WO2010056064A2 - Non-aqueous electrolytic solution for a lithium secondary battery, and lithium secondary battery comprising same - Google Patents

Non-aqueous electrolytic solution for a lithium secondary battery, and lithium secondary battery comprising same Download PDF

Info

Publication number
WO2010056064A2
WO2010056064A2 PCT/KR2009/006687 KR2009006687W WO2010056064A2 WO 2010056064 A2 WO2010056064 A2 WO 2010056064A2 KR 2009006687 W KR2009006687 W KR 2009006687W WO 2010056064 A2 WO2010056064 A2 WO 2010056064A2
Authority
WO
WIPO (PCT)
Prior art keywords
silanol
allyl
vinyl
formula
lithium secondary
Prior art date
Application number
PCT/KR2009/006687
Other languages
French (fr)
Korean (ko)
Other versions
WO2010056064A3 (en
Inventor
전종호
김수진
이호춘
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020090109232A external-priority patent/KR101040464B1/en
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2011536248A priority Critical patent/JP5723778B2/en
Priority to US12/677,934 priority patent/US8268489B2/en
Publication of WO2010056064A2 publication Critical patent/WO2010056064A2/en
Publication of WO2010056064A3 publication Critical patent/WO2010056064A3/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a nonaqueous electrolyte solution for a lithium secondary battery and a lithium secondary battery containing the same.
  • Lithium secondary batteries are the batteries that can best meet these demands, and research on these is being actively conducted.
  • lithium secondary batteries developed in the early 1990s are nonaqueous materials in which lithium salts are dissolved in an appropriate amount of lithium salt in a negative electrode made of carbon material capable of occluding and releasing lithium ions, a positive electrode made of lithium-containing oxide, and a mixed organic solvent. It consists of electrolyte solution.
  • the average discharge voltage of the lithium secondary battery is about 3.6 ⁇ 3.7V, one of the advantages is that the discharge voltage is higher than other alkaline batteries, nickel-cadmium batteries and the like.
  • an electrochemically stable electrolyte composition is required in the charge and discharge voltage range of 0 to 4.2 V.
  • a mixed solvent in which cyclic carbonate compounds such as ethylene carbonate and propylene carbonate and linear carbonate compounds such as dimethyl carbonate, ethylmethyl carbonate and diethyl carbonate are appropriately mixed is used as a solvent of the electrolyte solution.
  • LiPF 6 , LiBF 4 , LiClO 4 , and the like are commonly used as lithium salts as electrolytes, which act as a source of lithium ions in the battery to enable operation of the lithium battery.
  • lithium ions derived from the positive electrode active material such as lithium metal oxide move to the negative electrode active material such as graphite and are inserted between the layers of the negative electrode active material.
  • the electrolyte and the carbon constituting the negative electrode active material react on the surface of the negative electrode active material such as graphite to generate compounds such as Li 2 CO 3 , Li 2 O, and LiOH.
  • SEI Solid Electrolyte Interface
  • the SEI film acts as an ion tunnel to pass only lithium ions.
  • the SEI film is an effect of this ion tunnel, which prevents the breakdown of the negative electrode structure by inserting organic solvent molecules having a high molecular weight moving together with lithium ions in the electrolyte between the layers of the negative electrode active material. Therefore, by preventing contact between the electrolyte solution and the negative electrode active material, decomposition of the electrolyte solution does not occur, and the amount of lithium ions in the electrolyte solution is reversibly maintained to maintain stable charge and discharge.
  • the battery thickness expands during charging due to gases such as CO, CO 2 , CH 4 , and C 2 H 6 generated from decomposition of the carbonate solvent during the above-described SEI formation reaction.
  • gases such as CO, CO 2 , CH 4 , and C 2 H 6 generated from decomposition of the carbonate solvent during the above-described SEI formation reaction.
  • the SEI film gradually collapses due to increased electrochemical energy and thermal energy, so that side reactions in which the exposed cathode surface reacts with the surrounding electrolyte continuously occur.
  • the internal pressure of the battery is increased due to the continuous gas generation.
  • the thickness of the battery increases, causing problems in sets such as mobile phones and notebook computers. That is, high temperature leaving safety is bad.
  • the SEI film is unstable, so that the problem of increasing the internal pressure of the battery is more prominent.
  • studies have been conducted to change the aspect of the SEI film formation reaction by adding an additive to a carbonate organic solvent.
  • a certain compound is added to the electrolyte to improve battery performance, the performance of some items is improved, but the performance of other items is often decreased.
  • the problem to be solved by the present invention is to solve the above-mentioned problems of the prior art, not only improve the charge-discharge cycle life characteristics when applied to a lithium secondary battery, the battery is stored at a high temperature in a fully-charged state (fully-charged state)
  • the present invention provides a nonaqueous electrolyte for a lithium secondary battery and a lithium secondary battery having the same, in which the decomposition reaction of the electrolyte is suppressed even when charging or discharging proceeds, thereby improving the swelling phenomenon.
  • the nonaqueous electrolyte solution for a lithium secondary battery including a lithium salt and a carbonate-based organic solvent further includes a silicon-based compound represented by Formula 1 below.
  • X is a hydrogen atom
  • R1, R2 and R3 are each independently a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms, at least one of which has a carbon double bond.
  • at least one of R 1, R 2, and R 3 of Formula 1 is a vinyl group or an allyl group.
  • silicone compound examples include dimethyl vinyl silanol, methylethyl vinyl silanol, methylpropyl vinyl silanol, methylbutyl vinyl silanol, methyl cyclohexyl vinyl silanol, methyl phenyl vinyl silanol, methyl benzyl vinyl silanol, and diethyl vinyl.
  • the carbonate organic solvent may be a cyclic carbonate compound, a linear carbonate compound or a mixture thereof, and may further contain a linear ester compound.
  • the carbonate-based organic solvent it is preferable to use a mixture of a cyclic carbonate compound represented by the following formula (2) and a linear carbonate compound represented by the following formula (3), and may further contain a cyclic carbonate compound represented by the following formula (4) as necessary. Can be.
  • R1 to R4 are each independently selected from the group consisting of a hydrogen atom, a fluorine element, and an alkyl group having 1 to 4 carbon atoms.
  • R7 and R8 are each independently an alkyl group having 1 to 4 carbon atoms, and the alkyl group may be optionally substituted with at least one hydrogen atom by fluorine.
  • R5 and R6 are each independently a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • the carbonate-based organic solvent includes a cyclic carbonate compound represented by Formula 2, and the nonaqueous electrolyte preferably further contains a linear ester compound represented by Formula 5 below.
  • R9 and R10 are each independently an alkyl group having 1 to 4 carbon atoms, and the alkyl group may be optionally substituted with at least one hydrogen atom by fluorine.
  • the nonaqueous electrolyte for lithium secondary batteries described above is usefully applied to conventional lithium secondary batteries having a negative electrode and a positive electrode.
  • lithium cobalt oxide lithium nickel oxide, or a mixture thereof as the positive electrode
  • the nonaqueous electrolyte according to the present invention When the nonaqueous electrolyte according to the present invention is used in a lithium secondary battery, not only the degradation of the charge-discharge cycle life characteristics is improved, but even when the battery is stored at a high temperature in a fully-charged state or charge / discharge proceeds, Since the decomposition reaction is suppressed, the swelling phenomenon can be prevented and the high temperature life characteristics can be improved.
  • the nonaqueous electrolyte solution for a lithium secondary battery including a lithium salt and an organic solvent further includes a silicon-based compound represented by Formula 1 below.
  • X is a hydrogen atom
  • R1, R2 and R3 are each independently a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms, at least one of which has a carbon double bond.
  • at least one of R 1, R 2, and R 3 of Formula 1 is a vinyl group or an allyl group.
  • the silicon compound represented by Chemical Formula 1 has a hydroxyl group and a hydrocarbon group having a carbon double bond at the same time. Due to the carbon double bond functional group of the silicon compound, SEI is formed on the surface of the negative electrode before the organic solvent through a reduction reaction with the negative electrode during the initial heavy discharge of the battery. Moreover, the hydroxyl group which a silicone type compound has becomes a stable compound by reacting with hydrofluoric acid which generate
  • the nonaqueous electrolyte containing the silicon-based compound of the present invention when used in a lithium secondary battery, not only the degradation of the charge / discharge cycle life characteristics is improved, but the battery is stored at a high temperature in a fully-charged state or Even when charging and discharging proceeds, the decomposition reaction of the electrolyte is suppressed, so that a swelling phenomenon can be prevented and high temperature life characteristics can be improved.
  • the content of the silicon compound of Formula 1 is preferably 0.1 to 12 parts by weight based on 100 parts by weight of the nonaqueous electrolyte. If the content of the silicon-based compound is less than 0.1 parts by weight can not be formed sufficient solid-electrolyte interface (SEI) at the electrode it can be difficult to expect the effect of the present invention, if it exceeds 12 parts by weight of the prepared non-aqueous electrolyte Increasing the viscosity and increasing the resistance of the formed SEI can reduce the effects of the present invention.
  • SEI solid-electrolyte interface
  • silicone compound of Formula 1 examples include dimethyl vinyl silanol, methylethyl vinyl silanol, methylpropyl vinyl silanol, methylbutyl vinyl silanol, methyl cyclohexyl vinyl silanol, methyl phenyl vinyl silanol, methyl benzyl vinyl silanol, Diethyl vinyl silanol, ethylpropyl vinyl silanol, ethylbutyl vinyl silanol, ethyl cyclohexyl vinyl silanol, ethyl phenyl vinyl silanol, ethyl benzyl vinyl silanol, dipropyl vinyl silanol, propylbutyl vinyl silanol, propyl Cyclohexyl vinyl silanol, propyl phenyl vinyl silanol, propyl benzyl vinyl silanol, dibutyl vinyl silanol, butyl cyclol
  • a carbonate organic solvent commonly used as the carbonate organic solvent for example, a cyclic carbonate compound, a linear carbonate compound, or a mixture thereof may be used, and may further contain a linear ester compound.
  • a carbonate-based organic solvent it is preferable to use a mixture of a cyclic carbonate compound represented by the following formula (2) and a linear carbonate compound represented by the following formula (3), and may further contain a cyclic carbonate compound represented by the following formula (4) as necessary. Can be.
  • R1 to R4 are each independently selected from the group consisting of a hydrogen atom, a fluorine element, and an alkyl group having 1 to 4 carbon atoms.
  • R7 and R8 are each independently an alkyl group having 1 to 4 carbon atoms, and the alkyl group may be optionally substituted with at least one hydrogen atom by fluorine.
  • R5 and R6 are each independently a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • the carbonate-based organic solvent includes a cyclic carbonate compound represented by Formula 2, and the nonaqueous electrolyte preferably further contains a linear ester compound represented by Formula 5 below.
  • R9 and R10 are each independently an alkyl group having 1 to 4 carbon atoms, and the alkyl group may be optionally substituted with at least one hydrogen atom by fluorine.
  • the cyclic carbonate compound dissociates the lithium salt in the electrolyte well and contributes to the improvement of the charge / discharge capacity of the battery.
  • the carbonate compound represented by the formula (2) ethylene carbonate, propylene carbonate, fluoroethylene carbonate, butylene carbonate and the like may be used alone or in combination of two or more thereof.
  • ethylene carbonate or a mixture of ethylene carbonate and propylene carbonate has a high dielectric constant, which dissociates lithium salts in the electrolyte better.
  • the preferred mixing volume ratio of propylene carbonate is 1/4 to 1 of ethylene carbonate.
  • linear carbonate compound of Formula 3 may contribute to the improvement of the charge and discharge efficiency of the lithium secondary battery and the optimization of battery characteristics, such as dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, methylpropyl carbonate, etc. It can mix and use species.
  • the cyclic carbonate compound of Formula 4 includes vinylene carbonate.
  • the linear ester compound of formula (5) is a low viscosity, low melting point organic solvent showing a low freezing point, a relatively high boiling point, excellent low temperature properties. Moreover, the reactivity with respect to a carbon material negative electrode is comparatively low.
  • the linear ester compound may be mixed with the above-described cyclic carbonate compound to contribute to low temperature discharge characteristics and life improvement of the lithium secondary battery. That is, the linear ester-based compound appropriately coordinates lithium ions and exhibits high ionic conductivity at room temperature and low temperature, thereby improving low temperature discharge characteristics and high rate discharge characteristics of the battery.
  • the oxidation voltage which is an intrinsic property of the solvent, is 4.5 V or more, thereby improving the life performance of the battery by making it resistant to the electrolyte decomposition reaction at the anode during charging.
  • the wettability with respect to the electrode is improved compared to when only the carbonate ester solvent is used as the nonaqueous electrolyte, thereby suppressing the formation of lithium dendrite on the electrode surface, thereby contributing to the improvement of battery safety.
  • linear ester compound of Formula 5 examples include methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate, propyl propionate, and more preferably ethyl propionate and ethyl 3-fluoro.
  • Roprophanoate, Ethyl 3,3-difluoropropanoate, Ethyl 3,3,3-trifluoropropanoate, 2-fluoroethyl propionate, 2,2-difluoroethyl propio Nate, 2,2,2-trifluoroethyl propionate, 2,2,2-trifluoroethyl 3-fluoropropanoate, 2,2,2-trifluoroethyl 3,3-difluoro Lorophanoate, 2,2,2-trifluoroethyl 3,3,3-trifluoropropanoate, and the like can be used alone or in combination of two or more thereof.
  • the lithium salt included as an electrolyte in the nonaqueous electrolyte may be used without limitation those conventionally used in the nonaqueous electrolyte for lithium secondary batteries.
  • Representative examples of the lithium salt include LiPF 6, LiBF 4, LiSbF 6, LiAsF 6, LiClO 4 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) 2 , CF 3 SO 3 Li, LiC (CF 3 SO 2 ) 3 , and the like.
  • the nonaqueous electrolyte of the present invention includes vinyl ethylene carbonate, succinonitrile, cyclohexyl benzene, biphenyl, 1,3-dioxolane-2-onylmethyl allyl sulfonate, and the like. Of course, it can contain further within the limit unless it is inhibited.
  • nonaqueous electrolyte is used as a nonaqueous electrolyte of a conventional lithium secondary battery having a negative electrode, a positive electrode, and a nonaqueous electrolyte.
  • a material made of carbon material is usually used as a material capable of occluding and releasing lithium ions, and a material made of a lithium-containing oxide is usually used as the positive electrode.
  • both low crystalline carbon and high crystalline carbon may be used.
  • Soft crystalline carbon and hard carbon are typical low crystalline carbon, and high crystalline carbon is natural graphite, Kish graphite, pyrolytic carbon, liquid crystal pitch-based carbon fiber.
  • High temperature calcined carbon such as (mesophase pitch based carbon fiber), meso-carbon microbeads, Mesophase pitches and petroleum or coal tar pitch derived cokes.
  • the negative electrode may include a binder
  • the binder may include vinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinylidene fluoride, polyacrylonitrile, Various kinds of binder polymers, such as polymethylmethacrylate, may be used.
  • a lithium-containing transition metal oxide can be preferably used as the anode made of a lithium-containing oxide. More preferably, lithium cobalt oxide (LiCoO 2 ) and lithium nickel-based oxide may be used alone or in combination thereof.
  • the nonaqueous electrolyte of the present invention exhibits remarkable effects when the lithium nickel oxide is used as the positive electrode. That is, the battery using lithium nickel-based oxide as a positive electrode has the advantage that can be manufactured as a high capacity battery, but the degradation of the charge-discharge cycle life characteristics and the solution of the swelling of the battery should be preceded. According to the present invention, when the nonaqueous electrolyte solution including the silicon compound of Chemical Formula 1 is applied to a lithium secondary battery having lithium nickel oxide as a positive electrode, the above-described problems caused by using lithium nickel oxide may be greatly improved.
  • the electrode of the lithium secondary battery of the present invention is a conventional method, for example, the electrode active material particles and the binder polymer is added to the solvent with a conductive material and a dispersant as necessary to prepare a slurry, and then coated and pressed on a current collector It can be prepared by drying.
  • the positive electrode can be easily manufactured by those skilled in the art by adjusting the thickness of the positive electrode active material layer coated on the current collector, the amount of the binder polymer, the process conditions, and the like.
  • a separator is usually interposed between the positive electrode and the negative electrode, and conventional porous polymer films conventionally used as separators, for example, ethylene homopolymer, propylene homopolymer, ethylene / butene copolymer, ethylene / hexene copolymer and ethylene Porous polymer films made of polyolefin-based polymers such as / methacrylate copolymers may be used alone or in a stack of them.
  • a non-woven fabric of high melting glass fibers, polyethylene terephthalate fibers and the like can be used, but is not limited thereto.
  • the external shape of the lithium secondary battery of the present invention is not particularly limited, but may be cylindrical, square, pouch type, or coin type using a can.
  • a nonaqueous electrolyte was prepared by adding 0.05 parts by weight of dimethyl vinyl silanol relative to parts by weight.
  • the battery was manufactured by pouring the above-mentioned nonaqueous electrolyte into a pouch-type battery having a positive electrode made of LiCoO 2 and a negative electrode made of artificial graphite.
  • a pouch-type battery was manufactured in the same manner as in Example 1, except that the content of dimethylvinyl silanol was changed to 0.1 part by weight based on 100 parts by weight of the nonaqueous electrolyte.
  • a pouch type battery was manufactured in the same manner as in Example 1, except that the content of dimethylvinyl silanol was changed to 0.5 part by weight based on 100 parts by weight of the nonaqueous electrolyte.
  • a pouch type battery was manufactured in the same manner as in Example 1, except that the content of dimethylvinyl silanol was changed to 1.0 part by weight based on 100 parts by weight of the nonaqueous electrolyte.
  • a pouch type battery was manufactured in the same manner as in Example 1, except that the content of dimethylvinyl silanol was changed to 5.0 parts by weight based on 100 parts by weight of the nonaqueous electrolyte.
  • a pouch-type battery was manufactured in the same manner as in Example 1, except that the content of dimethylvinyl silanol was changed to 8.0 parts by weight based on 100 parts by weight of the nonaqueous electrolyte.
  • a pouch-type battery was manufactured in the same manner as in Example 1, except that the content of dimethylvinyl silanol was changed to 12.0 parts by weight based on 100 parts by weight of the nonaqueous electrolyte.
  • a pouch-type battery was manufactured in the same manner as in Example 1, except that 1.0 part by weight of vinylene carbonate (VC) was added to 100 parts by weight of the nonaqueous electrolyte.
  • VC vinylene carbonate
  • a pouch-type battery was manufactured in the same manner as in Example 2, except that 1.0 part by weight of vinylene carbonate (VC) was added to 100 parts by weight of the non-aqueous electrolyte.
  • VC vinylene carbonate
  • a pouch-type battery was manufactured in the same manner as in Example 3, except that 1.0 part by weight of vinylene carbonate (VC) was added to 100 parts by weight of the non-aqueous electrolyte.
  • VC vinylene carbonate
  • a pouch-type battery was manufactured in the same manner as in Example 4, except that 1.0 part by weight of vinylene carbonate (VC) was added to 100 parts by weight of the nonaqueous electrolyte.
  • VC vinylene carbonate
  • a pouch-type battery was manufactured in the same manner as in Example 5, except that 1.0 part by weight of vinylene carbonate (VC) was added to 100 parts by weight of the non-aqueous electrolyte.
  • VC vinylene carbonate
  • a pouch-type battery was manufactured in the same manner as in Example 6, except that 1.0 part by weight of vinylene carbonate (VC) was added to 100 parts by weight of the non-aqueous electrolyte.
  • VC vinylene carbonate
  • a pouch-type battery was manufactured in the same manner as in Example 7, except that 1.0 part by weight of vinylene carbonate (VC) was added to 100 parts by weight of the nonaqueous electrolyte.
  • VC vinylene carbonate
  • Ethylene carbonate (EC): Ethyl propionate (EP) 1: 2 (v: v) as a non-aqueous electrolyte, except that 1M LiPF 6 was mixed with a mixed organic solvent
  • Ethylene carbonate (EC): Ethyl propionate (EP) 1: 2 (v: v) as a non-aqueous electrolyte, except that 1M LiPF 6 was mixed with a mixed organic solvent
  • a pouch type battery was manufactured in the same manner as in Example 1.
  • Ethylene carbonate (EC): Ethyl propionate (EP) 1: 2 (v: v) as a non-aqueous electrolyte, except that 1M LiPF 6 was mixed with a mixed organic solvent
  • Ethylene carbonate (EC): Ethyl propionate (EP) 1: 2 (v: v) as a non-aqueous electrolyte, except that 1M LiPF 6 was mixed with a mixed organic solvent
  • a pouch type battery was manufactured in the same manner as in Example 2.
  • Ethylene carbonate (EC): Ethyl propionate (EP) 1: 2 (v: v) as a non-aqueous electrolyte, except that 1M LiPF 6 was mixed with a mixed organic solvent
  • Ethylene carbonate (EC): Ethyl propionate (EP) 1: 2 (v: v) as a non-aqueous electrolyte, except that 1M LiPF 6 was mixed with a mixed organic solvent
  • a pouch type battery was manufactured in the same manner as in Example 3.
  • Ethylene carbonate (EC): Ethyl propionate (EP) 1: 2 (v: v) as a non-aqueous electrolyte, except that 1M LiPF 6 was mixed with a mixed organic solvent
  • Ethylene carbonate (EC): Ethyl propionate (EP) 1: 2 (v: v) as a non-aqueous electrolyte, except that 1M LiPF 6 was mixed with a mixed organic solvent
  • a pouch type battery was manufactured in the same manner as in Example 4.
  • Ethylene carbonate (EC): Ethyl propionate (EP) 1: 2 (v: v) as a non-aqueous electrolyte, except that 1M LiPF 6 was mixed with a mixed organic solvent
  • Ethylene carbonate (EC): Ethyl propionate (EP) 1: 2 (v: v) as a non-aqueous electrolyte, except that 1M LiPF 6 was mixed with a mixed organic solvent
  • a pouch type battery was manufactured in the same manner as in Example 5.
  • Ethylene carbonate (EC): Ethyl propionate (EP) 1: 2 (v: v) as a non-aqueous electrolyte, except that 1M LiPF 6 was mixed with a mixed organic solvent
  • Ethylene carbonate (EC): Ethyl propionate (EP) 1: 2 (v: v) as a non-aqueous electrolyte, except that 1M LiPF 6 was mixed with a mixed organic solvent
  • a pouch type battery was manufactured in the same manner as in Example 6.
  • Ethylene carbonate (EC): Ethyl propionate (EP) 1: 2 (v: v) as a non-aqueous electrolyte, except that 1M LiPF 6 was mixed with a mixed organic solvent
  • Ethylene carbonate (EC): Ethyl propionate (EP) 1: 2 (v: v) as a non-aqueous electrolyte, except that 1M LiPF 6 was mixed with a mixed organic solvent
  • a pouch-type battery was manufactured in the same manner as in Example 7.
  • Ethylene carbonate (EC): Ethyl propionate (EP) 1: 2 (v: v) as a non-aqueous electrolyte, except that 1M LiPF 6 was mixed with a mixed organic solvent
  • Ethylene carbonate (EC): Ethyl propionate (EP) 1: 2 (v: v) as a non-aqueous electrolyte, except that 1M LiPF 6 was mixed with a mixed organic solvent
  • a pouch type battery was manufactured in the same manner as in Example 8.
  • Ethylene carbonate (EC): Ethyl propionate (EP) 1: 2 (v: v) as a non-aqueous electrolyte, except that 1M LiPF 6 was mixed with a mixed organic solvent
  • Ethylene carbonate (EC): Ethyl propionate (EP) 1: 2 (v: v) as a non-aqueous electrolyte, except that 1M LiPF 6 was mixed with a mixed organic solvent
  • a pouch type battery was manufactured in the same manner as in Example 9.
  • Ethylene carbonate (EC): Ethyl propionate (EP) 1: 2 (v: v) as a non-aqueous electrolyte, except that 1M LiPF 6 was mixed with a mixed organic solvent
  • Ethylene carbonate (EC): Ethyl propionate (EP) 1: 2 (v: v) as a non-aqueous electrolyte, except that 1M LiPF 6 was mixed with a mixed organic solvent
  • a pouch type battery was manufactured in the same manner as in Example 10.
  • Ethylene carbonate (EC): Ethyl propionate (EP) 1: 2 (v: v) as a non-aqueous electrolyte, except that 1M LiPF 6 was mixed with a mixed organic solvent
  • Ethylene carbonate (EC): Ethyl propionate (EP) 1: 2 (v: v) as a non-aqueous electrolyte, except that 1M LiPF 6 was mixed with a mixed organic solvent
  • a pouch type battery was manufactured in the same manner as in Example 11.
  • Ethylene carbonate (EC): Ethyl propionate (EP) 1: 2 (v: v) as a non-aqueous electrolyte, except that 1M LiPF 6 was mixed with a mixed organic solvent
  • Ethylene carbonate (EC): Ethyl propionate (EP) 1: 2 (v: v) as a non-aqueous electrolyte, except that 1M LiPF 6 was mixed with a mixed organic solvent
  • a pouch type battery was manufactured in the same manner as in Example 12.
  • Ethylene carbonate (EC): Ethyl propionate (EP) 1: 2 (v: v) as a non-aqueous electrolyte, except that 1M LiPF 6 was mixed with a mixed organic solvent
  • Ethylene carbonate (EC): Ethyl propionate (EP) 1: 2 (v: v) as a non-aqueous electrolyte, except that 1M LiPF 6 was mixed with a mixed organic solvent
  • a pouch type battery was manufactured in the same manner as in Example 13.
  • Ethylene carbonate (EC): Ethyl propionate (EP) 1: 2 (v: v) as a non-aqueous electrolyte, except that 1M LiPF 6 was mixed with a mixed organic solvent
  • Ethylene carbonate (EC): Ethyl propionate (EP) 1: 2 (v: v) as a non-aqueous electrolyte, except that 1M LiPF 6 was mixed with a mixed organic solvent
  • a pouch type battery was manufactured in the same manner as in Example 14.
  • a pouch type battery was manufactured in the same manner as in Example 4, except that only LiNi 0.5 Mn 0.3 Co 0.2 O 2 was used as the positive electrode.
  • a pouch type battery was manufactured in the same manner as in Example 18, except that only LiNi 0.5 Mn 0.3 Co 0.2 O 2 was used as the positive electrode.
  • a pouch-type battery was manufactured in the same manner as in Example 1, except that dimethyl vinyl silanol was not added.
  • a pouch-type battery was manufactured in the same manner as in Example 8, except that dimethyl vinyl silanol was not added.
  • a pouch-type battery was manufactured in the same manner as in Example 15, except that dimethyl vinyl silanol was not added.
  • a pouch-type battery was manufactured in the same manner as in Example 22, except that dimethyl vinyl silanol was not added.
  • a pouch-type battery was manufactured in the same manner as in Comparative Example 1, except that 1.0 part by weight of tetramethylsilane was added to 100 parts by weight of the nonaqueous electrolyte.
  • a pouch-type battery was manufactured in the same manner as in Comparative Example 1 except that only LiNi 0.5 Mn 0.3 Co 0.2 O 2 was used as the positive electrode.
  • a pouch-type battery was manufactured in the same manner as in Comparative Example 3 except that only LiNi 0.5 Mn 0.3 Co 0.2 O 2 was used as the positive electrode.
  • the pouch-type batteries prepared in Examples and Comparative Examples were aged at room temperature for 2 days after the electrolyte injection, and then charged with 0.2 C-rate for 50 minutes. Subsequently, degas / reseal was charged at a constant temperature / constant voltage condition up to 4.2V at 0.2C at room temperature, and discharged at a constant current condition up to 3.0V at 0.2C to perform initial charge and discharge.
  • the ratio of charge capacity to discharge capacity is called initial efficiency. After the initial charge and discharge, the charge and discharge was performed 400 times with 1.0 C-rate in the same voltage region, and the capacity retention ratio was 400 times compared to the initial discharge capacity.
  • Example 1 Initial Efficiency (%) 400 capacity retention rate (%) High temperature thickness change (mm)
  • Example 1 90.1 76.7 2.72
  • Example 2 90.2 80.3 1.98
  • Example 3 90.1 83.3 1.58
  • Example 4 90.2 85.6 0.93
  • Example 5 90.0 82.2 0.57
  • Example 6 90.0 80.1 0.42
  • Example 7 89.6 70.3 0.33
  • Example 8 90.3 79.5 2.55
  • Example 9 90.3 81.2 1.81
  • Example 10 90.4 83.4 1.49
  • Example 11 90.3 85.7 0.88
  • Example 12 90.1 82.0 0.55
  • Example 13 90.0 80.0 0.40
  • Example 14 89.4 71.5 0.32
  • Example 15 90.1 78.8 2.60
  • Example 16 90.3 80.6 1.74
  • Example 17 90.3 84.0 1.35
  • Example 18 90.3 86.5 0.87
  • Example 19 90.2 84.1 0.51
  • Example 20 90.0 81.7 0.36
  • Example 21 90.0 81.7 0.36
  • Example 21 90.5 79.9 2.53
  • Example 23 90.5 8

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)

Abstract

The present invention relates to a non-aqueous electrolytic solution for a lithium secondary battery, and to a lithium secondary battery comprising same. The non-aqueous electrolytic solution for a lithium secondary battery of the present invention is expressed in a specific chemical formula, and further comprises silicon-based compounds containing a hydroxyl group and a hydrocarbon group having a carbon double bond at the same time. When the non-aqueous electrolytic solution of the present invention is employed in a lithium secondary battery, the lifespan of the charge/discharge cycles can be improved, and the decomposition reaction of the electrolytic solution is suppressed even when the battery in a fully-charged state is kept at a high temperature or charged/discharged, thus preventing swelling and improving the lifespan characteristics of the battery even at a high temperature.

Description

리튬 이차전지용 비수 전해액 및 이를 구비한 리튬 이차전지Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery having same
본 발명은 리튬 이차전지용 비수 전해액 및 이를 함유한 리튬 이차전지에 관한 것이다.The present invention relates to a nonaqueous electrolyte solution for a lithium secondary battery and a lithium secondary battery containing the same.
최근 에너지 저장 기술에 대한 관심이 갈수록 높아지고 있다. 휴대폰, 캠코더 및 노트북 PC, 나아가서는 전기 자동차의 에너지까지 적용 분야가 확대되면서, 이러한 전자 기기의 전원으로 사용되는 전지의 고에너지 밀도화에 대한 요구가 높아지고 있다. 리튬 이차전지는 이러한 요구를 가장 잘 충족시킬 수 있는 전지로서, 현재 이에 대한 연구가 활발히 진행되고 있다. Recently, interest in energy storage technology is increasing. As the field of application extends to the energy of mobile phones, camcorders, notebook PCs, and even electric vehicles, the demand for high energy density of batteries used as power sources for such electronic devices is increasing. Lithium secondary batteries are the batteries that can best meet these demands, and research on these is being actively conducted.
현재 적용되고 있는 이차전지 중에서 1990년대 초에 개발된 리튬 이차전지는 리튬이온을 흡장 및 방출할 수 있는 탄소재로 된 음극, 리튬 함유 산화물로 된 양극 및 혼합 유기용매에 리튬염이 적당량 용해된 비수 전해액으로 구성되어 있다.Among the secondary batteries currently applied, lithium secondary batteries developed in the early 1990s are nonaqueous materials in which lithium salts are dissolved in an appropriate amount of lithium salt in a negative electrode made of carbon material capable of occluding and releasing lithium ions, a positive electrode made of lithium-containing oxide, and a mixed organic solvent. It consists of electrolyte solution.
리튬 이차전지의 평균 방전 전압은 약 3.6~3.7V로서, 다른 알칼리 전지, 니켈-카드뮴 전지 등에 비하여 방전 전압이 높은 것이 장점 중의 하나이다. 이러한 높은 구동 전압을 내기 위해서는 충방전 전압 영역인 0~4.2V에서 전기화학적으로 안정한 전해액 조성이 필요하다. 이를 위하여, 에틸렌 카보네이트, 프로필렌 카보네이트 등의 환형 카보네이트 화합물 및 디메틸 카보네이트, 에틸메틸 카보네이트, 디에틸카보네이트 등의 선형 카보네이트 화합물이 적절히 혼합된 혼합 용매를 전해액의 용매로 이용한다. 전해액의 용질인 리튬염으로는 통상 LiPF6, LiBF4, LiClO4 등을 사용하는데, 이들은 전지 내에서 리튬 이온의 공급원으로 작용하여 리튬 전지의 작동이 가능하게 한다.The average discharge voltage of the lithium secondary battery is about 3.6 ~ 3.7V, one of the advantages is that the discharge voltage is higher than other alkaline batteries, nickel-cadmium batteries and the like. In order to achieve such a high driving voltage, an electrochemically stable electrolyte composition is required in the charge and discharge voltage range of 0 to 4.2 V. To this end, a mixed solvent in which cyclic carbonate compounds such as ethylene carbonate and propylene carbonate and linear carbonate compounds such as dimethyl carbonate, ethylmethyl carbonate and diethyl carbonate are appropriately mixed is used as a solvent of the electrolyte solution. LiPF 6 , LiBF 4 , LiClO 4 , and the like are commonly used as lithium salts as electrolytes, which act as a source of lithium ions in the battery to enable operation of the lithium battery.
리튬 이차전지의 초기 충전시 리튬 금속 산화물 등의 양극 활물질로부터 나온 리튬 이온은 그래파이트 등의 음극 활물질로 이동하여, 음극 활물질의 층간에 삽입된다. 이때, 리튬은 반응성이 강하므로 그래파이트 등의 음극 활물질 표면에서 전해액과 음극 활물질을 구성하는 탄소가 반응하여 Li2CO3, Li2O, LiOH 등의 화합물을 생성한다. 이들 화합물은 그래파이트 등의 음극 활물질의 표면에 일종의 SEI(Solid Electrolyte Interface) 필름을 형성하게 된다.During the initial charging of the lithium secondary battery, lithium ions derived from the positive electrode active material such as lithium metal oxide move to the negative electrode active material such as graphite and are inserted between the layers of the negative electrode active material. At this time, since lithium is highly reactive, the electrolyte and the carbon constituting the negative electrode active material react on the surface of the negative electrode active material such as graphite to generate compounds such as Li 2 CO 3 , Li 2 O, and LiOH. These compounds form a kind of SEI (Solid Electrolyte Interface) film on the surface of the negative electrode active material such as graphite.
SEI 필름은 이온 터널의 역할을 수행하여 리튬 이온 만을 통과시킨다. SEI 필름은 이러한 이온 터널의 효과로서, 전해액 중에서 리튬 이온과 함께 이동하는 분자량이 큰 유기 용매 분자가 음극 활물질의 층간에 삽입되어 음극 구조가 파괴되는 것을 막아준다. 따라서, 전해액과 음극 활물질의 접촉을 방지함으로써 전해액의 분해가 발생하지 않고, 전해액 중의 리튬 이온의 양이 가역적으로 유지되어 안정적인 충방전이 유지된다. The SEI film acts as an ion tunnel to pass only lithium ions. The SEI film is an effect of this ion tunnel, which prevents the breakdown of the negative electrode structure by inserting organic solvent molecules having a high molecular weight moving together with lithium ions in the electrolyte between the layers of the negative electrode active material. Therefore, by preventing contact between the electrolyte solution and the negative electrode active material, decomposition of the electrolyte solution does not occur, and the amount of lithium ions in the electrolyte solution is reversibly maintained to maintain stable charge and discharge.
그러나, 박형의 각형 전지에서는, 상술한 SEI 형성 반응 중에 카보네이트계 용매의 분해로부터 발생되는 CO, CO2, CH4, C2H6 등의 기체로 인하여 충전시 전지 두께가 팽창하는 문제가 발생한다. 또한, 만충전 상태에서 고온 방치시 시간이 경과함에 따라서, SEI 필름이 증가된 전기화학적 에너지와 열에너지에 의해 서서히 붕괴되어, 노출된 음극 표면과 주위의 전해액이 반응하는 부반응이 지속적으로 일어나게 된다. 이때의 계속적인 기체 발생으로 인하여 전지의 내압이 상승하게 되며, 그 결과 각형 전지와 파우치 전지의 경우, 전지의 두께가 증가하여 핸드폰 및 노트북 등의 셋트에서 문제를 유발한다. 즉, 고온 방치 안전성이 불량하다. 또한, 에틸렌 카보네이트를 다량 포함하는 통상의 리튬 이차전지는 SEI 피막이 불안정하여 상기한 전지의 내압 상승 문제가 더 두드러진다. 이와 같은 문제점을 해결하기 위하여, 카보네이트 유기용매에 첨가제를 넣어 SEI 필름 형성 반응의 양상을 변화시키려는 연구가 진행되어 왔다. 그러나, 지금까지 알려진 바로는 전지 성능 향상을 위하여 특정 화합물을 전해액에 첨가할 경우, 일부 항목의 성능은 향상 되지만, 다른 항목의 성능은 감소되는 경우가 많았다.However, in the thin rectangular battery, there is a problem that the battery thickness expands during charging due to gases such as CO, CO 2 , CH 4 , and C 2 H 6 generated from decomposition of the carbonate solvent during the above-described SEI formation reaction. . In addition, as time elapses at high temperature in a full charge state, the SEI film gradually collapses due to increased electrochemical energy and thermal energy, so that side reactions in which the exposed cathode surface reacts with the surrounding electrolyte continuously occur. In this case, the internal pressure of the battery is increased due to the continuous gas generation. As a result, in the case of the square battery and the pouch battery, the thickness of the battery increases, causing problems in sets such as mobile phones and notebook computers. That is, high temperature leaving safety is bad. In addition, in the conventional lithium secondary battery containing a large amount of ethylene carbonate, the SEI film is unstable, so that the problem of increasing the internal pressure of the battery is more prominent. In order to solve this problem, studies have been conducted to change the aspect of the SEI film formation reaction by adding an additive to a carbonate organic solvent. However, as far as is known, when a certain compound is added to the electrolyte to improve battery performance, the performance of some items is improved, but the performance of other items is often decreased.
본 발명이 해결하고자 하는 과제는 전술한 종래기술의 문제점을 해결하여, 리튬 이차전지에 적용시 충방전 싸이클 수명특성이 개선될 뿐 아니라, 전지가 만충전 상태(fully-charged state)에서 고온에 보관되거나 충방전이 진행되더라도 전해액의 분해반응이 억제되어 스웰링(swelling) 현상이 개선된 리튬 이차전지용 비수 전해액 및 이를 구비한 리튬 이차전지를 제공하는데 있다.The problem to be solved by the present invention is to solve the above-mentioned problems of the prior art, not only improve the charge-discharge cycle life characteristics when applied to a lithium secondary battery, the battery is stored at a high temperature in a fully-charged state (fully-charged state) The present invention provides a nonaqueous electrolyte for a lithium secondary battery and a lithium secondary battery having the same, in which the decomposition reaction of the electrolyte is suppressed even when charging or discharging proceeds, thereby improving the swelling phenomenon.
상기 기술적 과제를 달성하기 위하여, 본 발명에 따라 리튬염 및 카보네이트계 유기용매를 포함하는 리튬 이차전지용 비수 전해액은, 하기 화학식 1로 표시되는 실리콘계 화합물을 더 포함한다.In order to achieve the above technical problem, according to the present invention, the nonaqueous electrolyte solution for a lithium secondary battery including a lithium salt and a carbonate-based organic solvent further includes a silicon-based compound represented by Formula 1 below.
화학식 1
Figure PCTKR2009006687-appb-C000001
Formula 1
Figure PCTKR2009006687-appb-C000001
상기 화학식 1에서, X는 수소원자이고, R1, R2 및 R3은 각각 서로 독립적으로 수소원자 또는 탄소수가 1 내지 10인 탄화수소기이되, 이 중 적어도 하나는 탄소 이중결합을 갖는다. 바람직하게는, 상기 화학식 1의 R1, R2 및 R3 중 적어도 어느 하나는 비닐기 또는 알릴기이다. In Formula 1, X is a hydrogen atom, R1, R2 and R3 are each independently a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms, at least one of which has a carbon double bond. Preferably, at least one of R 1, R 2, and R 3 of Formula 1 is a vinyl group or an allyl group.
상기 실리콘계 화합물로는 디메틸 비닐 실란올, 메틸에틸 비닐 실란올, 메틸프로필 비닐 실란올, 메틸부틸 비닐 실란올, 메틸 사이클로헥실 비닐 실란올, 메틸 페닐 비닐 실란올, 메틸 벤질 비닐 실란올, 디에틸 비닐 실란올, 에틸프로필 비닐 실란올, 에틸부틸 비닐 실란올, 에틸 사이클로헥실 비닐 실란올, 에틸 페닐 비닐 실란올, 에틸 벤질 비닐 실란올, 디프로필 비닐 실란올, 프로필부틸 비닐 실란올, 프로필 사이클로헥실 비닐 실란올, 프로필 페닐 비닐 실란올, 프로필 벤질 비닐 실란올, 디부틸 비닐 실란올, 부틸 사이클로헥실 비닐 실란올, 부틸 페닐 비닐 실란올, 부틸 벤질 비닐 실란올, 디사이클로헥실 비닐 실란올, 사이클로헥실 페닐 비닐 실란올, 사이클로헥실 벤질 비닐 실란올, 페닐 벤질 비닐 실란올, 디페닐 비닐 실란올, 디벤질 비닐 실란올 디메틸 알릴 실란올, 메틸에틸 알릴 실란올, 메틸프로필 알릴 실란올, 메틸부틸 알릴 실란올, 메틸 사이클로헥실 알릴 실란올, 메틸 페닐 알릴 실란올, 메틸 벤질 알릴 실란올, 디에틸 알릴 실란올, 에틸프로필 알릴 실란올, 에틸부틸 알릴 실란올, 에틸 사이클로헥실 알릴 실란올, 에틸 페닐 알릴 실란올, 에틸 벤질 알릴 실란올, 디프로필 알릴 실란올, 프로필부틸 알릴 실란올, 프로필 사이클로헥실 알릴 실란올, 프로필 페닐 알릴 실란올, 프로필 벤질 알릴 실란올, 디부틸 알릴 실란올, 부틸 사이클로헥실 알릴 실란올, 부틸 페닐 알릴 실란올, 부틸 벤질 알릴 실란올, 디사이클로헥실 알릴 실란올, 사이클로헥실 페닐 알릴 실란올, 사이클로헥실 벤질 알릴 실란올, 페닐 벤질 알릴 실란올, 디페닐 알릴 실란올, 디벤질 알릴 실란올 등을 각각 단독으로 또는 이들 중 2종 이상을 혼합하여 사용하는 것이 바람직하다. Examples of the silicone compound include dimethyl vinyl silanol, methylethyl vinyl silanol, methylpropyl vinyl silanol, methylbutyl vinyl silanol, methyl cyclohexyl vinyl silanol, methyl phenyl vinyl silanol, methyl benzyl vinyl silanol, and diethyl vinyl. Silanol, ethylpropyl vinyl silanol, ethylbutyl vinyl silanol, ethyl cyclohexyl vinyl silanol, ethyl phenyl vinyl silanol, ethyl benzyl vinyl silanol, dipropyl vinyl silanol, propylbutyl vinyl silanol, propyl cyclohexyl vinyl Silanol, propyl phenyl vinyl silanol, propyl benzyl vinyl silanol, dibutyl vinyl silanol, butyl cyclohexyl vinyl silanol, butyl phenyl vinyl silanol, butyl benzyl vinyl silanol, dicyclohexyl vinyl silanol, cyclohexyl phenyl Vinyl silanol, cyclohexyl benzyl vinyl silanol, phenyl benzyl vinyl silanol, diphenyl vinyl silanol, dibenzyl vinyl silane Dimethyl allyl silanol, methylethyl allyl silanol, methylpropyl allyl silanol, methylbutyl allyl silanol, methyl cyclohexyl allyl silanol, methyl phenyl allyl silanol, methyl benzyl allyl silanol, diethyl allyl silanol, ethylpropyl Allyl silanol, ethylbutyl allyl silanol, ethyl cyclohexyl allyl silanol, ethyl phenyl allyl silanol, ethyl benzyl allyl silanol, dipropyl allyl silanol, propylbutyl allyl silanol, propyl cyclohexyl allyl silanol, propyl phenyl Allyl silanol, propyl benzyl allyl silanol, dibutyl allyl silanol, butyl cyclohexyl allyl silanol, butyl phenyl allyl silanol, butyl benzyl allyl silanol, dicyclohexyl allyl silanol, cyclohexyl phenyl allyl silanol, cyclo Hexyl benzyl allyl silanol, phenyl benzyl allyl silanol, diphenyl allyl silanol, dibenzyl allyl silanol, and the like, To use a mixture of two or more of them are preferred.
본 발명의 비수 전해액에 있어서, 상기 카보네이트계 유기용매로는 환형 카보네이트 화합물, 선형 카보네이트 화합물 또는 이들의 혼합물을 사용할 수 있고, 선형 에스테르 화합물을 더 함유할 수 있다. 카보네이트계 유기용매로는 하기 화학식 2로 표시되는 환형 카보네이트 화합물 및 하기 화학식 3으로 표시되는 선형 카보네이트 화합물의 혼합물을 사용하는 것이 바람직하고, 필요에 따라 하기 화학식 4로 표시되는 환형 카보네이트 화합물을 더 함유할 수 있다.In the nonaqueous electrolyte of the present invention, the carbonate organic solvent may be a cyclic carbonate compound, a linear carbonate compound or a mixture thereof, and may further contain a linear ester compound. As the carbonate-based organic solvent, it is preferable to use a mixture of a cyclic carbonate compound represented by the following formula (2) and a linear carbonate compound represented by the following formula (3), and may further contain a cyclic carbonate compound represented by the following formula (4) as necessary. Can be.
화학식 2
Figure PCTKR2009006687-appb-C000002
Formula 2
Figure PCTKR2009006687-appb-C000002
상기 화학식 2에서, R1 내지 R4은 각각 서로 독립적으로 수소원자, 플루오르 원소(fluorine) 및 탄소수가 1 내지 4인 알킬기로 이루어진 군으로부터 선택된 어느 하나이다.In Formula 2, R1 to R4 are each independently selected from the group consisting of a hydrogen atom, a fluorine element, and an alkyl group having 1 to 4 carbon atoms.
화학식 3
Figure PCTKR2009006687-appb-C000003
Formula 3
Figure PCTKR2009006687-appb-C000003
상기 화학식 3에서, R7 및 R8은 각각 서로 독립적으로 탄소수가 1 내지 4인 알킬기로서, 상기 알킬기는 선택적으로 적어도 하나 이상의 수소원자가 플루오르 원소(fluorine)로 치환될 수 있다.In Chemical Formula 3, R7 and R8 are each independently an alkyl group having 1 to 4 carbon atoms, and the alkyl group may be optionally substituted with at least one hydrogen atom by fluorine.
화학식 4
Figure PCTKR2009006687-appb-C000004
Formula 4
Figure PCTKR2009006687-appb-C000004
상기 화학식 4에서, R5 및 R6은 각각 서로 독립적으로 수소원자 또는 탄소수가 1 내지 4인 알킬기이다.In Formula 4, R5 and R6 are each independently a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
또한, 본 발명의 비수 전해액에 있어서, 카보네이트계 유기용매는 상기 화학식 2로 표시되는 환형 카보네이트 화합물을 포함하고, 비수 전해액은 하기 화학식 5로 표시되는 선형 에스테르 화합물을 더 함유하는 것이 바람직하다. In addition, in the nonaqueous electrolyte of the present invention, the carbonate-based organic solvent includes a cyclic carbonate compound represented by Formula 2, and the nonaqueous electrolyte preferably further contains a linear ester compound represented by Formula 5 below.
화학식 5
Figure PCTKR2009006687-appb-C000005
Formula 5
Figure PCTKR2009006687-appb-C000005
상기 화학식 5에서, R9 및 R10은 각각 서로 독립적으로 탄소수가 1 내지 4인 알킬기로서, 상기 알킬기는 선택적으로 적어도 하나 이상의 수소원자가 플루오르 원소(fluorine)로 치환될 수 있다.In Formula 5, R9 and R10 are each independently an alkyl group having 1 to 4 carbon atoms, and the alkyl group may be optionally substituted with at least one hydrogen atom by fluorine.
전술한 리튬 이차전지용 비수 전해액은 음극과 양극을 구비하는 통상적인 리튬 이차전지에 유용하게 적용된다. The nonaqueous electrolyte for lithium secondary batteries described above is usefully applied to conventional lithium secondary batteries having a negative electrode and a positive electrode.
본 발명의 리튬 이차전지에 있어서, 양극으로는 리튬코발트옥사이드, 리튬 니켈계 산화물 또는 이들의 혼합물을 사용하는 것이 바람직한데, 리튬 니켈계 산화물로는 Li1-x(NiaCobMnc)O2(-0.1≤x≤0.1, 0<a<1, 0<b<1, 0<c<1, a+b+c=1)을 사용하는 것이 더욱 바람직하다.In the lithium secondary battery of the present invention, it is preferable to use lithium cobalt oxide, lithium nickel oxide, or a mixture thereof as the positive electrode, and lithium nickel oxide is Li 1-x (Ni a Co b Mn c ) O. More preferably, 2 (−0.1 ≦ x ≦ 0.1, 0 <a <1, 0 <b <1, 0 <c <1, a + b + c = 1) is used.
본 발명에 따른 비수 전해액을 리튬 이차전지에 사용시, 충방전 싸이클 수명특성의 저하현상이 개선될 뿐 아니라, 전지가 만충전 상태(fully-charged state)에서 고온에 보관되거나 충방전이 진행되더라도 전해액의 분해반응이 억제됨으로, 스웰링(swelling) 현상을 막을 수 있고, 고온 수명특성을 향상시킬 수 있다. When the nonaqueous electrolyte according to the present invention is used in a lithium secondary battery, not only the degradation of the charge-discharge cycle life characteristics is improved, but even when the battery is stored at a high temperature in a fully-charged state or charge / discharge proceeds, Since the decomposition reaction is suppressed, the swelling phenomenon can be prevented and the high temperature life characteristics can be improved.
이러한 효과는 양극으로서 리튬 니켈계 산화물을 사용하는 경우 더욱 현저하다.This effect is more pronounced when using lithium nickel-based oxide as the anode.
이하, 본 발명에 대해 상세히 설명하기로 한다. 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.Hereinafter, the present invention will be described in detail. The terms or words used in this specification and claims are not to be construed as limiting in their usual or dictionary meanings, and the inventors may appropriately define the concept of terms in order to best explain their invention in the best way possible. It should be interpreted as meaning and concept corresponding to the technical idea of the present invention based on the principle that the present invention.
본 발명에 따라 리튬염 및 유기용매를 포함하는 리튬 이차전지용 비수 전해액은 하기 화학식 1로 표시되는 실리콘계 화합물을 더 포함한다.According to the present invention, the nonaqueous electrolyte solution for a lithium secondary battery including a lithium salt and an organic solvent further includes a silicon-based compound represented by Formula 1 below.
<화학식 1><Formula 1>
Figure PCTKR2009006687-appb-I000001
Figure PCTKR2009006687-appb-I000001
상기 화학식 1에서, X는 수소원자이고, R1, R2 및 R3은 각각 서로 독립적으로 수소원자 또는 탄소수가 1 내지 10인 탄화수소기이되, 이 중 적어도 하나는 탄소 이중결합을 갖는다. 바람직하게는, 상기 화학식 1의 R1, R2 및 R3 중 적어도 어느 하나는 비닐기 또는 알릴기이다. In Formula 1, X is a hydrogen atom, R1, R2 and R3 are each independently a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms, at least one of which has a carbon double bond. Preferably, at least one of R 1, R 2, and R 3 of Formula 1 is a vinyl group or an allyl group.
상기 화학식 1로 표시되는 실리콘계 화합물은 수산기와 탄소 이중결합을 갖는 탄화수소기를 동시에 갖는다. 실리콘계 화합물이 갖는 탄소 이중결합 관능기로 인해 전지의 초기 중전시 음극과의 환원반응을 통해 유기용매보다 먼저 음극 표면에 SEI를 형성한다. 또한, 실리콘계 화합물이 갖는 수산기는 전해액에서 발생한 불산과 반응하여 탈수반응함으로서 안정한 화합물이 된다. 이에 따라, 본 발명의 실리콘계 화합물을 포함하는 비수 전해액을 리튬 이차전지에 사용시, 충방전 싸이클 수명특성의 저하현상이 개선될 뿐 아니라, 전지가 만충전 상태(fully-charged state)에서 고온에 보관되거나 충방전이 진행되더라도 전해액의 분해반응이 억제됨으로, 스웰링(swelling) 현상을 막을 수 있고, 고온 수명특성을 향상시킬 수 있다. The silicon compound represented by Chemical Formula 1 has a hydroxyl group and a hydrocarbon group having a carbon double bond at the same time. Due to the carbon double bond functional group of the silicon compound, SEI is formed on the surface of the negative electrode before the organic solvent through a reduction reaction with the negative electrode during the initial heavy discharge of the battery. Moreover, the hydroxyl group which a silicone type compound has becomes a stable compound by reacting with hydrofluoric acid which generate | occur | produced in electrolyte solution, and dehydrating reaction. Accordingly, when the nonaqueous electrolyte containing the silicon-based compound of the present invention is used in a lithium secondary battery, not only the degradation of the charge / discharge cycle life characteristics is improved, but the battery is stored at a high temperature in a fully-charged state or Even when charging and discharging proceeds, the decomposition reaction of the electrolyte is suppressed, so that a swelling phenomenon can be prevented and high temperature life characteristics can be improved.
이러한 화학식 1의 실리콘계 화합물의 함량은 비수 전해액 100 중량부를 기준으로 0.1 내지 12 중량부인 것이 바람직하다. 만약 실리콘계 화합물의 함량이 0.1 중량부 미만이면 전극에서의 충분한 SEI(solid-electrolyte interface)를 형성할 수 없어 본 발명의 효과를 기대하기 어려울 수 있고, 12 중량부를 초과하게 되면 제조된 비수계 전해액의 점도 증가 및 형성된 SEI의 저항 증가로 본 발명의 효과가 감소할 수 있다.The content of the silicon compound of Formula 1 is preferably 0.1 to 12 parts by weight based on 100 parts by weight of the nonaqueous electrolyte. If the content of the silicon-based compound is less than 0.1 parts by weight can not be formed sufficient solid-electrolyte interface (SEI) at the electrode it can be difficult to expect the effect of the present invention, if it exceeds 12 parts by weight of the prepared non-aqueous electrolyte Increasing the viscosity and increasing the resistance of the formed SEI can reduce the effects of the present invention.
이러한 화학식 1의 실리콘계 화합물로는 디메틸 비닐 실란올, 메틸에틸 비닐 실란올, 메틸프로필 비닐 실란올, 메틸부틸 비닐 실란올, 메틸 사이클로헥실 비닐 실란올, 메틸 페닐 비닐 실란올, 메틸 벤질 비닐 실란올, 디에틸 비닐 실란올, 에틸프로필 비닐 실란올, 에틸부틸 비닐 실란올, 에틸 사이클로헥실 비닐 실란올, 에틸 페닐 비닐 실란올, 에틸 벤질 비닐 실란올, 디프로필 비닐 실란올, 프로필부틸 비닐 실란올, 프로필 사이클로헥실 비닐 실란올, 프로필 페닐 비닐 실란올, 프로필 벤질 비닐 실란올, 디부틸 비닐 실란올, 부틸 사이클로헥실 비닐 실란올, 부틸 페닐 비닐 실란올, 부틸 벤질 비닐 실란올, 디사이클로헥실 비닐 실란올, 사이클로헥실 페닐 비닐 실란올, 사이클로헥실 벤질 비닐 실란올, 페닐 벤질 비닐 실란올, 디페닐 비닐 실란올, 디벤질 비닐 실란올 디메틸 알릴 실란올, 메틸에틸 알릴 실란올, 메틸프로필 알릴 실란올, 메틸부틸 알릴 실란올, 메틸 사이클로헥실 알릴 실란올, 메틸 페닐 알릴 실란올, 메틸 벤질 알릴 실란올, 디에틸 알릴 실란올, 에틸프로필 알릴 실란올, 에틸부틸 알릴 실란올, 에틸 사이클로헥실 알릴 실란올, 에틸 페닐 알릴 실란올, 에틸 벤질 알릴 실란올, 디프로필 알릴 실란올, 프로필부틸 알릴 실란올, 프로필 사이클로헥실 알릴 실란올, 프로필 페닐 알릴 실란올, 프로필 벤질 알릴 실란올, 디부틸 알릴 실란올, 부틸 사이클로헥실 알릴 실란올, 부틸 페닐 알릴 실란올, 부틸 벤질 알릴 실란올, 디사이클로헥실 알릴 실란올, 사이클로헥실 페닐 알릴 실란올, 사이클로헥실 벤질 알릴 실란올, 페닐 벤질 알릴 실란올, 디페닐 알릴 실란올, 디벤질 알릴 실란올 등을 각각 단독으로 또는 이들 중 2종 이상을 혼합하여 사용할 수 있다. Examples of the silicone compound of Formula 1 include dimethyl vinyl silanol, methylethyl vinyl silanol, methylpropyl vinyl silanol, methylbutyl vinyl silanol, methyl cyclohexyl vinyl silanol, methyl phenyl vinyl silanol, methyl benzyl vinyl silanol, Diethyl vinyl silanol, ethylpropyl vinyl silanol, ethylbutyl vinyl silanol, ethyl cyclohexyl vinyl silanol, ethyl phenyl vinyl silanol, ethyl benzyl vinyl silanol, dipropyl vinyl silanol, propylbutyl vinyl silanol, propyl Cyclohexyl vinyl silanol, propyl phenyl vinyl silanol, propyl benzyl vinyl silanol, dibutyl vinyl silanol, butyl cyclohexyl vinyl silanol, butyl phenyl vinyl silanol, butyl benzyl vinyl silanol, dicyclohexyl vinyl silanol, Cyclohexyl phenyl vinyl silanol, cyclohexyl benzyl vinyl silanol, phenyl benzyl vinyl silanol, diphenyl vinyl silanol, diben Vinyl silanol dimethyl allyl silanol, methylethyl allyl silanol, methylpropyl allyl silanol, methylbutyl allyl silanol, methyl cyclohexyl allyl silanol, methyl phenyl allyl silanol, methyl benzyl allyl silanol, diethyl allyl silanol , Ethylpropyl allyl silanol, ethylbutyl allyl silanol, ethyl cyclohexyl allyl silanol, ethyl phenyl allyl silanol, ethyl benzyl allyl silanol, dipropyl allyl silanol, propylbutyl allyl silanol, propyl cyclohexyl allyl silanol Propyl phenyl allyl silanol, propyl benzyl allyl silanol, dibutyl allyl silanol, butyl cyclohexyl allyl silanol, butyl phenyl allyl silanol, butyl benzyl allyl silanol, dicyclohexyl allyl silanol, cyclohexyl phenyl allyl silane Ol, cyclohexyl benzyl allyl silanol, phenyl benzyl allyl silanol, diphenyl allyl silanol, dibenzyl allyl silanol, and the like, respectively. It can be used individually or in mixture of 2 or more types of these.
본 발명의 비수 전해액에 있어서, 카보네이트계 유기용매로는 통상적으로 사용되는 카보네이트계 유기용매, 예를 들어 환형 카보네이트 화합물, 선형 카보네이트 화합물 또는 이들의 혼합물을 사용할 수 있고, 선형 에스테르 화합물을 더 함유할 수 있다. 카보네이트계 유기용매로는 하기 화학식 2로 표시되는 환형 카보네이트 화합물 및 하기 화학식 3으로 표시되는 선형 카보네이트 화합물의 혼합물을 사용하는 것이 바람직하고, 필요에 따라 하기 화학식 4로 표시되는 환형 카보네이트 화합물을 더 함유할 수 있다.In the nonaqueous electrolytic solution of the present invention, a carbonate organic solvent commonly used as the carbonate organic solvent, for example, a cyclic carbonate compound, a linear carbonate compound, or a mixture thereof may be used, and may further contain a linear ester compound. have. As the carbonate-based organic solvent, it is preferable to use a mixture of a cyclic carbonate compound represented by the following formula (2) and a linear carbonate compound represented by the following formula (3), and may further contain a cyclic carbonate compound represented by the following formula (4) as necessary. Can be.
<화학식 2><Formula 2>
Figure PCTKR2009006687-appb-I000002
Figure PCTKR2009006687-appb-I000002
상기 화학식 2에서, R1 내지 R4은 각각 서로 독립적으로 수소원자, 플루오르 원소(fluorine) 및 탄소수가 1 내지 4인 알킬기로 이루어진 군으로부터 선택된 어느 하나이다.In Formula 2, R1 to R4 are each independently selected from the group consisting of a hydrogen atom, a fluorine element, and an alkyl group having 1 to 4 carbon atoms.
<화학식 3><Formula 3>
Figure PCTKR2009006687-appb-I000003
Figure PCTKR2009006687-appb-I000003
상기 화학식 3에서, R7 및 R8은 각각 서로 독립적으로 탄소수가 1 내지 4인 알킬기로서, 상기 알킬기는 선택적으로 적어도 하나 이상의 수소원자가 플루오르 원소(fluorine)로 치환될 수 있다.In Chemical Formula 3, R7 and R8 are each independently an alkyl group having 1 to 4 carbon atoms, and the alkyl group may be optionally substituted with at least one hydrogen atom by fluorine.
<화학식 4><Formula 4>
Figure PCTKR2009006687-appb-I000004
Figure PCTKR2009006687-appb-I000004
상기 화학식 4에서, R5 및 R6은 각각 서로 독립적으로 수소원자 또는 탄소수가 1 내지 4인 알킬기이다.In Formula 4, R5 and R6 are each independently a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
또한, 본 발명의 비수 전해액에 있어서, 카보네이트계 유기용매는 상기 화학식 2로 표시되는 환형 카보네이트 화합물을 포함하고, 비수 전해액은 하기 화학식 5로 표시되는 선형 에스테르 화합물을 더 함유하는 것이 바람직하다. In addition, in the nonaqueous electrolyte of the present invention, the carbonate-based organic solvent includes a cyclic carbonate compound represented by Formula 2, and the nonaqueous electrolyte preferably further contains a linear ester compound represented by Formula 5 below.
<화학식 5><Formula 5>
Figure PCTKR2009006687-appb-I000005
Figure PCTKR2009006687-appb-I000005
상기 화학식 5에서, R9 및 R10은 각각 서로 독립적으로 탄소수가 1 내지 4인 알킬기로서, 상기 알킬기는 선택적으로 적어도 하나 이상의 수소원자가 플루오르 원소(fluorine)로 치환될 수 있다.In Formula 5, R9 and R10 are each independently an alkyl group having 1 to 4 carbon atoms, and the alkyl group may be optionally substituted with at least one hydrogen atom by fluorine.
환형 카보네이트 화합물은 전해질 내의 리튬염을 잘 해리시키므로 전지의 충방전 용량 향상에 기여한다. 화학식 2로 표시되는 카보네이트 화합물로는 에틸렌 카보네이트, 프로필렌 카보네이트, 플루오로에틸렌카보네이트, 부틸렌 카보네이트 등을 각각 단독으로 또는 이들 중 2종 이상을 혼합하여 사용할 수 있다. 특히, 에틸렌 카보네이트 또는 에틸렌 카보네이트와 프로필렌 카보네이트의 혼합물은 유전율이 높아 전해질 내의 리튬염을 더욱 잘 해리시킨다. 에틸렌 카보네이트와 프로필렌 카보네이트의 혼합물을 사용하는 경우, 프로필렌 카보네이트의 바람직한 혼합 부피비는 에틸렌 카보네이트의 1/4 ~ 1이다. The cyclic carbonate compound dissociates the lithium salt in the electrolyte well and contributes to the improvement of the charge / discharge capacity of the battery. As the carbonate compound represented by the formula (2), ethylene carbonate, propylene carbonate, fluoroethylene carbonate, butylene carbonate and the like may be used alone or in combination of two or more thereof. In particular, ethylene carbonate or a mixture of ethylene carbonate and propylene carbonate has a high dielectric constant, which dissociates lithium salts in the electrolyte better. When using a mixture of ethylene carbonate and propylene carbonate, the preferred mixing volume ratio of propylene carbonate is 1/4 to 1 of ethylene carbonate.
또한, 화학식 3의 선형 카보네이트 화합물은 리튬 이차전지의 충방전 효율 향상 및 전지특성의 최적화에 기여할 수 있는데, 이러한 화합물로는 디메틸 카보네이트, 디에틸 카보네이트, 에틸메틸 카보네이트, 메틸프로필 카보네이트 등으로 이들 중 1종 이상을 혼합하여 사용할 수 있다. 화학식 4의 환형 카보네이트 화합물로는 비닐렌 카보네이트를 들 수 있다.In addition, the linear carbonate compound of Formula 3 may contribute to the improvement of the charge and discharge efficiency of the lithium secondary battery and the optimization of battery characteristics, such as dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, methylpropyl carbonate, etc. It can mix and use species. The cyclic carbonate compound of Formula 4 includes vinylene carbonate.
한편, 화학식 5의 선형 에스테르 화합물은 빙점이 낮고 비등점이 비교적 높으며, 우수한 저온 특성을 나타내는 저점도, 저융점의 유기용매이다. 또한, 탄소재 음극에 대한 반응성이 비교적 낮다. 이러한 선형 에스테르계 화합물은 전술한 환형 카보네이트 화합물과 혼합되어 리튬 이차전지의 저온 방전 특성과 수명 개선에 기여할 수 있다. 즉, 선형 에스테르계 화합물은 리튬 이온을 적절하게 배위하여 상온 및 저온에서 높은 이온 전도도를 나타냄으로써 전지의 저온 방전특성 및 고율 방전특성을 향상시킨다. 또한, 용매의 고유 특성인 산화전압이 4.5V 이상으로, 충전시 양극에서의 전해액 분해 반응에 대한 저항성을 갖게 함으로써 전지의 수명성능을 향상시킨다. 더불어, 탄산 에스테르계 용매만을 비수 전해액으로 사용할 때보다 전극에 대한 젖음성(wettability)이 향상되므로, 전극 표면에 리튬 덴트라이트(dendrite) 형성을 억제하여 전지의 안전성 향상에 기여한다. 이러한 화학식 5의 선형 에스테르계 화합물로는 메틸 아세테이트, 에틸아세테이트, 프로필 아세테이트, 메틸 프로피오네이트, 에틸프로피오네이트, 프로필 프로피오네이트 등이 있고, 보다 바람직하게는 에틸 프로피오네이트, 에틸 3-플루오로프로파노에이트, 에틸 3,3-디플루오로프로파노에이트, 에틸 3,3,3-트리플루오로프로파노에이트, 2-플루오로에틸 프로피오네이트, 2,2-디플루오로에틸 프로피오네이트, 2,2,2-트리플루오로에틸 프로피오네이트, 2,2,2-트리플루오로에틸 3-플루오로프로파노에이트, 2,2,2-트리플루오로에틸 3,3-디플루오로프로파노에이트, 2,2,2-트리플루오로에틸 3,3,3-트리플루오로프로파노에이트 등을 각각 단독으로 또는 이들을 2종 이상 혼합하여 사용할 수 있다.On the other hand, the linear ester compound of formula (5) is a low viscosity, low melting point organic solvent showing a low freezing point, a relatively high boiling point, excellent low temperature properties. Moreover, the reactivity with respect to a carbon material negative electrode is comparatively low. The linear ester compound may be mixed with the above-described cyclic carbonate compound to contribute to low temperature discharge characteristics and life improvement of the lithium secondary battery. That is, the linear ester-based compound appropriately coordinates lithium ions and exhibits high ionic conductivity at room temperature and low temperature, thereby improving low temperature discharge characteristics and high rate discharge characteristics of the battery. In addition, the oxidation voltage, which is an intrinsic property of the solvent, is 4.5 V or more, thereby improving the life performance of the battery by making it resistant to the electrolyte decomposition reaction at the anode during charging. In addition, the wettability with respect to the electrode is improved compared to when only the carbonate ester solvent is used as the nonaqueous electrolyte, thereby suppressing the formation of lithium dendrite on the electrode surface, thereby contributing to the improvement of battery safety. Examples of the linear ester compound of Formula 5 include methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate, propyl propionate, and more preferably ethyl propionate and ethyl 3-fluoro. Roprophanoate, Ethyl 3,3-difluoropropanoate, Ethyl 3,3,3-trifluoropropanoate, 2-fluoroethyl propionate, 2,2-difluoroethyl propio Nate, 2,2,2-trifluoroethyl propionate, 2,2,2-trifluoroethyl 3-fluoropropanoate, 2,2,2-trifluoroethyl 3,3-difluoro Lorophanoate, 2,2,2-trifluoroethyl 3,3,3-trifluoropropanoate, and the like can be used alone or in combination of two or more thereof.
또한, 비수전해액에 전해질로서 포함되는 리튬염은 리튬 이차전지용 비수 전해액에 통상적으로 사용되는 것들이 제한 없이 사용될 수 있는데, 상기 리튬염의 대표적인 예로는 LiPF6, LiBF4, LiSbF6, LiAsF6, LiClO4, LiN(C2F5SO2)2, LiN(CF3SO2)2, CF3SO3Li, LiC(CF3SO2)3 등을 들 수 있다. 더불어, 전지 안전성을 향상 시키기 위하여 본 발명의 비수 전해액은 비닐 에틸렌 카보네이트, 숙시노니트릴, 사이클로헥실 벤젠, 비페닐, 1,3-디옥솔란-2-오닐메틸 알릴 술포네이트 등을 본 발명의 목적을 저해하지 않는 한도 내에서 더 함유할 수 있음은 물론이다.In addition, the lithium salt included as an electrolyte in the nonaqueous electrolyte may be used without limitation those conventionally used in the nonaqueous electrolyte for lithium secondary batteries. Representative examples of the lithium salt include LiPF 6, LiBF 4, LiSbF 6, LiAsF 6, LiClO 4 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) 2 , CF 3 SO 3 Li, LiC (CF 3 SO 2 ) 3 , and the like. In addition, in order to improve battery safety, the nonaqueous electrolyte of the present invention includes vinyl ethylene carbonate, succinonitrile, cyclohexyl benzene, biphenyl, 1,3-dioxolane-2-onylmethyl allyl sulfonate, and the like. Of course, it can contain further within the limit unless it is inhibited.
전술한 비수 전해액은 음극, 양극 및 비수 전해액을 구비하는 통상적인 리튬 이차전지의 비수 전해액으로서 사용된다. The above-mentioned nonaqueous electrolyte is used as a nonaqueous electrolyte of a conventional lithium secondary battery having a negative electrode, a positive electrode, and a nonaqueous electrolyte.
음극으로는 리튬이온을 흡장 및 방출할 수 있는 물질로서 통상적으로 탄소재로 된 물질이 사용되고, 양극으로는 리튬 함유 산화물로 된 물질이 통상적으로 사용된다. As the negative electrode, a material made of carbon material is usually used as a material capable of occluding and releasing lithium ions, and a material made of a lithium-containing oxide is usually used as the positive electrode.
리튬이온을 흡장 및 방출할 수 있는 탄소재로는 저결정 탄소 및 고결정성 탄소 등이 모두 사용될 수 있다. 저결정성 탄소로는 연화탄소(soft carbon) 및 경화탄소(hard carbon)가 대표적이며, 고결정성 탄소로는 천연 흑연, 키시흑연(Kish graphite), 열분해 탄소(pyrolytic carbon), 액정 피치계 탄소섬유(mesophase pitch based carbon fiber), 탄소 미소구체(meso-carbon microbeads), 액정피치(Mesophase pitches) 및 석유와 석탄계 코크스(petroleum or coal tar pitch derived cokes) 등의 고온 소성탄소가 대표적이다. 이때 음극은 결착제를 포함할 수 있으며, 결착제로는 비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐리덴플루오라이드(polyvinylidenefluoride), 폴리아크릴로니트릴(polyacrylonitrile), 폴리메틸메타크릴레이트(polymethylmethacrylate) 등, 다양한 종류의 바인더 고분자가 사용될 수 있다. As the carbon material capable of occluding and releasing lithium ions, both low crystalline carbon and high crystalline carbon may be used. Soft crystalline carbon and hard carbon are typical low crystalline carbon, and high crystalline carbon is natural graphite, Kish graphite, pyrolytic carbon, liquid crystal pitch-based carbon fiber. High temperature calcined carbon such as (mesophase pitch based carbon fiber), meso-carbon microbeads, Mesophase pitches and petroleum or coal tar pitch derived cokes. In this case, the negative electrode may include a binder, and the binder may include vinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinylidene fluoride, polyacrylonitrile, Various kinds of binder polymers, such as polymethylmethacrylate, may be used.
또한, 리튬 함유 산화물로 된 양극으로는 리튬 함유 전이금속 산화물이 바람직하게 사용될 수 있다. 더욱 바람직하게는 리튬코발트옥사이드(LiCoO2), 리튬 니켈계 산화물을 각각 단독으로 또는 이들을 혼합하여 사용할 수 있다. 특히, 본 발명의 비수 전해액은 양극으로서 리튬 니켈계 산화물을 사용할 때, 본 발명의 효과가 현저하게 나타난다. 즉, 리튬 니켈계 산화물을 양극으로 사용한 전지는 고용량 전지로 제조될 수 있는 장점이 있으나, 충방전 싸이클 수명특성의 저하현상과 전지의 스웰링 현상에 대한 해결이 선행되어야 한다. 본 발명에 따라 상기 화학식 1의 실리콘계 화합물을 포함하는 비수 전해액을 리튬 니켈계 산화물을 양극으로 구비한 리튬 이차전지에 적용하면, 리튬 니켈계 산화물 사용에 따른 전술한 문제점이 크게 개선된다. In addition, a lithium-containing transition metal oxide can be preferably used as the anode made of a lithium-containing oxide. More preferably, lithium cobalt oxide (LiCoO 2 ) and lithium nickel-based oxide may be used alone or in combination thereof. In particular, the nonaqueous electrolyte of the present invention exhibits remarkable effects when the lithium nickel oxide is used as the positive electrode. That is, the battery using lithium nickel-based oxide as a positive electrode has the advantage that can be manufactured as a high capacity battery, but the degradation of the charge-discharge cycle life characteristics and the solution of the swelling of the battery should be preceded. According to the present invention, when the nonaqueous electrolyte solution including the silicon compound of Chemical Formula 1 is applied to a lithium secondary battery having lithium nickel oxide as a positive electrode, the above-described problems caused by using lithium nickel oxide may be greatly improved.
양극으로서 리튬 니켈계 산화물로는 LiNiO2, Li1-x(NiaCobMnc)O2(-0.1≤x≤0.1, 0<a<1, 0<b<1, 0<c<1, a+b+c=1), LiNi1-yCoyO2(O≤y<1), LiNi1-yMnyO2(O≤y<1), Li(NiaCobMnc)O4(0<a<2, 0<b<2, 0<c<2, a+b+c=2), LiMn2-zNizO4(0<z<2) 등을 각각 단독으로 또는 이들을 2종 이상 혼합하여 사용할 수 있는데, 특히 바람직하게는 Li1-x(NiaCobMnc)O2(-0.1≤x≤0.1, 0<a<1, 0<b<1, 0<c<1, a+b+c=1)가 사용될 수 있고, 가장 바람직하게는 Li1-x(NiaCobMnc)O2(-0.1≤x≤0.1, 0.5≤a≤0.8, 0.1≤b≤0.2, 0.1≤c≤0.3, a+b+c=1)인 것을 사용할 수 있다.Examples of lithium nickel oxides as the anode include LiNiO 2 , Li 1-x (Ni a Co b Mn c ) O 2 (−0.1 ≦ x ≦ 0.1, 0 <a <1, 0 <b <1, 0 <c <1 , a + b + c = 1), LiNi 1-y Co y O 2 (O ≦ y <1), LiNi 1-y Mn y O 2 (O ≦ y <1), Li (Ni a Co b Mn c ) O 4 (0 <a <2, 0 <b <2, 0 <c <2, a + b + c = 2), LiMn 2-z Ni z O 4 (0 <z <2), etc. Or a mixture of two or more thereof, and particularly preferably Li 1-x (Ni a Co b Mn c ) O 2 (−0.1 ≦ x ≦ 0.1, 0 <a <1, 0 <b <1, 0 <c <1, a + b + c = 1) may be used, most preferably Li 1-x (Ni a Co b Mn c ) O 2 (−0.1 ≦ x ≦ 0.1, 0.5 ≦ a ≦ 0.8 , 0.1 ≦ b ≦ 0.2, 0.1 ≦ c ≦ 0.3, and a + b + c = 1).
본 발명의 리튬 이차전지의 전극은 통상적인 방법, 예를 들어 전극 활물질 입자와 바인더 고분자를 필요에 따라 도전재, 분산제와 함께 용매에 첨가하여 슬러리를 제조한 후, 집전체에 도포 및 압축한 다음 건조하여 제조할 수 있다. 이 때, 양극은 집전체 상에 도포된 양극 활물질층의 두께, 바인더 고분자의 양, 공정 조건 등을 조절하여 당업자가 용이하게 제조할 수 있음은 당연하다 할 것이다. The electrode of the lithium secondary battery of the present invention is a conventional method, for example, the electrode active material particles and the binder polymer is added to the solvent with a conductive material and a dispersant as necessary to prepare a slurry, and then coated and pressed on a current collector It can be prepared by drying. At this time, it will be obvious that the positive electrode can be easily manufactured by those skilled in the art by adjusting the thickness of the positive electrode active material layer coated on the current collector, the amount of the binder polymer, the process conditions, and the like.
또한, 양극과 음극 사이는 통상적으로 세퍼레이터가 개재되는데, 종래에 세퍼레이터로 사용된 통상적인 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름이 단독으로 또는 이들을 적층하여 사용될 수 있다. 이 외에 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포를 사용할 수 있으나, 이에 한정되는 것은 아니다.In addition, a separator is usually interposed between the positive electrode and the negative electrode, and conventional porous polymer films conventionally used as separators, for example, ethylene homopolymer, propylene homopolymer, ethylene / butene copolymer, ethylene / hexene copolymer and ethylene Porous polymer films made of polyolefin-based polymers such as / methacrylate copolymers may be used alone or in a stack of them. In addition to the conventional porous non-woven fabric, for example, a non-woven fabric of high melting glass fibers, polyethylene terephthalate fibers and the like can be used, but is not limited thereto.
본 발명의 리튬 이차전지의 외형은 특별한 제한이 없으나, 캔을 사용한 원통형, 각형, 파우치(pouch)형 또는 코인(coin)형 등이 될 수 있다.The external shape of the lithium secondary battery of the present invention is not particularly limited, but may be cylindrical, square, pouch type, or coin type using a can.
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나, 본 발명에 따른 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예에 한정되는 것으로 해석 되어서는 안 된다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다.Hereinafter, the present invention will be described in detail with reference to Examples. However, embodiments according to the present invention can be modified in many different forms, the scope of the invention should not be construed as limited to the embodiments described below. The embodiments of the present invention are provided to more completely explain the present invention to those skilled in the art.
[실시예 1] Example 1
에틸렌 카보네이트(ethylene carbonate, EC): 에틸메틸 카보네이트(ethylmethyl carbonate, EMC) = 1:2(v:v)의 조성을 갖는 혼합 유기용매에 1M의 LiPF6 를 혼합하여 비수전해액을 제조 하고, 비수전해액 100 중량부 대비 0.05 중량부의 디메틸비닐 실란올(dimethyl vinyl silanol)을 첨가하여 비수 전해액을 제조하였다.Ethylene carbonate (EC): 1 M LiPF 6 is mixed with a mixed organic solvent having an ethyl methyl carbonate (EMC) ratio of 1: 2 (v: v) to prepare a nonaqueous electrolyte solution. A nonaqueous electrolyte was prepared by adding 0.05 parts by weight of dimethyl vinyl silanol relative to parts by weight.
LiCoO2으로 된 양극 및 인조 흑연으로 된 음극을 구비한 파우치형 전지에 전술한 비수 전해액을 주액하여 전지를 제조하였다.The battery was manufactured by pouring the above-mentioned nonaqueous electrolyte into a pouch-type battery having a positive electrode made of LiCoO 2 and a negative electrode made of artificial graphite.
[실시예 2] Example 2
디메틸비닐 실란올의 함량을 비수전해액 100 중량부 대비 0.1 중량부로 변화시킨 것을 제외하고는 실시예 1과 동일한 방법으로 파우치형 전지를 제조하였다.A pouch-type battery was manufactured in the same manner as in Example 1, except that the content of dimethylvinyl silanol was changed to 0.1 part by weight based on 100 parts by weight of the nonaqueous electrolyte.
[실시예 3] Example 3
디메틸비닐 실란올의 함량을 비수전해액 100 중량부 대비 0.5 중량부로 변화시킨 것을 제외하고는 실시예 1과 동일한 방법으로 파우치형 전지를 제조하였다.A pouch type battery was manufactured in the same manner as in Example 1, except that the content of dimethylvinyl silanol was changed to 0.5 part by weight based on 100 parts by weight of the nonaqueous electrolyte.
[실시예 4]  Example 4
디메틸비닐 실란올의 함량을 비수전해액 100 중량부 대비 1.0 중량부로 변화시킨 것을 제외하고는 실시예 1과 동일한 방법으로 파우치형 전지를 제조하였다.A pouch type battery was manufactured in the same manner as in Example 1, except that the content of dimethylvinyl silanol was changed to 1.0 part by weight based on 100 parts by weight of the nonaqueous electrolyte.
[실시예 5]  Example 5
디메틸비닐 실란올의 함량을 비수전해액 100 중량부 대비 5.0 중량부로 변화시킨 것을 제외하고는 실시예 1과 동일한 방법으로 파우치형 전지를 제조하였다.A pouch type battery was manufactured in the same manner as in Example 1, except that the content of dimethylvinyl silanol was changed to 5.0 parts by weight based on 100 parts by weight of the nonaqueous electrolyte.
[실시예 6]  Example 6
디메틸비닐 실란올의 함량을 비수전해액 100 중량부 대비 8.0 중량부로 변화시킨 것을 제외하고는 실시예 1과 동일한 방법으로 파우치형 전지를 제조하였다.A pouch-type battery was manufactured in the same manner as in Example 1, except that the content of dimethylvinyl silanol was changed to 8.0 parts by weight based on 100 parts by weight of the nonaqueous electrolyte.
[실시예 7]  Example 7
디메틸비닐 실란올의 함량을 비수전해액 100 중량부 대비 12.0 중량부로 변화시킨 것을 제외하고는 실시예 1과 동일한 방법으로 파우치형 전지를 제조하였다.A pouch-type battery was manufactured in the same manner as in Example 1, except that the content of dimethylvinyl silanol was changed to 12.0 parts by weight based on 100 parts by weight of the nonaqueous electrolyte.
[실시예 8]  Example 8
비수전해액 100 중량부 대비 비닐렌 카보네이트(vinylene carbonate, VC)를 1.0 중량부 더 첨가한 것을 제외하고는 실시예 1과 동일한 방법으로 파우치형 전지를 제조하였다.A pouch-type battery was manufactured in the same manner as in Example 1, except that 1.0 part by weight of vinylene carbonate (VC) was added to 100 parts by weight of the nonaqueous electrolyte.
[실시예 9]  Example 9
비수전해액 100 중량부 대비 비닐렌 카보네이트(vinylene carbonate, VC)를 1.0 중량부 더 첨가한 것을 제외하고는 실시예 2와 동일한 방법으로 파우치형 전지를 제조하였다.A pouch-type battery was manufactured in the same manner as in Example 2, except that 1.0 part by weight of vinylene carbonate (VC) was added to 100 parts by weight of the non-aqueous electrolyte.
[실시예 10]  Example 10
비수전해액 100 중량부 대비 비닐렌 카보네이트(vinylene carbonate, VC)를 1.0 중량부 더 첨가한 것을 제외하고는 실시예 3과 동일한 방법으로 파우치형 전지를 제조하였다.A pouch-type battery was manufactured in the same manner as in Example 3, except that 1.0 part by weight of vinylene carbonate (VC) was added to 100 parts by weight of the non-aqueous electrolyte.
[실시예 11]  Example 11
비수전해액 100 중량부 대비 비닐렌 카보네이트(vinylene carbonate, VC)를 1.0 중량부 더 첨가한 것을 제외하고는 실시예 4와 동일한 방법으로 파우치형 전지를 제조하였다.A pouch-type battery was manufactured in the same manner as in Example 4, except that 1.0 part by weight of vinylene carbonate (VC) was added to 100 parts by weight of the nonaqueous electrolyte.
[실시예 12]  Example 12
비수전해액 100 중량부 대비 비닐렌 카보네이트(vinylene carbonate, VC)를 1.0 중량부 더 첨가한 것을 제외하고는 실시예 5와 동일한 방법으로 파우치형 전지를 제조하였다.A pouch-type battery was manufactured in the same manner as in Example 5, except that 1.0 part by weight of vinylene carbonate (VC) was added to 100 parts by weight of the non-aqueous electrolyte.
[실시예 13]  Example 13
비수전해액 100 중량부 대비 비닐렌 카보네이트(vinylene carbonate, VC)를 1.0 중량부 더 첨가한 것을 제외하고는 실시예 6과 동일한 방법으로 파우치형 전지를 제조하였다.A pouch-type battery was manufactured in the same manner as in Example 6, except that 1.0 part by weight of vinylene carbonate (VC) was added to 100 parts by weight of the non-aqueous electrolyte.
[실시예 14]  Example 14
비수전해액 100 중량부 대비 비닐렌 카보네이트(vinylene carbonate, VC)를 1.0 중량부 더 첨가한 것을 제외하고는 실시예 7과 동일한 방법으로 파우치형 전지를 제조하였다.A pouch-type battery was manufactured in the same manner as in Example 7, except that 1.0 part by weight of vinylene carbonate (VC) was added to 100 parts by weight of the nonaqueous electrolyte.
[실시예 15]  Example 15
비수 전해액으로서 에틸렌 카보네이트(ethylene carbonate, EC): 에틸 프로피오네이트(ethyl propionate, EP) = 1:2(v:v)의 조성을 갖는 혼합 유기용매에 1M의 LiPF6 를 혼합하여 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 파우치형 전지를 제조하였다. Ethylene carbonate (EC): Ethyl propionate (EP) = 1: 2 (v: v) as a non-aqueous electrolyte, except that 1M LiPF 6 was mixed with a mixed organic solvent A pouch type battery was manufactured in the same manner as in Example 1.
[실시예 16]  Example 16
비수 전해액으로서 에틸렌 카보네이트(ethylene carbonate, EC): 에틸 프로피오네이트(ethyl propionate, EP) = 1:2(v:v)의 조성을 갖는 혼합 유기용매에 1M의 LiPF6 를 혼합하여 사용한 것을 제외하고는 실시예 2와 동일한 방법으로 파우치형 전지를 제조하였다. Ethylene carbonate (EC): Ethyl propionate (EP) = 1: 2 (v: v) as a non-aqueous electrolyte, except that 1M LiPF 6 was mixed with a mixed organic solvent A pouch type battery was manufactured in the same manner as in Example 2.
[실시예 17]  Example 17
비수 전해액으로서 에틸렌 카보네이트(ethylene carbonate, EC): 에틸 프로피오네이트(ethyl propionate, EP) = 1:2(v:v)의 조성을 갖는 혼합 유기용매에 1M의 LiPF6 를 혼합하여 사용한 것을 제외하고는 실시예 3과 동일한 방법으로 파우치형 전지를 제조하였다. Ethylene carbonate (EC): Ethyl propionate (EP) = 1: 2 (v: v) as a non-aqueous electrolyte, except that 1M LiPF 6 was mixed with a mixed organic solvent A pouch type battery was manufactured in the same manner as in Example 3.
[실시예 18]  Example 18
비수 전해액으로서 에틸렌 카보네이트(ethylene carbonate, EC): 에틸 프로피오네이트(ethyl propionate, EP) = 1:2(v:v)의 조성을 갖는 혼합 유기용매에 1M의 LiPF6 를 혼합하여 사용한 것을 제외하고는 실시예 4와 동일한 방법으로 파우치형 전지를 제조하였다. Ethylene carbonate (EC): Ethyl propionate (EP) = 1: 2 (v: v) as a non-aqueous electrolyte, except that 1M LiPF 6 was mixed with a mixed organic solvent A pouch type battery was manufactured in the same manner as in Example 4.
[실시예 19]  Example 19
비수 전해액으로서 에틸렌 카보네이트(ethylene carbonate, EC): 에틸 프로피오네이트(ethyl propionate, EP) = 1:2(v:v)의 조성을 갖는 혼합 유기용매에 1M의 LiPF6 를 혼합하여 사용한 것을 제외하고는 실시예 5와 동일한 방법으로 파우치형 전지를 제조하였다. Ethylene carbonate (EC): Ethyl propionate (EP) = 1: 2 (v: v) as a non-aqueous electrolyte, except that 1M LiPF 6 was mixed with a mixed organic solvent A pouch type battery was manufactured in the same manner as in Example 5.
[실시예 20]  Example 20
비수 전해액으로서 에틸렌 카보네이트(ethylene carbonate, EC): 에틸 프로피오네이트(ethyl propionate, EP) = 1:2(v:v)의 조성을 갖는 혼합 유기용매에 1M의 LiPF6 를 혼합하여 사용한 것을 제외하고는 실시예 6과 동일한 방법으로 파우치형 전지를 제조하였다. Ethylene carbonate (EC): Ethyl propionate (EP) = 1: 2 (v: v) as a non-aqueous electrolyte, except that 1M LiPF 6 was mixed with a mixed organic solvent A pouch type battery was manufactured in the same manner as in Example 6.
[실시예 21]  Example 21
비수 전해액으로서 에틸렌 카보네이트(ethylene carbonate, EC): 에틸 프로피오네이트(ethyl propionate, EP) = 1:2(v:v)의 조성을 갖는 혼합 유기용매에 1M의 LiPF6 를 혼합하여 사용한 것을 제외하고는 실시예 7과 동일한 방법으로 파우치형 전지를 제조하였다. Ethylene carbonate (EC): Ethyl propionate (EP) = 1: 2 (v: v) as a non-aqueous electrolyte, except that 1M LiPF 6 was mixed with a mixed organic solvent A pouch-type battery was manufactured in the same manner as in Example 7.
[실시예 22]  Example 22
비수 전해액으로서 에틸렌 카보네이트(ethylene carbonate, EC): 에틸 프로피오네이트(ethyl propionate, EP) = 1:2(v:v)의 조성을 갖는 혼합 유기용매에 1M의 LiPF6 를 혼합하여 사용한 것을 제외하고는 실시예 8과 동일한 방법으로 파우치형 전지를 제조하였다. Ethylene carbonate (EC): Ethyl propionate (EP) = 1: 2 (v: v) as a non-aqueous electrolyte, except that 1M LiPF 6 was mixed with a mixed organic solvent A pouch type battery was manufactured in the same manner as in Example 8.
[실시예 23]  Example 23
비수 전해액으로서 에틸렌 카보네이트(ethylene carbonate, EC): 에틸 프로피오네이트(ethyl propionate, EP) = 1:2(v:v)의 조성을 갖는 혼합 유기용매에 1M의 LiPF6 를 혼합하여 사용한 것을 제외하고는 실시예 9와 동일한 방법으로 파우치형 전지를 제조하였다. Ethylene carbonate (EC): Ethyl propionate (EP) = 1: 2 (v: v) as a non-aqueous electrolyte, except that 1M LiPF 6 was mixed with a mixed organic solvent A pouch type battery was manufactured in the same manner as in Example 9.
[실시예 24]  Example 24
비수 전해액으로서 에틸렌 카보네이트(ethylene carbonate, EC): 에틸 프로피오네이트(ethyl propionate, EP) = 1:2(v:v)의 조성을 갖는 혼합 유기용매에 1M의 LiPF6 를 혼합하여 사용한 것을 제외하고는 실시예 10과 동일한 방법으로 파우치형 전지를 제조하였다. Ethylene carbonate (EC): Ethyl propionate (EP) = 1: 2 (v: v) as a non-aqueous electrolyte, except that 1M LiPF 6 was mixed with a mixed organic solvent A pouch type battery was manufactured in the same manner as in Example 10.
[실시예 25]  Example 25
비수 전해액으로서 에틸렌 카보네이트(ethylene carbonate, EC): 에틸 프로피오네이트(ethyl propionate, EP) = 1:2(v:v)의 조성을 갖는 혼합 유기용매에 1M의 LiPF6 를 혼합하여 사용한 것을 제외하고는 실시예 11과 동일한 방법으로 파우치형 전지를 제조하였다. Ethylene carbonate (EC): Ethyl propionate (EP) = 1: 2 (v: v) as a non-aqueous electrolyte, except that 1M LiPF 6 was mixed with a mixed organic solvent A pouch type battery was manufactured in the same manner as in Example 11.
[실시예 26]  Example 26
비수 전해액으로서 에틸렌 카보네이트(ethylene carbonate, EC): 에틸 프로피오네이트(ethyl propionate, EP) = 1:2(v:v)의 조성을 갖는 혼합 유기용매에 1M의 LiPF6 를 혼합하여 사용한 것을 제외하고는 실시예 12와 동일한 방법으로 파우치형 전지를 제조하였다. Ethylene carbonate (EC): Ethyl propionate (EP) = 1: 2 (v: v) as a non-aqueous electrolyte, except that 1M LiPF 6 was mixed with a mixed organic solvent A pouch type battery was manufactured in the same manner as in Example 12.
[실시예 27]  Example 27
비수 전해액으로서 에틸렌 카보네이트(ethylene carbonate, EC): 에틸 프로피오네이트(ethyl propionate, EP) = 1:2(v:v)의 조성을 갖는 혼합 유기용매에 1M의 LiPF6 를 혼합하여 사용한 것을 제외하고는 실시예 13과 동일한 방법으로 파우치형 전지를 제조하였다. Ethylene carbonate (EC): Ethyl propionate (EP) = 1: 2 (v: v) as a non-aqueous electrolyte, except that 1M LiPF 6 was mixed with a mixed organic solvent A pouch type battery was manufactured in the same manner as in Example 13.
[실시예 28]  Example 28
비수 전해액으로서 에틸렌 카보네이트(ethylene carbonate, EC): 에틸 프로피오네이트(ethyl propionate, EP) = 1:2(v:v)의 조성을 갖는 혼합 유기용매에 1M의 LiPF6 를 혼합하여 사용한 것을 제외하고는 실시예 14와 동일한 방법으로 파우치형 전지를 제조하였다. Ethylene carbonate (EC): Ethyl propionate (EP) = 1: 2 (v: v) as a non-aqueous electrolyte, except that 1M LiPF 6 was mixed with a mixed organic solvent A pouch type battery was manufactured in the same manner as in Example 14.
[실시예 29]Example 29
양극으로서 LiNi0.5Mn0.3Co0.2O2만을 사용한 것을 제외하고는 실시예 4와 동일한 방법으로 파우치형 전지를 제조하였다.A pouch type battery was manufactured in the same manner as in Example 4, except that only LiNi 0.5 Mn 0.3 Co 0.2 O 2 was used as the positive electrode.
[실시예 30]Example 30
양극으로서 LiNi0.5Mn0.3Co0.2O2만을 사용한 것을 제외하고는 실시예 18과 동일한 방법으로 파우치형 전지를 제조하였다.A pouch type battery was manufactured in the same manner as in Example 18, except that only LiNi 0.5 Mn 0.3 Co 0.2 O 2 was used as the positive electrode.
[비교예 1] Comparative Example 1
디메틸비닐 실란올(dimethyl vinyl silanol)을 첨가하지 않은 것을 제외하고는 실시예 1과 동일한 방법으로 파우치형 전지를 제조하였다.A pouch-type battery was manufactured in the same manner as in Example 1, except that dimethyl vinyl silanol was not added.
[비교예 2]Comparative Example 2
디메틸비닐 실란올(dimethyl vinyl silanol)을 첨가하지 않은 것을 제외하고는 실시예 8과 동일한 방법으로 파우치형 전지를 제조하였다.A pouch-type battery was manufactured in the same manner as in Example 8, except that dimethyl vinyl silanol was not added.
[비교예 3]Comparative Example 3
디메틸비닐 실란올(dimethyl vinyl silanol) 을 첨가하지 않은 것을 제외하고는 실시예 15와 동일한 방법으로 파우치형 전지를 제조하였다.A pouch-type battery was manufactured in the same manner as in Example 15, except that dimethyl vinyl silanol was not added.
[비교예 4][Comparative Example 4]
디메틸비닐 실란올(dimethyl vinyl silanol)을 첨가하지 않은 것을 제외하고는 실시예 22와 동일한 방법으로 파우치형 전지를 제조하였다.A pouch-type battery was manufactured in the same manner as in Example 22, except that dimethyl vinyl silanol was not added.
[비교예 5][Comparative Example 5]
비수전해액 100 중량부 대비 테트라메틸실란을 1.0 중량부 첨가한 것을 제외하고는 비교예 1과 동일한 방법으로 파우치형 전지를 제조하였다.A pouch-type battery was manufactured in the same manner as in Comparative Example 1, except that 1.0 part by weight of tetramethylsilane was added to 100 parts by weight of the nonaqueous electrolyte.
[비교예 6]Comparative Example 6
양극으로서 LiNi0.5Mn0.3Co0.2O2만을 사용한 것을 제외하고는 비교예 1과 동일한 방법으로 파우치형 전지를 제조하였다.A pouch-type battery was manufactured in the same manner as in Comparative Example 1 except that only LiNi 0.5 Mn 0.3 Co 0.2 O 2 was used as the positive electrode.
[비교예 7]Comparative Example 7
양극으로서 LiNi0.5Mn0.3Co0.2O2만을 사용한 것을 제외하고는 비교예 3과 동일한 방법으로 파우치형 전지를 제조하였다.A pouch-type battery was manufactured in the same manner as in Comparative Example 3 except that only LiNi 0.5 Mn 0.3 Co 0.2 O 2 was used as the positive electrode.
[전지의 초기 성능 및 수명 성능 평가 방법] [Method of Evaluating Initial Performance and Lifetime Performance of Battery]
실시예 및 비교예에서 제조된 파우치형 전지를 전해액 주액 후 상온에서 2일동안 에이징(aging)한 다음, 0.2C-rate로 50분 충전하였다. 이어서, degas/reseal하고 실온에서 0.2C로 4.2V까지 정전류/정전압 조건으로 충전하고, 0.2C로 3.0V까지 정전류 조건으로 방전하여 초기 충방전을 진행하였다. 이때 방전용량 대비 충전용량의 비율을 초기효율이라 한다. 초기 충방전 후 동일 전압 영역에서 1.0 C-rate로 충방전을 400회 실시하고 초기 방전용량 대비 400회 용량 유지율을 하기 표 1에 나타내었다.The pouch-type batteries prepared in Examples and Comparative Examples were aged at room temperature for 2 days after the electrolyte injection, and then charged with 0.2 C-rate for 50 minutes. Subsequently, degas / reseal was charged at a constant temperature / constant voltage condition up to 4.2V at 0.2C at room temperature, and discharged at a constant current condition up to 3.0V at 0.2C to perform initial charge and discharge. The ratio of charge capacity to discharge capacity is called initial efficiency. After the initial charge and discharge, the charge and discharge was performed 400 times with 1.0 C-rate in the same voltage region, and the capacity retention ratio was 400 times compared to the initial discharge capacity.
[고온 저장시 두께변화 평가 방법] [Evaluation of Thickness Change at High Temperature Storage]
전술한 방법에 따라 실시예 및 비교예에서 제조된 파우치형 전지를 초기 충방전한 후, 동일 전압영역에서 1.0 C-rate로 충방전을 4회 실시하고, 1.0 C-rate로 4.2V로 충전한 후 상온에서 90oC까지 1시간 동안 승온 시키고, 90oC에서 4시간 동안 유지 후 상온과 고온에서의 두께 변화를 측정하여 증가율을 하기 표 1에 나타내었다.After the initial charging and discharging of the pouch-type batteries manufactured in Examples and Comparative Examples according to the above-described method, charging and discharging were carried out four times at 1.0 C-rate in the same voltage range, and charged at 4.2 V at 1.0 C-rate. After the temperature was raised to 90 o C for 1 hour, and maintained at 90 o C for 4 hours to measure the change in thickness at room temperature and high temperature is shown in Table 1 below.
표 1
  초기효율 (%) 400회 용량유지율 (%) 고온 두께변화 (mm)
실시예 1 90.1 76.7 2.72
실시예 2 90.2 80.3 1.98
실시예 3 90.1 83.3 1.58
실시예 4 90.2 85.6 0.93
실시예 5 90.0 82.2 0.57
실시예 6 90.0 80.1 0.42
실시예 7 89.6 70.3 0.33
실시예 8 90.3 79.5 2.55
실시예 9 90.3 81.2 1.81
실시예 10 90.4 83.4 1.49
실시예 11 90.3 85.7 0.88
실시예 12 90.1 82.0 0.55
실시예 13 90.0 80.0 0.40
실시예 14 89.4 71.5 0.32
실시예 15 90.1 78.8 2.60
실시예 16 90.3 80.6 1.74
실시예 17 90.3 84.0 1.35
실시예 18 90.3 86.5 0.87
실시예 19 90.2 84.1 0.51
실시예 20 90.0 81.7 0.36
실시예 21 89.7 74.3 0.26
실시예 22 90.5 79.9 2.53
실시예 23 90.5 82.4 1.52
실시예 24 90.6 85.6 1.22
실시예 25 90.5 86.6 0.79
실시예 26 90.6 84.8 0.50
실시예 27 90.3 82.0 0.33
실시예 28 90.0 75.5 0.27
실시예 29 89.3 85.3 1.49
실시예 30 89.8 85.7 1.38
비교예 1 90.2 73.8 3.21
비교예 2 90.1 78.6 3.05
비교예 3 90.0 77.0 2.89
비교예 4 90.4 79.3 2.74
비교예 5 89.8 69.8 4.26
비교예 6 83.1 62.5 4.15
비교예 7 84.4 55.1 4.32
Table 1
Initial Efficiency (%) 400 capacity retention rate (%) High temperature thickness change (mm)
Example 1 90.1 76.7 2.72
Example 2 90.2 80.3 1.98
Example 3 90.1 83.3 1.58
Example 4 90.2 85.6 0.93
Example 5 90.0 82.2 0.57
Example 6 90.0 80.1 0.42
Example 7 89.6 70.3 0.33
Example 8 90.3 79.5 2.55
Example 9 90.3 81.2 1.81
Example 10 90.4 83.4 1.49
Example 11 90.3 85.7 0.88
Example 12 90.1 82.0 0.55
Example 13 90.0 80.0 0.40
Example 14 89.4 71.5 0.32
Example 15 90.1 78.8 2.60
Example 16 90.3 80.6 1.74
Example 17 90.3 84.0 1.35
Example 18 90.3 86.5 0.87
Example 19 90.2 84.1 0.51
Example 20 90.0 81.7 0.36
Example 21 89.7 74.3 0.26
Example 22 90.5 79.9 2.53
Example 23 90.5 82.4 1.52
Example 24 90.6 85.6 1.22
Example 25 90.5 86.6 0.79
Example 26 90.6 84.8 0.50
Example 27 90.3 82.0 0.33
Example 28 90.0 75.5 0.27
Example 29 89.3 85.3 1.49
Example 30 89.8 85.7 1.38
Comparative Example 1 90.2 73.8 3.21
Comparative Example 2 90.1 78.6 3.05
Comparative Example 3 90.0 77.0 2.89
Comparative Example 4 90.4 79.3 2.74
Comparative Example 5 89.8 69.8 4.26
Comparative Example 6 83.1 62.5 4.15
Comparative Example 7 84.4 55.1 4.32

Claims (15)

  1. 리튬염 및 카보네이트계 유기용매를 포함하는 리튬 이차전지용 비수 전해액에 있어서,In the nonaqueous electrolyte solution for lithium secondary batteries containing a lithium salt and a carbonate organic solvent,
    상기 비수 전해액은 하기 화학식 1로 표시되는 실리콘계 화합물을 더 함유하는 것을 특징으로 하는 리튬 이차전지용 비수 전해액.The nonaqueous electrolyte is a non-aqueous electrolyte for lithium secondary battery, characterized in that it further contains a silicon-based compound represented by the formula (1).
    <화학식 1><Formula 1>
    Figure PCTKR2009006687-appb-I000006
    Figure PCTKR2009006687-appb-I000006
    상기 화학식 1에서, X는 수소원자이고, R1, R2 및 R3은 각각 서로 독립적으로 수소원자 또는 탄소수가 1 내지 10인 탄화수소기이되, 이 중 적어도 하나는 탄소 이중결합을 갖는다.In Formula 1, X is a hydrogen atom, R1, R2 and R3 are each independently a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms, at least one of which has a carbon double bond.
  2. 제1항에 있어서, 상기 화학식 1의 R1, R2 및 R3 중 적어도 어느 하나는 비닐기 또는 알릴기인 것을 특징으로 하는 리튬 이차전지용 비수 전해액.The nonaqueous electrolyte solution for a lithium secondary battery of claim 1, wherein at least one of R 1, R 2, and R 3 of Formula 1 is a vinyl group or an allyl group.
  3. 제1항에 있어서, 상기 실리콘계 화합물은 디메틸 비닐 실란올, 메틸에틸 비닐 실란올, 메틸프로필 비닐 실란올, 메틸부틸 비닐 실란올, 메틸 사이클로헥실 비닐 실란올, 메틸 페닐 비닐 실란올, 메틸 벤질 비닐 실란올, 디에틸 비닐 실란올, 에틸프로필 비닐 실란올, 에틸부틸 비닐 실란올, 에틸 사이클로헥실 비닐 실란올, 에틸 페닐 비닐 실란올, 에틸 벤질 비닐 실란올, 디프로필 비닐 실란올, 프로필부틸 비닐 실란올, 프로필 사이클로헥실 비닐 실란올, 프로필 페닐 비닐 실란올, 프로필 벤질 비닐 실란올, 디부틸 비닐 실란올, 부틸 사이클로헥실 비닐 실란올, 부틸 페닐 비닐 실란올, 부틸 벤질 비닐 실란올, 디사이클로헥실 비닐 실란올, 사이클로헥실 페닐 비닐 실란올, 사이클로헥실 벤질 비닐 실란올, 페닐 벤질 비닐 실란올, 디페닐 비닐 실란올, 디벤질 비닐 실란올 디메틸 알릴 실란올, 메틸에틸 알릴 실란올, 메틸프로필 알릴 실란올, 메틸부틸 알릴 실란올, 메틸 사이클로헥실 알릴 실란올, 메틸 페닐 알릴 실란올, 메틸 벤질 알릴 실란올, 디에틸 알릴 실란올, 에틸프로필 알릴 실란올, 에틸부틸 알릴 실란올, 에틸 사이클로헥실 알릴 실란올, 에틸 페닐 알릴 실란올, 에틸 벤질 알릴 실란올, 디프로필 알릴 실란올, 프로필부틸 알릴 실란올, 프로필 사이클로헥실 알릴 실란올, 프로필 페닐 알릴 실란올, 프로필 벤질 알릴 실란올, 디부틸 알릴 실란올, 부틸 사이클로헥실 알릴 실란올, 부틸 페닐 알릴 실란올, 부틸 벤질 알릴 실란올, 디사이클로헥실 알릴 실란올, 사이클로헥실 페닐 알릴 실란올, 사이클로헥실 벤질 알릴 실란올, 페닐 벤질 알릴 실란올, 디페닐 알릴 실란올 및 디벤질 알릴 실란올로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상의 혼합물인 것을 특징으로 하는 리튬 이차전지용 비수 전해액.The method of claim 1, wherein the silicone compound is dimethyl vinyl silanol, methylethyl vinyl silanol, methylpropyl vinyl silanol, methylbutyl vinyl silanol, methyl cyclohexyl vinyl silanol, methyl phenyl vinyl silanol, methyl benzyl vinyl silane Ol, diethyl vinyl silanol, ethylpropyl vinyl silanol, ethylbutyl vinyl silanol, ethyl cyclohexyl vinyl silanol, ethyl phenyl vinyl silanol, ethyl benzyl vinyl silanol, dipropyl vinyl silanol, propylbutyl vinyl silanol , Propyl cyclohexyl vinyl silanol, propyl phenyl vinyl silanol, propyl benzyl vinyl silanol, dibutyl vinyl silanol, butyl cyclohexyl vinyl silanol, butyl phenyl vinyl silanol, butyl benzyl vinyl silanol, dicyclohexyl vinyl silanol Ol, cyclohexyl phenyl vinyl silanol, cyclohexyl benzyl vinyl silanol, phenyl benzyl vinyl silanol, diphenyl vinyl silanol, diben Nitrile vinyl silanol dimethyl allyl silanol, methylethyl allyl silanol, methylpropyl allyl silanol, methylbutyl allyl silanol, methyl cyclohexyl allyl silanol, methyl phenyl allyl silanol, methyl benzyl allyl silanol, diethyl allyl silane Allyl, ethylpropyl allyl silanol, ethylbutyl allyl silanol, ethyl cyclohexyl allyl silanol, ethyl phenyl allyl silanol, ethyl benzyl allyl silanol, dipropyl allyl silanol, propylbutyl allyl silanol, propyl cyclohexyl allyl silane Allol, propylphenyl allyl silanol, propyl benzyl allyl silanol, dibutyl allyl silanol, butyl cyclohexyl allyl silanol, butyl phenyl allyl silanol, butyl benzyl allyl silanol, dicyclohexyl allyl silanol, cyclohexyl phenyl allyl Consisting of silanol, cyclohexyl benzyl allyl silanol, phenyl benzyl allyl silanol, diphenyl allyl silanol and dibenzyl allyl silanol Any one or a non-aqueous electrolyte lithium secondary battery, characterized in that a mixture of two or more of those selected from the group true.
  4. 제1항에 있어서, 상기 실리콘계 화합물의 함량은 비수 전해액 100 중량부를 기준으로 0.1 내지 12.0 중량부인 것을 특징으로 하는 리튬 이차전지용 비수 전해액.The non-aqueous electrolyte lithium secondary battery of claim 1, wherein the content of the silicon compound is 0.1 to 12.0 parts by weight based on 100 parts by weight of the nonaqueous electrolyte.
  5. 제1항에 있어서, 상기 카보네이트계 유기용매는 하기 화학식 2로 표시되는 환형 카보네이트 화합물 및 하기 화학식 3으로 표시되는 선형 카보네이트 화합물의 혼합물인 것을 특징으로 하는 리튬 이차전지용 비수 전해액.The non-aqueous electrolyte solution for lithium secondary batteries according to claim 1, wherein the carbonate-based organic solvent is a mixture of a cyclic carbonate compound represented by Formula 2 and a linear carbonate compound represented by Formula 3.
    <화학식 2><Formula 2>
    Figure PCTKR2009006687-appb-I000007
    Figure PCTKR2009006687-appb-I000007
    상기 화학식 2에서, R1 내지 R4은 각각 서로 독립적으로 수소원자, 플루오르 원소(fluorine) 및 탄소수가 1 내지 4인 알킬기로 이루어진 군으로부터 선택된 어느 하나이다.In Formula 2, R1 to R4 are each independently selected from the group consisting of a hydrogen atom, a fluorine element, and an alkyl group having 1 to 4 carbon atoms.
    <화학식 3><Formula 3>
    Figure PCTKR2009006687-appb-I000008
    Figure PCTKR2009006687-appb-I000008
    상기 화학식 3에서, R7 및 R8은 각각 서로 독립적으로 탄소수가 1 내지 4인 알킬기로서, 상기 알킬기는 선택적으로 적어도 하나 이상의 수소원자가 플루오르 원소(fluorine)로 치환될 수 있다.In Chemical Formula 3, R7 and R8 are each independently an alkyl group having 1 to 4 carbon atoms, and the alkyl group may be optionally substituted with at least one hydrogen atom by fluorine.
  6. 제5항에 있어서, 상기 화학식 2로 표시되는 환형 카보네이트 화합물은 에틸렌 카보네이트이고, 상기 화학식 3으로 표시되는 선형 카보네이트 화합물은 에틸메틸 카보네이트인 것을 특징으로 하는 리튬 이차전지용 비수 전해액.The non-aqueous electrolyte solution for lithium secondary batteries according to claim 5, wherein the cyclic carbonate compound represented by Chemical Formula 2 is ethylene carbonate, and the linear carbonate compound represented by Chemical Formula 3 is ethylmethyl carbonate.
  7. 제5항에 있어서, 상기 카보네이트계 유기용매는 하기 화학식 4로 표시되는 환형 카보네이트 화합물을 더 함유하는 것을 특징으로 하는 리튬 이차전지용 비수 전해액.The non-aqueous electrolyte solution for lithium secondary batteries according to claim 5, wherein the carbonate-based organic solvent further contains a cyclic carbonate compound represented by the following formula (4).
    <화학식 4><Formula 4>
    Figure PCTKR2009006687-appb-I000009
    Figure PCTKR2009006687-appb-I000009
    상기 화학식 4에서, R5 및 R6은 각각 서로 독립적으로 수소원자 또는 탄소수가 1 내지 4인 알킬기이다.In Formula 4, R5 and R6 are each independently a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  8. 제1항에 있어서, 상기 카보네이트계 유기용매는 하기 화학식 2로 표시되는 환형 카보네이트 화합물을 포함하고, 상기 비수 전해액은 하기 화학식 5로 표시되는 선형 에스테르 화합물을 더 함유하는 것을 특징으로 하는 리튬 이차전지용 비수 전해액.The nonaqueous lithium secondary battery of claim 1, wherein the carbonate-based organic solvent comprises a cyclic carbonate compound represented by Formula 2, and the nonaqueous electrolyte further contains a linear ester compound represented by Formula 5. Electrolyte solution.
    <화학식 2><Formula 2>
    Figure PCTKR2009006687-appb-I000010
    Figure PCTKR2009006687-appb-I000010
    상기 화학식 2에서, R1 내지 R4은 각각 서로 독립적으로 수소원자, 플루오르원소(fluorine) 및 탄소수가 1 내지 4인 알킬기로 이루어진 군으로부터 선택된 어느 하나이다.In Formula 2, R1 to R4 are each independently selected from the group consisting of a hydrogen atom, a fluorine element, and an alkyl group having 1 to 4 carbon atoms.
    <화학식 5><Formula 5>
    Figure PCTKR2009006687-appb-I000011
    Figure PCTKR2009006687-appb-I000011
    상기 화학식 5에서, R9 및 R10은 각각 서로 독립적으로 탄소수가 1 내지 4인 알킬기로서, 상기 알킬기는 선택적으로 적어도 하나 이상의 수소원자가 플루오르 원소(fluorine)로 치환될 수 있다.In Formula 5, R9 and R10 are each independently an alkyl group having 1 to 4 carbon atoms, and the alkyl group may be optionally substituted with at least one hydrogen atom by fluorine.
  9. 제8항에 있어서, 상기 화학식 2로 표시되는 환형 카보네이트 화합물은 에틸렌 카보네이트이고, 상기 화학식 5로 표시되는 선형 에스테르 화합물은 에틸 프로피오네이트인 것을 특징으로 하는 리튬 이차전지용 비수 전해액.The non-aqueous electrolyte solution for lithium secondary batteries according to claim 8, wherein the cyclic carbonate compound represented by Chemical Formula 2 is ethylene carbonate, and the linear ester compound represented by Chemical Formula 5 is ethyl propionate.
  10. 제8항에 있어서, 상기 카보네이트계 유기용매는 하기 화학식 4로 표시되는 환형 카보네이트 화합물을 더 함유하는 것을 특징으로 하는 리튬 이차전지용 비수 전해액.The non-aqueous electrolyte lithium secondary battery according to claim 8, wherein the carbonate-based organic solvent further contains a cyclic carbonate compound represented by the following formula (4).
    <화학식 4><Formula 4>
    Figure PCTKR2009006687-appb-I000012
    Figure PCTKR2009006687-appb-I000012
    상기 화학식 4에서, R5 및 R6은 각각 서로 독립적으로 수소원자 또는 탄소수가 1 내지 4인 알킬기이다.In Formula 4, R5 and R6 are each independently a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  11. 음극, 양극 및 비수 전해액을 구비하는 리튬 이차전지에 있어서,In a lithium secondary battery comprising a negative electrode, a positive electrode and a nonaqueous electrolyte,
    상기 비수 전해액은 제1항 내지 제10항 중 어느 한 항의 리튬 이차전지용 비수 전해액인 것을 특징으로 하는 리튬 이차전지.The nonaqueous electrolyte is a lithium secondary battery, characterized in that the nonaqueous electrolyte for lithium secondary battery of any one of claims 1 to 10.
  12. 제11항에 있어서, 상기 양극은 리튬코발트옥사이드, 리튬 니켈계 산화물 및 이들의 혼합물로 이루어진 군으로부터 선택된 리튬 함유 산화물인 것을 특징으로 하는 리튬 이차전지.The lithium secondary battery according to claim 11, wherein the positive electrode is a lithium-containing oxide selected from the group consisting of lithium cobalt oxide, lithium nickel-based oxide, and mixtures thereof.
  13. 제12항에 있어서, 상기 리튬 니켈계 산화물은 LiNiO2, Li1-x(NiaCobMnc)O2(-0.1≤x≤0.1, 0<a<1, 0<b<1, 0<c<1, a+b+c=1), LiNi1-yCoyO2(O≤y<1), LiNi1-yMnyO2(O≤y<1), Li(NiaCobMnc)O4(0<a<2, 0<b<2, 0<c<2, a+b+c=2) 및 LiMn2-zNizO4(0<z<2)으로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상의 혼합물인 것을 특징으로 하는 리튬 이차전지.The method of claim 12, wherein the lithium nickel oxide is LiNiO 2 , Li 1-x (Ni a Co b Mn c ) O 2 (−0.1 ≦ x ≦ 0.1, 0 <a <1, 0 <b <1, 0 <c <1, a + b + c = 1), LiNi 1-y Co y O 2 (O ≦ y <1), LiNi 1-y Mn y O 2 (O ≦ y <1), Li (Ni a Co b Mn c ) O 4 (0 <a <2, 0 <b <2, 0 <c <2, a + b + c = 2) and LiMn 2-z Ni z O 4 (0 <z <2) Lithium secondary battery, characterized in that any one or a mixture of two or more selected from the group consisting of.
  14. 제12항에 있어서, 상기 리튬 니켈계 산화물은 Li1-x(NiaCobMnc)O2(-0.1≤x≤0.1, 0<a<1, 0<b<1, 0<c<1, a+b+c=1)인 것을 특징으로 하는 리튬 이차전지.The method of claim 12, wherein the lithium nickel oxide is Li 1-x (Ni a Co b Mn c ) O 2 (−0.1 ≦ x ≦ 0.1, 0 <a <1, 0 <b <1, 0 <c < 1, a + b + c = 1) lithium secondary battery characterized in that.
  15. 제12항에 있어서, 상기 리튬 니켈계 산화물은 Li1-x(NiaCobMnc)O2(-0.1≤x≤0.1, 0.5≤a≤0.8, 0.1≤b≤0.2, 0.1≤c≤0.3, a+b+c=1)인 것을 특징으로 하는 리튬 이차전지.The method of claim 12, wherein the lithium nickel-based oxide is Li 1-x (Ni a Co b Mn c ) O 2 (-0.1≤x≤0.1, 0.5≤a≤0.8, 0.1≤b≤0.2, 0.1≤c≤ 0.3, a + b + c = 1) lithium secondary battery, characterized in that.
PCT/KR2009/006687 2008-11-13 2009-11-13 Non-aqueous electrolytic solution for a lithium secondary battery, and lithium secondary battery comprising same WO2010056064A2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011536248A JP5723778B2 (en) 2008-11-13 2009-11-13 Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery provided with the same
US12/677,934 US8268489B2 (en) 2008-11-13 2009-11-13 Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery comprising the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20080112724 2008-11-13
KR10-2008-0112724 2008-11-13
KR10-2009-0109232 2009-11-12
KR1020090109232A KR101040464B1 (en) 2008-11-13 2009-11-12 Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery comprising the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12677934 Continuation 2010-03-12

Publications (2)

Publication Number Publication Date
WO2010056064A2 true WO2010056064A2 (en) 2010-05-20
WO2010056064A3 WO2010056064A3 (en) 2010-08-26

Family

ID=42170536

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/006687 WO2010056064A2 (en) 2008-11-13 2009-11-13 Non-aqueous electrolytic solution for a lithium secondary battery, and lithium secondary battery comprising same

Country Status (1)

Country Link
WO (1) WO2010056064A2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10347781B2 (en) 2012-06-21 2019-07-09 Norwegian University Of Science And Technology (Ntnu) Solar cells
US10347791B2 (en) 2015-07-13 2019-07-09 Crayonano As Nanowires or nanopyramids grown on graphitic substrate
US10714337B2 (en) 2015-07-31 2020-07-14 Crayonano As Process for growing nanowires or nanopyramids on graphitic substrates
US10861696B2 (en) 2010-12-13 2020-12-08 Norwegian University Of Science And Technology Compositions comprising epitaxial nanowires on graphene substrates and methods of making thereof
US11239391B2 (en) 2017-04-10 2022-02-01 Norwegian University Of Science And Technology (Ntnu) Nanostructure
US11261537B2 (en) 2013-06-21 2022-03-01 Norwegian University Of Science And Technology (Ntnu) III-V or II-VI compound semiconductor films on graphitic substrates
US11594657B2 (en) 2015-07-13 2023-02-28 Crayonano As Nanowires/nanopyramids shaped light emitting diodes and photodetectors

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6416905B1 (en) * 1996-03-29 2002-07-09 Basf Aktiengesellschaft Mixtures suitable as solid electrolytes or separators for electrochemical cells
US20080233477A1 (en) * 2007-03-22 2008-09-25 Keiichi Takahashi Positive electrode for lithium ion secondary battery and lithium ion secondary battery using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6416905B1 (en) * 1996-03-29 2002-07-09 Basf Aktiengesellschaft Mixtures suitable as solid electrolytes or separators for electrochemical cells
US20020160270A1 (en) * 1996-03-29 2002-10-31 Bernd Bronstert Compositions suitable for the use in electrochromic windows
US20080233477A1 (en) * 2007-03-22 2008-09-25 Keiichi Takahashi Positive electrode for lithium ion secondary battery and lithium ion secondary battery using the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10861696B2 (en) 2010-12-13 2020-12-08 Norwegian University Of Science And Technology Compositions comprising epitaxial nanowires on graphene substrates and methods of making thereof
US10347781B2 (en) 2012-06-21 2019-07-09 Norwegian University Of Science And Technology (Ntnu) Solar cells
US11257967B2 (en) 2012-06-21 2022-02-22 Norwegian University Of Science And Technology (Ntnu) Solar cells
US11261537B2 (en) 2013-06-21 2022-03-01 Norwegian University Of Science And Technology (Ntnu) III-V or II-VI compound semiconductor films on graphitic substrates
US10347791B2 (en) 2015-07-13 2019-07-09 Crayonano As Nanowires or nanopyramids grown on graphitic substrate
US11264536B2 (en) 2015-07-13 2022-03-01 Crayonano As Nanowires or nanopyramids grown on a graphene substrate
US11594657B2 (en) 2015-07-13 2023-02-28 Crayonano As Nanowires/nanopyramids shaped light emitting diodes and photodetectors
US10714337B2 (en) 2015-07-31 2020-07-14 Crayonano As Process for growing nanowires or nanopyramids on graphitic substrates
US11450528B2 (en) 2015-07-31 2022-09-20 Crayonano As Process for growing nanowires or nanopyramids on graphitic substrates
US11239391B2 (en) 2017-04-10 2022-02-01 Norwegian University Of Science And Technology (Ntnu) Nanostructure

Also Published As

Publication number Publication date
WO2010056064A3 (en) 2010-08-26

Similar Documents

Publication Publication Date Title
KR101020346B1 (en) Nonaqueous electrolyte lithium secondary battery
KR101060349B1 (en) Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery having same
KR101205375B1 (en) Nonaqueous electrolyte lithium secondary battery
WO2016159702A1 (en) Non-aqueous electrolyte and lithium secondary battery comprising same
KR101083882B1 (en) Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery comprising the same
WO2010056020A2 (en) Lithium secondary battery containing a non-aqueous electrolytic solution
WO2012021029A2 (en) Non-aqueous electrolyte solution for a lithium secondary battery, and lithium secondary battery comprising same
WO2013012248A2 (en) Nonaqueous electrolyte and lithium secondary battery using same
WO2015060697A1 (en) Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery comprising same
WO2015190705A1 (en) Non-aqueous electrolyte and lithium secondary battery comprising same
KR101040464B1 (en) Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery comprising the same
WO2018105970A1 (en) Non-aqueous electrolyte, and lithium secondary battery comprising same
WO2013073901A1 (en) Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery comprising same
WO2010058997A2 (en) Non-aqueous electrolytic solution and lithium secondary battery made thereof
WO2013012250A2 (en) Non-aqueous electrolyte and lithium secondary battery using same
WO2017146426A1 (en) Composition for gel polymer electrolyte and lithium secondary battery comprising same
WO2014116082A1 (en) Composition for gel polymer electrolyte and lithium secondary battery comprising same
WO2013180522A1 (en) Lithium secondary battery
WO2010056064A2 (en) Non-aqueous electrolytic solution for a lithium secondary battery, and lithium secondary battery comprising same
WO2019103434A1 (en) Additive, non-aqueous electrolyte for lithium secondary battery comprising same, and lithium secondary battery comprising same
WO2020153822A1 (en) Lithium secondary battery
WO2015047045A1 (en) Lithium secondary battery
WO2016052996A1 (en) Lithium secondary battery comprising non-aqueous electrolyte
WO2013009155A2 (en) Nonaqueous electrolyte and lithium secondary battery using same
WO2013137596A1 (en) Nonaqueous electrolyte for lithium secondary battery and lithium secondary battery including same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2011536248

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09826296

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 12677934

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09826296

Country of ref document: EP

Kind code of ref document: A2