as the noise amount E2 of the second space axis.
  • the histogram analysis circuit 122a sets the noise sensitivity D2 of the second space axis to a value “3” obtained by multiplying “6” by a preset coefficient “0.5”.
  • FIG. 19 shows an image obtained as a result of noise removal performed by the image processing apparatus 103 according to this embodiment.
  • FIG. 19 shows a result obtained by performing only noise removal on the space axis (first space axis, second space axis) without performing noise removal on the time axis.
  • FIG. 12 it can be seen that there is less blur. Since the entire screen is panned in “Moss and Stone Buddha” in FIG. 34, suppressing blur while reducing noise leads to an improvement in image quality. For this reason, the range in which the blur can be allowed is smaller in the case of FIG. 34 than in the case of FIG. Instead, since the whole is moving, the tolerance for noise increases.
  • the histogram analysis circuit 122a determines whether or not the whole image is moving, such as being panned, based on the above-described conditions. When the whole image is moving, noise removal on the time axis is not performed and the spatial axis is not removed. Noise removal is performed, and the noise amount E and noise sensitivity D at this time are changed to values according to the frequency distribution, so that an effect of suppressing blur while removing noise can be obtained.
  • the liquid crystal display device 101 in this embodiment is different from the liquid crystal display device 101 in FIG. 1 only in that an NR detection circuit 114b is provided instead of the NR detection circuit 114.
  • Other parts are the same as those of the liquid crystal display device 101 in FIG.
  • FIG. 20 is a schematic block diagram showing the configuration of the NR detection circuit 114b.
  • the NR detection circuit 114b includes histogram creation circuits 121a to 121i and a histogram analysis circuit 122b.
  • the histogram analysis circuit 122b determines noise removal to be applied based on the frequency distribution calculated by the nine frequency calculation circuits 135, and calculates the noise amount E and noise sensitivity D used when the NR calculation circuit 115 performs noise removal. To do.
  • the histogram analysis circuit 122b is configured such that the differences Eij that are the peaks of the frequency distributions calculated by the nine frequency calculation circuits 135 are all “1”, and the difference Eij is “ It is determined whether the frequency at “2” or higher is smaller than a value obtained by multiplying a peak of the frequency distribution by a preset coefficient ⁇ (0 ⁇ ⁇ 1).
  • the histogram analysis circuit 122b determines not to perform noise removal in the time direction and the spatial direction. Further, when it is determined that any one of these does not satisfy the condition, the histogram analysis circuit 122b determines to perform noise removal in the time direction and the spatial direction. Thereby, the histogram analysis circuit 122b determines whether or not the noise of the input video is extremely small. When the noise is extremely small, it is determined that noise removal is not performed.
  • the calculation methods of the noise amounts Et, E1, E2 and the noise sensitivities Dt, D1, D2 are the same as those of the histogram analysis circuit 122. Further, the above-mentioned condition that “the frequency at which the difference Eij is“ 2 ”or more is smaller than a value obtained by multiplying a preset coefficient ⁇ (0 ⁇ ⁇ 1) by the peak of the frequency distribution” The condition that the frequency when Eij is “2” or more is smaller than a value obtained by subtracting a preset constant B (positive number) from the peak of the frequency distribution may be used.
  • FIG. 21 is a flowchart for explaining the operation of the histogram analysis circuit 122b in the present embodiment.
  • the same reference numerals (Sa2 to Sa3, Sa6) are assigned to portions corresponding to the respective portions in FIG. 6, and the description thereof is omitted.
  • the histogram analysis circuit 122b determines whether or not the nine frequency distributions are peaks when the difference Eij is 1 and the difference Eij is 2 or more, and is smaller than the peak ⁇ ⁇ (1 ⁇ ) (Sc1). .
  • step Sc1 determines whether or not the nine frequency distributions are peaks when the difference Eij is 1 and the difference Eij is 2 or more, and is smaller than the peak ⁇ ⁇ (1 ⁇ ) (Sc1). .
  • step Sc1 If it is determined in step Sc1 that the condition is satisfied (Sc1-Yes), noise removal is not performed on the time axis and the space axis, so that the histogram analysis circuit 122b performs the time axis, first and second “0” is set to the noise amount E of the space axis (Sc4), and the process proceeds to Step Sa6.
  • FIG. 22 is a diagram showing an example of an input image (“Orchid and woman”) in the present embodiment.
  • FIG. 23 shows the frequency distribution calculated by the nine frequency calculation circuits 135 for “Orchid and Female” in FIG.
  • the nine frequency distributions all peak at the value “1” and extremely small at the value “2” or more.
  • the histogram analysis circuit 122b sets the time direction noise amount E to 0 and the noise sensitivity D to 0.75 ⁇ noise amount E ⁇ 0.
  • FIG. 24 is a graph showing a frequency distribution graph L8 of “direction d ⁇ e ⁇ f” (horizontal direction) in the frequency distribution shown in FIG.
  • the value of the peak difference Eij is “1”, and is extremely small when the value is “2” or more.
  • the histogram analysis circuit 122b sets the noise amount E1 and noise sensitivity D1 of the first space axis to “0”.
  • FIG. 25 is a diagram showing a frequency distribution graph L9 of “direction b ⁇ e ⁇ h” (vertical direction) in the frequency distribution shown in FIG.
  • the value of the peak difference Eij is “1”, and is extremely small when the value is “2” or more.
  • the histogram analysis circuit 122b sets the noise amount E2 and noise sensitivity D2 of the second space axis to “0”.
  • an image from which no noise is removed is output.
  • the image since the image is originally extremely low in noise, sufficient image quality can be obtained without reducing the noise.
  • noise if noise is removed, it will be blurred, which is not preferable.
  • the histogram analysis circuit 122b determines whether or not the video has extremely little noise under the above-described conditions. When the noise is extremely small, noise removal is not performed, and blurring is effectively suppressed. can get.
  • FIG. 27 is a schematic block diagram showing the configuration of the NR detection circuit 114c.
  • the NR detection circuit 114c includes histogram creation circuits 121a to 121i and a histogram analysis circuit 122c.
  • the histogram analysis circuit 122c determines noise removal to be applied based on the frequency distribution calculated by the nine frequency calculation circuits 135, and calculates the noise amount E and noise sensitivity D used when the NR calculation circuit 115 performs noise removal. To do. In the present embodiment, the histogram analysis circuit 122c determines whether or not the peak difference Eij is greater than a preset value ⁇ (for example, 10) in all the frequency distributions calculated by the nine frequency calculation circuits 135. .
  • for example, 10
  • the histogram analysis circuit 122c determines that the peak difference Eij is greater than a preset value ⁇ (for example, 10) in all the frequency distributions, the noise amount Et in the time direction is determined from the frequency distribution in the horizontal direction and the vertical direction. Decide. For example, the histogram analysis circuit 122c uses the average of the difference Eij that peaks in the horizontal frequency distribution and the difference Eij that peaks in the vertical frequency distribution as the noise amount Et in the time axis direction, and performs strong noise reduction processing.
  • the noise sensitivity Dt is set to “0”.
  • the histogram analysis circuit 122c determines that the peak difference Eij is not larger than the preset value ⁇ in any of the frequency distributions, the frequency distribution in each direction is the same as in the above embodiments. To determine the noise amount E and noise sensitivity D in each direction.
  • FIG. 28 is a flowchart for explaining the operation of the histogram analysis circuit 122c.
  • the histogram analysis circuit 122c first determines whether or not the peak difference Eij is larger than a preset value ⁇ (for example, 10) in all the frequency distributions calculated by the nine frequency calculation circuits 135 (Sd1). .
  • for example, 10
  • the process proceeds to step Sa2. If it is determined in step Sd1 that all peak differences Eij are greater than the value ⁇ (Sd1-Yes), the process proceeds to step Sd4.
  • step Sd4 the histogram analysis circuit 122c calculates the amount of time-axis noise based on the horizontal method and the frequency distribution in the vertical direction, and proceeds to step Sa5.
  • FIG. 29 is a frequency distribution calculated by the nine frequency calculation circuits 135 for a noisy video recorded in Malaysia. All of these frequency distributions are broad and peak at a value of 10 or more. In this way, in the video having the extremely large and wide difference Eij that is the peak of the frequency distribution, the entire screen includes strong noise.
  • the histogram analysis circuit 122c determines the amount of noise in the time direction from the frequency distribution in the horizontal direction and the vertical direction. That is, the histogram analysis circuit 122c uses the average of the noise amount E1 in the horizontal direction and the noise amount E2 in the vertical direction as the noise amount Et in the time direction.
  • FIG. 30 shows a frequency distribution L10 in the horizontal direction, and the peak difference Eij is “6”.
  • FIG. 31 shows a frequency distribution L11 in the vertical direction, and the peak difference Eij is “7”.
  • the amount of noise Et on the time axis becomes (6 + 7) / 2 ⁇ 7.
  • the noise sensitivity Dt on the time axis is extremely low “0”.
  • the time axis is allowed to be blurred and strong noise removal is performed.
  • the noise amount E1 is “6” and the noise sensitivity D11 is “0”.
  • the noise amount E2 is “7” and the noise sensitivity D2 is “0”.
  • the first spatial axis and the second spatial axis are also allowed to be blurred and perform strong noise removal.
  • the image quality can be improved by reducing the noise even if the blur is allowed, so that the same effect as the above-described embodiments can be obtained.
  • the image processing apparatus has been described as performing noise removal only on a luminance signal, but may be performed on a color difference signal.
  • the histogram analysis circuit determines whether or not to perform noise removal for each axis, sets the noise amount of the axis for which noise removal is performed to a value larger than “0”, and does not perform it.
  • the noise sensitivity of the axis on which noise removal is performed is set to a value at which noise is not detected in the NR arithmetic circuit 115, such as the maximum pixel value. Also good.
  • the noise amount E and the noise sensitivity D are calculated for each frame, but may be calculated for a plurality of frames. At this time, it may be calculated based on the frequency distribution for a plurality of frames, or may be calculated based on the frequency distribution for one frame.
  • a program for realizing a part of the functions of the image processing apparatus 103 in each of the above-described embodiments such as FIG. 1 is recorded on a computer-readable recording medium, and the program recorded on the recording medium is stored in a computer system.
  • the image processing apparatus 103 may be realized by being read and executed.
  • the “computer system” includes an OS and hardware such as peripheral devices.
  • the “computer-readable recording medium” means a storage device such as a flexible disk, a magneto-optical disk, a portable medium such as a ROM and a CD-ROM, and a hard disk incorporated in a computer system. Furthermore, the “computer-readable recording medium” dynamically holds a program for a short time like a communication line when transmitting a program via a network such as the Internet or a communication line such as a telephone line. In this case, a volatile memory in a computer system serving as a server or a client in that case, and a program that holds a program for a certain period of time are also included.
  • the program may be a program for realizing a part of the functions described above, and may be a program capable of realizing the functions described above in combination with a program already recorded in a computer system.
  • the present invention can be applied to a television or the like that displays with reduced noise included in a moving image.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Facsimile Image Signal Circuits (AREA)
  • Picture Signal Circuits (AREA)

Abstract

An image processing device for performing denoising of dynamic images, comprises: a histogram creation unit which creates a frequency distribution regarding sizes of noise components, with respect to each of a plurality of first lines which pass through an anterior frame and a posterior frame of a processing pixel, the processing pixel constituting a dynamic image and defining the center; a histogram analysis unit which determines an amount of noise to be subjected to denoising, on the basis of the frequency distribution; and a denoising calculation unit which performs denoising on the basis of the amount of noise, with respect each of a plurality of second lines defined to have the center at the processing pixel.

Description

画像処理装置および画像処理方法Image processing apparatus and image processing method
 本発明は、画像処理装置および画像処理方法に関する。
 本願は、2010年10月29日に、日本に出願された特願2010-244698号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to an image processing apparatus and an image processing method.
This application claims priority based on Japanese Patent Application No. 2010-244698 filed in Japan on October 29, 2010, the contents of which are incorporated herein by reference.
 日本では2011年にアナログのテレビジョン放送が停波する。先進各国でもアナログ放送が終わり、デジタル放送へ切り替わろうとしている。このため、2011年頃まで先進各国でテレビ買い換え需要が盛り上がることが見込める。
 しかし、2012年以降の先進各国のテレビ需要は低迷するものと思われる。一方、アジアや南米の新興国では高い経済成長率を背景に、2012年以降もテレビ需要が盛り上がることが期待されている。このため、2012年以降のテレビ市場は新興国市場が中心になるものと思われる。
In Japan, analog television broadcasting stops in 2011. In advanced countries, analog broadcasting is over and digital broadcasting is about to be switched. For this reason, it is expected that demand for replacement of TVs will rise in advanced countries until around 2011.
However, TV demand in advanced countries after 2012 is likely to be sluggish. On the other hand, in emerging countries in Asia and South America, TV demand is expected to rise after 2012 on the back of high economic growth. For this reason, the TV market after 2012 is expected to be centered on emerging markets.
 しかしながら、新興国では放送環境が先進国に比べて劣悪なため、アナログ放送では電界が弱くノイズの多い映像信号となる。また、デジタル放送でも過去に録画したアナログ映像をデジタル化し再放送することも多く、ノイズの多い映像信号となる。このため、新興国で必要とされるテレビには、ノイズ低減技術が不可欠である。
 一般にノイズ低減は適応型ローパスフィルタで行われる。
 図32に示すのは特許文献1に示された適応型ローパスフィルタの説明図である。
 図32のノイズ除去装置1は、入力信号Di0と、1フレーム前のノイズ除去後の信号Im1との差分Diffを求める。この差分Diffから、動き・ノイズ検出手段14が、映像信号の「動き」と「ノイズ」を判定し、その判定結果から動き度合い信号MDSを出力する。この信号MDSは、係数変換手段16によりノイズに対する巡回係数Kmに変換される。この巡回係数Kmと振幅制限手段13からの出力Dfnとを乗算して得られるノイズ巡回量Ndが、入力信号Di0と加算されて出力信号Do0となる。この出力信号Do0が、ノイズ除去後の1フレーム遅延信号Im1として再利用されるので巡回型のノイズ除去装置と呼ばれる。
However, since the broadcasting environment is worse in emerging countries than in advanced countries, analog broadcasts have a weak electric field and a noisy video signal. Also, in digital broadcasting, analog video recorded in the past is often digitized and rebroadcast, resulting in a noisy video signal. For this reason, noise reduction technology is indispensable for televisions required in emerging countries.
In general, noise reduction is performed by an adaptive low-pass filter.
FIG. 32 is an explanatory diagram of the adaptive low-pass filter disclosed in Patent Document 1.
32 obtains a difference Diff between the input signal Di0 and the signal Im1 after noise removal one frame before. Based on the difference Diff, the motion / noise detection means 14 determines “motion” and “noise” of the video signal, and outputs a motion degree signal MDS from the determination result. This signal MDS is converted into a cyclic coefficient Km for noise by the coefficient conversion means 16. The noise cyclic amount Nd obtained by multiplying the cyclic coefficient Km and the output Dfn from the amplitude limiting means 13 is added to the input signal Di0 to become the output signal Do0. Since the output signal Do0 is reused as the 1-frame delayed signal Im1 after noise removal, it is called a cyclic noise removal device.
特開2010-11482号公報JP 2010-11482 A
 しかしながら、特許文献1の巡回型のノイズ除去装置においては、動きのある画像に対して強いノイズ除去を行うことができない、あるいは、ノイズ除去を行うと画像が暈けることがあるという問題がある。図33に示すITE標準動画像のNo.19「開会式」の画像を例に説明する。この「開会式」ではエリアAの『芝生』でノイズが目立つので、エリアAに対して強いノイズ除去処理を行う必要がある。しかし、エリアBの『行進する人』におけるノイズを除去するために強い巡回型ノイズ除去処理を行うと、エリアBに尾引きが出る。このため、エリアBに対しては強いノイズ除去を行うことができない。また、図34に示すITE標準動画像のNo.32「苔と石仏」の画像では、カメラパンにより画面全体が矢印の方向に移動する。このような画像で、特許文献1の巡回型のノイズ除去装置によりノイズ除去を行うと、画像が暈けてしまう。 However, the cyclic noise removal device disclosed in Patent Document 1 has a problem that strong noise removal cannot be performed on a moving image, or an image may be lost if noise removal is performed. No. of the ITE standard moving image shown in FIG. 19 An image of “Opening Ceremony” will be described as an example. In this “opening ceremony”, noise is conspicuous in the “lawn” in area A, so it is necessary to perform strong noise removal processing on area A. However, if strong cyclic noise removal processing is performed in order to remove noise in the “marching person” in area B, tailing appears in area B. For this reason, strong noise removal cannot be performed for area B. The ITE standard moving image No. 1 shown in FIG. In the 32 “moss and stone Buddha” image, the entire screen moves in the direction of the arrow by camera pan. If noise is removed with such a cyclic noise removal device of Patent Document 1, the image will be lost.
 本発明は、このような事情に鑑みてなされたもので、その目的は、動きのある画像に対しても強いノイズ除去を行うことができ、かつ、ノイズ除去による暈けを抑えることができる画像処理装置および画像処理方法を提供することにある。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide an image capable of performing strong noise removal even on a moving image, and suppressing blurring due to noise removal. A processing apparatus and an image processing method are provided.
(1)この発明は、上述した課題を解決するためになされたものである。本発明の一態様によれば、動画像のノイズ除去を行う画像処理装置は、動画像を構成する処理画素を中心とし、前記処理画素の前フレームおよび後フレームを通る複数の第1の線を、前記処理画素各々についてとり、該第1の線の各々に関して、ノイズ成分の大きさの頻度分布を作成するヒストグラム作成部と、前記頻度分布に基づき、ノイズ除去を行なうノイズ量を決めるヒストグラム分析部と、前記処理画素を中心とする複数の第2の線をとり、該第2の線の各々について、前記ノイズ量に基づき、ノイズ除去を行うノイズ除去演算部とを含む。 (1) The present invention has been made to solve the above-described problems. According to an aspect of the present invention, an image processing apparatus that removes noise from a moving image has a plurality of first lines that pass through a previous frame and a subsequent frame of the processed pixel, with the processing pixel constituting the moving image as a center. A histogram generating unit that generates a frequency distribution of the magnitude of the noise component for each of the processing pixels and a histogram analyzing unit that determines a noise amount for performing noise removal based on the frequency distribution And a noise removal calculation unit that takes a plurality of second lines centered on the processing pixel and performs noise removal based on the amount of noise for each of the second lines.
(2)上述の画像処理装置において、前記第1の線のうちの一つの線に関するノイズ成分の大きさは、該一つの線上の画素であって、前記前フレームにおける画素の値と前記後フレームにおける画素の値とが前記処理画素よりも大きいか、または小さいときは、前記前フレームにおける画素と前記後フレームにおける画素の値との平均値と、前記処理画素の値との差の絶対値に等しくてもよい。 (2) In the above-described image processing apparatus, the magnitude of the noise component related to one of the first lines is a pixel on the one line, and the value of the pixel in the previous frame and the subsequent frame When the value of the pixel in the pixel is larger or smaller than the processing pixel, the absolute value of the difference between the average value of the pixel in the previous frame and the pixel value in the subsequent frame and the value of the processing pixel May be equal.
(3)上述の画像処理装置において、前記複数の第1の線は、前記処理画素および前記処理画素に隣接する画素と同じ位置の、前記前フレームにおける画素と前記後フレームにおける画素とを結ぶ線であって、前記処理画素を中心とする線であってもよい。 (3) In the above-described image processing device, the plurality of first lines are lines connecting pixels in the previous frame and pixels in the subsequent frame at the same positions as the processing pixel and pixels adjacent to the processing pixel. However, it may be a line centered on the processing pixel.
(4)上述の画像処理装置において、前記複数の第2の線のうちの一つは、前記処理画素と同じ位置の、前記前フレームにおける画素と前記後フレームにおける画素とを結ぶ時間軸方向の線であってもよい。 (4) In the above-described image processing device, one of the plurality of second lines is a time axis direction connecting a pixel in the previous frame and a pixel in the subsequent frame at the same position as the processing pixel. It may be a line.
(5)上述の画像処理装置において、前記第1の線のうちの一つは、前記時間軸方向の線であり、前記ヒストグラム分析部は、前記第1の線に関する頻度分布のうち、前記時間軸方向の線に関する頻度分布と、前記ヒストグラム作成部によって作成された他の頻度分布とを比較し、前記時間軸方向の線に関する頻度分布のピークが、全ての前記他の頻度分布のピークより大きいときは、前記時間軸方向の線についてノイズ除去を行う際の前記ノイズ量を0より大きい値としてもよい。 (5) In the above-described image processing apparatus, one of the first lines is a line in the time axis direction, and the histogram analysis unit includes the time in the frequency distribution related to the first line. The frequency distribution related to the line in the axial direction is compared with the other frequency distribution created by the histogram creating unit, and the peak of the frequency distribution related to the line in the time axis direction is larger than the peaks of all the other frequency distributions. In some cases, the noise amount when performing noise removal on the line in the time axis direction may be a value larger than zero.
(6)上述の画像処理装置において、前記第1の線のうちの一つは、前記時間軸方向の線であり、前記ヒストグラム分析部は、前記第1の線に関する頻度分布のうち、前記時間軸方向の線に関する頻度分布と、前記ヒストグラム作成部によって作成された他の頻度分布とを比較し、前記他の頻度分布のうちの少なくとも一つの頻度分布のピークが、前記時間軸方向の線に関する頻度分布のピークより所定の量以上大きく、かつ、前記一つの頻度分布がピークとなるノイズ成分の大きさが、前記時間軸方向の線に関する頻度分布がピークとなるノイズ成分の大きさより小さいときは、前記時間軸方向の線についてノイズ除去を行う際の前記ノイズ量を0としてもよい。 (6) In the above-described image processing apparatus, one of the first lines is a line in the time axis direction, and the histogram analysis unit includes the time in the frequency distribution related to the first line. The frequency distribution related to the axial line is compared with the other frequency distribution created by the histogram creating unit, and the peak of at least one frequency distribution of the other frequency distributions relates to the time axis line. When the frequency component is larger than the frequency distribution peak by a predetermined amount or more and the size of the noise component at which the one frequency distribution is peaked is smaller than the size of the noise component at which the frequency distribution related to the line in the time axis direction is peak The noise amount when performing noise removal on the line in the time axis direction may be set to zero.
(7)上述の画像処理装置において、前記ヒストグラム分析部は、前記第1の線に関する頻度分布の全てにおいて、ノイズ成分の大きさが1のときにピークとなり、かつ、ノイズ成分の大きさが1を超える値では頻度が該ピークより所定の量以上小さいときは、前記ノイズ量を0としてもよい。 (7) In the image processing apparatus described above, the histogram analysis unit has a peak when the noise component size is 1 in all of the frequency distributions related to the first line, and the noise component size is 1. When the frequency is less than the peak by a predetermined amount or more, the noise amount may be set to zero.
(8)上述の画像処理装置であって、前記第1の線のうちの一つは、前記時間軸方向の線であり、前記ヒストグラム分析部は、前記第1の線に関する頻度分布の全てにおいて、ピークとなるノイズ成分の大きさが、予め設定された値γより大きいときは、前記時間軸方向の線についてノイズ除去を行う際の前記ノイズ量を、前記時間軸方向の線以外の第1の線に関する頻度分布に基づき決定してもよい。 (8) In the above-described image processing apparatus, one of the first lines is a line in the time axis direction, and the histogram analysis unit is configured to perform the frequency distribution on the first line. When the magnitude of the peak noise component is larger than a preset value γ, the noise amount when performing noise removal on the time axis direction line is set to the first value other than the time axis direction line. You may determine based on the frequency distribution regarding a line of.
(9)上述の画像処理装置において、前記複数の第2の線のうち、前記時間軸方向の線を除く線は、前記処理画素と同じフレームにあり、前記処理画素と隣接する画素を結ぶ線であって、前記処理画素を通る線であってもよい。 (9) In the above-described image processing apparatus, a line excluding the line in the time axis direction among the plurality of second lines is in the same frame as the processing pixel and connects the pixel adjacent to the processing pixel. However, it may be a line passing through the processing pixel.
(10)上述の画像処理装置において、前記ヒストグラム分析部は、前記ヒストグラム作成部により作成された前記頻度分布のうちの少なくとも一つがピークとなるノイズ成分の大きさに応じて、前記ノイズ量を決定してもよい。 (10) In the above-described image processing device, the histogram analysis unit determines the amount of noise according to a size of a noise component in which at least one of the frequency distributions created by the histogram creation unit has a peak. May be.
(11)本発明の他の態様によれば、動画像のノイズ除去を行う画像処理方法は、動画像を構成する処理画素を中心とし、前記処理画素の前フレームおよび後フレームを通る第1の複数の線をとり、該第1の線の各々に関して、ノイズ成分の大きさの頻度分布を作成する第1の過程と、前記頻度分布に基づき、ノイズ除去を行なうノイズ量を決める第2の過程と、処理画素を中心とする第2の複数の線をとり、該第2の線の各々について、前記ノイズ量に基づき、ノイズ除去を行う第3の過程とを含む。 (11) According to another aspect of the present invention, an image processing method for removing noise from a moving image includes a first pixel that passes through a previous frame and a subsequent frame of the processed pixel with the processing pixel constituting the moving image as a center. A first process of taking a plurality of lines and creating a frequency distribution of the magnitude of the noise component for each of the first lines, and a second process of determining a noise amount for noise removal based on the frequency distribution And a third step of taking a plurality of second lines centering on the processing pixel and performing noise removal for each of the second lines based on the amount of noise.
 この発明によれば、動きのある画像であっても強いノイズ除去を行うことができ、かつ、ノイズ除去による暈けを抑えることができる。 According to the present invention, it is possible to perform strong noise removal even with a moving image, and it is possible to suppress the loss due to noise removal.
この発明の第1の実施形態における液晶表示装置101の構成を示す概略ブロック図である。It is a schematic block diagram which shows the structure of the liquid crystal display device 101 in 1st Embodiment of this invention. 同実施形態におけるフレームメモリ113の構成を示す概略ブロック図である。It is a schematic block diagram which shows the structure of the frame memory 113 in the embodiment. 同実施形態におけるNR検出回路114の構成を示す概略ブロック図である。It is a schematic block diagram which shows the structure of the NR detection circuit 114 in the embodiment. 同実施形態におけるNR検出回路114の構成を示す概略ブロック図である。It is a schematic block diagram which shows the structure of the NR detection circuit 114 in the embodiment. 同実施形態における頻度分布を生成する9方向を説明する図である。It is a figure explaining 9 directions which generate | occur | produce the frequency distribution in the embodiment. 同実施形態における頻度分布を生成する9方向を説明する別の図である。It is another figure explaining 9 directions which produce | generate the frequency distribution in the same embodiment. 同実施形態におけるヒストグラム分析回路122の動作を説明するフローチャートである。It is a flowchart explaining operation | movement of the histogram analysis circuit 122 in the embodiment. 同実施形態におけるNR演算回路115の構成を示す概略ブロック図である。It is a schematic block diagram which shows the structure of the NR calculating circuit 115 in the same embodiment. 同実施形態における頻度算出回路135が算出した頻度分布の例を示す図である。It is a figure which shows the example of the frequency distribution which the frequency calculation circuit 135 in the same embodiment calculated. 同実施形態における頻度分布の例のうち、水平方向(方向d→e→f)の頻度分布L2を示す図である。It is a figure which shows frequency distribution L2 of the horizontal direction (direction d-> e-> f) among the examples of frequency distribution in the embodiment. 同実施形態における頻度分布の例のうち、垂直方向(方向b→e→h)の頻度分布L3を示す図である。It is a figure which shows the frequency distribution L3 of the orthogonal | vertical direction (direction b-> e-> h) among the examples of the frequency distribution in the embodiment. カメラ撮りした映像にランダムノイズを重畳した映像である。This is a video in which random noise is superimposed on the video taken by the camera. 同実施形態における画像処理装置103にてノイズ除去を行なった結果の画像である。It is an image as a result of performing noise removal in the image processing apparatus 103 in the same embodiment. 同実施形態の変形例における液晶表示装置101の構成を示す概略ブロック図である。It is a schematic block diagram which shows the structure of the liquid crystal display device 101 in the modification of the embodiment. この発明の第2の実施形態におけるNR検出回路114aの構成を示す概略ブロック図である。It is a schematic block diagram which shows the structure of the NR detection circuit 114a in 2nd Embodiment of this invention. 同実施形態におけるヒストグラム分析回路122aの動作を説明するフローチャートである。It is a flowchart explaining operation | movement of the histogram analysis circuit 122a in the embodiment. 同実施形態における頻度算出回路135が算出した頻度分布の例である。It is an example of the frequency distribution calculated by the frequency calculation circuit 135 in the same embodiment. 同実施形態における頻度分布の例のうち、水平方向(方向d→e→f)の頻度分布L5を示す図である。It is a figure which shows the frequency distribution L5 of the horizontal direction (direction d-> e-> f) among the examples of the frequency distribution in the embodiment. 同実施形態における頻度分布の例のうち、垂直方向(方向b→e→h)の頻度分布L6を示す図である。It is a figure which shows frequency distribution L6 of the vertical direction (direction b-> e-> h) among the examples of frequency distribution in the embodiment. 同実施形態における画像処理装置103にてノイズ除去を行なった結果の画像である。It is an image as a result of performing noise removal in the image processing apparatus 103 in the same embodiment. この発明の第3の実施形態におけるNR検出回路114bの構成を示す概略ブロック図である。It is a schematic block diagram which shows the structure of the NR detection circuit 114b in the 3rd Embodiment of this invention. 同実施形態におけるヒストグラム分析回路122bの動作を説明するフローチャートである。It is a flowchart explaining operation | movement of the histogram analysis circuit 122b in the same embodiment. 同実施形態における入力画像の例(「蘭と女性」)を示す図である。It is a figure which shows the example ("Orchid and woman") of the input image in the embodiment. 同実施形態における頻度算出回路135が算出した頻度分布の例である。It is an example of the frequency distribution calculated by the frequency calculation circuit 135 in the same embodiment. 同実施形態における頻度分布の例のうち、水平方向(方向d→e→f)の頻度分布L8を示す図である。It is a figure which shows the frequency distribution L8 of a horizontal direction (direction d-> e-> f) among the examples of the frequency distribution in the embodiment. 同実施形態における頻度分布の例のうち、垂直方向(方向b→e→h)の頻度分布L9を示す図である。It is a figure which shows frequency distribution L9 of the perpendicular direction (direction b-> e-> h) among the examples of frequency distribution in the embodiment. 同実施形態における画像処理装置103にてノイズ除去を行なった結果の画像である。It is an image as a result of performing noise removal in the image processing apparatus 103 in the same embodiment. この発明の第4の実施形態におけるNR検出回路114cの構成を示す概略ブロック図である。It is a schematic block diagram which shows the structure of the NR detection circuit 114c in the 4th Embodiment of this invention. 同実施形態におけるヒストグラム分析回路122cの動作を説明するフローチャートである。It is a flowchart explaining operation | movement of the histogram analysis circuit 122c in the embodiment. 同実施形態における頻度算出回路135が算出した頻度分布の例である。It is an example of the frequency distribution calculated by the frequency calculation circuit 135 in the same embodiment. 同実施形態における頻度分布の例のうち、水平方向(方向d→e→f)の頻度分布L10を示す図である。It is a figure which shows the frequency distribution L10 of a horizontal direction (direction d-> e-> f) among the examples of the frequency distribution in the embodiment. 同実施形態における頻度分布の例のうち、垂直方向(方向b→e→h)の頻度分布L10を示す図である。It is a figure which shows frequency distribution L10 of the perpendicular direction (direction b-> e-> h) among the examples of frequency distribution in the embodiment. 特許文献1に示された適応型ローパスフィルタの説明図である。It is explanatory drawing of the adaptive low-pass filter shown by patent document 1. FIG. ITE標準動画像のNo.19「開会式」である。No. of ITE standard moving image. 19 “Opening Ceremony”. ITE標準動画像のNo.32「苔と石仏」である。No. of ITE standard moving image. 32 “Moss and Stone Buddha”.
(第1の実施形態)
 以下、図面を参照して、本発明の第1の実施形態について説明する。図1は、第1の実施形態における液晶表示装置101の構成を示す概略ブロック図である。液晶表示装置101は、図1に示すように、液晶モジュール102と、画像処理装置103と、検波回路104とを含む。液晶モジュール102は、供給された映像信号の画像を表示する。画像処理装置103は、動画像の映像信号に対してノイズ除去を行って、液晶モジュール102に表示用の映像信号を供給する。検波回路104は、放送波を受信するアンテナに接続され、アンテナが受信した放送波から映像信号を検波し、該映像信号を画像処理装置103に供給する。また、放送波の信号方式は、ここでは、NTSC方式、PAL方式等のインターレース信号である。
(First embodiment)
Hereinafter, a first embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a schematic block diagram showing the configuration of the liquid crystal display device 101 according to the first embodiment. As shown in FIG. 1, the liquid crystal display device 101 includes a liquid crystal module 102, an image processing device 103, and a detection circuit 104. The liquid crystal module 102 displays an image of the supplied video signal. The image processing apparatus 103 removes noise from the video signal of the moving image and supplies the display video signal to the liquid crystal module 102. The detection circuit 104 is connected to an antenna that receives a broadcast wave, detects a video signal from the broadcast wave received by the antenna, and supplies the video signal to the image processing apparatus 103. The signal system of the broadcast wave here is an interlace signal such as NTSC system or PAL system.
 画像処理装置103は、Y/C分離回路111と、NR(Noise Reduction;ノイズリダクション)回路112とを含む。また、液晶モジュール102は、TCON(Timing Controller;タイミングコントローラ)106と、LCD(Liquid Crystal Display;液晶ディスプレイ)105とを含む。Y/C分離回路111は、検波回路104が検波した映像信号をアナログデジタル変換し、輝度成分と、色差成分(青色差、赤色差)とに分離し、それぞれ輝度信号と色差信号として出力する。NR回路112は、Y/C分離回路111が出力した輝度信号及び色差信号に対して、ノイズ除去処理を行う。なお、本実施の形態では、NR回路112に対して、本発明の画像処理装置における画像処理方法が適用される。 The image processing apparatus 103 includes a Y / C separation circuit 111 and an NR (Noise Reduction) circuit 112. The liquid crystal module 102 includes a TCON (Timing Controller) 106 and an LCD (Liquid Crystal Display) 105. The Y / C separation circuit 111 converts the video signal detected by the detection circuit 104 from analog to digital, separates it into a luminance component and a color difference component (blue difference, red difference), and outputs the luminance signal and the color difference signal, respectively. The NR circuit 112 performs noise removal processing on the luminance signal and the color difference signal output from the Y / C separation circuit 111. In the present embodiment, the image processing method in the image processing apparatus of the present invention is applied to the NR circuit 112.
 NR回路112は、フレームメモリ113と、NR検出回路114と、NR演算回路115とを含む。Y/C分離回路111から出力された輝度信号と色差信号とがフレームメモリ113に入力されると、フレームメモリ113は、入力された信号を後フレーム信号SF0として出力する。また、フレームメモリ113は、入力された輝度信号と色差信号の1フレーム前の信号を現フレーム信号SF1として出力する。また、フレームメモリ113は、入力された輝度信号と色差信号の2フレーム前の信号を前フレーム信号SF2として出力する。すなわち、フレームメモリ113は、3フレームにおける同じ画素位置の輝度を示す信号と色差を示す信号を、同時に出力する。 The NR circuit 112 includes a frame memory 113, an NR detection circuit 114, and an NR operation circuit 115. When the luminance signal and the color difference signal output from the Y / C separation circuit 111 are input to the frame memory 113, the frame memory 113 outputs the input signal as a post-frame signal SF0. In addition, the frame memory 113 outputs a signal one frame before the input luminance signal and color difference signal as the current frame signal SF1. In addition, the frame memory 113 outputs a signal two frames before the input luminance signal and color difference signal as a previous frame signal SF2. That is, the frame memory 113 simultaneously outputs a signal indicating the luminance at the same pixel position in three frames and a signal indicating the color difference.
 NR検出回路114は、フレームメモリ113から出力された3フレーム分の輝度信号と色差信号、すなわち後フレーム信号SF0、現フレーム信号SF1、および前フレーム信号SF2を、1フレーム期間に亘って用いて、現フレーム信号SF1についてノイズ検出を行ない、輝度信号と色差信号のノイズ量Eとノイズ感度Dとを算出する。なお、前フレームとは、現フレームの1フレーム前のフレームであり、後フレームとは、現フレームの1フレーム後のフレームである。NR回路112は、1つ前のフレーム期間にNR検出回路114によって算出されたノイズ量Eとノイズ感度D、後フレーム信号SF0、現フレーム信号SF1、および前フレーム信号SF2を用いて、現フレーム信号SF1のノイズ除去処理を行う。 The NR detection circuit 114 uses the luminance signal and color difference signal for three frames output from the frame memory 113, that is, the subsequent frame signal SF0, the current frame signal SF1, and the previous frame signal SF2, over one frame period. Noise detection is performed on the current frame signal SF1, and a noise amount E and a noise sensitivity D of the luminance signal and the color difference signal are calculated. The previous frame is a frame one frame before the current frame, and the rear frame is a frame one frame after the current frame. The NR circuit 112 uses the noise amount E and noise sensitivity D calculated by the NR detection circuit 114 in the previous frame period, the subsequent frame signal SF0, the current frame signal SF1, and the previous frame signal SF2, to The noise removal process of SF1 is performed.
 NR回路112がノイズ除去した輝度信号と色差信号とが表示用の映像信号として、液晶モジュール102に供給される。TCON106は、液晶モジュール102に供給された映像信号(輝度信号、色差信号)を、RGB信号に変換し、LCD105に表示する。このLCD105の画素は、マトリクス状に配置され、入力される映像信号に対応する色を表示する。 The luminance signal and color difference signal from which noise has been removed by the NR circuit 112 are supplied to the liquid crystal module 102 as a video signal for display. The TCON 106 converts the video signal (luminance signal, color difference signal) supplied to the liquid crystal module 102 into an RGB signal and displays it on the LCD 105. The pixels of the LCD 105 are arranged in a matrix and display a color corresponding to an input video signal.
 図2は、フレームメモリ113の構成を示す概略ブロック図である。フレームメモリ113は、遅延回路151aと遅延回路151bとを含む。遅延回路151aは、Y/C分離回路111から出力された輝度信号を1フレーム分遅延させて、現フレーム信号SF1として出力する。遅延回路151bは、遅延回路151aが遅延させた輝度信号を1フレーム分遅延させて、前フレーム信号SF2として出力する。 FIG. 2 is a schematic block diagram showing the configuration of the frame memory 113. The frame memory 113 includes a delay circuit 151a and a delay circuit 151b. The delay circuit 151a delays the luminance signal output from the Y / C separation circuit 111 by one frame and outputs it as the current frame signal SF1. The delay circuit 151b delays the luminance signal delayed by the delay circuit 151a by one frame and outputs the delayed signal as the previous frame signal SF2.
 図3Aおよび図3Bは、NR検出回路114の構成を示す概略ブロック図である。NR検出回路114は、後述する図4に示す9方向の線(複数の第1の線)各々に対応するヒストグラム作成回路121a~121iと、図示しない2方向の線それぞれに対応するストグラム作成回路121j、121kと、ヒストグラム分析回路122とを含む。ここで、図4に示す9方向の線は、処理画素および処理画素に隣接する画素と同じ位置の、前フレームにおける画素と後フレームにおける画素とを結ぶ線であって、処理画素を中心とする線である。図4および図5は、頻度分布を生成する9方向の線の具体例を説明する図である。図4、図5において、処理画素は、現フレームの位置eの画素である。ここで、図4に示すように、位置eの左上を位置aという。また、位置eの上を位置bという。また、位置eの右上を位置cという。また、位置eの左を位置dという。また、位置eの右を位置fという。また、位置eの左下を位置gという。また、位置eの下を位置hという。また、位置eの右下を位置iという。なお、本実施の形態では入力信号はインターレース信号であるため、位置a~iは同じフィールドの画素となる。 3A and 3B are schematic block diagrams showing the configuration of the NR detection circuit 114. FIG. The NR detection circuit 114 includes histogram generation circuits 121a to 121i corresponding to each of nine-direction lines (a plurality of first lines) shown in FIG. 4 to be described later, and a histogram generation circuit 121j corresponding to each of two-way lines (not shown). 121k and a histogram analysis circuit 122. Here, the nine-direction line shown in FIG. 4 is a line connecting the pixel in the previous frame and the pixel in the subsequent frame at the same position as the processing pixel and the pixel adjacent to the processing pixel, and has the processing pixel as the center. Is a line. 4 and 5 are diagrams for explaining a specific example of lines in nine directions for generating a frequency distribution. 4 and 5, the processing pixel is the pixel at the position e in the current frame. Here, as shown in FIG. 4, the upper left of the position e is referred to as a position a. Further, the position e is referred to as position b. The upper right of the position e is referred to as a position c. Further, the left of the position e is referred to as a position d. Further, the right of the position e is called a position f. Further, the lower left of the position e is referred to as a position g. Also, the position below the position e is referred to as a position h. Further, the lower right of the position e is referred to as a position i. In the present embodiment, since the input signal is an interlace signal, the positions a to i are pixels in the same field.
 図5に示すように、9方向のうち、1方向目は、前フレームの位置aから、現フレームの位置eを通り、後フレームの位置iへ向かう方向(方向a→e→i)である。2方向目は、前フレームの位置bから、現フレームの位置eを通り、後フレームの位置hへ向かう方向(方向b→e→h)である。3方向目は、前フレームの位置cから、現フレームの位置eを通り、後フレームの位置gへ向かう方向(方向c→e→g)である。4方向目は、前フレームの位置dから、現フレームの位置eを通り、後フレームの位置fへ向かう方向(方向d→e→f)である。5方向目は、前フレームの位置eから、現フレームの位置eを通り、後フレームの位置eへ向かう方向(方向e→e→e)、すなわち時間軸の方向である。6方向目は、前フレームの位置fから、現フレームの位置eを通り、後フレームの位置dへ向かう方向(方向f→e→d)である。7方向目は、前フレームの位置gから、現フレームの位置eを通り、後フレームの位置cへ向かう方向(方向g→e→c)である。8方向目は、前フレームの位置hから、現フレームの位置eを通り、後フレームの位置bへ向かう方向(方向h→e→b)である。9方向目は、前フレームの位置iから、現フレームの位置eを通り、後フレームの位置aへ向かう方向(方向i→e→a)である。 As shown in FIG. 5, the first direction among the nine directions is a direction (direction a → e → i) from the position a of the previous frame to the position i of the subsequent frame through the position e of the current frame. . The second direction is a direction (direction b → e → h) from the position b of the previous frame to the position h of the rear frame through the position e of the current frame. The third direction is a direction (direction c → e → g) from the position c of the previous frame through the position e of the current frame to the position g of the rear frame. The fourth direction is a direction (direction d → e → f) from the position d of the previous frame through the position e of the current frame to the position f of the rear frame. The fifth direction is a direction (direction e → e → e) from the position e of the previous frame to the position e of the subsequent frame through the current frame position e, that is, the time axis direction. The sixth direction is a direction (direction f → e → d) from the position f of the previous frame through the position e of the current frame to the position d of the subsequent frame. The seventh direction is a direction (direction g → e → c) from the position g of the previous frame through the position e of the current frame toward the position c of the rear frame. The eighth direction is a direction (direction h → e → b) from the position h of the previous frame through the position e of the current frame toward the position b of the rear frame. The ninth direction is a direction (direction i → e → a) from the position i of the previous frame through the position e of the current frame to the position a of the rear frame.
 図3Aに戻って、ヒストグラム作成回路121aは、フレームメモリ113から出力された後フレーム信号SF0、現フレーム信号SF1、および前フレーム信号SF2から、上述の1方向目のノイズ成分に関するヒストグラムを作成する。ヒストグラム作成回路121bは、フレームメモリ113から出力された後フレーム信号SF0、現フレーム信号SF1、および前フレーム信号SF2から、上述の2方向目のノイズ成分に関するヒストグラムを作成する。ヒストグラム作成回路121cは、フレームメモリ113から出力された後フレーム信号SF0、現フレーム信号SF1、および前フレーム信号SF2から、上述の3方向目のノイズ成分に関するヒストグラムを作成する。ヒストグラム作成回路121dは、フレームメモリ113から出力された後フレーム信号SF0、現フレーム信号SF1、および前フレーム信号SF2から、上述の4方向目のノイズ成分に関するヒストグラムを作成する。ヒストグラム作成回路121eは、フレームメモリ113から出力された後フレーム信号SF0、現フレーム信号SF1、および前フレーム信号SF2から、上述の5方向目のノイズ成分に関するヒストグラムを作成する。 Referring back to FIG. 3A, the histogram creation circuit 121a creates a histogram related to the noise component in the first direction from the post-frame signal SF0, the current frame signal SF1, and the previous frame signal SF2 output from the frame memory 113. The histogram creation circuit 121b creates a histogram related to the noise component in the second direction described above from the post-frame signal SF0, the current frame signal SF1, and the previous frame signal SF2 output from the frame memory 113. The histogram creation circuit 121c creates a histogram related to the noise component in the third direction described above from the post-frame signal SF0, the current frame signal SF1, and the previous frame signal SF2 output from the frame memory 113. The histogram creation circuit 121d creates a histogram related to the noise component in the fourth direction described above from the post-frame signal SF0, the current frame signal SF1, and the previous frame signal SF2 output from the frame memory 113. The histogram creation circuit 121e creates a histogram related to the noise component in the fifth direction described above from the post-frame signal SF0, the current frame signal SF1, and the previous frame signal SF2 output from the frame memory 113.
 ヒストグラム作成回路121fは、フレームメモリ113から出力された後フレーム信号SF0、現フレーム信号SF1、および前フレーム信号SF2から、上述の6方向目のノイズ成分に関するヒストグラムを作成する。ヒストグラム作成回路121gは、フレームメモリ113から出力された後フレーム信号SF0、現フレーム信号SF1、前フレーム信号SF2から、上述の7方向目のノイズ成分に関するヒストグラムを作成する。ヒストグラム作成回路121hは、フレームメモリ113から出力された後フレーム信号SF0、現フレーム信号SF1、および前フレーム信号SF2から、上述の8方向目のノイズ成分に関するヒストグラムを作成する。ヒストグラム作成回路121iは、フレームメモリ113から出力された後フレーム信号SF0、現フレーム信号SF1、および前フレーム信号SF2から、上述の9方向目のノイズ成分に関するヒストグラムを作成する。 The histogram creation circuit 121f creates a histogram related to the noise component in the sixth direction from the post-frame signal SF0, the current frame signal SF1, and the previous frame signal SF2 output from the frame memory 113. The histogram creation circuit 121g creates a histogram related to the noise component in the seventh direction described above from the post-frame signal SF0, the current frame signal SF1, and the previous frame signal SF2 output from the frame memory 113. The histogram creation circuit 121h creates a histogram related to the noise component in the eighth direction described above from the post-frame signal SF0, the current frame signal SF1, and the previous frame signal SF2 output from the frame memory 113. The histogram creation circuit 121i creates a histogram related to the above-mentioned noise component in the ninth direction from the post-frame signal SF0, the current frame signal SF1, and the previous frame signal SF2 output from the frame memory 113.
 図3Bにおいて、ヒストグラム作成回路121jは、フレームメモリ113から出力された現フレーム信号SF1に基づいて、現フレームの位置dから、現フレームの位置eを通り、現フレームの位置fへ向かう方向(図示せず)のノイズ成分に関するヒストグラムを作成する。また、ヒストグラム作成回路121kは、フレームメモリ113から出力された現フレーム信号SF1に基づいて、現フレームの位置bから、現フレームの位置eを通り、現フレームの位置hへ向かう方向(図示せず)のノイズ成分に関するヒストグラムを作成する。 In FIG. 3B, based on the current frame signal SF1 output from the frame memory 113, the histogram creation circuit 121j passes from the current frame position d through the current frame position e to the current frame position f (see FIG. 3B). A histogram relating to noise components (not shown) is created. Further, based on the current frame signal SF1 output from the frame memory 113, the histogram creating circuit 121k passes from the current frame position b through the current frame position e to the current frame position h (not shown). ) For the noise component.
 ヒストグラム作成回路121aは、遅延回路131a、132a、133aと、条件解析回路134と、頻度算出回路135とを含む。なお、ヒストグラム作成回路121b~121iは、遅延回路131a、132a、133aに変えて、上述の方向に対応する遅延回路を備える点のみが、ヒストグラム作成回路121aと異なる。また、ヒストグラム作成回路121j、121kについては、ヒストグラム作成回路121j(121k)が、現フレーム信号SF1を3つの遅延回路131j(131k)、132j(132k)、133j(133k)に出力するのに対し、ヒストグラム作成回路121aは、後フレーム信号SF0、現フレーム信号SF1、および前フレーム信号SF2をそれぞれ遅延回路131a、132a、133aに出力する点のみが異なる。そこで、ここでは、代表して、ヒストグラム作成回路121aについてのみ説明する。 The histogram creation circuit 121a includes delay circuits 131a, 132a, 133a, a condition analysis circuit 134, and a frequency calculation circuit 135. Note that the histogram creation circuits 121b to 121i differ from the histogram creation circuit 121a only in that they include delay circuits corresponding to the above-described directions instead of the delay circuits 131a, 132a, and 133a. As for the histogram creation circuits 121j and 121k, the histogram creation circuit 121j (121k) outputs the current frame signal SF1 to the three delay circuits 131j (131k), 132j (132k), and 133j (133k). The histogram creating circuit 121a is different only in that the subsequent frame signal SF0, the current frame signal SF1, and the previous frame signal SF2 are output to the delay circuits 131a, 132a, and 133a, respectively. Therefore, here, only the histogram creation circuit 121a will be described as a representative.
 遅延回路131aは、入力された後フレーム信号SF0を、遅延させずにそのまま、比較画素値Cijとして出力する。遅延回路132aは、入力された現フレーム信号SF1を、1水平ラインと1画素分遅延させ、処理画素値Aijとして出力する。遅延回路133aは、入力された前フレーム信号SF2を、2水平ラインと2画素分遅延させ、比較画素値Bijとして出力する。なお、ここで、Aij、Bij、Cijの添え字i、jは、処理画素の位置に対応する値であり、iは処理画素の横方向の座標値、jは処理画素の縦方向の座標値である。 The delay circuit 131a outputs the input frame signal SF0 as it is as a comparison pixel value Cij without being delayed. The delay circuit 132a delays the inputted current frame signal SF1 by one horizontal line and one pixel, and outputs it as a processed pixel value Aij. The delay circuit 133a delays the input previous frame signal SF2 by two horizontal lines and two pixels, and outputs it as a comparison pixel value Bij. Here, the subscripts i and j of Aij, Bij, and Cij are values corresponding to the position of the processing pixel, i is the horizontal coordinate value of the processing pixel, and j is the vertical coordinate value of the processing pixel. It is.
 条件解析回路134は、以下のアルゴリズム1に基づき、当該ヒストグラム作成回路121aの担当する1方向目のノイズ成分の大きさである差Eijを求め、頻度算出回路135に出力する。
(アルゴリズム1)
if Cij<Aij & Bij<Aij
then Eij=Aij-(Cij+Bij)/2
elseif Cij>Aij & Bij>Aij
then Eij=(Cij+Bij)/2-Aij
else Eij=0
Based on the following algorithm 1, the condition analysis circuit 134 obtains a difference Eij that is the magnitude of the noise component in the first direction that the histogram creation circuit 121a is in charge of, and outputs the difference Eij to the frequency calculation circuit 135.
(Algorithm 1)
if Cij <Aij & Bij <Aij
the Eij = Aij− (Cij + Bij) / 2
elseif Cij> Aij &Bij> Aij
then Eij = (Cij + Bij) / 2−Aij
else Eij = 0
 すなわち、条件解析回路134は、処理画素値Aijが、比較画素値Bij、Cijのどちらよりも大きい場合、または、どちらよりも小さい場合に、差Eijを、比較画素値Bij、Cijの平均値と、処理画素値Aijとの差の絶対値とする。それ以外の場合、条件解析回路134は、差Eijを「0」とする。 That is, the condition analysis circuit 134 determines the difference Eij as the average value of the comparison pixel values Bij and Cij when the processing pixel value Aij is greater than or smaller than either of the comparison pixel values Bij and Cij. , And the absolute value of the difference from the processing pixel value Aij. In other cases, the condition analysis circuit 134 sets the difference Eij to “0”.
 頻度算出回路135は、1フレーム期間に亘り、上述の差Eijを集計し、その頻度分布を算出する。なお、頻度算出回路135は、例えば、検波回路104によって検出された映像信号の垂直同期信号に基づき、フレーム期間を判定する。ここで、差Eijを集計する期間は、複数のフレーム期間であってもよい。ヒストグラム分析回路122は、九つの頻度算出回路135によって算出された頻度分布に基づき、適用するノイズ除去を判定し、NR演算回路115においてノイズ除去を行う際に用いるノイズ量Eおよびノイズ感度Dを算出する。ヒストグラム分析回路122は、九つの頻度算出回路135によって算出された頻度分布のうちの少なくとも一つがピークとなる差Eijに応じて、ノイズ量Eを決定する。なお、ノイズ量Eとは、ノイズが含まれていると判定した画素に対して、ノイズ除去処理において加算または減算する値であり、ノイズ感度Dとは、ノイズが含まれていると判定する際の閾値である。 The frequency calculation circuit 135 calculates the frequency distribution by aggregating the above difference Eij over one frame period. Note that the frequency calculation circuit 135 determines the frame period based on, for example, the vertical synchronization signal of the video signal detected by the detection circuit 104. Here, the period for summing up the differences Eij may be a plurality of frame periods. The histogram analysis circuit 122 determines noise removal to be applied based on the frequency distributions calculated by the nine frequency calculation circuits 135, and calculates the noise amount E and noise sensitivity D used when noise removal is performed in the NR calculation circuit 115. To do. The histogram analysis circuit 122 determines the noise amount E according to the difference Eij in which at least one of the frequency distributions calculated by the nine frequency calculation circuits 135 peaks. Note that the noise amount E is a value that is added or subtracted in the noise removal process with respect to a pixel that has been determined to contain noise, and the noise sensitivity D is used when it is determined that noise is included. Is the threshold value.
 本実施形態では、ヒストグラム分析回路122は、九つの頻度算出回路135によって算出された頻度分布のピークの中で、ヒストグラム作成回路121eの頻度算出回路135によって算出された頻度分布(方向e→e→e(時間軸方向)の頻度分布)のピークが最大のときには、時間軸のノイズ除去と、空間軸のノイズ除去とを行うと判定する。その他のときは、ヒストグラム分析回路122は、時間軸のノイズ除去を行わず、空間軸のノイズ除去のみを行うと判定する。また、ヒストグラム分析回路122は、この判定結果に応じて、各軸のノイズ量およびノイズ感度を決める。 In the present embodiment, the histogram analysis circuit 122 has a frequency distribution (direction e → e →) calculated by the frequency calculation circuit 135 of the histogram creation circuit 121e among the peaks of the frequency distributions calculated by the nine frequency calculation circuits 135. When the peak of e (frequency distribution in the time axis direction) is the maximum, it is determined that time-axis noise removal and spatial-axis noise removal are performed. In other cases, the histogram analysis circuit 122 determines not to perform time-axis noise removal but only to perform space-axis noise removal. Further, the histogram analysis circuit 122 determines the noise amount and noise sensitivity of each axis according to the determination result.
 図6は、ヒストグラム分析回路122の動作を説明するフローチャートである。ヒストグラム分析回路122は、まず、九つの頻度算出回路135によって算出された頻度分布のピークを比較し、時間軸方向(方向e→e→e)のピークが最大か否かを判定する(Sa1)。時間軸方向のピークが最大であると判定したときは(Sa1-Yes)、時間軸および空間軸のノイズ除去を行うために、ヒストグラム分析回路122は、時間軸のノイズ量Etとノイズ感度Dtとを算出する(Sa2)。具体的には、ヒストグラム分析回路122は、ヒストグラム作成回路121eの頻度算出回路135によって算出された頻度分布において、頻度がピークとなる差Eijを時間軸のノイズ量Etとし、このノイズ量Etに予め設定された係数(ここでは、「0.25」)を乗じた値を時間軸のノイズ感度Dtとする。 FIG. 6 is a flowchart for explaining the operation of the histogram analysis circuit 122. The histogram analysis circuit 122 first compares the peaks of the frequency distributions calculated by the nine frequency calculation circuits 135, and determines whether or not the peak in the time axis direction (direction e → e → e) is maximum (Sa1). . When it is determined that the peak in the time axis direction is the maximum (Sa1-Yes), in order to perform noise removal on the time axis and the space axis, the histogram analysis circuit 122 calculates the noise amount Et and the noise sensitivity Dt on the time axis. Is calculated (Sa2). Specifically, the histogram analysis circuit 122 sets the difference Eij at which the frequency becomes a peak in the frequency distribution calculated by the frequency calculation circuit 135 of the histogram creation circuit 121e as the time-axis noise amount Et, and sets the noise amount Et in advance. A value obtained by multiplying the set coefficient (here, “0.25”) is defined as a time-axis noise sensitivity Dt.
 次に、ヒストグラム分析回路122は、第1空間軸および第2空間軸のノイズ量E1、E2と、これらのノイズ感度D1、D2とを算出する(Sa3)。具体的には、ヒストグラム分析回路122は、ヒストグラム作成回路121jの頻度算出回路135によって算出された頻度分布(現フレームd→現フレームe→現フレームfの方向)において、頻度がピークとなる差Eijを第1空間軸のノイズ量E1とし、このノイズ量E1に予め設定された係数(ここでは、「0.25」)を乗じた値を第1空間軸のノイズ感度D1とする。また、ヒストグラム分析回路122は、ヒストグラム作成回路121kの頻度算出回路135によって算出された頻度分布(現フレームb→現フレームe→現フレームhの方向)において、頻度がピークとなる差Eijを第2空間軸のノイズ量E2とし、このノイズ量E2に予め設定された係数(ここでは、「0.25」)を乗じた値を第2空間軸のノイズ感度D2とする。 Next, the histogram analysis circuit 122 calculates the noise amounts E1 and E2 of the first space axis and the second space axis and the noise sensitivities D1 and D2 (Sa3). Specifically, the histogram analysis circuit 122 compares the difference Eij in which the frequency peaks in the frequency distribution (current frame d → current frame e → current frame f direction) calculated by the frequency calculation circuit 135 of the histogram creation circuit 121j. Is a noise amount E1 of the first space axis, and a value obtained by multiplying the noise amount E1 by a preset coefficient (here, “0.25”) is a noise sensitivity D1 of the first space axis. Further, the histogram analysis circuit 122 calculates a difference Eij having a peak frequency in the frequency distribution (current frame b → current frame e → current frame h direction) calculated by the frequency calculation circuit 135 of the histogram creation circuit 121k. The noise amount E2 of the spatial axis is set, and a value obtained by multiplying the noise amount E2 by a preset coefficient (here, “0.25”) is set as the noise sensitivity D2 of the second spatial axis.
 次に、ヒストグラム分析回路122は、各軸のノイズ量Et、E1、E2と、各軸のノイズ感度Dt、D1、D2とを、NR演算回路115に出力し(Sa6)、処理を終了する。
 また、ステップSa1にて、時間軸方向のピークが最大ではないと判定したときは(Sa1-No)、空間軸についてのみノイズ除去を行うため、ヒストグラム分析回路122は、時間軸のノイズ量Etを0に設定する(Sa4)。次に、ヒストグラム分析回路122は、ステップSa3と同様にして、第1および第2の空間軸のノイズ量E1、E2と、ノイズ感度D1、D2とを算出し(Sa5)、ステップSa6に移行する。
Next, the histogram analysis circuit 122 outputs the noise amounts Et, E1, and E2 of each axis and the noise sensitivities Dt, D1, and D2 of each axis to the NR calculation circuit 115 (Sa6), and ends the process.
When it is determined in step Sa1 that the peak in the time axis direction is not the maximum (Sa1-No), the histogram analysis circuit 122 performs noise removal Et on the time axis in order to perform noise removal only on the spatial axis. Set to 0 (Sa4). Next, the histogram analysis circuit 122 calculates the noise amounts E1 and E2 of the first and second spatial axes and the noise sensitivities D1 and D2 in the same manner as in step Sa3 (Sa5), and proceeds to step Sa6. .
 図7は、NR演算回路115の構成を示す概略ブロック図である。NR演算回路115は、処理画素を中心とする複数の線(複数の第2の線)をとり、これらの線の各々について、NR検出回路114によって算出されたノイズ量Eに基づき、ノイズ除去を行う。ここでは、これらの線は、時間軸方向の線と、水平方向の線と、垂直方向の線である。これらの線のうち、時間軸方向の線を除く線、すなわち水平方向の線および垂直方向の線は、処理画素と同じフレームにあり、処理画素と隣接する画素を結ぶ線であって、処理画素を通る線である。 FIG. 7 is a schematic block diagram showing the configuration of the NR operation circuit 115. The NR operation circuit 115 takes a plurality of lines (a plurality of second lines) centering on the processing pixel, and performs noise removal for each of these lines based on the noise amount E calculated by the NR detection circuit 114. Do. Here, these lines are a time axis direction line, a horizontal direction line, and a vertical direction line. Among these lines, the lines excluding the time-axis-direction line, that is, the horizontal line and the vertical line are in the same frame as the processing pixel and connect the processing pixel and the adjacent pixel. It is a line that passes through.
 NR演算回路115は、時間軸NR回路141と、第1空間軸NR回路142と、第2空間軸NR回路143とを含む。第1空間軸NR回路142は、第1空間軸DL(Delay;遅延)回路144と、第1空間軸DL回路145と、第1空間軸NR演算回路146とを含む。また、第2空間軸NR回路143は、第2空間軸DL回路147と、第2空間軸DL回路148とを含む。 The NR operation circuit 115 includes a time axis NR circuit 141, a first space axis NR circuit 142, and a second space axis NR circuit 143. The first spatial axis NR circuit 142 includes a first spatial axis DL (Delay) circuit 144, a first spatial axis DL circuit 145, and a first spatial axis NR calculation circuit 146. The second space axis NR circuit 143 includes a second space axis DL circuit 147 and a second space axis DL circuit 148.
 時間軸NR回路141は、NR検出回路114のヒストグラム分析回路122によって算出されたノイズ量Etおよびノイズ感度Dtと、後フレーム信号SF0と、現フレーム信号SF1と、前フレーム信号SF2とを用いて、現フレーム信号SF1に対する時間軸のノイズ除去を行う。なお、ノイズ量Etが「0」のときは、時間軸NR回路141のノイズ除去処理において、ノイズ除去のために減算または加算する値が「0」となるので、現フレーム信号SF1の値を変更せずに、出力することになる。 The time axis NR circuit 141 uses the noise amount Et and noise sensitivity Dt calculated by the histogram analysis circuit 122 of the NR detection circuit 114, the rear frame signal SF0, the current frame signal SF1, and the previous frame signal SF2. The time axis noise is removed from the current frame signal SF1. When the noise amount Et is “0”, the value to be subtracted or added for noise removal in the noise removal processing of the time axis NR circuit 141 is “0”, so the value of the current frame signal SF1 is changed. Without output.
 時間軸NR回路141は、以下のアルゴリズム2を用いて、現フレーム信号SF1に対する時間軸のノイズ除去を行う。
(アルゴリズム2)
if Cij+D<Aij & Bij+D<Aij
then Yij=Aij-E
elseif Cij-D>Aij & Bij-D>Aij
then Yij=Aij+E
else Yij=Aij
The time axis NR circuit 141 performs noise removal on the time axis for the current frame signal SF1 using the following algorithm 2.
(Algorithm 2)
if Cij + D <Aij & Bij + D <Aij
then Yij = Aij-E
elseCij-D> Aij &Bij-D> Aij
then Yij = Aij + E
else Yij = Aij
 なお、Yijは、ノイズ処理した輝度値、すなわち時間軸NR回路141の出力である。Aijは、処理対象画素の輝度値、すなわち、現フレーム信号SF1の示す値である。Bijは、比較対象画素の輝度値のうち、後フレーム信号SF0の示す値である。Cijは、比較対象画素の輝度値のうち、前フレーム信号SF2の示す値である。Eは、ヒストグラム分析回路122によって算出された時間軸のノイズ量Etであり、Dは、ヒストグラム分析回路122によって算出された時間軸のノイズ感度Dtである。 Note that Yij is a noise-processed luminance value, that is, an output of the time axis NR circuit 141. Aij is a luminance value of the pixel to be processed, that is, a value indicated by the current frame signal SF1. Bij is a value indicated by the rear frame signal SF0 among the luminance values of the comparison target pixels. Cij is a value indicated by the previous frame signal SF2 among the luminance values of the comparison target pixels. E is the time-axis noise amount Et calculated by the histogram analysis circuit 122, and D is the time-axis noise sensitivity Dt calculated by the histogram analysis circuit 122.
 すなわち、時間軸NR回路141は、処理画素値Aijが、比較画素値Bijにノイズ感度Dを足した値、および比較画素値Cijにノイズ感度Dを足した値のどちらよりも大きいときは、処理画素値Aijからノイズ量Eを引いた値を出力する。また、時間軸NR回路141は、処理画素値Aijが、比較画素値Bijからノイズ感度Dを引いた値、および比較画素値Cijからノイズ感度Dを引いた値のどちらよりも小さいときは、処理画素値Aijにノイズ量Eを足した値を出力する。また、時間軸NR回路141は、そのどちらでもないときは、処理画素値Aijを、そのまま出力する。この時間軸NR処理によりフレーム方向のノイズが抑えられる。 That is, the time axis NR circuit 141 performs processing when the processing pixel value Aij is larger than both the value obtained by adding the noise sensitivity D to the comparison pixel value Bij and the value obtained by adding the noise sensitivity D to the comparison pixel value Cij. A value obtained by subtracting the noise amount E from the pixel value Aij is output. The time axis NR circuit 141 performs processing when the processing pixel value Aij is smaller than both the value obtained by subtracting the noise sensitivity D from the comparison pixel value Bij and the value obtained by subtracting the noise sensitivity D from the comparison pixel value Cij. A value obtained by adding the noise amount E to the pixel value Aij is output. Further, when neither of them is the time axis NR circuit 141, the processing pixel value Aij is output as it is. This time axis NR process suppresses noise in the frame direction.
 第1空間軸NR回路142は、第1空間軸(本実施形態では水平方向)のノイズ除去を行う。第1空間軸DL回路144は、時間軸NR回路141によるノイズ除去結果の信号を1画素分遅延させて得た信号SD1を出力する。第1空間軸DL回路145は、第1空間軸DL回路144により遅延された信号SD1をさらに1画素分遅延させて得た信号SD2を出力する。なお、ここで、第1空間軸DL回路144、145は、1画素分遅延させるとして説明したが、遅延させる量は、2画素分以上であってもよいし、第1空間軸DL回路144の遅延量と第1空間軸DL回路145の遅延量が異なっていても良い。 The first spatial axis NR circuit 142 performs noise removal on the first spatial axis (horizontal direction in the present embodiment). The first spatial axis DL circuit 144 outputs a signal SD1 obtained by delaying the signal resulting from the noise removal by the time axis NR circuit 141 by one pixel. The first spatial axis DL circuit 145 outputs a signal SD2 obtained by further delaying the signal SD1 delayed by the first spatial axis DL circuit 144 by one pixel. Here, the first spatial axis DL circuits 144 and 145 have been described as being delayed by one pixel, but the amount of delay may be two pixels or more, and the first spatial axis DL circuit 144 The delay amount and the delay amount of the first space axis DL circuit 145 may be different.
 第1空間軸NR演算回路146は、水平方向のノイズ除去を行う。具体的には、第1空間軸NR演算回路146は、時間軸NR回路141によるノイズ除去結果の信号SD0、第1空間軸DL回路144から出力された信号SD1、第1空間軸DL回路145から出力された信号SD2、ヒストグラム分析回路122から出力された第1空間軸のノイズ量E1およびノイズ感度D1に基づき、信号SD1に対するノイズ除去を行う。より具体的には、第1空間軸NR演算回路146は、信号SD1が示す値を処理対象画素値Aij、信号SD0が示す値を比較対象画素値Bij、信号SD2が示す値を比較対象画素値Cij、第1空間軸のノイズ量E1をノイズ量E、第1空間軸のノイズ感度D1をノイズ感度Dとして、前述のアルゴリズム2を実行する。 The first spatial axis NR calculation circuit 146 performs noise removal in the horizontal direction. Specifically, the first spatial axis NR calculation circuit 146 includes the signal SD0 as a result of noise removal by the time axis NR circuit 141, the signal SD1 output from the first spatial axis DL circuit 144, and the first spatial axis DL circuit 145. Based on the output signal SD2 and the noise amount E1 and noise sensitivity D1 of the first spatial axis output from the histogram analysis circuit 122, noise removal is performed on the signal SD1. More specifically, the first spatial axis NR calculation circuit 146 uses the value indicated by the signal SD1 as the processing target pixel value Aij, the value indicated by the signal SD0 as the comparison target pixel value Bij, and the value indicated by the signal SD2 as the comparison target pixel value. The above algorithm 2 is executed with Cij, the noise amount E1 of the first space axis as the noise amount E, and the noise sensitivity D1 of the first space axis as the noise sensitivity D.
 第2空間軸NR回路143は、第2空間軸(本実施形態では垂直方向)のノイズ除去を行う。第2空間軸DL回路147は、第1空間軸NR回路142によるノイズ除去結果の信号を1ライン分遅延させて得た信号SH1を出力する。第2空間軸DL回路148は、第2空間軸DL回路147により遅延された信号SH1をさらに1ライン分遅延させて得た信号SH2を出力する。なお、ここで、第2空間軸DL回路147、148は、1ライン分遅延させるとして説明したが、遅延させる量は、2ライン分以上であってもよいし、第2空間軸DL回路147の遅延量と第2空間軸DL回路148の遅延量が異なっていても良い。なお、本実施の形態では入力信号がインターレース信号であるため、この1ライン遅延はプログレシブ信号の2ライン遅延に相当する。 The second spatial axis NR circuit 143 performs noise removal on the second spatial axis (vertical direction in the present embodiment). The second spatial axis DL circuit 147 outputs a signal SH1 obtained by delaying the signal resulting from the noise removal by the first spatial axis NR circuit 142 by one line. The second spatial axis DL circuit 148 outputs a signal SH2 obtained by further delaying the signal SH1 delayed by the second spatial axis DL circuit 147 by one line. Here, the second spatial axis DL circuits 147 and 148 have been described as being delayed by one line, but the amount of delay may be two lines or more, and the second spatial axis DL circuit 147 The delay amount and the delay amount of the second space axis DL circuit 148 may be different. In this embodiment, since the input signal is an interlace signal, this one-line delay corresponds to a two-line delay of the progressive signal.
 第2空間軸NR演算回路149は、垂直方向のノイズ除去を行う。具体的には、第2空間軸NR演算回路149は、第1空間軸NR演算回路146によるノイズ除去結果の信号SH0、第2空間軸DL回路147から出力された信号SH1、第2空間軸DL回路148から出力された信号SH2、ヒストグラム分析回路122から出力された第2空間軸のノイズ量E2およびノイズ感度D2に基づき、信号SH1に対するノイズ除去を行う。より具体的には、第2空間軸NR演算回路149は、信号SH1が示す値を処理対象画素値Aij、信号SH0が示す値を比較対象画素値Bij、信号SH2が示す値を比較対象画素値Cij、第2空間軸のノイズ量E2をノイズ量E、第2空間軸のノイズ感度D2をノイズ感度Dとして、前述のアルゴリズム2を実行する。 The second spatial axis NR calculation circuit 149 performs noise removal in the vertical direction. Specifically, the second spatial axis NR calculation circuit 149 includes the signal SH0 as a result of noise removal by the first spatial axis NR calculation circuit 146, the signal SH1 output from the second spatial axis DL circuit 147, and the second spatial axis DL. Based on the signal SH2 output from the circuit 148, the noise amount E2 and the noise sensitivity D2 of the second spatial axis output from the histogram analysis circuit 122, noise removal is performed on the signal SH1. More specifically, the second spatial axis NR calculation circuit 149 uses the value indicated by the signal SH1 as the processing target pixel value Aij, the value indicated by the signal SH0 as the comparison target pixel value Bij, and the value indicated by the signal SH2 as the comparison target pixel value. The above algorithm 2 is executed with Cij, the noise amount E2 of the second space axis being the noise amount E, and the noise sensitivity D2 of the second space axis being the noise sensitivity D.
 図8は、図33に示す「開会式」中の1フレームに対して、頻度算出回路135が算出した頻度分布を示す図である。図中、符号L1で示された頻度分布が、ヒストグラム作成回路121eの頻度算出回路135によって算出された頻度分布である。すなわち、頻度分布L1は、方向e→e→eの頻度分布である。ヒストグラム分析回路122は、頻度分布L1と、他の方向の頻度分布とを比較する。この「開会式」の例では、どの頻度分布もピークとなる差Eijは、ほぼ同じであり、頻度分布L1が最もピークが高い。頻度分布L1のピークが最も高いときは、画面の一部は動いているが、その他の多くは止まっていることを示す。そこで、ヒストグラム分析回路122は、頻度分布L1のピークが最も高いので、時間軸のノイズ除去と、空間軸のノイズ除去とを行うと判定する。
 また、ヒストグラム分析回路122は、このとき、頻度分布L1がピークとなる差Eijである「3」を、時間軸のノイズ量Etとし、「3」に「0.25」を乗じて四捨五入した「1」を時間軸のノイズ感度Dtとする。なお、図8の頻度分布では、ピークとなる差Eijは、どの方向も「3」~「4」であり、差Eijが「10」以上の頻度は、ピークの半分以下となっており、ノイズの少ない映像であることがわかる。
FIG. 8 is a diagram showing the frequency distribution calculated by the frequency calculation circuit 135 for one frame in the “opening ceremony” shown in FIG. In the figure, the frequency distribution indicated by the symbol L1 is the frequency distribution calculated by the frequency calculation circuit 135 of the histogram creation circuit 121e. That is, the frequency distribution L1 is a frequency distribution in the direction e → e → e. The histogram analysis circuit 122 compares the frequency distribution L1 with the frequency distribution in the other direction. In this “opening ceremony” example, the difference Eij that peaks in any frequency distribution is substantially the same, and the frequency distribution L1 has the highest peak. When the peak of the frequency distribution L1 is the highest, it indicates that a part of the screen is moving but many others are stopped. Therefore, the histogram analysis circuit 122 determines to perform time-axis noise removal and spatial-axis noise removal because the peak of the frequency distribution L1 is the highest.
At this time, the histogram analysis circuit 122 sets “3”, which is the difference Eij at which the frequency distribution L1 reaches a peak, as the noise amount Et of the time axis, and rounds by rounding up “3” by “0.25”. 1 ”is the time-base noise sensitivity Dt. In the frequency distribution of FIG. 8, the peak difference Eij is “3” to “4” in any direction, and the frequency where the difference Eij is “10” or more is less than half of the peak. It turns out that it is a video with little.
 図9は、図8の頻度分布のうち、水平方向(方向d→e→f)の頻度分布L2を示す図である。水平方向の頻度分布L2がピークとなる差Eijは、「4」であるので、ヒストグラム分析回路122は、第1空間軸のノイズ量E1を「4」とし、第1空間軸のノイズ感度D1を「4」に「0.25」を乗じた「1」とする。
 図10は、図8の頻度分布のうち、垂直方向(方向b→e→h)の頻度分布L3を示す図である。水平方向の頻度分布L3がピークとなる差Eijは、「3」であるので、ヒストグラム分析回路122は、第2空間軸のノイズ量E2を「3」とし、第2空間軸のノイズ感度D2を「3」に「0.25」を乗じて四捨五入した「1」とする。
FIG. 9 is a diagram showing a frequency distribution L2 in the horizontal direction (direction d → e → f) in the frequency distribution of FIG. Since the difference Eij at which the horizontal frequency distribution L2 peaks is “4”, the histogram analysis circuit 122 sets the noise amount E1 of the first spatial axis to “4” and the noise sensitivity D1 of the first spatial axis is set to “4”. It is assumed that “1” is obtained by multiplying “4” by “0.25”.
FIG. 10 is a diagram showing a frequency distribution L3 in the vertical direction (direction b → e → h) in the frequency distribution of FIG. Since the difference Eij at which the horizontal frequency distribution L3 peaks is “3”, the histogram analysis circuit 122 sets the noise amount E2 of the second spatial axis to “3” and the noise sensitivity D2 of the second spatial axis is set to “3”. “3” is multiplied by “0.25” and rounded to “1”.
 本実施形態における画像処理装置103がノイズ処理した結果を図11および図15に示す。図11は、カメラ撮りした映像にランダムノイズを重畳した映像である。図12は、図11の画像に対して、画像処理装置103がノイズ除去を行なった結果の画像である。この結果は、ヒストグラム分析回路122にて時間軸および空間軸のノイズ除去を行うと判定し、時間軸および空間軸のノイズ除去を行った結果である。この結果、図11に示されるようにノイズが低減できる。 FIG. 11 and FIG. 15 show the result of noise processing performed by the image processing apparatus 103 according to the present embodiment. FIG. 11 is an image in which random noise is superimposed on an image taken by a camera. FIG. 12 is an image obtained as a result of noise removal performed by the image processing apparatus 103 on the image of FIG. This result is the result of determining that the time-axis and space-axis noises are removed by the histogram analysis circuit 122 and performing the time-axis and space-axis noise removal. As a result, noise can be reduced as shown in FIG.
 図33の「開幕式」において、動いているのは『行進する人』だけであり、殆どのエリアが止まっている。また、『芝生』でノイズが目立つので、図12のようにノイズを低減させることが画質向上に繋がる。このため、ややボケても強いノイズ除去を行う必要があり、図12程度のボケであれば許容できる。
 このようにヒストグラム分析回路122が、入力された画像の時間軸および空間軸について、ノイズ量を分析し、実施するノイズ除去およびノイズ量E、ノイズ感Dを決定するので、ボケを抑えながらノイズを除去できるという効果が得られる。
 なお、NR回路112において輝度信号に対してのみノイズ除去を行う場合もある。この場合は図13に示すように色差信号を遅延回路116に通し、遅延タイミングを調整する。
In the “opening ceremony” of FIG. 33, only “marchers” are moving, and most of the areas are stopped. Further, since noise is conspicuous in “lawn”, reducing the noise as shown in FIG. 12 leads to improvement in image quality. For this reason, it is necessary to perform strong noise removal even with a slight blur, and the blur of about FIG. 12 is acceptable.
As described above, the histogram analysis circuit 122 analyzes the noise amount with respect to the time axis and the space axis of the input image, and determines the noise removal and the noise amount E and the noise feeling D to be performed. The effect that it can be removed is obtained.
Note that noise removal may be performed only on the luminance signal in the NR circuit 112. In this case, the color difference signal is passed through the delay circuit 116 as shown in FIG. 13 to adjust the delay timing.
(第2の実施形態)
 以下、図面を参照して、本発明の第2の実施形態について説明する。本実施形態における液晶表示装置101は、NR検出回路114に変えて、NR検出回路114aを備える点のみが、図1における液晶表示装置101と異なる。その他の部分は、図1における液晶表示装置101と同様なので、説明を省略する。図14は、NR検出回路114aの構成を示す概略ブロック図である。NR検出回路114aは、ヒストグラム作成回路121a~121i、ヒストグラム分析回路122aを含んで構成される。同図において、図3A、図3Bの各部に対応する部分には同一の符号(121a~121k、131a~133a、131j~133j、134、135)を付け、その説明を省略する。
(Second Embodiment)
The second embodiment of the present invention will be described below with reference to the drawings. The liquid crystal display device 101 in this embodiment is different from the liquid crystal display device 101 in FIG. 1 only in that an NR detection circuit 114a is provided instead of the NR detection circuit 114. Other parts are the same as those of the liquid crystal display device 101 in FIG. FIG. 14 is a schematic block diagram showing the configuration of the NR detection circuit 114a. The NR detection circuit 114a includes histogram creation circuits 121a to 121i and a histogram analysis circuit 122a. In this figure, the same reference numerals (121a to 121k, 131a to 133a, 131j to 133j, 134, 135) are assigned to the portions corresponding to the respective portions in FIGS. 3A and 3B, and the description thereof is omitted.
 ヒストグラム分析回路122aは、九つの頻度算出回路135によって算出された頻度分布に基づき、適用するノイズ除去を判定し、NR演算回路115がノイズ除去を行う際に用いるノイズ量Eおよびノイズ感度Dを算出する。本実施形態では、ヒストグラム分析回路122aは、ヒストグラム作成回路121e以外の八つの頻度算出回路135によって算出された頻度分布(時間軸方向以外の頻度分布)の中に、ヒストグラム作成回路121eの頻度算出回路135によって算出された頻度分布(方向e→e→eの頻度分布)のピークに予め設定された係数α(1<α、例えば「2」)を乗じた値よりもピークが高く、かつ、ピークとなる差Eijが方向e→e→eの頻度分布におけるピークとなる差Eijよりも小さい頻度分布がある場合、時間軸のノイズ除去を行わず、空間軸のノイズ除去のみを行うと判定する。その他の場合、ヒストグラム分析回路122aは、時間軸のノイズ除去と、空間軸のノイズ除去とを行うと判定する。 The histogram analysis circuit 122a determines noise removal to be applied based on the frequency distribution calculated by the nine frequency calculation circuits 135, and calculates the noise amount E and noise sensitivity D used when the NR calculation circuit 115 performs noise removal. To do. In the present embodiment, the histogram analysis circuit 122a includes the frequency calculation circuit of the histogram generation circuit 121e among the frequency distributions (frequency distributions other than the time axis direction) calculated by the eight frequency calculation circuits 135 other than the histogram generation circuit 121e. The peak is higher than the value obtained by multiplying the peak of the frequency distribution (frequency distribution in the direction e → e → e) calculated by 135 by a preset coefficient α (1 <α, for example, “2”), and the peak If there is a frequency distribution whose difference Eij is smaller than the peak difference Eij in the frequency distribution in the direction e → e → e, it is determined that noise removal on the time axis is not performed, but only noise removal on the spatial axis is performed. In other cases, the histogram analysis circuit 122a determines to perform time-axis noise removal and space-axis noise removal.
 なお、ノイズ量Et、E1、E2およびノイズ感度Dt、D1、D2の算出方法は、ヒストグラム分析回路122と同様である。また、上述の「ヒストグラム作成回路121eの頻度算出回路135によって算出された頻度分布のピークに予め設定された係数αを乗じた値よりもピークが高い」という条件に変えて、「ヒストグラム作成回路121eの頻度算出回路135によって算出された頻度分布のピークに予め設定された定数Aを足した値よりもピークが高い」という条件を用いても良い。 Note that the calculation methods of the noise amounts Et, E1, E2 and the noise sensitivities Dt, D1, D2 are the same as those of the histogram analysis circuit 122. Further, instead of the above-mentioned condition “the peak is higher than the value obtained by multiplying the peak of the frequency distribution calculated by the frequency calculation circuit 135 of the histogram generation circuit 121e by a preset coefficient α”, the “histogram generation circuit 121e is changed. The condition that the peak is higher than the value obtained by adding a preset constant A to the peak of the frequency distribution calculated by the frequency calculation circuit 135 of the frequency distribution circuit 135 may be used.
 図15は、ヒストグラム分析回路122aの動作を説明するフローチャートである。同図において、図6の各部に対応する部分には同一の符号(Sa2~Sa6)を付け、その説明を省略する。ヒストグラム分析回路122aは、まず、時間軸方向(方向e→e→e)の頻度分布のピークに予め設定された係数α(例えば「2」)を乗じた値よりもピークが高く、かつ、ピークとなる差Eijが時間軸方向の頻度分布におけるピークとなる差Eijよりも小さい頻度分布があるか否かを判定する(Sb1)。該当する頻度分布がないと判定したときは(Sb1-No)、ステップSa2に移行する。また、ステップSb1にて、該当する頻度分布があると判定したときは(Sb1-Yes)、ステップSa4に移行する。 FIG. 15 is a flowchart for explaining the operation of the histogram analysis circuit 122a. In the figure, the same reference numerals (Sa2 to Sa6) are assigned to the portions corresponding to the respective portions in FIG. 6, and the description thereof is omitted. First, the histogram analysis circuit 122a has a peak higher than the value obtained by multiplying the peak of the frequency distribution in the time axis direction (direction e → e → e) by a preset coefficient α (for example, “2”). It is determined whether or not there is a frequency distribution in which the difference Eij is smaller than the difference Eij that is a peak in the frequency distribution in the time axis direction (Sb1). When it is determined that there is no corresponding frequency distribution (Sb1-No), the process proceeds to step Sa2. If it is determined in step Sb1 that there is a corresponding frequency distribution (Sb1-Yes), the process proceeds to step Sa4.
 図16は、図34の「苔と石仏」に対して、上記九つの頻度算出回路135が算出した頻度分布である。図16において、符号L4で示すグラフは、「方向f→e→d」の頻度分布を示すグラフである。グラフL4の頻度分布、すなわち「方向f→e→d」の頻度分布は、他の頻度分布と比較すると、他の頻度分布よりピークとなる差Eijが小さく、ピーク値も他の頻度分布のピーク値の約2倍ある。このように「方向f→e→d」の頻度分布のピークが極端に高いときは、画面全体がその方向に動いていることを示す。この場合は、図34の矢印方向(左方向)である。 FIG. 16 is a frequency distribution calculated by the nine frequency calculation circuits 135 for “moss and stone buddha” in FIG. In FIG. 16, a graph indicated by a symbol L <b> 4 is a graph showing a frequency distribution of “direction f → e → d”. The frequency distribution of the graph L4, that is, the frequency distribution of “direction f → e → d” has a smaller difference Eij that peaks than other frequency distributions, and the peak value is also the peak of other frequency distributions. There are about twice the value. Thus, when the peak of the frequency distribution of “direction f → e → d” is extremely high, it indicates that the entire screen is moving in that direction. In this case, it is the arrow direction (left direction) of FIG.
 このような映像では、時間軸方向のノイズ除去を行わないと判断する。この場合、時間軸方向のノイズ量は「方向f→e→d」の頻度分布のピーク値から求める値ではなく、0とする。図16の「方向f→e→d」の頻度分布ではピークとなる差Eijの値は「4」だが、この値自体が動きによる影響である可能性が高い。また、値10以上はこのピークの頻度に比べ半分以下となっているので、ノイズの少ない映像であることが判る。このため、ヒストグラム分析回路122aは、時間方向ノイズ量Etは0、ノイズ感度Dtは0.5×ノイズ量E≒0とする。 ¡It is determined that noise removal in the time axis direction is not performed for such images. In this case, the amount of noise in the time axis direction is 0, not a value obtained from the peak value of the frequency distribution of “direction f → e → d”. In the frequency distribution of “direction f → e → d” in FIG. 16, the value of the difference Eij that is a peak is “4”, but this value itself is highly likely to be an influence of movement. Further, since a value of 10 or more is less than half of the frequency of this peak, it can be seen that the image has little noise. For this reason, the histogram analysis circuit 122a sets the time direction noise amount Et to 0 and the noise sensitivity Dt to 0.5 × noise amount E≈0.
 図17は、図16に示す頻度分布のうち、「方向d→e→f」(水平方向)の頻度分布のグラフL5を示す図である。グラフL5において、ピークとなる差Eijの値は「6」である。ヒストグラム分析回路122aは、この「6」を第1空間軸のノイズ量E1とする。また、ヒストグラム分析回路122aは、第1空間軸のノイズ感度D1を、この「6」に予め設定された係数「0.5」を乗じて得た値「3」にする。 FIG. 17 is a diagram showing a frequency distribution graph L5 of “direction d → e → f” (horizontal direction) in the frequency distribution shown in FIG. In the graph L5, the peak difference Eij is “6”. The histogram analysis circuit 122a sets “6” as the noise amount E1 of the first space axis. Further, the histogram analysis circuit 122a sets the noise sensitivity D1 of the first space axis to a value “3” obtained by multiplying “6” by a preset coefficient “0.5”.
 図18は、図16に示す頻度分布のうち、「方向b→e→h」(垂直方向)の頻度分布のグラフL6を示す図である。グラフL6において、ピークとなる差Eijの値は「6」である。ヒストグラム分析回路122aは、この「6」を第2空間軸のノイズ量E2とする。また、ヒストグラム分析回路122aは、第2空間軸のノイズ感度D2を、この「6」に予め設定された係数「0.5」を乗じて得た値「3」にする。 FIG. 18 is a view showing a frequency distribution graph L6 of “direction b → e → h” (vertical direction) in the frequency distribution shown in FIG. In the graph L6, the peak difference Eij is “6”. The histogram analysis circuit 122a sets “6” as the noise amount E2 of the second space axis. The histogram analysis circuit 122a sets the noise sensitivity D2 of the second space axis to a value “3” obtained by multiplying “6” by a preset coefficient “0.5”.
 図19は、本実施形態における画像処理装置103がノイズ除去を行なった結果の画像である。図19、時間軸のノイズ除去を行わず、空間軸(第1空間軸、第2空間軸)のノイズ除去のみを行った結果である。図12と比較するとボケが少ないことがわかる。
 図34の「苔と石仏」では画面全体がパンされているので、ノイズを低減しながらボケを抑えることが画質向上に繋がる。このため、ボケを許容できる範囲は、図33の場合より図34の場合の方が小さくなる。代わりに、全体が動いているので、ノイズに対する許容範囲が広がる。
 パンされているなど、全体が動いている映像か否かを、ヒストグラム分析回路122aは、上述の条件で判定し、全体が動いているときは、時間軸のノイズ除去を行なわず、空間軸のノイズ除去を行い、このときのノイズ量Eやノイズ感度Dを頻度分布に応じた値に変えるので、ノイズ除去をしながらボケを抑えることができるという効果が得られる。
FIG. 19 shows an image obtained as a result of noise removal performed by the image processing apparatus 103 according to this embodiment. FIG. 19 shows a result obtained by performing only noise removal on the space axis (first space axis, second space axis) without performing noise removal on the time axis. Compared to FIG. 12, it can be seen that there is less blur.
Since the entire screen is panned in “Moss and Stone Buddha” in FIG. 34, suppressing blur while reducing noise leads to an improvement in image quality. For this reason, the range in which the blur can be allowed is smaller in the case of FIG. 34 than in the case of FIG. Instead, since the whole is moving, the tolerance for noise increases.
The histogram analysis circuit 122a determines whether or not the whole image is moving, such as being panned, based on the above-described conditions. When the whole image is moving, noise removal on the time axis is not performed and the spatial axis is not removed. Noise removal is performed, and the noise amount E and noise sensitivity D at this time are changed to values according to the frequency distribution, so that an effect of suppressing blur while removing noise can be obtained.
(第3の実施形態)
 以下、図面を参照して、本発明の第3の実施形態について説明する。本実施形態における液晶表示装置101は、NR検出回路114に変えて、NR検出回路114bを備える点のみが、図1における液晶表示装置101と異なる。その他の部分は、図1における液晶表示装置101と同様なので、説明を省略する。図20は、NR検出回路114bの構成を示す概略ブロック図である。NR検出回路114bは、ヒストグラム作成回路121a~121iと、ヒストグラム分析回路122bとを含む。同図において、図3A、図3Bの各部に対応する部分には同一の符号(121a~121k、131a~133a、131j~133j、134、135)を付け、その説明を省略する。
(Third embodiment)
The third embodiment of the present invention will be described below with reference to the drawings. The liquid crystal display device 101 in this embodiment is different from the liquid crystal display device 101 in FIG. 1 only in that an NR detection circuit 114b is provided instead of the NR detection circuit 114. Other parts are the same as those of the liquid crystal display device 101 in FIG. FIG. 20 is a schematic block diagram showing the configuration of the NR detection circuit 114b. The NR detection circuit 114b includes histogram creation circuits 121a to 121i and a histogram analysis circuit 122b. In this figure, the same reference numerals (121a to 121k, 131a to 133a, 131j to 133j, 134, 135) are assigned to the portions corresponding to the respective portions in FIGS. 3A and 3B, and the description thereof is omitted.
 ヒストグラム分析回路122bは、九つの頻度算出回路135によって算出された頻度分布に基づき、適用するノイズ除去を判定し、NR演算回路115がノイズ除去を行う際に用いるノイズ量Eおよびノイズ感度Dを算出する。本実施形態では、ヒストグラム分析回路122bは、九つの頻度算出回路135によって算出された頻度分布のピークとなる差Eijが全て「1」であり、かつ、九つの頻度分布全てにおいて、差Eijが「2」以上における頻度が、予め設定された係数β(0<β<1)を該頻度分布のピークに乗じた値より小さいか否かを判定する。ヒストグラム分析回路122bは、これらの条件を満たすと判定したときは、時間方向および空間方向のノイズ除去を行なわないと判定する。また、ヒストグラム分析回路122bは、これらのうち、一つでも条件を満たさないと判定したときは、時間方向および空間方向のノイズ除去を行うと判定する。これにより、ヒストグラム分析回路122bは、入力された映像のノイズが極端に少ないか否かを判定し、ノイズが極端に少ないときは、ノイズ除去を行なわないと決定する。 The histogram analysis circuit 122b determines noise removal to be applied based on the frequency distribution calculated by the nine frequency calculation circuits 135, and calculates the noise amount E and noise sensitivity D used when the NR calculation circuit 115 performs noise removal. To do. In the present embodiment, the histogram analysis circuit 122b is configured such that the differences Eij that are the peaks of the frequency distributions calculated by the nine frequency calculation circuits 135 are all “1”, and the difference Eij is “ It is determined whether the frequency at “2” or higher is smaller than a value obtained by multiplying a peak of the frequency distribution by a preset coefficient β (0 <β <1). When it is determined that these conditions are satisfied, the histogram analysis circuit 122b determines not to perform noise removal in the time direction and the spatial direction. Further, when it is determined that any one of these does not satisfy the condition, the histogram analysis circuit 122b determines to perform noise removal in the time direction and the spatial direction. Thereby, the histogram analysis circuit 122b determines whether or not the noise of the input video is extremely small. When the noise is extremely small, it is determined that noise removal is not performed.
 なお、ノイズ量Et、E1、E2およびノイズ感度Dt、D1、D2の算出方法は、ヒストグラム分析回路122と同様である。また、上述の「差Eijが「2」以上における頻度が、予め設定された係数β(0<β<1)を該頻度分布のピークに乗じた値より小さい」という条件に変えて、「差Eijが「2」以上における頻度は、該頻度分布のピークから予め設定された定数B(正の数)を引いた値よりも小さい」という条件を用いても良い。 Note that the calculation methods of the noise amounts Et, E1, E2 and the noise sensitivities Dt, D1, D2 are the same as those of the histogram analysis circuit 122. Further, the above-mentioned condition that “the frequency at which the difference Eij is“ 2 ”or more is smaller than a value obtained by multiplying a preset coefficient β (0 <β <1) by the peak of the frequency distribution” The condition that the frequency when Eij is “2” or more is smaller than a value obtained by subtracting a preset constant B (positive number) from the peak of the frequency distribution may be used.
 図21は、本実施形態におけるヒストグラム分析回路122bの動作を説明するフローチャートである。同図において、図6の各部に対応する部分には同一の符号(Sa2~Sa3、Sa6)を付け、その説明を省略する。ヒストグラム分析回路122bは、まず、九つの頻度分布が、差Eijが1でピークとなり、かつ、差Eijが2以上では、ピーク×β(1<β)より小さいか否かを判定する(Sc1)。ステップSc1にて該条件を満たさないと判定したときは(Sc1-No)、ステップSa2に移行する。
 また、ステップSc1にて、該条件を満たすと判定したときは(Sc1-Yes)、時間軸および空間軸についてノイズ除去を行わないので、ヒストグラム分析回路122bは、時間軸、第1および第2の空間軸のノイズ量Eに「0」を設定し(Sc4)、ステップSa6に移行する。
FIG. 21 is a flowchart for explaining the operation of the histogram analysis circuit 122b in the present embodiment. In the figure, the same reference numerals (Sa2 to Sa3, Sa6) are assigned to portions corresponding to the respective portions in FIG. 6, and the description thereof is omitted. First, the histogram analysis circuit 122b determines whether or not the nine frequency distributions are peaks when the difference Eij is 1 and the difference Eij is 2 or more, and is smaller than the peak × β (1 <β) (Sc1). . When it is determined in step Sc1 that the condition is not satisfied (Sc1-No), the process proceeds to step Sa2.
If it is determined in step Sc1 that the condition is satisfied (Sc1-Yes), noise removal is not performed on the time axis and the space axis, so that the histogram analysis circuit 122b performs the time axis, first and second “0” is set to the noise amount E of the space axis (Sc4), and the process proceeds to Step Sa6.
 図22は、本実施形態における入力画像の例(「蘭と女性」)を示す図である。図23は、図22の「蘭と女性」に対して、上記九つの頻度算出回路135が算出した頻度分布である。図23では、九つの頻度分布、総てが値「1」でピークを取り、値「2」以上では極端に小さくなっている。
 このようにヒストグラムの値が、差Eijが1のときに極端に高いときは、画面が殆ど動いておらず、ノイズが極端に少ない場合である。このような映像では、時間方向のノイズ除去を行わないと判断する。このため、ヒストグラム分析回路122bは、時間方向ノイズ量Eは0、ノイズ感度Dは0.75×ノイズ量E≒0とする。
FIG. 22 is a diagram showing an example of an input image (“Orchid and woman”) in the present embodiment. FIG. 23 shows the frequency distribution calculated by the nine frequency calculation circuits 135 for “Orchid and Female” in FIG. In FIG. 23, the nine frequency distributions all peak at the value “1” and extremely small at the value “2” or more.
As described above, when the value of the histogram is extremely high when the difference Eij is 1, the screen hardly moves and the noise is extremely small. In such an image, it is determined that noise removal in the time direction is not performed. For this reason, the histogram analysis circuit 122b sets the time direction noise amount E to 0 and the noise sensitivity D to 0.75 × noise amount E≈0.
 図24は、図23に示す頻度分布のうち、「方向d→e→f」(水平方向)の頻度分布のグラフL8を示す図である。グラフL8において、ピークとなる差Eijの値は「1」であり、値「2」以上では極端に小さくなっている。ヒストグラム分析回路122bは、第1空間軸のノイズ量E1およびノイズ感度D1を「0」とする。 FIG. 24 is a graph showing a frequency distribution graph L8 of “direction d → e → f” (horizontal direction) in the frequency distribution shown in FIG. In the graph L8, the value of the peak difference Eij is “1”, and is extremely small when the value is “2” or more. The histogram analysis circuit 122b sets the noise amount E1 and noise sensitivity D1 of the first space axis to “0”.
 図25は、図23に示す頻度分布のうち、「方向b→e→h」(垂直方向)の頻度分布のグラフL9を示す図である。グラフL9において、ピークとなる差Eijの値は「1」であり、値「2」以上では極端に小さくなっている。ヒストグラム分析回路122bは、第2空間軸のノイズ量E2およびノイズ感度D2を「0」とする。 FIG. 25 is a diagram showing a frequency distribution graph L9 of “direction b → e → h” (vertical direction) in the frequency distribution shown in FIG. In the graph L9, the value of the peak difference Eij is “1”, and is extremely small when the value is “2” or more. The histogram analysis circuit 122b sets the noise amount E2 and noise sensitivity D2 of the second space axis to “0”.
 この結果、図26に示すように、全くノイズ除去していない映像を出力する。図26から分かる通り、元々ノイズが極端に少ない映像なので、ノイズを低減しなくても充分な画質が得られる。逆にノイズ除去をしてしまうとボケてしまうので好ましくない。
 このように、ノイズが極端に少ない映像か否かを、ヒストグラム分析回路122bは、上述の条件で判定し、ノイズが極端に少ないときは、ノイズ除去を行なわずないので、ボケを抑えるという効果が得られる。
As a result, as shown in FIG. 26, an image from which no noise is removed is output. As can be seen from FIG. 26, since the image is originally extremely low in noise, sufficient image quality can be obtained without reducing the noise. Conversely, if noise is removed, it will be blurred, which is not preferable.
As described above, the histogram analysis circuit 122b determines whether or not the video has extremely little noise under the above-described conditions. When the noise is extremely small, noise removal is not performed, and blurring is effectively suppressed. can get.
(第4の実施形態)
 以下、図面を参照して、本発明の第4の実施形態について説明する。本実施形態における液晶表示装置101は、NR検出回路114に変えて、NR検出回路114cを備える点のみが、図1における液晶表示装置101と異なる。その他の部分は、図1における液晶表示装置101と同様なので、説明を省略する。図27は、NR検出回路114cの構成を示す概略ブロック図である。NR検出回路114cは、ヒストグラム作成回路121a~121iと、ヒストグラム分析回路122cとを含む。同図において、図3A、図3Bの各部に対応する部分には同一の符号(121a~121k、131a~133a、131j~133j、134、135)を付け、その説明を省略する。
(Fourth embodiment)
Hereinafter, a fourth embodiment of the present invention will be described with reference to the drawings. The liquid crystal display device 101 in this embodiment is different from the liquid crystal display device 101 in FIG. 1 only in that an NR detection circuit 114c is provided instead of the NR detection circuit 114. Other parts are the same as those of the liquid crystal display device 101 in FIG. FIG. 27 is a schematic block diagram showing the configuration of the NR detection circuit 114c. The NR detection circuit 114c includes histogram creation circuits 121a to 121i and a histogram analysis circuit 122c. In this figure, the same reference numerals (121a to 121k, 131a to 133a, 131j to 133j, 134, 135) are assigned to the portions corresponding to the respective portions in FIGS. 3A and 3B, and the description thereof is omitted.
 ヒストグラム分析回路122cは、九つの頻度算出回路135によって算出された頻度分布に基づき、適用するノイズ除去を判定し、NR演算回路115がノイズ除去を行う際に用いるノイズ量Eおよびノイズ感度Dを算出する。本実施形態では、ヒストグラム分析回路122cは、九つの頻度算出回路135によって算出された頻度分布全てにおいて、ピークとなる差Eijが予め設定された値γ(例えば10)より大きいか否かを判定する。 The histogram analysis circuit 122c determines noise removal to be applied based on the frequency distribution calculated by the nine frequency calculation circuits 135, and calculates the noise amount E and noise sensitivity D used when the NR calculation circuit 115 performs noise removal. To do. In the present embodiment, the histogram analysis circuit 122c determines whether or not the peak difference Eij is greater than a preset value γ (for example, 10) in all the frequency distributions calculated by the nine frequency calculation circuits 135. .
 ヒストグラム分析回路122cは、頻度分布全てにおいて、ピークとなる差Eijが予め設定された値γ(例えば10)より大きいと判定したときは、水平方向および垂直方向の頻度分布から時間方向のノイズ量Etを決める。例えば、ヒストグラム分析回路122cは、水平方向の頻度分布においてピークとなる差Eijと、垂直方向の頻度分布においてピークとなる差Eijとの平均を、時間軸方向のノイズ量Etとし、強いノイズ低減処理を行うようにノイズ感度Dtを「0」とする。 When the histogram analysis circuit 122c determines that the peak difference Eij is greater than a preset value γ (for example, 10) in all the frequency distributions, the noise amount Et in the time direction is determined from the frequency distribution in the horizontal direction and the vertical direction. Decide. For example, the histogram analysis circuit 122c uses the average of the difference Eij that peaks in the horizontal frequency distribution and the difference Eij that peaks in the vertical frequency distribution as the noise amount Et in the time axis direction, and performs strong noise reduction processing. The noise sensitivity Dt is set to “0”.
 また、ヒストグラム分析回路122cは、頻度分布のいずれかにおいて、ピークとなる差Eijが予め設定された値γより大きくないと判定したときは、上述の各実施形態と同様に、各方向の頻度分布から各方向のノイズ量E、ノイズ感度Dを決める。 If the histogram analysis circuit 122c determines that the peak difference Eij is not larger than the preset value γ in any of the frequency distributions, the frequency distribution in each direction is the same as in the above embodiments. To determine the noise amount E and noise sensitivity D in each direction.
 図28は、ヒストグラム分析回路122cの動作を説明するフローチャートである。同図において、図6の各部に対応する部分には同一の符号(Sa2、Sa3、Sa5、Sa6)を付け、その説明を省略する。ヒストグラム分析回路122cは、まず、九つの頻度算出回路135によって算出された頻度分布全てにおいて、ピークとなる差Eijが予め設定された値γ(例えば10)より大きいか否かを判定する(Sd1)。ピークとなる差Eijに値γより大きくないものがあると判定したときは(Sd1-No)、ステップSa2に移行する。また、ステップSd1にて、ピークとなる差Eijは総て、値γより大きいと判定したときは(Sd1-Yes)、ステップSd4に移行する。ヒストグラム分析回路122cは、ステップSd4では、時間軸のノイズ量を、水平方法および垂直方向の頻度分布に基づき算出し、ステップSa5に移行する。 FIG. 28 is a flowchart for explaining the operation of the histogram analysis circuit 122c. In the figure, the same reference numerals (Sa2, Sa3, Sa5, Sa6) are assigned to the parts corresponding to the respective parts in FIG. The histogram analysis circuit 122c first determines whether or not the peak difference Eij is larger than a preset value γ (for example, 10) in all the frequency distributions calculated by the nine frequency calculation circuits 135 (Sd1). . When it is determined that there is a peak difference Eij that is not greater than the value γ (Sd1-No), the process proceeds to step Sa2. If it is determined in step Sd1 that all peak differences Eij are greater than the value γ (Sd1-Yes), the process proceeds to step Sd4. In step Sd4, the histogram analysis circuit 122c calculates the amount of time-axis noise based on the horizontal method and the frequency distribution in the vertical direction, and proceeds to step Sa5.
 図29は、マレーシアで録画したノイズの多い映像に対して、上記九つの頻度算出回路135が算出した頻度分布である。これらの頻度分布総てがブロードであり、値10以上でピークを取っている。このように、頻度分布のピークとなる差Eijが極端に大きくブロードな形をした映像では、画面全体に強いノイズが含まれている。 FIG. 29 is a frequency distribution calculated by the nine frequency calculation circuits 135 for a noisy video recorded in Malaysia. All of these frequency distributions are broad and peak at a value of 10 or more. In this way, in the video having the extremely large and wide difference Eij that is the peak of the frequency distribution, the entire screen includes strong noise.
 このような映像では、時間軸方向からノイズ量を決めるのが困難なので、上述のように、ヒストグラム分析回路122cは、水平方向および垂直方向の頻度分布から時間方向のノイズ量を決める。すなわち、ヒストグラム分析回路122cは、時間方向のノイズ量Etとして水平方向のノイズ量E1と垂直方向のノイズ量E2の平均を用いる。 In such a video, since it is difficult to determine the amount of noise from the time axis direction, as described above, the histogram analysis circuit 122c determines the amount of noise in the time direction from the frequency distribution in the horizontal direction and the vertical direction. That is, the histogram analysis circuit 122c uses the average of the noise amount E1 in the horizontal direction and the noise amount E2 in the vertical direction as the noise amount Et in the time direction.
 図30は、水平方向の頻度分布L10であり、ピークとなる差Eijは「6」である。図31は、垂直方向の頻度分布L11であり、ピークとなる差Eijは「7」である。この結果、時間軸のノイズ量Etは、(6+7)/2≒7となる。また、時間軸のノイズ感動Dtは極端に低い「0」とする。このように、時間軸については、ボケを許容し、強いノイズ除去を行う。
 また、第1空間軸については、ノイズ量E1は「6」、ノイズ感度D11は「0」とし、第2空間軸については、ノイズ量E2は「7」、ノイズ感度D2は「0」とする。したがって、第1空間軸および第2空間軸についても、ボケを許容し、強いノイズ除去を行う。
 しかし、元々ノイズが多い映像では、ボケを許容してもノイズを低減することにより画質を向上させることができるため、上述の各実施形態と同様の効果が得られる。
FIG. 30 shows a frequency distribution L10 in the horizontal direction, and the peak difference Eij is “6”. FIG. 31 shows a frequency distribution L11 in the vertical direction, and the peak difference Eij is “7”. As a result, the amount of noise Et on the time axis becomes (6 + 7) / 2≈7. Also, the noise sensitivity Dt on the time axis is extremely low “0”. As described above, the time axis is allowed to be blurred and strong noise removal is performed.
For the first space axis, the noise amount E1 is “6” and the noise sensitivity D11 is “0”. For the second space axis, the noise amount E2 is “7” and the noise sensitivity D2 is “0”. . Therefore, the first spatial axis and the second spatial axis are also allowed to be blurred and perform strong noise removal.
However, in an image with a lot of noise from the beginning, the image quality can be improved by reducing the noise even if the blur is allowed, so that the same effect as the above-described embodiments can be obtained.
 なお、上述の各実施形態において、画像処理装置は、ノイズ除去を輝度信号についてのみ行うとして説明したが、色差信号に対しても行ってもよい。
 また、上述の各実施形態において、ヒストグラム分析回路は、各軸のノイズ除去を実施するか否かを判定し、ノイズ除去を実施する軸のノイズ量を「0」よりも大きな値とし、実施しない軸のノイズ量を「0」とするとして説明したが、ノイズ除去を実施する軸のノイズ感度を画素値の最大値とするなど、NR演算回路115においてノイズが検出されなくなる値とするようにしてもよい。
In each of the above-described embodiments, the image processing apparatus has been described as performing noise removal only on a luminance signal, but may be performed on a color difference signal.
In each of the above-described embodiments, the histogram analysis circuit determines whether or not to perform noise removal for each axis, sets the noise amount of the axis for which noise removal is performed to a value larger than “0”, and does not perform it. Although it has been described that the amount of noise on the axis is “0”, the noise sensitivity of the axis on which noise removal is performed is set to a value at which noise is not detected in the NR arithmetic circuit 115, such as the maximum pixel value. Also good.
 また、上述の各実施形態において、1フレーム毎にノイズ量Eとノイズ感度Dとを算出するとして説明したが、複数フレーム毎に算出するようにしてもよい。このとき、複数フレーム分の頻度分布に基づき算出するようにしてもよいし、1フレーム分の頻度分布に基づき算出するようにしてもよい。 Further, in each of the above-described embodiments, the noise amount E and the noise sensitivity D are calculated for each frame, but may be calculated for a plurality of frames. At this time, it may be calculated based on the frequency distribution for a plurality of frames, or may be calculated based on the frequency distribution for one frame.
 また、図1など、上述の各実施形態における画像処理装置103の一部の機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することにより画像処理装置103を実現してもよい。なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。 Further, a program for realizing a part of the functions of the image processing apparatus 103 in each of the above-described embodiments such as FIG. 1 is recorded on a computer-readable recording medium, and the program recorded on the recording medium is stored in a computer system. The image processing apparatus 103 may be realized by being read and executed. Here, the “computer system” includes an OS and hardware such as peripheral devices.
 また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間の間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含むものとする。また上記プログラムは、前述した機能の一部を実現するためのものであっても良く、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであっても良い。 Further, the “computer-readable recording medium” means a storage device such as a flexible disk, a magneto-optical disk, a portable medium such as a ROM and a CD-ROM, and a hard disk incorporated in a computer system. Furthermore, the “computer-readable recording medium” dynamically holds a program for a short time like a communication line when transmitting a program via a network such as the Internet or a communication line such as a telephone line. In this case, a volatile memory in a computer system serving as a server or a client in that case, and a program that holds a program for a certain period of time are also included. The program may be a program for realizing a part of the functions described above, and may be a program capable of realizing the functions described above in combination with a program already recorded in a computer system.
 以上、この発明の実施形態を図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計変更等も含まれる。 As described above, the embodiment of the present invention has been described in detail with reference to the drawings. However, the specific configuration is not limited to this embodiment, and includes design changes and the like without departing from the gist of the present invention.
 本発明は、動画像に含まれるノイズを低減して表示するテレビなどに適用できる。 The present invention can be applied to a television or the like that displays with reduced noise included in a moving image.
 101  液晶表示装置
 102  液晶モジュール
 103  画像処理装置
 104  検波回路
 105  LCD
 106  TCON
 111  Y/C分離回路
 112  NR回路
 113  フレームメモリ
 114、114a、114b、114c  NR検出回路
 115  NR演算回路
 116  遅延回路
 121a~121k  ヒストグラム作成回路
 122、122a、122b、122c  ヒストグラム分析回路
 131a、131j  遅延回路
 132a、132j  遅延回路
 133a、133j  遅延回路
 134  条件解析回路
 135  頻度算出回路
 141  時間軸NR回路
 142  第1空間軸NR回路
 143  第2空間軸NR回路
 144  第1空間軸DL回路
 145  第1空間軸DL回路
 146  第1空間軸NR演算回路
 147  第2空間軸DL回路
 148  第2空間軸DL回路
 149  第2空間軸NR演算回路
 151a、151b  遅延回路
DESCRIPTION OF SYMBOLS 101 Liquid crystal display device 102 Liquid crystal module 103 Image processing apparatus 104 Detection circuit 105 LCD
106 TCON
111 Y / C separation circuit 112 NR circuit 113 Frame memory 114, 114a, 114b, 114c NR detection circuit 115 NR operation circuit 116 delay circuit 121a to 121k Histogram creation circuit 122, 122a, 122b, 122c Histogram analysis circuit 131a, 131j delay circuit 132a, 132j Delay circuit 133a, 133j Delay circuit 134 Condition analysis circuit 135 Frequency calculation circuit 141 Time axis NR circuit 142 First space axis NR circuit 143 Second space axis NR circuit 144 First space axis DL circuit 145 First space axis DL Circuit 146 First spatial axis NR arithmetic circuit 147 Second spatial axis DL circuit 148 Second spatial axis DL circuit 149 Second spatial axis NR arithmetic circuit 151a, 151b Delay circuit

Claims (11)

  1.  動画像のノイズ除去を行う画像処理装置であって、
     動画像を構成する処理画素を中心とし、前記処理画素の前フレームおよび後フレームを通る複数の第1の線を、前記処理画素各々についてとり、該第1の線の各々に関して、ノイズ成分の大きさの頻度分布を作成するヒストグラム作成部と、
     前記頻度分布に基づき、ノイズ除去を行なうノイズ量を決めるヒストグラム分析部と、
     前記処理画素を中心とする複数の第2の線をとり、該第2の線の各々について、前記ノイズ量に基づき、ノイズ除去を行うノイズ除去演算部と
     を含む画像処理装置。
    An image processing apparatus for removing noise from a moving image,
    A plurality of first lines centering on the processing pixels constituting the moving image and passing through the previous frame and the subsequent frame of the processing pixels are taken for each of the processing pixels, and the magnitude of the noise component for each of the first lines A histogram creation unit for creating a frequency distribution of
    A histogram analysis unit that determines a noise amount for noise removal based on the frequency distribution;
    An image processing apparatus comprising: a plurality of second lines centered on the processing pixel; and a noise removal calculation unit that removes noise based on the amount of noise for each of the second lines.
  2.  前記第1の線のうちの一つの線に関するノイズ成分の大きさは、該一つの線上の画素であって、前記前フレームにおける画素の値と前記後フレームにおける画素の値とが共に前記処理画素の値よりも大きいか、または小さいときは、前記前フレームにおける画素の値と前記後フレームにおける画素の値との平均値と、前記処理画素の値との差の絶対値に等しい請求項1に記載の画像処理装置。 The magnitude of the noise component related to one of the first lines is a pixel on the one line, and the value of the pixel in the previous frame and the value of the pixel in the subsequent frame are both the processed pixels. 2 is equal to an absolute value of a difference between an average value of a pixel value in the previous frame and a pixel value in the subsequent frame and a value of the processing pixel. The image processing apparatus described.
  3.  前記複数の第1の線は、
     前記処理画素および前記処理画素に隣接する画素と同じ位置の、前記前フレームにおける画素と前記後フレームにおける画素とを結ぶ線であって、前記処理画素を中心とする線である請求項2に記載の画像処理装置。
    The plurality of first lines are:
    The line connecting the pixel in the previous frame and the pixel in the subsequent frame at the same position as the processing pixel and a pixel adjacent to the processing pixel, and a line centering on the processing pixel. Image processing apparatus.
  4.  前記複数の第2の線のうちの一つは、前記処理画素と同じ位置の、前記前フレームにおける画素と前記後フレームにおける画素とを結ぶ時間軸方向の線である請求項3に記載の画像処理装置。 4. The image according to claim 3, wherein one of the plurality of second lines is a line in a time axis direction connecting a pixel in the previous frame and a pixel in the subsequent frame at the same position as the processing pixel. Processing equipment.
  5.  前記第1の線のうちの一つは、前記時間軸方向の線であり、
     前記ヒストグラム分析部は、前記第1の線に関する頻度分布のうち、前記時間軸方向の線に関する頻度分布と、前記ヒストグラム作成部によって作成された他の頻度分布とを比較し、前記時間軸方向の線に関する頻度分布のピークが、全ての前記他の頻度分布のピークより大きいときは、前記時間軸方向の線についてノイズ除去を行う際の前記ノイズ量を0より大きい値とする請求項4に記載の画像処理装置。
    One of the first lines is a line in the time axis direction,
    The histogram analysis unit compares the frequency distribution related to the line in the time axis direction among the frequency distributions related to the first line with another frequency distribution created by the histogram creation unit, and 5. The noise amount when noise removal is performed on the line in the time axis direction is set to a value larger than 0 when the peak of the frequency distribution related to the line is larger than the peaks of all the other frequency distributions. Image processing apparatus.
  6.  前記第1の線のうちの一つは、前記時間軸方向の線であり、
     前記ヒストグラム分析部は、前記第1の線に関する頻度分布のうち、前記時間軸方向の線に関する頻度分布と、前記ヒストグラム作成部によって作成された他の頻度分布とを比較し、前記他の頻度分布のうちの少なくとも一つの頻度分布のピークが、前記時間軸方向の線に関する頻度分布のピークより所定の量以上大きく、かつ、前記一つの頻度分布がピークとなるノイズ成分の大きさが、前記時間軸方向の線に関する頻度分布がピークとなるノイズ成分の大きさより小さいときは、前記時間軸方向の線についてノイズ除去を行う際の前記ノイズ量を0とする請求項4に記載の画像処理装置。
    One of the first lines is a line in the time axis direction,
    The histogram analysis unit compares the frequency distribution related to the line in the time axis direction among the frequency distributions related to the first line and the other frequency distribution created by the histogram creation unit, and the other frequency distribution At least one of the frequency distribution peaks is greater than the frequency distribution peak for the line in the time axis direction by a predetermined amount or more, and the magnitude of the noise component at which the one frequency distribution peaks is the time. 5. The image processing apparatus according to claim 4, wherein when the frequency distribution related to the axial line is smaller than a peak noise component, the noise amount when noise is removed from the temporal axis line is set to 0. 6.
  7.  前記ヒストグラム分析部は、前記第1の線に関する頻度分布の全てにおいて、ノイズ成分の大きさが1のときにピークとなり、かつ、ノイズ成分の大きさが1を超える値では頻度が該ピークより所定の量以上小さいときは、前記ノイズ量を0とする請求項4に記載の画像処理装置。 The histogram analysis unit has a peak when the noise component size is 1 in all of the frequency distributions related to the first line, and when the noise component size exceeds 1, the frequency is predetermined from the peak. The image processing apparatus according to claim 4, wherein the noise amount is set to 0 when the amount is less than or equal to a predetermined amount.
  8.  前記第1の線のうちの一つは、前記時間軸方向の線であり、
     前記ヒストグラム分析部は、前記第1の線に関する頻度分布の全てにおいて、ピークとなるノイズ成分の大きさが、予め設定された値γより大きいときは、前記時間軸方向の線についてノイズ除去を行う際の前記ノイズ量を、前記時間軸方向の線以外の第1の線に関する頻度分布に基づき決定する請求項4に記載の画像処理装置。
    One of the first lines is a line in the time axis direction,
    The histogram analysis unit performs noise removal on the line in the time axis direction when the magnitude of the peak noise component is greater than a preset value γ in all the frequency distributions related to the first line. The image processing apparatus according to claim 4, wherein the noise amount at the time is determined based on a frequency distribution relating to a first line other than the line in the time axis direction.
  9.  前記複数の第2の線のうち、前記時間軸方向の線を除く線は、前記処理画素と同じフレームにあり、前記処理画素と隣接する画素を結ぶ線であって、前記処理画素を通る線であること請求項4に記載の画像処理装置。 Of the plurality of second lines, a line excluding the line in the time axis direction is in the same frame as the processing pixel, and is a line connecting the processing pixel and an adjacent pixel, and passes through the processing pixel. The image processing apparatus according to claim 4.
  10.  前記ヒストグラム分析部は、前記ヒストグラム作成部により作成された前記頻度分布のうちの少なくとも一つがピークとなるノイズ成分の大きさに応じて、前記ノイズ量を決定する請求項1に記載の画像処理装置。 The image processing apparatus according to claim 1, wherein the histogram analysis unit determines the amount of noise according to a magnitude of a noise component in which at least one of the frequency distributions created by the histogram creation unit has a peak. .
  11.  動画像のノイズ除去を行う画像処理方法であって、
     動画像を構成する処理画素を中心とし、前記処理画素の前フレームおよび後フレームを通る第1の複数の線をとり、該第1の線の各々に関して、ノイズ成分の大きさの頻度分布を作成する第1の過程と、
     前記頻度分布に基づき、ノイズ除去を行なうノイズ量を決める第2の過程と、
     処理画素を中心とする第2の複数の線をとり、該第2の線の各々について、前記ノイズ量に基づき、ノイズ除去を行う第3の過程と
     を含む画像処理方法。
    An image processing method for removing noise from a moving image,
    Taking a first plurality of lines that pass through the previous frame and the subsequent frame of the processing pixel with the processing pixel constituting the moving image as the center, a frequency distribution of the size of the noise component is created for each of the first line A first process to
    A second step of determining a noise amount for noise removal based on the frequency distribution;
    A third step of taking a second plurality of lines centered on the processing pixel and performing noise removal on each of the second lines based on the amount of noise.
PCT/JP2011/068410 2010-10-29 2011-08-12 Image processing device and image processing method WO2012056792A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010244698 2010-10-29
JP2010-244698 2010-10-29

Publications (1)

Publication Number Publication Date
WO2012056792A1 true WO2012056792A1 (en) 2012-05-03

Family

ID=45993522

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/068410 WO2012056792A1 (en) 2010-10-29 2011-08-12 Image processing device and image processing method

Country Status (1)

Country Link
WO (1) WO2012056792A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103702016A (en) * 2013-12-20 2014-04-02 广东威创视讯科技股份有限公司 Video denoising method and device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08201464A (en) * 1995-01-23 1996-08-09 Nippon Hoso Kyokai <Nhk> Method for detecting s/n ratio of television video signal
JP2000341559A (en) * 1999-06-01 2000-12-08 Sony Corp Device and method for processing image and device and method for estimating noise quantity
JP2006186622A (en) * 2004-12-27 2006-07-13 Toshiba Corp Image processing device and image processing method
JP2009003599A (en) * 2007-06-20 2009-01-08 Sony Corp Measurement device and method, program, and recording medium

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08201464A (en) * 1995-01-23 1996-08-09 Nippon Hoso Kyokai <Nhk> Method for detecting s/n ratio of television video signal
JP2000341559A (en) * 1999-06-01 2000-12-08 Sony Corp Device and method for processing image and device and method for estimating noise quantity
JP2006186622A (en) * 2004-12-27 2006-07-13 Toshiba Corp Image processing device and image processing method
JP2009003599A (en) * 2007-06-20 2009-01-08 Sony Corp Measurement device and method, program, and recording medium

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103702016A (en) * 2013-12-20 2014-04-02 广东威创视讯科技股份有限公司 Video denoising method and device
CN103702016B (en) * 2013-12-20 2017-06-09 广东威创视讯科技股份有限公司 Vedio noise reduction method and device

Similar Documents

Publication Publication Date Title
KR101009999B1 (en) Contour correcting method, image processing device and display device
JP4290193B2 (en) Image processing device
TWI590661B (en) Image processing apparatus, image processing method, image processing program and recording medium
US7881550B2 (en) Visual processing apparatus, visual processing method, program, recording medium, display device, and integrated circuit
US20080123979A1 (en) Method and system for digital image contour removal (dcr)
JPH10126649A (en) Flicker reduction circuit
WO2008067319A2 (en) System and method for processing videos and images to a determined quality level
US20080152253A1 (en) Noise cancellation
US8659684B2 (en) Image processing apparatus, program, method and image capturing system
EP1933556A2 (en) TV user interface and processing for personal video players
US8223272B2 (en) Image processing circuit and image processing method thereof
JP4768510B2 (en) Image quality improving apparatus and image quality improving method
US8031945B2 (en) Image-processing device, image-processing method, program of image-processing method, and recording medium recording program of image-processing method
US20120314969A1 (en) Image processing apparatus and display device including the same, and image processing method
WO2012056792A1 (en) Image processing device and image processing method
US10264212B1 (en) Low-complexity deinterlacing with motion detection and overlay compensation
US20060197878A1 (en) Circuits, methods, and computer program products for reducing cross-color artifacts in video data
US20140307169A1 (en) Noise reduction apparatus, display apparatus, noise reduction method, and noise reduction program
WO2011145365A1 (en) Image processing system and display device
WO2012124516A1 (en) Noise reduction processing device, and display device
JP7300164B2 (en) noise reduction method
EP0863666A2 (en) Multi-dimensional video filters
JP2006340395A (en) Color conversion device and color conversion method
WO2012114373A1 (en) Image signal processing method and device
JP6064462B2 (en) Noise reduction device, processor, video display device, noise reduction method and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11835933

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11835933

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP