WO2011142070A1 - Liquid crystal display device - Google Patents
Liquid crystal display device Download PDFInfo
- Publication number
- WO2011142070A1 WO2011142070A1 PCT/JP2011/001366 JP2011001366W WO2011142070A1 WO 2011142070 A1 WO2011142070 A1 WO 2011142070A1 JP 2011001366 W JP2011001366 W JP 2011001366W WO 2011142070 A1 WO2011142070 A1 WO 2011142070A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- liquid crystal
- substrate
- display device
- crystal display
- layer
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1339—Gaskets; Spacers; Sealing of cells
- G02F1/13394—Gaskets; Spacers; Sealing of cells spacers regularly patterned on the cell subtrate, e.g. walls, pillars
Definitions
- the present invention relates to a liquid crystal display device including a spacer for regulating the thickness of a liquid crystal layer.
- liquid crystal display devices having the advantages of being thin and lightweight, being able to be driven at a low voltage, and consuming little power are widely used. in use.
- a liquid crystal display device includes a pair of substrates (that is, a thin film transistor (TFT) substrate and a color filter (CF) substrate) disposed opposite to each other, and a liquid crystal layer provided between the pair of substrates.
- TFT thin film transistor
- CF color filter
- the liquid crystal display device bonds a pair of substrates to each other and regulates the thickness of the liquid crystal layer (that is, the cell gap) and a sealing material provided in a frame shape to enclose the liquid crystal between the substrates.
- a plurality of spacers photo spacers.
- the CF substrate includes a colored layer of a red layer R, a green layer G, and a blue layer B provided for each pixel, and a black matrix provided between the colored layers and a black matrix that is a light shielding film. Has a filter.
- the spacers are adjacent to each other. It is arranged at the boundary portion of the colored layer and overlapping with the black matrix.
- the spacer is provided on the portion where the colored layer is raised.
- it becomes difficult to regulate the thickness of the liquid crystal layer there is a problem that the thickness of the liquid crystal layer is partially different, the thickness of the liquid crystal layer becomes non-uniform, and display unevenness occurs.
- an overcoat layer (flattening film) is provided on the surface of the color filter in order to avoid unevenness in the thickness of the liquid crystal layer and suppress the occurrence of display unevenness.
- a liquid crystal display device in which a spacer is provided at a boundary portion between adjacent colored layers is disclosed (for example, see Patent Document 1).
- the liquid crystal display device described in Patent Document 1 has a configuration in which an overcoat layer is provided as described above, the acrylic resin for forming the overcoat layer is irradiated with ultraviolet rays for controlling orientation.
- gas residual solvent or low molecular component of acrylic resin
- bubbles are generated inside the liquid crystal layer.
- the display quality of the liquid crystal display device is reduced by the bubbles, and the yield of the liquid crystal display device is reduced. There was a problem.
- the present invention has been made in view of the above-described problems, and provides a liquid crystal display device that can uniformly regulate the thickness of a liquid crystal layer and prevent a decrease in yield due to an overcoat layer. With the goal.
- a liquid crystal display device includes a first substrate and a second filter that is disposed to face the first substrate and has a color filter in which pixels including a colored layer and a black matrix are arranged.
- the spacer is arranged in the region where the colored layer of the pixel is arranged, the thickness of the liquid crystal layer is made uniform by the spacer without providing an overcoat layer on the surface of the color filter. Can be regulated. Accordingly, since the generation of gas in the overcoat layer can prevent the generation of bubbles in the liquid crystal layer, the display quality of the liquid crystal display device can be prevented from being lowered, and the yield of the liquid crystal display device can be reduced. Can be prevented.
- the spacer is preferably formed by a photolithography method.
- the spacer can be formed at an arbitrary position of the liquid crystal display device.
- the spacer is preferably formed of a photosensitive resin material.
- the spacer can be formed from an inexpensive and versatile resin material.
- the first substrate may be formed with the first electrode on the liquid crystal layer side
- the second substrate may be formed with the second electrode on the liquid crystal layer side.
- the spacer is preferably provided on the surface of the second electrode.
- the first substrate may be formed with the first electrode on the liquid crystal layer side
- the second substrate may be formed with the second electrode on the liquid crystal layer side.
- the spacer is preferably provided on the surface of the first electrode.
- the liquid crystal layer is preferably formed of ASV liquid crystal.
- the thickness of the liquid crystal layer can be uniformly regulated by the spacer without providing an overcoat layer, and the deterioration of the display quality and the yield of the liquid crystal display device due to the overcoat layer can be prevented. can do.
- FIG. 1 is a plan view of a liquid crystal display device according to an embodiment of the present invention. It is sectional drawing of the liquid crystal display device which concerns on embodiment of this invention. It is a top view which shows the adjacent pixel in the liquid crystal display device which concerns on embodiment of this invention. It is sectional drawing which shows the TFT substrate which comprises the liquid crystal display device which concerns on embodiment of this invention. It is sectional drawing of the display part of the liquid crystal display device which concerns on embodiment of this invention. It is a figure which shows the whole structure of the color filter of the liquid crystal display device which concerns on embodiment of this invention. It is sectional drawing which shows the modification of the liquid crystal display device which concerns on embodiment of this invention.
- FIG. 1 is a plan view of a liquid crystal display device according to an embodiment of the present invention
- FIG. 2 is a cross-sectional view of the liquid crystal display device according to an embodiment of the present invention
- 3 is a plan view showing adjacent pixels in the liquid crystal display device according to the embodiment of the present invention
- FIG. 4 is a cross-sectional view showing a TFT substrate constituting the liquid crystal display device according to the embodiment of the present invention. It is.
- FIG. 5 is a cross-sectional view of the display unit of the liquid crystal display device according to the embodiment of the present invention
- FIG. 6 is a diagram illustrating the overall configuration of the color filter of the liquid crystal display device according to the embodiment of the present invention. .
- the liquid crystal display device 1 includes a TFT substrate 2 that is a first substrate, a CF substrate 3 that is a second substrate disposed opposite to the TFT substrate 2, a TFT substrate 2, And a liquid crystal layer 4 which is a display medium layer sandwiched between CF substrates 3.
- the liquid crystal display device 1 is sandwiched between the TFT substrate 2 and the CF substrate 3, and a seal provided in a frame shape for adhering the TFT substrate 2 and the CF substrate 3 to each other and enclosing the liquid crystal layer 4.
- the material 40 is provided.
- the sealing material 40 is formed so as to go around the liquid crystal layer 4, and the TFT substrate 2 and the CF substrate 3 are bonded to each other via the sealing material 40.
- the liquid crystal display device 1 is formed in a rectangular shape, and in the side direction of the liquid crystal display device 1, the TFT substrate 2 protrudes from the CF substrate 3.
- a plurality of display wirings such as a gate bus line and a source bus line, which will be described later, are drawn out to form a terminal region R.
- a display area D for displaying an image is defined in an area where the TFT substrate 2 and the CF substrate 3 overlap.
- the display area D is configured by arranging a plurality of pixels, which are the minimum unit of an image, in a matrix.
- the sealing material 40 is provided in a rectangular frame shape surrounding the entire periphery of the display area D.
- the liquid crystal display device 1 includes a plurality of spacers 25 for restricting the thickness (that is, the cell gap) of the liquid crystal layer 4 to be uniform in the display region D.
- the source bus line 14 and the gate bus line 11 are provided so as to intersect each other in each of the plurality of pixels 30 included in the liquid crystal display device 1.
- the gate is connected to the gate bus line 11 near the intersection of the two signal lines, the source is connected to the source bus line 14 near the intersection, and the drain is connected to the pixel electrode 19 which is the first electrode.
- a thin film transistor (TFT) 5 is provided as a connected switching element. The TFT 5 is turned on when the gate bus line 11 is in a selected state, and is turned off when the gate bus line 11 is in a non-selected state.
- the pixel electrode 19 provided in each of the plurality of pixels 30 is connected to the source bus line 14 via the TFT 5, and the CF substrate 3 is connected to the second electrode so as to face the pixel electrode 19.
- a certain common electrode (counter electrode) 24 is disposed (see FIG. 5).
- the liquid crystal layer 4 is sandwiched between the pixel electrode 19 and the common electrode 24 as a display medium layer. Further, the auxiliary capacitance line 29 is formed so as to extend in parallel with the plurality of gate bus lines 11.
- each pixel 30 is provided in each region surrounded by the gate bus line 11 and the source bus line 14.
- the TFT substrate 2 includes an insulating substrate 6 such as a glass substrate, a plurality of gate bus lines 11 extending in parallel with each other on the insulating substrate 6, and each gate bus line 11. And a gate insulating film 12 provided so as to cover.
- the TFT substrate 2 includes a plurality of source bus lines 14 extending in parallel to each other in a direction orthogonal to the gate bus lines 11 on the gate insulating film 12, and the gate bus lines 11 and the source bus lines 14.
- a plurality of TFTs 5 provided at each intersection, and a first interlayer insulating film 15 and a second interlayer insulating film 16 that are interlayer insulating films 10 provided in order so as to cover each source bus line 14 and each TFT 5. I have.
- the TFT substrate 2 is provided in a matrix on the second interlayer insulating film 16, a plurality of pixel electrodes 19 connected to each of the TFTs 5, and an alignment film 9 provided so as to cover the pixel electrodes 19. And have.
- the pixel electrode 19 is formed on the liquid crystal layer 4 side.
- the pixel electrode 19 is formed with a slit 19 a for regulating the alignment of the liquid crystal layer 4.
- a predetermined voltage is not correctly applied to the liquid crystal layer 4, so that the transmittance is lowered. For example, during white display, the slit 19a is displayed in black.
- the TFT 5 includes a gate electrode 17 in which each gate bus line 11 protrudes to the side, a gate insulating film 12 provided so as to cover the gate electrode 17, and a gate insulating film 12 on the gate insulating film 12. And a semiconductor layer 13 provided in an island shape at a position overlapping the gate electrode 17.
- the TFT 5 includes a source electrode 18 and a drain electrode 20 provided on the semiconductor layer 13 so as to face each other.
- the source electrode 18 is a portion where each source bus line 14 protrudes to the side.
- the drain electrode 20 is connected to the pixel electrode 19 through a contact hole 31 formed in the first interlayer insulating film 15 and the second interlayer insulating film 16.
- the semiconductor layer 13 includes a lower intrinsic amorphous silicon layer 13 a and an upper n + amorphous silicon layer 13 b doped with phosphorus, and is exposed from the source electrode 18 and the drain electrode 20.
- the intrinsic amorphous silicon layer 13a that constitutes the channel region.
- liquid crystal display device 1 of the present embodiment is a transmissive device, and a transmissive region T is defined in the display unit of the liquid crystal display device 1 as shown in FIG.
- the material constituting the first interlayer insulating film 15 is not particularly limited, and examples thereof include silicon oxide (SiO 2 ) and silicon nitride (SiNx (x is a positive number)).
- the CF substrate 3 includes an insulating substrate 21 such as a glass substrate, a color filter 22 provided on the insulating substrate 21, and a common electrode 24 provided so as to cover the color filter 22. It has.
- the CF substrate 3 includes a spacer 25 provided in a columnar shape on the surface of the common electrode 24 and an alignment film 26 provided so as to cover the common electrode 24 and the spacer 25.
- the common electrode 24 is formed on the liquid crystal layer 4 side.
- the color filter 22 includes a plurality of types of colored layers 28 (that is, a red layer R, a green layer G, and a blue layer B) provided for each pixel E, as shown in FIGS. And a black matrix 27 which is a light shielding film.
- the black matrix 27 is provided between the adjacent colored layers 28 and has a role of partitioning the plurality of types of colored layers 28.
- the black matrix 27 is made of a metal material such as Ta (tantalum), Cr (chromium), Mo (molybdenum), Ni (nickel), Ti (titanium), Cu (copper), Al (aluminum), or a black pigment such as carbon.
- a metal material such as Ta (tantalum), Cr (chromium), Mo (molybdenum), Ni (nickel), Ti (titanium), Cu (copper), Al (aluminum), or a black pigment such as carbon.
- a metal material such as Ta (tantalum), Cr (chromium), Mo (molybdenum), Ni (nickel), Ti (titanium), Cu (copper), Al (aluminum), or a black pigment such as carbon.
- the spacer 25 is made of, for example, an acrylic photosensitive resin material and is formed by a photolithography method.
- the liquid crystal layer 4 is made of, for example, a nematic liquid crystal material having electro-optical characteristics.
- the liquid crystal layer 4 may be formed of ASV (Advanced Super View) liquid crystal from the viewpoint of realizing a wide viewing angle and high-speed response.
- ASV Advanced Super View
- the transmissive liquid crystal display device 1 configured as described above is configured to transmit light from a backlight (not shown) incident from the TFT substrate 2 side in the transmissive region T.
- one pixel E is formed for each pixel electrode 19.
- a gate signal is sent from the gate bus line 11 to turn on the TFT 5 in each pixel E
- a source signal is sent from the bus line 14 and a predetermined charge is written to the pixel electrode 19 via the source electrode 18 and the drain electrode 20.
- a potential difference is generated between the pixel electrode 19 and the common electrode 24, and a predetermined voltage is applied to the liquid crystal layer 4.
- an image is displayed by adjusting the transmittance of light incident from the backlight by utilizing the change in the alignment state of the liquid crystal molecules according to the magnitude of the applied voltage. It becomes the composition which is done.
- the spacer 25 is a region where the colored layer 28 of the pixel E is disposed (that is, a region where the colored layer 28 is provided in the pixel E, A region in which the black matrix 27 is not provided (hereinafter referred to as a “colored layer region”).
- the spacer 25 With such a configuration, as shown in FIG. 5, it is necessary to dispose the spacer 25 in a boundary portion between the adjacent colored layers 28 and in a portion where the colored layer 28 is raised on the surface of the black matrix 27. Disappears. Accordingly, the thickness of the liquid crystal layer 4 can be uniformly regulated by the spacer 25 without providing an overcoat layer on the surface of the color filter 22. Therefore, it is possible to prevent the generation of bubbles in the liquid crystal layer 4 due to the generation of gas by the overcoat layer.
- the source bus line 14 is arranged in an area (hereinafter referred to as “black matrix area”) Eb in which the black matrix 27 of the pixel E is provided. 25 is arranged in the colored layer region Ea of the pixel E, and is not provided in the black matrix region Eb. Therefore, a cross line where the source bus line 14 which is a part of the black matrix region Eb and the auxiliary capacitance line 29 intersect each other. In the region C (see FIG. 3), an area for providing the spacer 25 is not necessary. Therefore, the area of the cross region C can be reduced.
- the spacer 25 and the contact hole 31 form an alignment center having a function of strongly controlling the alignment of the liquid crystal layer 4, but the spacer 25 is contacted with the contact hole 31 in plan view.
- the manufacturing method of the present embodiment includes a TFT substrate manufacturing process, a CF substrate manufacturing process, and a substrate bonding process.
- ⁇ TFT substrate manufacturing process> First, for example, a titanium film, an aluminum film, a titanium film, and the like are sequentially formed on the entire insulating substrate 6 by sputtering, and then patterned by photolithography, so that the gate bus line 11 and the gate electrode 17 have a thickness. Form about 4000 mm.
- a silicon nitride film or the like is formed on the entire substrate on which the gate bus line 11 and the gate electrode 17 are formed by a plasma CVD (Chemical Vapor Deposition) method, and the gate insulating film 12 has a thickness of about 4000 mm. Form.
- an intrinsic amorphous silicon film (thickness of about 2000 mm) and phosphorus-doped n + amorphous silicon film (thickness of about 500 mm) are formed on the entire substrate on which the gate insulating film 12 is formed by plasma CVD. Films are continuously formed. Thereafter, patterning in an island shape on the gate electrode 17 by photolithography is performed to form a semiconductor formation layer in which an intrinsic amorphous silicon layer and an n + amorphous silicon layer are stacked.
- an aluminum film and a titanium film are sequentially formed on the entire substrate on which the semiconductor formation layer has been formed by sputtering, and then patterned by photolithography to form the source bus line 14, the source electrode 18 and The drain electrode 20 is formed to a thickness of about 2000 mm.
- the n + amorphous silicon layer of the semiconductor formation layer is etched using the source electrode 18 and the drain electrode 20 as a mask to pattern the channel region, thereby forming the semiconductor layer 13 and the TFT 5 including the semiconductor layer 13.
- a silicon nitride film is formed on the entire substrate on which the TFT 5 is formed by plasma CVD, and the first interlayer insulating film 15 and the second interlayer insulating film 16 are formed to a thickness of about 4000 mm.
- first interlayer insulating film 15 and the second interlayer insulating film 16 are etched to form contact holes 31.
- a transparent conductive film made of an ITO film or the like is formed on the entire substrate on the second interlayer insulating film 16 by a sputtering method, and then patterned by photolithography to form the pixel electrode 19 on the insulating substrate 6.
- a polyimide resin is applied to the entire substrate on which the pixel electrode 19 is formed by a printing method, and then a rubbing process is performed to form the alignment film 9 with a thickness of about 1000 mm.
- the TFT substrate 2 can be manufactured as described above.
- a positive photosensitive resin in which black pigments such as carbon fine particles are dispersed is applied to the entire substrate of the insulating substrate 21 such as a glass substrate by a spin coat method, and the applied photosensitive resin is photo-coated. Exposure through a mask. Thereafter, the black matrix 27 is formed to a thickness of about 2.0 ⁇ m by developing and heating.
- an acrylic photosensitive resin colored in red, green, or blue is applied onto the substrate on which the black matrix 27 is formed, and the applied photosensitive resin is exposed through a photomask.
- patterning is performed by developing to form a colored layer (for example, red layer R) 28 of a selected color with a thickness of about 1.0 ⁇ m, for example.
- the same process is repeated for the other two colors to form the other two colored layers 28 (for example, the green layer G and the blue layer B), and the red layer R, the green layer G, and the blue layer B.
- the color filter 22 provided with is formed.
- an ITO film is formed on the substrate on which the color filter 22 is formed by sputtering, and then patterned by photolithography to form the common electrode 24 with a thickness of about 1500 mm.
- the spacer 25 is formed by a photolithography method. More specifically, an acrylic photosensitive resin is applied to the entire substrate on which the common electrode 24 is formed by spin coating, and the applied photosensitive resin is exposed through a photomask. Thereafter, the spacer 25 is formed to a thickness of about 4 ⁇ m by developing. At this time, as described above, the spacer 25 is disposed in the colored layer region Ea of the pixel E.
- a polyimide resin is applied to the entire substrate on which the spacers 25 are formed by a printing method, and then a rubbing process is performed to form the alignment film 26 with a thickness of about 1000 mm.
- the CF substrate 3 can be manufactured as described above.
- a seal material 40 made of a UV-curing and thermosetting resin or the like is drawn in a frame shape on the CF substrate 3 produced in the CF substrate production step.
- a liquid crystal material is dropped onto a region inside the sealing material 40 on the CF substrate 3 on which the sealing material 40 is drawn.
- the bonded body is released to atmospheric pressure.
- the front and back surfaces of the bonded body are pressurized.
- the sealing material 40 is cured by heating the bonded body.
- the liquid crystal display device 1 shown in FIG. 1 can be manufactured.
- the spacer 25 is arranged in the colored layer region Ea of the pixel E. Accordingly, the thickness of the liquid crystal layer 4 can be uniformly regulated by the spacer 25 without providing an overcoat layer on the surface of the color filter 22. As a result, it is possible to prevent the generation of bubbles in the liquid crystal layer 4 due to the generation of gas by the overcoat layer, and thus it is possible to prevent the display quality of the liquid crystal display device 1 from being deteriorated. A decrease in yield can be prevented.
- the spacer 25 is disposed in the colored layer region Ea of the pixel E and is not provided in the black matrix region Eb, the source bus line 14 and the auxiliary capacitance line which are part of the black matrix region Eb.
- the area for providing the spacer 25 becomes unnecessary. Accordingly, since the area of the cross region C can be reduced, the crosstalk phenomenon caused by the parasitic capacitance can be reduced, and the display quality can be improved. In addition, leakage defects can be reduced and yield can be improved.
- the spacer is formed by a photolithography method. Therefore, the spacer 25 can be formed at an arbitrary position of the liquid crystal display device 1. For example, in the transmissive region T of the liquid crystal display device 1, the spacer 25 can be formed in a portion where the transmittance is reduced (for example, the portion of the slit 19a of the pixel electrode 19 described above). As a result, even when the spacer 25 is configured to be disposed in the colored layer region Ea of the pixel E, it is possible to prevent the aperture ratio and the transmittance from being lowered, thereby preventing the optical characteristics from being lowered. it can.
- a plurality of alignment center forming structures can be arranged in a superimposed manner in the colored layer region Ea of the pixel E. Accordingly, since the configuration of the alignment center can be simplified, the alignment of the liquid crystal layer 4 can be easily controlled, and as a result, the display quality can be improved.
- the spacer 25 is formed of a photosensitive resin material. Therefore, the spacer 25 can be formed of a cheap and versatile resin material.
- the liquid crystal layer 4 is formed of ASV liquid crystal. Therefore, in the liquid crystal display device 1 using the ASV liquid crystal capable of obtaining a high viewing angle and a high-speed response, it is possible to prevent the display quality from being lowered and the yield from being lowered.
- the spacer 25 is provided on the surface of the common electrode 24 of the CF substrate 3.
- the spacer 25 may be provided on the surface of the pixel electrode 19 of the TFT substrate 2. good.
- the same effects as the above (1) to (5) can be obtained.
- the same effect as the above (6) can be obtained by using the liquid crystal layer 4 formed of ASV liquid crystal.
- the method of the liquid crystal display device 1 of the above embodiment includes TN (Twisted Nematic), VA (Vertical Alignment), MVA (Multi-domain Vertical Alignment), ASV (Advanced Super View), IPS (In-Plane-Switching), etc. Any method may be used.
- the present invention is useful for a liquid crystal display device including a spacer for regulating the thickness of a liquid crystal layer.
- Liquid crystal display device TFT substrate (first substrate) 3 CF substrate (second substrate) 4 Liquid crystal layer 19 Pixel electrode (first electrode) 22 Color filter 24 Common electrode (second electrode) 25 Spacer 27 Black matrix 28 Colored layer E Pixel Ea Area where the colored layer is arranged Eb Area where the black matrix is arranged
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Mathematical Physics (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Liquid Crystal (AREA)
Abstract
Disclosed is a liquid crystal display device (1) which comprises: a TFT substrate (2); a CF substrate (3) that is arranged so as to face the TFT substrate (2); a liquid crystal layer (4) that is provided between the TFT substrate (2) and the CF substrate (3); and a plurality of spacers (25) that are provided between the TFT substrate (2) and the CF substrate (3) for the purpose of regulating the thickness of the liquid crystal layer (4). Each spacer (25) is arranged in a region (Ea) where a color layer (28) of a pixel (E) is arranged.
Description
本発明は、液晶層の厚みを規制するためのスペーサを備える液晶表示装置に関する。
The present invention relates to a liquid crystal display device including a spacer for regulating the thickness of a liquid crystal layer.
近年、携帯電話等のモバイル型端末やノート型パソコン等の各種電子機器の表示装置として、薄くて軽量であるとともに、低電圧で駆動でき、かつ消費電力が少ないという長所を有する液晶表示装置が広く使用されている。
2. Description of the Related Art In recent years, as a display device for various electronic devices such as mobile terminals such as mobile phones and notebook computers, liquid crystal display devices having the advantages of being thin and lightweight, being able to be driven at a low voltage, and consuming little power are widely used. in use.
一般に、液晶表示装置は、互いに対向して配置された一対の基板(即ち、TFT(Thin Film Transistor)基板とCF(Color Filter)基板)と、一対の基板の間に設けられた液晶層とを備えている。また、液晶表示装置は、一対の基板を互いに接着するとともに、両基板の間に液晶を封入するために枠状に設けられたシール材と、液晶層の厚み(即ち、セルギャップ)を規制するための複数のスペーサ(フォトスペーサ)とを備えている。
In general, a liquid crystal display device includes a pair of substrates (that is, a thin film transistor (TFT) substrate and a color filter (CF) substrate) disposed opposite to each other, and a liquid crystal layer provided between the pair of substrates. I have. In addition, the liquid crystal display device bonds a pair of substrates to each other and regulates the thickness of the liquid crystal layer (that is, the cell gap) and a sealing material provided in a frame shape to enclose the liquid crystal between the substrates. And a plurality of spacers (photo spacers).
また、上記CF基板は、各画素に対して設けられた赤色層R、緑色層G、および青色層Bの着色層と、着色層の間に設けられ、遮光膜であるブラックマトリクスとを備えるカラーフィルターを備えている。
The CF substrate includes a colored layer of a red layer R, a green layer G, and a blue layer B provided for each pixel, and a black matrix provided between the colored layers and a black matrix that is a light shielding film. Has a filter.
また、高精細の透過型の液晶表示装置においては、高精細構造の検討を半透過型(反射型と透過型が共存するタイプ)の画素構造をベースに行ってきたため、上記スペーサを、隣接する着色層の境界部分であって、ブラックマトリクスと重なる部分に配置している。
Further, in a high-definition transmissive liquid crystal display device, since the high-definition structure has been studied based on a semi-transmissive pixel structure (a type in which a reflective type and a transmissive type coexist), the spacers are adjacent to each other. It is arranged at the boundary portion of the colored layer and overlapping with the black matrix.
ここで、隣接する着色層の境界部分では、ブラックマトリクスの表面上に、当該ブラックマトリクスに隣接する着色層が盛り上がって形成されるため、着色層が盛り上がった部分にスペーサを設けた場合であっても、液晶層の厚みを規制することが困難になる。その結果、液晶層の厚みが部分的に異なって、液晶層の厚みが不均一になってしまい、表示ムラが生じるという問題があった。
Here, since the colored layer adjacent to the black matrix is formed on the surface of the black matrix at the boundary portion between the adjacent colored layers, the spacer is provided on the portion where the colored layer is raised. However, it becomes difficult to regulate the thickness of the liquid crystal layer. As a result, there is a problem that the thickness of the liquid crystal layer is partially different, the thickness of the liquid crystal layer becomes non-uniform, and display unevenness occurs.
そこで、液晶層の厚みの不均一性を回避して、表示ムラの発生を抑制すべく、カラーフィルターの表面上にオーバーコート層(平坦化膜)を設け、このオーバーコート層の表面上であって、隣接する着色層の境界部分にスペーサを設けた液晶表示装置が開示されている(例えば、特許文献1参照)。
Therefore, an overcoat layer (flattening film) is provided on the surface of the color filter in order to avoid unevenness in the thickness of the liquid crystal layer and suppress the occurrence of display unevenness. A liquid crystal display device in which a spacer is provided at a boundary portion between adjacent colored layers is disclosed (for example, see Patent Document 1).
しかし、上記特許文献1に記載の液晶表示装置では、上述のごとく、オーバーコート層を設ける構成としているため、オーバーコート層を形成するアクリル樹脂に配向を制御するための紫外線が照射される処理により、当該オーバーコート層からガス(残存溶剤もしくはアクリル樹脂の低分子成分)が発生する場合がある。そして、オーバーコート層からガスが発生すると、液晶層の内部に気泡が発生してしまうため、結果として、この気泡により、液晶表示装置の表示品質が低下して、液晶表示装置の歩留まりが低下するという問題があった。
However, since the liquid crystal display device described in Patent Document 1 has a configuration in which an overcoat layer is provided as described above, the acrylic resin for forming the overcoat layer is irradiated with ultraviolet rays for controlling orientation. In some cases, gas (residual solvent or low molecular component of acrylic resin) is generated from the overcoat layer. When gas is generated from the overcoat layer, bubbles are generated inside the liquid crystal layer. As a result, the display quality of the liquid crystal display device is reduced by the bubbles, and the yield of the liquid crystal display device is reduced. There was a problem.
そこで、本発明は、上述の問題に鑑みてなされたものであり、液晶層の厚みを均一に規制し、オーバーコート層に起因する歩留まりの低下を防止することができる液晶表示装置を提供することを目的とする。
Accordingly, the present invention has been made in view of the above-described problems, and provides a liquid crystal display device that can uniformly regulate the thickness of a liquid crystal layer and prevent a decrease in yield due to an overcoat layer. With the goal.
上記目的を達成するために、本発明の液晶表示装置は、第1基板と、第1基板に対向して配置され、着色層とブラックマトリクスとからなる画素が配列されたカラーフィルターを有する第2基板と、第1基板及び第2基板の間に設けられた液晶層と、第1基板及び第2基板の間に設けられ、液晶層の厚みを規制するための複数のスペーサとを備え、スペーサが、画素の着色層が配置された領域に配置されていることを特徴とする。
In order to achieve the above object, a liquid crystal display device according to the present invention includes a first substrate and a second filter that is disposed to face the first substrate and has a color filter in which pixels including a colored layer and a black matrix are arranged. A substrate, a liquid crystal layer provided between the first substrate and the second substrate, and a plurality of spacers provided between the first substrate and the second substrate for regulating the thickness of the liquid crystal layer. Is arranged in a region where the colored layer of the pixel is arranged.
同構成によれば、スペーサを、画素の着色層が配置された領域に配置する構成としているため、カラーフィルターの表面上にオーバーコート層を設けることなく、スペーサにより、液晶層の厚みを均一に規制することができる。従って、オーバーコート層によるガスの発生に起因して、液晶層の内部における気泡の発生を防止することができるため、液晶表示装置の表示品質の低下を防止でき、液晶表示装置の歩留まりの低下を防止することができる。
According to this configuration, since the spacer is arranged in the region where the colored layer of the pixel is arranged, the thickness of the liquid crystal layer is made uniform by the spacer without providing an overcoat layer on the surface of the color filter. Can be regulated. Accordingly, since the generation of gas in the overcoat layer can prevent the generation of bubbles in the liquid crystal layer, the display quality of the liquid crystal display device can be prevented from being lowered, and the yield of the liquid crystal display device can be reduced. Can be prevented.
また、オーバーコート層を設ける必要がなくなるため、コストダウンを図ることが可能になる。
In addition, since it is not necessary to provide an overcoat layer, the cost can be reduced.
また、本発明の液晶表示装置においては、スペーサは、フォトリソグラフィー法により形成されていることが好ましい。
In the liquid crystal display device of the present invention, the spacer is preferably formed by a photolithography method.
同構成によれば、液晶表示装置の任意の位置にスペーサを形成することが可能になる。
According to this configuration, the spacer can be formed at an arbitrary position of the liquid crystal display device.
また、本発明の液晶表示装置においては、、スペーサは、感光性樹脂材料により形成されていることが好ましい。
In the liquid crystal display device of the present invention, the spacer is preferably formed of a photosensitive resin material.
同構成によれば、安価かつ汎用性のある樹脂材料によりスペーサを形成することができる。
According to this configuration, the spacer can be formed from an inexpensive and versatile resin material.
また、本発明の液晶表示装置においては、第1基板には、液晶層側に第1電極が形成され、第2基板には、液晶層側に第2電極が形成されていてもよい。そして、スペーサは、第2電極の表面に設けられていることが好ましい。
In the liquid crystal display device of the present invention, the first substrate may be formed with the first electrode on the liquid crystal layer side, and the second substrate may be formed with the second electrode on the liquid crystal layer side. The spacer is preferably provided on the surface of the second electrode.
また、本発明の液晶表示装置においては、第1基板には、液晶層側に第1電極が形成され、第2基板には、液晶層側に第2電極が形成されていてもよい。そして、スペーサは、第1電極の表面に設けられていることが好ましい。
In the liquid crystal display device of the present invention, the first substrate may be formed with the first electrode on the liquid crystal layer side, and the second substrate may be formed with the second electrode on the liquid crystal layer side. The spacer is preferably provided on the surface of the first electrode.
また、本発明の液晶表示装置においては、液晶層が、ASV液晶により形成されていることが好ましい。
In the liquid crystal display device of the present invention, the liquid crystal layer is preferably formed of ASV liquid crystal.
同構成によれば、高視野角と高速応答を得られるASV液晶を用いた液晶表示装置において、表示品質の低下を防止でき、液晶表示装置の歩留まりの低下を防止することができる。
According to this configuration, in a liquid crystal display device using an ASV liquid crystal capable of obtaining a high viewing angle and a high-speed response, it is possible to prevent a decrease in display quality and a decrease in yield of the liquid crystal display device.
本発明によれば、オーバーコート層を設けることなく、スペーサにより、液晶層の厚みを均一に規制することができ、オーバーコート層に起因する液晶表示装置の表示品質の低下と歩留まりの低下を防止することができる。
According to the present invention, the thickness of the liquid crystal layer can be uniformly regulated by the spacer without providing an overcoat layer, and the deterioration of the display quality and the yield of the liquid crystal display device due to the overcoat layer can be prevented. can do.
以下、本発明の実施形態を図面に基づいて詳細に説明する。なお、本発明は、以下の実施形態に限定されるものではない。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In addition, this invention is not limited to the following embodiment.
図1は、本発明の実施形態に係る液晶表示装置の平面図であり、図2は、本発明の実施形態に係る液晶表示装置の断面図である。また、図3は、本発明の実施形態に係る液晶表示装置における隣接する画素を示す平面図であり、図4は、本発明の実施形態に係る液晶表示装置を構成するTFT基板を示す断面図である。また、図5は、本発明の実施形態に係る液晶表示装置の表示部の断面図であり、図6は、本発明の実施形態に係る液晶表示装置のカラーフィルターの全体構成を示す図である。
FIG. 1 is a plan view of a liquid crystal display device according to an embodiment of the present invention, and FIG. 2 is a cross-sectional view of the liquid crystal display device according to an embodiment of the present invention. 3 is a plan view showing adjacent pixels in the liquid crystal display device according to the embodiment of the present invention, and FIG. 4 is a cross-sectional view showing a TFT substrate constituting the liquid crystal display device according to the embodiment of the present invention. It is. FIG. 5 is a cross-sectional view of the display unit of the liquid crystal display device according to the embodiment of the present invention, and FIG. 6 is a diagram illustrating the overall configuration of the color filter of the liquid crystal display device according to the embodiment of the present invention. .
図1、図2に示す様に、液晶表示装置1は、第1基板であるTFT基板2と、TFT基板2に対向して配置された第2基板であるCF基板3と、TFT基板2及びCF基板3の間に挟持して設けられた表示媒体層である液晶層4とを備えている。また、液晶表示装置1は、TFT基板2とCF基板3との間に狭持され、TFT基板2及びCF基板3を互いに接着するとともに液晶層4を封入するために枠状に設けられたシール材40とを備えている。
As shown in FIGS. 1 and 2, the liquid crystal display device 1 includes a TFT substrate 2 that is a first substrate, a CF substrate 3 that is a second substrate disposed opposite to the TFT substrate 2, a TFT substrate 2, And a liquid crystal layer 4 which is a display medium layer sandwiched between CF substrates 3. The liquid crystal display device 1 is sandwiched between the TFT substrate 2 and the CF substrate 3, and a seal provided in a frame shape for adhering the TFT substrate 2 and the CF substrate 3 to each other and enclosing the liquid crystal layer 4. The material 40 is provided.
このシール材40は、液晶層4を周回するように形成されており、TFT基板2とCF基板3は、このシール材40を介して相互に貼り合わされている。
The sealing material 40 is formed so as to go around the liquid crystal layer 4, and the TFT substrate 2 and the CF substrate 3 are bonded to each other via the sealing material 40.
また、図1に示すように、液晶表示装置1は、矩形状に形成されており、液晶表示装置1の辺方向において、TFT基板2がCF基板3よりも突出し、その突出した領域には、後述するゲートバスラインやソースバスライン等の複数の表示用配線が引き出され、端子領域Rが構成されている。
As shown in FIG. 1, the liquid crystal display device 1 is formed in a rectangular shape, and in the side direction of the liquid crystal display device 1, the TFT substrate 2 protrudes from the CF substrate 3. A plurality of display wirings such as a gate bus line and a source bus line, which will be described later, are drawn out to form a terminal region R.
また、液晶表示装置1では、TFT基板2及びCF基板3が重なる領域に画像表示を行う表示領域Dが規定されている。ここで、表示領域Dは、画像の最小単位である画素がマトリクス状に複数配列されることにより構成されている。
Further, in the liquid crystal display device 1, a display area D for displaying an image is defined in an area where the TFT substrate 2 and the CF substrate 3 overlap. Here, the display area D is configured by arranging a plurality of pixels, which are the minimum unit of an image, in a matrix.
また、シール材40は、図1に示すように、表示領域Dの周囲全体を囲む矩形枠状に設けられている。
Further, as shown in FIG. 1, the sealing material 40 is provided in a rectangular frame shape surrounding the entire periphery of the display area D.
また、液晶表示装置1は、表示領域Dにおいて、液晶層4の厚み(即ち、セルギャップ)が均一になるように規制するための複数のスペーサ25を備えている。
In addition, the liquid crystal display device 1 includes a plurality of spacers 25 for restricting the thickness (that is, the cell gap) of the liquid crystal layer 4 to be uniform in the display region D.
また、図3に示すように、液晶表示装置1が備える複数の画素30の各々には、ソースバスライン14とゲートバスライン11とが互いに交差して設けられている。
Further, as shown in FIG. 3, the source bus line 14 and the gate bus line 11 are provided so as to intersect each other in each of the plurality of pixels 30 included in the liquid crystal display device 1.
そして、両信号線の交差部近傍のゲートバスライン11にゲートが接続されるとともに、その交差部近傍のソースバスライン14にソースが接続され、更に、ドレインが第1電極である画素電極19に接続されたスイッチング素子としての薄膜トランジスタ(TFT)5が設けられている。このTFT5は、ゲートバスライン11が選択状態であるときにオン状態となり、ゲートバスライン11が非選択状態であるときにオフ状態となる。
The gate is connected to the gate bus line 11 near the intersection of the two signal lines, the source is connected to the source bus line 14 near the intersection, and the drain is connected to the pixel electrode 19 which is the first electrode. A thin film transistor (TFT) 5 is provided as a connected switching element. The TFT 5 is turned on when the gate bus line 11 is in a selected state, and is turned off when the gate bus line 11 is in a non-selected state.
また、複数の画素30の各々に設けられた画素電極19は、ソースバスライン14にTFT5を介して接続されており、CF基板3には、この画素電極19と対向するように第2電極である共通電極(対向電極)24が配置されている(図5参照)。
The pixel electrode 19 provided in each of the plurality of pixels 30 is connected to the source bus line 14 via the TFT 5, and the CF substrate 3 is connected to the second electrode so as to face the pixel electrode 19. A certain common electrode (counter electrode) 24 is disposed (see FIG. 5).
また、画素電極19と共通電極24との間に表示媒体層として液晶層4が挟持されている。また、複数のゲートバスライン11と平行に延在するように補助容量線29が形成されている。
In addition, the liquid crystal layer 4 is sandwiched between the pixel electrode 19 and the common electrode 24 as a display medium layer. Further, the auxiliary capacitance line 29 is formed so as to extend in parallel with the plurality of gate bus lines 11.
なお、図3においては、隣接する3つの画素部分のみを示しているが、ソースバスライン14およびゲートバスライン11は、各々複数本が設けられており、複数のソースバスライン14と複数のゲートバスライン11との交差部分の各々に対応して、複数の画素30がマトリクス状に配置されている。即ち、ゲートバスライン11とソースバスライン14で囲まれた領域毎に各画素30が各々設けられている。
Although only three adjacent pixel portions are shown in FIG. 3, a plurality of source bus lines 14 and a plurality of gate bus lines 11 are provided, and a plurality of source bus lines 14 and a plurality of gates are provided. A plurality of pixels 30 are arranged in a matrix corresponding to each of the intersections with the bus line 11. That is, each pixel 30 is provided in each region surrounded by the gate bus line 11 and the source bus line 14.
TFT基板2は、図3、図4に示すように、ガラス基板等の絶縁基板6と、当該絶縁基板6上に互いに平行に延設された複数のゲートバスライン11と、各ゲートバスライン11を覆うように設けられたゲート絶縁膜12とを備えている。また、TFT基板2は、ゲート絶縁膜12上に各ゲートバスライン11と直交する方向に互いに平行に延設された複数のソースバスライン14と、各ゲートバスライン11及び各ソースバスライン14の交差部分毎にそれぞれ設けられた複数のTFT5と、各ソースバスライン14及び各TFT5を覆うように順に設けられた層間絶縁膜10である第1層間絶縁膜15及び第2層間絶縁膜16とを備えている。更に、TFT基板2は、第2層間絶縁膜16上にマトリクス状に設けられ、各TFT5の各々に接続された複数の画素電極19と、各画素電極19を覆うように設けられた配向膜9とを有している。なお、図5に示すように、TFT基板2において、画素電極19は、液晶層4側に形成されている。また、図3に示すように、画素電極19には、液晶層4の配向を規制するためのスリット19aが形成されている。このスリット19aの部分においては、液晶層4に所定の電圧が正しく印加されないため、透過率が低下することになる。例えば、白表示時においては、スリット19aの部分は黒く表示される。
As shown in FIGS. 3 and 4, the TFT substrate 2 includes an insulating substrate 6 such as a glass substrate, a plurality of gate bus lines 11 extending in parallel with each other on the insulating substrate 6, and each gate bus line 11. And a gate insulating film 12 provided so as to cover. The TFT substrate 2 includes a plurality of source bus lines 14 extending in parallel to each other in a direction orthogonal to the gate bus lines 11 on the gate insulating film 12, and the gate bus lines 11 and the source bus lines 14. A plurality of TFTs 5 provided at each intersection, and a first interlayer insulating film 15 and a second interlayer insulating film 16 that are interlayer insulating films 10 provided in order so as to cover each source bus line 14 and each TFT 5. I have. Further, the TFT substrate 2 is provided in a matrix on the second interlayer insulating film 16, a plurality of pixel electrodes 19 connected to each of the TFTs 5, and an alignment film 9 provided so as to cover the pixel electrodes 19. And have. As shown in FIG. 5, in the TFT substrate 2, the pixel electrode 19 is formed on the liquid crystal layer 4 side. As shown in FIG. 3, the pixel electrode 19 is formed with a slit 19 a for regulating the alignment of the liquid crystal layer 4. In the slit 19a, a predetermined voltage is not correctly applied to the liquid crystal layer 4, so that the transmittance is lowered. For example, during white display, the slit 19a is displayed in black.
また、TFT5は、図4に示すように、各ゲートバスライン11が側方に突出したゲート電極17と、ゲート電極17を覆うように設けられたゲート絶縁膜12と、ゲート絶縁膜12上でゲート電極17に重なる位置において島状に設けられた半導体層13とを備えている。また、TFT5は、半導体層13上で互いに対峙するように設けられたソース電極18及びドレイン電極20とを備えている。
As shown in FIG. 4, the TFT 5 includes a gate electrode 17 in which each gate bus line 11 protrudes to the side, a gate insulating film 12 provided so as to cover the gate electrode 17, and a gate insulating film 12 on the gate insulating film 12. And a semiconductor layer 13 provided in an island shape at a position overlapping the gate electrode 17. The TFT 5 includes a source electrode 18 and a drain electrode 20 provided on the semiconductor layer 13 so as to face each other.
ここで、ソース電極18は、各ソースバスライン14が側方に突出した部分である。また、ドレイン電極20は、図4に示すように、第1層間絶縁膜15及び第2層間絶縁膜16に形成されたコンタクトホール31を介して画素電極19に接続されている。
Here, the source electrode 18 is a portion where each source bus line 14 protrudes to the side. Further, as shown in FIG. 4, the drain electrode 20 is connected to the pixel electrode 19 through a contact hole 31 formed in the first interlayer insulating film 15 and the second interlayer insulating film 16.
また、半導体層13は、図4に示すように、下層の真性アモルファスシリコン層13aと、その上層のリンがドープされたn+アモルファスシリコン層13bとを備え、ソース電極18及びドレイン電極20から露出する真性アモルファスシリコン層13aがチャネル領域を構成している。
Further, as shown in FIG. 4, the semiconductor layer 13 includes a lower intrinsic amorphous silicon layer 13 a and an upper n + amorphous silicon layer 13 b doped with phosphorus, and is exposed from the source electrode 18 and the drain electrode 20. The intrinsic amorphous silicon layer 13a that constitutes the channel region.
また、本実施形態の液晶表示装置1は透過型の装置であり、液晶表示装置1の表示部では、図5に示すように、透過領域Tが規定されている。
Further, the liquid crystal display device 1 of the present embodiment is a transmissive device, and a transmissive region T is defined in the display unit of the liquid crystal display device 1 as shown in FIG.
なお、第1層間絶縁膜15を構成する材料としては、特に限定されず、例えば、酸化シリコン(SiO2)、窒化シリコン(SiNx(xは正数))等が挙げられる。
The material constituting the first interlayer insulating film 15 is not particularly limited, and examples thereof include silicon oxide (SiO 2 ) and silicon nitride (SiNx (x is a positive number)).
また、CF基板3は、図5に示すように、ガラス基板等の絶縁基板21と、絶縁基板21上に設けられたカラーフィルター22と、カラーフィルター22を覆うように設けられた共通電極24とを備えている。また、CF基板3は、共通電極24の表面上に柱状に設けられたスペーサ25と、共通電極24及びスペーサ25を覆うように設けられた配向膜26とを有している。なお、図5に示すように、CF基板3において、共通電極24は、液晶層4側に形成されている。
As shown in FIG. 5, the CF substrate 3 includes an insulating substrate 21 such as a glass substrate, a color filter 22 provided on the insulating substrate 21, and a common electrode 24 provided so as to cover the color filter 22. It has. The CF substrate 3 includes a spacer 25 provided in a columnar shape on the surface of the common electrode 24 and an alignment film 26 provided so as to cover the common electrode 24 and the spacer 25. As shown in FIG. 5, in the CF substrate 3, the common electrode 24 is formed on the liquid crystal layer 4 side.
また、カラーフィルター22には、図5、図6に示すように、各画素Eに対して設けられた複数種の着色層28(即ち、赤色層R、緑色層G、および青色層B)と、遮光膜であるブラックマトリクス27とが含まれる。
The color filter 22 includes a plurality of types of colored layers 28 (that is, a red layer R, a green layer G, and a blue layer B) provided for each pixel E, as shown in FIGS. And a black matrix 27 which is a light shielding film.
ブラックマトリクス27は、隣接する着色層28の間に設けられ、これら複数種の着色層28を区画する役割を有するものである。
The black matrix 27 is provided between the adjacent colored layers 28 and has a role of partitioning the plurality of types of colored layers 28.
このブラックマトリクス27は、Ta(タンタル)、Cr(クロム)、Mo(モリブデン)、Ni(ニッケル)、Ti(チタン)、Cu(銅)、Al(アルミニウム)などの金属材料、カーボンなどの黒色顔料が分散された樹脂材料、または、各々、光透過性を有する複数色の着色層が積層された樹脂材料などにより形成される。
The black matrix 27 is made of a metal material such as Ta (tantalum), Cr (chromium), Mo (molybdenum), Ni (nickel), Ti (titanium), Cu (copper), Al (aluminum), or a black pigment such as carbon. Are dispersed or a resin material in which a plurality of colored layers having light transmittance are laminated.
また、スペーサ25は、例えば、アクリル系の感光性樹脂材料からなり、フォトリソグラフィー法により形成される。
The spacer 25 is made of, for example, an acrylic photosensitive resin material and is formed by a photolithography method.
また、液晶層4は、例えば、電気光学特性を有するネマチックの液晶材料等により構成されている。なお、この液晶層4を、広視野角と高速応答を実現するとの観点から、ASV(Advanced Super View)液晶により形成しても良い。
The liquid crystal layer 4 is made of, for example, a nematic liquid crystal material having electro-optical characteristics. The liquid crystal layer 4 may be formed of ASV (Advanced Super View) liquid crystal from the viewpoint of realizing a wide viewing angle and high-speed response.
上記構成の透過型の液晶表示装置1は、透過領域TにおいてTFT基板2側から入射するバックライト(不図示)からの光を透過するように構成されている。
The transmissive liquid crystal display device 1 configured as described above is configured to transmit light from a backlight (not shown) incident from the TFT substrate 2 side in the transmissive region T.
そして、液晶表示装置1は、各画素電極19毎に1つの画素Eが構成されており、各画素Eにおいて、ゲートバスライン11からゲート信号が送られてTFT5をオン状態にした場合に、ソースバスライン14からソース信号が送られてソース電極18及びドレイン電極20を介して、画素電極19に所定の電荷が書き込まれる。そして、画素電極19と共通電極24との間で電位差が生じ、液晶層4に所定の電圧が印加されるように構成されている。そして、液晶表示装置1では、印加された電圧の大きさに応じて、液晶分子の配向状態が変わることを利用して、バックライトから入射する光の透過率を調整することにより、画像が表示される構成となっている。
In the liquid crystal display device 1, one pixel E is formed for each pixel electrode 19. When a gate signal is sent from the gate bus line 11 to turn on the TFT 5 in each pixel E, A source signal is sent from the bus line 14 and a predetermined charge is written to the pixel electrode 19 via the source electrode 18 and the drain electrode 20. A potential difference is generated between the pixel electrode 19 and the common electrode 24, and a predetermined voltage is applied to the liquid crystal layer 4. In the liquid crystal display device 1, an image is displayed by adjusting the transmittance of light incident from the backlight by utilizing the change in the alignment state of the liquid crystal molecules according to the magnitude of the applied voltage. It becomes the composition which is done.
ここで、本実施形態においては、図5に示すように、スペーサ25が、画素Eの着色層28が配置された領域(即ち、画素Eにおいて、着色層28が設けられた領域であって、ブラックマトリクス27が設けられていない領域。以下、「着色層領域」という。)Eaに配置されている点に特徴がある。
Here, in the present embodiment, as shown in FIG. 5, the spacer 25 is a region where the colored layer 28 of the pixel E is disposed (that is, a region where the colored layer 28 is provided in the pixel E, A region in which the black matrix 27 is not provided (hereinafter referred to as a “colored layer region”).
このような構成により、図5に示すように、隣接する着色層28の境界部分であって、ブラックマトリクス27の表面上に着色層28が盛り上がって形成された部分に、スペーサ25を配置する必要がなくなる。従って、カラーフィルター22の表面上にオーバーコート層を設けることなく、スペーサ25により、液晶層4の厚みを均一に規制することができる。従って、オーバーコート層によるガスの発生に起因して、液晶層4の内部における気泡の発生を防止することができる。
With such a configuration, as shown in FIG. 5, it is necessary to dispose the spacer 25 in a boundary portion between the adjacent colored layers 28 and in a portion where the colored layer 28 is raised on the surface of the black matrix 27. Disappears. Accordingly, the thickness of the liquid crystal layer 4 can be uniformly regulated by the spacer 25 without providing an overcoat layer on the surface of the color filter 22. Therefore, it is possible to prevent the generation of bubbles in the liquid crystal layer 4 due to the generation of gas by the overcoat layer.
また、オーバーコート層を設ける必要がなくなるため、コストダウンを図ることが可能になる。
In addition, since it is not necessary to provide an overcoat layer, the cost can be reduced.
また、図5に示すように、ソースバスライン14は、画素Eのブラックマトリクス27が設けられた領域(以下、「ブラックマトリクス領域」という。)Ebに配置されているが、上述のごとく、スペーサ25が、画素Eの着色層領域Eaに配置されており、ブラックマトリクス領域Ebに設けられていないため、ブラックマトリクス領域Ebの一部であるソースバスライン14と補助容量線29とが交差するクロス領域C(図3参照)において、スペーサ25を設けるための面積が不要になる。従って、クロス領域Cの面積を低減することが可能になる。
Further, as shown in FIG. 5, the source bus line 14 is arranged in an area (hereinafter referred to as “black matrix area”) Eb in which the black matrix 27 of the pixel E is provided. 25 is arranged in the colored layer region Ea of the pixel E, and is not provided in the black matrix region Eb. Therefore, a cross line where the source bus line 14 which is a part of the black matrix region Eb and the auxiliary capacitance line 29 intersect each other. In the region C (see FIG. 3), an area for providing the spacer 25 is not necessary. Therefore, the area of the cross region C can be reduced.
また、画素Eの着色層領域Eaにおいては、スペーサ25やコンタクトホール31は、液晶層4の配向を強力に制御する作用を有する配向中心を形成するが、平面視において、スペーサ25をコンタクトホール31に重なるように配置することにより、画素Eの着色層領域Eaにおいて、複数の配向中心形成構造物を重ねて配置することができるため、配向中心の構成を簡素にすることが可能になる。
Further, in the colored layer region Ea of the pixel E, the spacer 25 and the contact hole 31 form an alignment center having a function of strongly controlling the alignment of the liquid crystal layer 4, but the spacer 25 is contacted with the contact hole 31 in plan view. By arranging so as to overlap with each other, in the colored layer region Ea of the pixel E, a plurality of alignment center forming structures can be arranged in an overlapping manner, so that the configuration of the alignment center can be simplified.
次に、本実施形態の液晶表示装置の製造方法について一例を挙げて説明する。なお、本実施形態の製造方法は、TFT基板作製工程、CF基板作製工程、及び基板貼り合わせ工程を備える。
Next, an example is given and demonstrated about the manufacturing method of the liquid crystal display device of this embodiment. Note that the manufacturing method of the present embodiment includes a TFT substrate manufacturing process, a CF substrate manufacturing process, and a substrate bonding process.
<TFT基板作製工程>
まず、絶縁基板6の全体に、スパッタリング法により、例えば、チタン膜、アルミニウム膜及びチタン膜などを順に成膜し、その後、フォトリソグラフィによりパターニングして、ゲートバスライン11及びゲート電極17を厚さ4000Å程度に形成する。 <TFT substrate manufacturing process>
First, for example, a titanium film, an aluminum film, a titanium film, and the like are sequentially formed on the entire insulatingsubstrate 6 by sputtering, and then patterned by photolithography, so that the gate bus line 11 and the gate electrode 17 have a thickness. Form about 4000 mm.
まず、絶縁基板6の全体に、スパッタリング法により、例えば、チタン膜、アルミニウム膜及びチタン膜などを順に成膜し、その後、フォトリソグラフィによりパターニングして、ゲートバスライン11及びゲート電極17を厚さ4000Å程度に形成する。 <TFT substrate manufacturing process>
First, for example, a titanium film, an aluminum film, a titanium film, and the like are sequentially formed on the entire insulating
続いて、ゲートバスライン11及びゲート電極17が形成された基板全体に、プラズマCVD(Chemical Vapor Deposition)法により、例えば、窒化シリコン膜などを成膜し、ゲート絶縁膜12を厚さ4000Å程度に形成する。
Subsequently, for example, a silicon nitride film or the like is formed on the entire substrate on which the gate bus line 11 and the gate electrode 17 are formed by a plasma CVD (Chemical Vapor Deposition) method, and the gate insulating film 12 has a thickness of about 4000 mm. Form.
さらに、ゲート絶縁膜12が形成された基板全体に、プラズマCVD法により、例えば、真性アモルファスシリコン膜(厚さ2000Å程度)、及びリンがドープされたn+アモルファスシリコン膜(厚さ500Å程度)を連続して成膜する。その後、フォトリソグラフィによりゲート電極17上に島状にパターニングして、真性アモルファスシリコン層及びn+アモルファスシリコン層が積層された半導体形成層を形成する。
Further, for example, an intrinsic amorphous silicon film (thickness of about 2000 mm) and phosphorus-doped n + amorphous silicon film (thickness of about 500 mm) are formed on the entire substrate on which the gate insulating film 12 is formed by plasma CVD. Films are continuously formed. Thereafter, patterning in an island shape on the gate electrode 17 by photolithography is performed to form a semiconductor formation layer in which an intrinsic amorphous silicon layer and an n + amorphous silicon layer are stacked.
そして、上記半導体形成層が形成された基板全体に、スパッタリング法により、例えば、アルミニウム膜及びチタン膜などを順に成膜し、その後、フォトリソグラフィによりパターニングして、ソースバスライン14、ソース電極18及びドレイン電極20を厚さ2000Å程度に形成する。
Then, for example, an aluminum film and a titanium film are sequentially formed on the entire substrate on which the semiconductor formation layer has been formed by sputtering, and then patterned by photolithography to form the source bus line 14, the source electrode 18 and The drain electrode 20 is formed to a thickness of about 2000 mm.
続いて、ソース電極18及びドレイン電極20をマスクとして上記半導体形成層のn+アモルファスシリコン層をエッチングすることにより、チャネル領域をパターニングして、半導体層13及びそれを備えたTFT5を形成する。
Subsequently, the n + amorphous silicon layer of the semiconductor formation layer is etched using the source electrode 18 and the drain electrode 20 as a mask to pattern the channel region, thereby forming the semiconductor layer 13 and the TFT 5 including the semiconductor layer 13.
さらに、TFT5が形成された基板全体に、プラズマCVD法により、例えば、窒化シリコン膜などを成膜し、第1層間絶縁膜15及び第2層間絶縁膜16を厚さ4000Å程度に形成する。
Further, for example, a silicon nitride film is formed on the entire substrate on which the TFT 5 is formed by plasma CVD, and the first interlayer insulating film 15 and the second interlayer insulating film 16 are formed to a thickness of about 4000 mm.
その後、第1層間絶縁膜15、及び第2層間絶縁膜16をエッチングして、コンタクトホール31を形成する。
Thereafter, the first interlayer insulating film 15 and the second interlayer insulating film 16 are etched to form contact holes 31.
次いで、第2層間絶縁膜16上の基板全体に、ITO膜などからなる透明導電膜をスパッタリング法により成膜し、その後、フォトリソグラフィによりパターニングして、絶縁基板6に画素電極19を形成する。
Next, a transparent conductive film made of an ITO film or the like is formed on the entire substrate on the second interlayer insulating film 16 by a sputtering method, and then patterned by photolithography to form the pixel electrode 19 on the insulating substrate 6.
次いで、画素電極19が形成された基板全体に、印刷法によりポリイミド樹脂を塗布し、その後、ラビング処理を行って、配向膜9を厚さ1000Å程度に形成する。
Next, a polyimide resin is applied to the entire substrate on which the pixel electrode 19 is formed by a printing method, and then a rubbing process is performed to form the alignment film 9 with a thickness of about 1000 mm.
以上のようにして、TFT基板2を作製することができる。
The TFT substrate 2 can be manufactured as described above.
<CF基板作製工程>
まず、ガラス基板などの絶縁基板21の基板全体に、スピンコート法により、例えば、カーボン微粒子などの黒色顔料が分散されたポジ型の感光性樹脂を塗布し、その塗布された感光性樹脂をフォトマスクを介して露光する。その後、現像及び加熱することにより、ブラックマトリクス27を厚さ2.0μm程度に形成する。 <CF substrate manufacturing process>
First, a positive photosensitive resin in which black pigments such as carbon fine particles are dispersed is applied to the entire substrate of the insulatingsubstrate 21 such as a glass substrate by a spin coat method, and the applied photosensitive resin is photo-coated. Exposure through a mask. Thereafter, the black matrix 27 is formed to a thickness of about 2.0 μm by developing and heating.
まず、ガラス基板などの絶縁基板21の基板全体に、スピンコート法により、例えば、カーボン微粒子などの黒色顔料が分散されたポジ型の感光性樹脂を塗布し、その塗布された感光性樹脂をフォトマスクを介して露光する。その後、現像及び加熱することにより、ブラックマトリクス27を厚さ2.0μm程度に形成する。 <CF substrate manufacturing process>
First, a positive photosensitive resin in which black pigments such as carbon fine particles are dispersed is applied to the entire substrate of the insulating
続いて、ブラックマトリクス27が形成された基板上に、例えば、赤、緑又は青に着色されたアクリル系の感光性樹脂を塗布し、その塗布された感光性樹脂をフォトマスクを介して露光する。その後、現像することによりパターニングして、選択した色の着色層(例えば、赤色層R)28を、例えば、厚さ1.0μm程度に形成する。
Subsequently, for example, an acrylic photosensitive resin colored in red, green, or blue is applied onto the substrate on which the black matrix 27 is formed, and the applied photosensitive resin is exposed through a photomask. . Thereafter, patterning is performed by developing to form a colored layer (for example, red layer R) 28 of a selected color with a thickness of about 1.0 μm, for example.
さらに、他の2色についても同様な工程を繰り返して、他の2色の着色層(例えば、緑色層G及び青色層B)28を形成して、赤色層R、緑色層G及び青色層Bを備えたカラーフィルター22を形成する。
Further, the same process is repeated for the other two colors to form the other two colored layers 28 (for example, the green layer G and the blue layer B), and the red layer R, the green layer G, and the blue layer B. The color filter 22 provided with is formed.
次いで、カラーフィルター22が形成された基板上に、スパッタリング法により、例えば、ITO膜を成膜し、その後、フォトリソグラフィによりパターニングして、共通電極24を厚さ1500Å程度に形成する。
Next, for example, an ITO film is formed on the substrate on which the color filter 22 is formed by sputtering, and then patterned by photolithography to form the common electrode 24 with a thickness of about 1500 mm.
次いで、フォトリソグラフィー法によりスペーサ25を形成する。より具体的には、共通電極24が形成された基板全体に、スピンコート法により、アクリル系の感光性樹脂を塗布し、その塗布された感光性樹脂をフォトマスクを介して露光する。その後、現像することにより、スペーサ25を厚さ4μm程度に形成する。この際、上述のごとく、スペーサ25は、画素Eの着色層領域Eaに配置される。
Next, the spacer 25 is formed by a photolithography method. More specifically, an acrylic photosensitive resin is applied to the entire substrate on which the common electrode 24 is formed by spin coating, and the applied photosensitive resin is exposed through a photomask. Thereafter, the spacer 25 is formed to a thickness of about 4 μm by developing. At this time, as described above, the spacer 25 is disposed in the colored layer region Ea of the pixel E.
最後に、スペーサ25が形成された基板全体に、印刷法によりポリイミド系樹脂を塗布し、その後、ラビング処理を行って、配向膜26を厚さ1000Å程度に形成する。
Finally, a polyimide resin is applied to the entire substrate on which the spacers 25 are formed by a printing method, and then a rubbing process is performed to form the alignment film 26 with a thickness of about 1000 mm.
以上のようにして、CF基板3を作製することができる。
The CF substrate 3 can be manufactured as described above.
<貼り合わせ工程>
まず、例えば、ディスペンサを用いて、上記CF基板作製工程で作製されたCF基板3に、紫外線硬化及び熱硬化併用型樹脂などにより構成されたシール材40を枠状に描画する。 <Lamination process>
First, for example, using a dispenser, aseal material 40 made of a UV-curing and thermosetting resin or the like is drawn in a frame shape on the CF substrate 3 produced in the CF substrate production step.
まず、例えば、ディスペンサを用いて、上記CF基板作製工程で作製されたCF基板3に、紫外線硬化及び熱硬化併用型樹脂などにより構成されたシール材40を枠状に描画する。 <Lamination process>
First, for example, using a dispenser, a
次いで、上記シール材40が描画されたCF基板3におけるシール材40の内側の領域に液晶材料を滴下する。
Next, a liquid crystal material is dropped onto a region inside the sealing material 40 on the CF substrate 3 on which the sealing material 40 is drawn.
さらに、上記液晶材料が滴下されたCF基板3と、上記TFT基板作製工程で作製されたTFT基板2とを、減圧下で貼り合わせた後に、その貼り合わせた貼合体を大気圧に開放することにより、その貼合体の表面及び裏面を加圧する。
Furthermore, after bonding the CF substrate 3 onto which the liquid crystal material is dropped and the TFT substrate 2 manufactured in the TFT substrate manufacturing process under reduced pressure, the bonded body is released to atmospheric pressure. Thus, the front and back surfaces of the bonded body are pressurized.
次いで、上記貼合体に挟持されたシール材40にUV光を照射した後に、その貼合体を加熱することによりシール材40を硬化させる。
Then, after irradiating the sealing material 40 sandwiched between the bonded bodies with UV light, the sealing material 40 is cured by heating the bonded body.
以上のようにして、図1に示す液晶表示装置1を作製することができる。
As described above, the liquid crystal display device 1 shown in FIG. 1 can be manufactured.
以上に説明した本実施形態によれば、以下の効果を得ることができる。
According to the present embodiment described above, the following effects can be obtained.
(1)本実施形態においては、スペーサ25を、画素Eの着色層領域Eaに配置する構成としている。従って、カラーフィルター22の表面上にオーバーコート層を設けることなく、スペーサ25により、液晶層4の厚みを均一に規制することができる。その結果、オーバーコート層によるガスの発生に起因して、液晶層4の内部における気泡の発生を防止することができるため、液晶表示装置1の表示品質の低下を防止でき、液晶表示装置1の歩留まりの低下を防止することができる。
(1) In the present embodiment, the spacer 25 is arranged in the colored layer region Ea of the pixel E. Accordingly, the thickness of the liquid crystal layer 4 can be uniformly regulated by the spacer 25 without providing an overcoat layer on the surface of the color filter 22. As a result, it is possible to prevent the generation of bubbles in the liquid crystal layer 4 due to the generation of gas by the overcoat layer, and thus it is possible to prevent the display quality of the liquid crystal display device 1 from being deteriorated. A decrease in yield can be prevented.
(2)また、オーバーコート層を設ける必要がなくなるため、コストダウンを図ることが可能になる。
(2) Since it is not necessary to provide an overcoat layer, it is possible to reduce the cost.
(3)また、スペーサ25が、画素Eの着色層領域Eaに配置されており、ブラックマトリクス領域Ebに設けられていないため、ブラックマトリクス領域Ebの一部であるソースバスライン14と補助容量線29とが交差するクロス領域Cにおいて、スペーサ25を設けるための面積が不要になる。従って、クロス領域Cの面積を低減することが可能になるため、寄生容量に起因するクロストーク現象を低減することができ、表示品位を向上させることができる。また、リーク不良を低減して、歩留まりを向上させることができる。
(3) Further, since the spacer 25 is disposed in the colored layer region Ea of the pixel E and is not provided in the black matrix region Eb, the source bus line 14 and the auxiliary capacitance line which are part of the black matrix region Eb. In the cross region C where 29 intersects, the area for providing the spacer 25 becomes unnecessary. Accordingly, since the area of the cross region C can be reduced, the crosstalk phenomenon caused by the parasitic capacitance can be reduced, and the display quality can be improved. In addition, leakage defects can be reduced and yield can be improved.
(4)本実施形態においては、スペーサを、フォトリソグラフィー法により形成する構成としている。従って、液晶表示装置1の任意の位置にスペーサ25を形成することが可能になる。例えば、液晶表示装置1の透過領域Tにおいて、透過率が低下した部分(例えば、上述の画素電極19のスリット19aの部分)にスペーサ25を形成することが可能になる。その結果、スペーサ25を、画素Eの着色層領域Eaに配置する構成とした場合であっても、開口率と透過率の低下を防止することができるため、光学特性の低下を防止することができる。また、例えば、平面視において、スペーサ25をコンタクトホール31に重なるように配置することにより、画素Eの着色層領域Eaにおいて、複数の配向中心形成構造物を重ねて配置することができる。従って、配向中心の構成を簡素にすることが可能になるため、液晶層4の配向の制御が容易になり、結果として、表示品位を向上させることが可能になる。
(4) In this embodiment, the spacer is formed by a photolithography method. Therefore, the spacer 25 can be formed at an arbitrary position of the liquid crystal display device 1. For example, in the transmissive region T of the liquid crystal display device 1, the spacer 25 can be formed in a portion where the transmittance is reduced (for example, the portion of the slit 19a of the pixel electrode 19 described above). As a result, even when the spacer 25 is configured to be disposed in the colored layer region Ea of the pixel E, it is possible to prevent the aperture ratio and the transmittance from being lowered, thereby preventing the optical characteristics from being lowered. it can. Further, for example, by arranging the spacer 25 so as to overlap the contact hole 31 in a plan view, a plurality of alignment center forming structures can be arranged in a superimposed manner in the colored layer region Ea of the pixel E. Accordingly, since the configuration of the alignment center can be simplified, the alignment of the liquid crystal layer 4 can be easily controlled, and as a result, the display quality can be improved.
(5)本実施形態においては、スペーサ25を、感光性樹脂材料により形成する構成としている。従って、安価かつ汎用性のある樹脂材料によりスペーサ25を形成することができる。
(5) In this embodiment, the spacer 25 is formed of a photosensitive resin material. Therefore, the spacer 25 can be formed of a cheap and versatile resin material.
(6)本実施形態においては、液晶層4を、ASV液晶により形成する構成としている。従って、高視野角と高速応答を得られるASV液晶を用いた液晶表示装置1において、表示品質の低下を防止でき、歩留まりの低下を防止することができる。
(6) In the present embodiment, the liquid crystal layer 4 is formed of ASV liquid crystal. Therefore, in the liquid crystal display device 1 using the ASV liquid crystal capable of obtaining a high viewing angle and a high-speed response, it is possible to prevent the display quality from being lowered and the yield from being lowered.
なお、上記実施形態は以下のように変更しても良い。
Note that the above embodiment may be modified as follows.
上記実施形態においては、スペーサ25を、CF基板3の共通電極24の表面に設ける構成としたが、図7に示すように、スペーサ25をTFT基板2の画素電極19の表面に設ける構成としても良い。この場合も、スペーサ25が、画素Eの着色層領域Eaに配置されているため、上述の(1)~(5)と同様の効果を得ることができる。また、この場合も、ASV液晶により形成された液晶層4を使用することにより、上述の(6)と同様の効果を得ることできる。
In the above embodiment, the spacer 25 is provided on the surface of the common electrode 24 of the CF substrate 3. However, as shown in FIG. 7, the spacer 25 may be provided on the surface of the pixel electrode 19 of the TFT substrate 2. good. Also in this case, since the spacer 25 is disposed in the colored layer region Ea of the pixel E, the same effects as the above (1) to (5) can be obtained. Also in this case, the same effect as the above (6) can be obtained by using the liquid crystal layer 4 formed of ASV liquid crystal.
上記実施形態の液晶表示装置1の方式は、TN(Twisted Nematic)、VA(Vertical Alignment)、MVA(Multi-domain Vertical Alignment)、ASV(Advanced Super View)、IPS(In-Plane-Switching)など、どのような方式であってもよい。
The method of the liquid crystal display device 1 of the above embodiment includes TN (Twisted Nematic), VA (Vertical Alignment), MVA (Multi-domain Vertical Alignment), ASV (Advanced Super View), IPS (In-Plane-Switching), etc. Any method may be used.
以上説明したように、本発明は、液晶層の厚みを規制するためのスペーサを備える液晶表示装置に有用である。
As described above, the present invention is useful for a liquid crystal display device including a spacer for regulating the thickness of a liquid crystal layer.
1 液晶表示装置
2 TFT基板(第1基板)
3 CF基板(第2基板)
4 液晶層
19 画素電極(第1電極)
22 カラーフィルタ
24 共通電極(第2電極)
25 スペーサ
27 ブラックマトリクス
28 着色層
E 画素
Ea 着色層が配置された領域
Eb ブラックマトリクスが配置された領域 1 Liquidcrystal display device 2 TFT substrate (first substrate)
3 CF substrate (second substrate)
4Liquid crystal layer 19 Pixel electrode (first electrode)
22Color filter 24 Common electrode (second electrode)
25Spacer 27 Black matrix 28 Colored layer E Pixel Ea Area where the colored layer is arranged Eb Area where the black matrix is arranged
2 TFT基板(第1基板)
3 CF基板(第2基板)
4 液晶層
19 画素電極(第1電極)
22 カラーフィルタ
24 共通電極(第2電極)
25 スペーサ
27 ブラックマトリクス
28 着色層
E 画素
Ea 着色層が配置された領域
Eb ブラックマトリクスが配置された領域 1 Liquid
3 CF substrate (second substrate)
4
22
25
Claims (6)
- 第1基板と、
前記第1基板に対向して配置され、着色層とブラックマトリクスとからなる画素が配列されたカラーフィルターを有する第2基板と、
前記第1基板及び前記第2基板の間に設けられた液晶層と、
前記第1基板及び前記第2基板の間に設けられ、前記液晶層の厚みを規制するための複数のスペーサと
を備えた液晶表示装置であって、
前記スペーサが、前記画素の前記着色層が配置された領域に配置されていることを特徴とする液晶表示装置。 A first substrate;
A second substrate having a color filter disposed opposite to the first substrate and arranged with pixels composed of a colored layer and a black matrix;
A liquid crystal layer provided between the first substrate and the second substrate;
A plurality of spacers provided between the first substrate and the second substrate for regulating the thickness of the liquid crystal layer;
The liquid crystal display device, wherein the spacer is disposed in a region where the colored layer of the pixel is disposed. - 前記スペーサは、フォトリソグラフィー法により形成されていることを特徴とする請求項1に記載の液晶表示装置。 2. The liquid crystal display device according to claim 1, wherein the spacer is formed by a photolithography method.
- 前記スペーサは、感光性樹脂材料により形成されていることを特徴とする請求項1または請求項2に記載の液晶表示装置。 3. The liquid crystal display device according to claim 1, wherein the spacer is made of a photosensitive resin material.
- 前記第1基板には、前記液晶層側に第1電極が形成され、前記第2基板には、前記液晶層側に第2電極が形成され、前記スペーサは、前記第2電極の表面に設けられていることを特徴とする請求項1~請求項3のいずれか1項に記載の液晶表示装置。 The first substrate has a first electrode formed on the liquid crystal layer side, the second substrate has a second electrode formed on the liquid crystal layer side, and the spacer is provided on the surface of the second electrode. The liquid crystal display device according to any one of claims 1 to 3, wherein the liquid crystal display device is provided.
- 前記第1基板には、前記液晶層側に第1電極が形成され、前記第2基板には、前記液晶層側に第2電極が形成され、前記スペーサは、前記第1電極の表面に設けられていることを特徴とする請求項1~請求項3のいずれか1項に記載の液晶表示装置。 A first electrode is formed on the first substrate on the liquid crystal layer side, a second electrode is formed on the second substrate on the liquid crystal layer side, and the spacer is provided on the surface of the first electrode. The liquid crystal display device according to any one of claims 1 to 3, wherein the liquid crystal display device is provided.
- 前記液晶層が、ASV液晶により形成されていることを特徴とする請求項1~請求項5のいずれか1項に記載の液晶表示装置。 The liquid crystal display device according to any one of claims 1 to 5, wherein the liquid crystal layer is formed of an ASV liquid crystal.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010-111899 | 2010-05-14 | ||
JP2010111899 | 2010-05-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011142070A1 true WO2011142070A1 (en) | 2011-11-17 |
Family
ID=44914133
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/001366 WO2011142070A1 (en) | 2010-05-14 | 2011-03-09 | Liquid crystal display device |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2011142070A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017041292A1 (en) * | 2015-09-07 | 2017-03-16 | 深圳市华星光电技术有限公司 | Liquid crystal display panel and apparatus |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002040407A (en) * | 2000-07-21 | 2002-02-06 | Citizen Watch Co Ltd | Liquid crystal display element |
JP2006091229A (en) * | 2004-09-22 | 2006-04-06 | Sharp Corp | Liquid crystal display |
JP2008003442A (en) * | 2006-06-26 | 2008-01-10 | Mitsubishi Electric Corp | Liquid crystal display device |
-
2011
- 2011-03-09 WO PCT/JP2011/001366 patent/WO2011142070A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002040407A (en) * | 2000-07-21 | 2002-02-06 | Citizen Watch Co Ltd | Liquid crystal display element |
JP2006091229A (en) * | 2004-09-22 | 2006-04-06 | Sharp Corp | Liquid crystal display |
JP2008003442A (en) * | 2006-06-26 | 2008-01-10 | Mitsubishi Electric Corp | Liquid crystal display device |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017041292A1 (en) * | 2015-09-07 | 2017-03-16 | 深圳市华星光电技术有限公司 | Liquid crystal display panel and apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI686645B (en) | Liquid crystal display panel | |
JP4041336B2 (en) | Substrate for liquid crystal display device, liquid crystal display device including the same, and manufacturing method thereof | |
US10809559B2 (en) | Liquid crystal display device and method of fabricating the same | |
US20150185551A1 (en) | Cot type liquid crystal display device | |
JP4235576B2 (en) | Color filter substrate and display device using the same | |
US8189157B2 (en) | Liquid crystal display device and process for manufacturing the same | |
WO2011004521A1 (en) | Display panel | |
KR20080071001A (en) | Liquid crystal display panel and method of manufacturing the same | |
KR20080056493A (en) | Thin film transistor substrate and method of manufacturing the same | |
KR101980773B1 (en) | Thin film transistor substrate having color filter and method of fabricating the same | |
KR20100069430A (en) | Liquid crystal display device controllable viewing angle and method of fabricating the same | |
JP2010139573A (en) | Liquid crystal display panel | |
JP2004151459A (en) | Substrate for liquid crystal display and liquid crystal display equipped with the same | |
US20200012137A1 (en) | Substrate for display device, display device, and method of producing substrate for display device | |
WO2012124699A1 (en) | Liquid crystal display | |
KR20080053804A (en) | Liquid crystal display device and manufacturing method of the same | |
WO2011142070A1 (en) | Liquid crystal display device | |
KR101172048B1 (en) | Liquid Crystal Display And Method For Fabricating The Same | |
WO2011148557A1 (en) | Method of manufacture for liquid crystal display device | |
JP4593161B2 (en) | Liquid crystal display | |
JP2007183678A (en) | Substrate for liquid crystal display, liquid crystal display having the same and method of manufacturing the same | |
WO2013122184A1 (en) | Liquid crystal display manufacturing method | |
WO2011155143A1 (en) | Liquid crystal display device | |
JP2020074029A (en) | Liquid crystal display | |
JP2010169888A (en) | Display panel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11780331 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11780331 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |