WO2004041574A1 - Hybrid electric car - Google Patents
Hybrid electric car Download PDFInfo
- Publication number
- WO2004041574A1 WO2004041574A1 PCT/JP2003/014096 JP0314096W WO2004041574A1 WO 2004041574 A1 WO2004041574 A1 WO 2004041574A1 JP 0314096 W JP0314096 W JP 0314096W WO 2004041574 A1 WO2004041574 A1 WO 2004041574A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- engine
- electric motor
- generator
- electric vehicle
- vehicle according
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
- B60K6/20—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
- B60K6/42—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
- B60K6/46—Series type
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
- B60K6/20—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
- B60K6/42—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
- B60K6/48—Parallel type
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L50/00—Electric propulsion with power supplied within the vehicle
- B60L50/10—Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
- B60L50/15—Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with additional electric power supply
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L50/00—Electric propulsion with power supplied within the vehicle
- B60L50/50—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
- B60L50/60—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
- B60L50/61—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D19/00—Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
- F02D19/02—Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with gaseous fuels
- F02D19/021—Control of components of the fuel supply system
- F02D19/023—Control of components of the fuel supply system to adjust the fuel mass or volume flow
- F02D19/024—Control of components of the fuel supply system to adjust the fuel mass or volume flow by controlling fuel injectors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D29/00—Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
- F02D29/02—Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D29/00—Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
- F02D29/06—Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving electric generators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/0025—Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
- F02D41/0027—Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures the fuel being gaseous
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M21/00—Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
- F02M21/02—Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
- F02M21/0203—Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels characterised by the type of gaseous fuel
- F02M21/0209—Hydrocarbon fuels, e.g. methane or acetylene
- F02M21/0212—Hydrocarbon fuels, e.g. methane or acetylene comprising at least 3 C-Atoms, e.g. liquefied petroleum gas [LPG], propane or butane
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/30—Use of alternative fuels, e.g. biofuels
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/62—Hybrid vehicles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/7072—Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
Definitions
- the present invention relates to a hybrid electric vehicle (HEV) that drives a wheel by driving a wheel by constructing a hybrid system using an M engine (hereinafter referred to as an “engine”) and an electric motor.
- HEV hybrid electric vehicle
- engine M engine
- electric motor electric motor
- DC electricity stored in the battery is converted into AC electricity at a required voltage through an inverter, and the AC motor rotates the electric motor to drive wheels. This allows electric vehicles to run.
- An object of the present invention is to rotate a generator by an engine, and convert the generated DC electricity into DC electricity required by a DC / DC converter and store the electricity in a storage means. It is an object of the present invention to provide a hybrid electric vehicle adopting the configuration described above.
- Another object of the present invention is to provide a hybrid electric vehicle capable of obtaining high running performance even when large horsepower and large torque are required.
- the hybrid electric vehicle includes: an engine; a generator; a power storage unit for storing the power generated by the generator; an electric motor rotated by the power generated by the generator or discharged from the power storage unit; Wheels driven by at least one or both of the driving force of the own engine and the driving force of the electric motor.
- the generator can be driven and the electricity generated by the generator can be stored in the power storage means, so that it is not necessary to frequently charge the battery.
- the efficiency of the engine is greatly reduced when the engine speed is increased (starting, climbing a hill, at the time of caro speed, etc.), and shows an efficiency of 30 to 50% during high-speed stable running.
- electric motors generally exhibit high efficiencies between 70% and 95% regardless of these running mode differences. Therefore, in particular, when the vehicle runs using the electric motor all the time in the driving mode in which the engine efficiency is reduced, it is possible to perform the operation with high energy efficiency.
- both high running performance and high fuel efficiency can be obtained. In particular, even at the start, at the speed [], and when climbing a hill, it is possible to obtain the same running performance as a gasoline engine vehicle.
- the present invention has a great advantage in the application of the present invention when the engine is fueled by liquid hydrocarbon gas.
- liquefied petroleum gas (P G) and liquefied natural gas (LNG: Liquefied Natural Gas) are collectively referred to as “liquefied hydrocarbon gas (L H G)”.
- LHG engines liquefied hydrocarbon gas as fuel
- Fuel costs are significantly lower than those of gasoline-powered vehicles, and the emission of carbon dioxide is more advantageous than gasoline-powered vehicles.
- the LHG engine produces less horsepower and torque than a gasoline engine.
- the efficiency of the LHG engine is greatly reduced when raising the driver (starting, climbing a hill, accelerating, etc.), and may fall below 10%. Therefore, when large horsepower and large torque are required, especially when starting or climbing a hill, the power [] speed performance will be further inferior. In addition, energy efficiency is greatly reduced by such ⁇ .
- a generator and an electric motor are added to a car driven by driving a ⁇ 16 engine, and the electric motor is rotated using the electricity obtained by the generator as an energy source, and this driving force is used. If a car is driven by a vehicle, it can achieve higher driving performance than when using an LHG engine alone as the driving source, and achieve the same driving performance as a gasoline engine car. Can be.
- a gas containing at least one of methane, ethane, propane and butane as a main component is preferable.
- Engine using these liquefied gas fuel, HC, CO, C 0 2 J NO x, graphite, emissions, such as suspended particulate matter (SPM) is less than that of the gasoline engines, environmentally favorable preferable.
- these gases can be easily liquefied at room temperature under pressure to increase the load capacity.
- the driving force of the engine and the driving force of the electric motor can be used independently or in combination to drive the vehicle.
- the series hybrid system is a system in which the engine only generates electricity, the generated electricity is stored in a storage means, and the electric motor is driven by the electric power to travel. In the series method, only the electric motor turns the wheels, and the engine does not turn the wheels.
- the parallel hybrid system is a system in which two power sources, an engine and an electric motor, each drive wheels directly to run.
- electric motors are generally used. —They are also generators.
- An example of the use of this method is that the vehicle travels mainly with the driving force of the engine, and in some cases, the driving force of the engine is used as the charging power of the power storage means.
- the electric motor is activated all the time when starting or accelerating when low engine efficiency is required and high output is required, and assists the driving force for driving. Also, when braking or downhill, an electric motor can be used as a generator and the generated power can be stored in the storage means.
- the parallel hybrid system includes a system in which one power source drives the front wheels and the other power source drives the rear wheels, and a system in which both power sources drive the same wheel.
- the split hybrid system has both a series hybrid system and a parallel hybrid system, and uses both systems. In general, it has an independent generator in addition to an electric motor that also functions as a generator.
- the vehicle normally runs on an electric motor at low speeds when the driving load of the engine is large. When the speed exceeds a certain level, the engine starts to rotate. For example, when starting, accelerating, or climbing, the vehicle is driven by an electric motor in a driving mode with low engine energy efficiency to reduce fuel consumption of the engine. The same applies when retreating.
- the driving force of the engine is divided into two systems via a power split mechanism, one of which drives the wheels, and the other which drives the generator.
- the electric power is used to drive the wheels by rotating the electric motor, controlling the distribution of the driving force between the engine and the electric motor, and running most efficiently.
- the vehicle when the vehicle is driven only by the electric motor, the vehicle runs in a series system.
- the engine and the electric motor are used together, the vehicle runs in a parallel system.
- the rotation of the wheels is driven by the electric motor as a generator. By doing so, regenerative power is generated, and the electric energy is stored in power storage means. By automatically stopping the engine when the vehicle stops, energy efficiency can be improved.
- the hybrid electric vehicle includes an engine, a generator, a power storage means for storing the power generated by the generator, an electric motor rotated by the power generated by the generator or the power discharged from the power storage means, A wheel driven by at least one or both of a driving force of the self-engine and a driving force of the electric motor, and further comprising a fuel cell, wherein the self-charging means fills the electric power generated by the generator.
- the electric motor stores electricity generated by the fuel cell, and the electric motor is rotated by electricity generated by the generator, electricity discharged from the power storage means, or electricity generated by the fuel cell.
- Engine fuels include gasoline, light oil, Liquefied Natural Gas (LNG), Liquefied Petroleum Gas (LPG), and hydrogen gas.
- the liquefied hydrocarbon gas LHG contains at least one of methane, ethane, propane and butane.
- engine to the 'Yorui ⁇ gas as fuel, HC, CO, C 0 2 , NO x, graphite, emissions, such as suspended particulate matter (SPM) is no less than gasoline engines, hydrogen It is environmentally preferable together with the fuel cell used. In addition, these gases can be easily liquefied at room temperature under pressure and the load capacity can be increased.
- the fuel for the engine can be used for the fuel cell and the fuel tank can be shared. As a result, the engine can be driven more cleanly while reducing the number of fuel tanks, and the vehicle can be started immediately, which is more preferable in terms of clean exhaust.
- hydrogen gas When hydrogen gas is used as the fuel for the engine, it is preferably applied to vehicles that mainly run in areas where hydrogen fuel can be sufficiently supplied, such as in urban areas.
- hydrogen gas is used for the engine fuel and hydrogen gas is used for the fuel cell fuel, it is possible to provide not only a common fuel tank, but also a more environmentally friendly and lightweight hybrid vehicle.
- Examples of the type of the fuel cell include a polymer electrolyte type (PEFC), a solid electrolyte type (SOFC), and a phosphoric acid type (KPFC).
- the operating temperature of the solid polymer type is from room temperature to 100 ° C.
- the operating temperature of the solid electrolyte type is about 100 ° C.
- the operating temperature of the phosphoric acid type is about 200 ° C.
- the hydrogen gas can be supplied by directly supplying hydrogen gas or gasoline, methanol, natural gas, or liquefied petroleum gas using a reformer. There is a method of obtaining hydrogen from such as.
- Fuel cells supply hydrogen gas directly, rather than hydrogen gas from the reformer.However, the only effluent is water, which has a low environmental impact and does not require a heavy reformer. There is an advantage.
- a battery As the power storage means of the hybrid electric vehicle of the present invention, a battery, a capacitor, a SMES (superconducting magnetic energy storage device), or a combination thereof can be used.
- a SMES superconducting magnetic energy storage device
- the power stored in the power storage means can be used for a heater / reformer used for a fuel cell or for other electric devices of an automobile.
- the hybrid electric vehicle of this invention can drive an engine, drive a wheel directly by the driving force of this engine, drive a vehicle, or generate a generator.
- this hybrid electric vehicle is a hybrid electric vehicle in which an electric motor is driven by an engine or a generator is activated, and a point that the vehicle can be driven by driving wheels through the electric motor. Is similar.
- the fuel cell can generate electricity, and the electricity can be used to drive an electric motor to drive wheels to drive a car.
- the vehicle is driven by the driving force of the engine or the electric motor rotated by the electricity generated by the generator. be able to. For example, when a car is stopped for a long time, the fuel cell is stopped and it is getting cold. When the vehicle is started when the fuel cell is cold, the vehicle must first be driven by an electric motor that is rotated by the driving force of the engine and the electricity generated by the generator. After the battery startup is completed, the car can be driven by rotating the electric motor every day with the electricity generated by the fuel cell
- the vehicle can be started immediately compared to an electric vehicle driven only by a fuel cell. After the fuel cell is started, the engine can be stopped and the car can be run with the power generated by the clean and highly efficient fuel cell.
- the generator when the vehicle is driven by the driving force of the engine, the generator can be driven by the driving force of the engine to obtain electric power.
- Such a driving method is the above-described parallel hybrid method.
- the start-up condition of the fuel cell can be adjusted using the electric power obtained in this manner. For example, electricity generated by a generator is passed through a heater of a fuel cell to raise the temperature. In a fuel cell requiring a reformer, electricity generated by a generator is used to operate the reformer.
- the driving force of the engine and the driving force of the electric motor can be used alone or in combination to drive the vehicle.
- Engine driving force and electric motor As mentioned earlier, the driving force combination method includes the series hybrid method and the parallel hybrid method.
- the electricity generated by the fuel cell is used to drive the electric motor as it is after the electricity is generated or after the electric storage means is charged, and the vehicle is driven.
- the engine only generates power, and the generated power is used as it is after power generation or after being stored in power storage means, and then used to drive the electric motor to drive the vehicle.
- the electric motor turns the wheels, and the wheels are not turned directly by the driving force of the engine.
- a generator is generated by the horsepower of the engine, and the generated motor drives the electric motor to drive the car. A part of the generated electricity is also used for fuel cell startup.
- the electric motor can be operated as a generator, and the regenerative electric power can be stored in the storage means.
- the wheels are driven directly by two power sources, an engine and an electric motor.
- Examples of the use by this method include running with the driving force of an engine or running with a motor driven by electricity generated by a generator or a fuel cell.
- the electric power generated by driving the generator by the engine or the electric power generated by the fuel cell is charged to the electric storage means as the case may be.
- the wheels when starting or accelerating, the wheels are driven directly by the engine's driving force, while the generator is driven by the engine's driving force and the electric motor is operated to assist the driving force for traveling. Can be. Then start up the fuel cell when starting.
- the electric motor can be operated as a generator, and the regenerative electric power can be stored in the storage means.
- the wheels When starting or accelerating, the wheels can be directly driven by the engine's driving force, and the generator can be driven by the engine's driving force to generate power and store it in the storage means.
- the electricity charged in the storage means is used for starting up the fuel cell.
- the hybrid electric vehicle of the present invention by using a fuel cell and an engine together, it is possible to immediately start the vehicle and to obtain both environment-friendly, high driving performance and high fuel efficiency. Can be. In particular, when starting, accelerating, and climbing a hill, it is possible to obtain much better driving performance than a fuel cell electric vehicle. Also, it is possible to obtain from the engine the electrical energy required when starting up from stoppage, which was a major drawback of fuel cells, and it is particularly effective for starting in cold regions. ⁇ Brief description of drawings>
- FIG. 1 is a schematic configuration diagram showing a drive mechanism of a series hybrid electric vehicle of the present invention.
- FIG. 2 is a schematic configuration diagram showing a drive mechanism of the parallel hybrid type electric vehicle of the present invention.
- FIG. 3 is a graph showing the relationship between the driving mode and the energy efficiency.
- Figure 4 is a graph showing energy efficiency when climbing a hill.
- Figure 5 is a graph showing energy efficiency during acceleration.
- FIG. 6 is a schematic configuration diagram showing a drive mechanism of a split-hybrid electric vehicle according to the present invention.
- FIG. 7 is a schematic configuration diagram showing a driving mechanism of an electric vehicle equipped with a series hybrid fuel cell according to the present invention.
- FIG. 8 is a schematic configuration diagram showing a driving mechanism of an electric vehicle equipped with a fuel cell of a parallel hybrid system according to the present invention. ⁇ Best mode for carrying out the invention>
- FIG. 1 is a schematic configuration diagram showing a drive mechanism of a series hybrid electric vehicle of the present invention.
- the electric vehicle according to the present invention includes an engine 1, a generator 2, a converter 3, an inverter 4, an electric motor 5, a terry 6, and tires 7.
- 8 is a switch for supplying the generated electricity to the battery 6 side.
- the LPG engine 1 is an engine driven by LPG fuel such as propane gas.
- LPG fuel such as propane gas.
- Types of engines include reciprocating engines and rotary engines.
- the operation of the engine 1 causes the generator 2 to rotate.
- the generator 2 is rotated by the driving force of the LPG engine 1 to generate power.
- an alternator is often used as a generator for an electric vehicle, and the alternator is also used in this example.
- the electricity generated by the generator 2 is converted to DC by the converter 13, further converted to AC of an appropriate frequency via the inverter 4, and supplied to the electric motor 5.
- Various electric motors can be used for the electric motor 15, but an AC synchronous electric motor is used here.
- the generated power is also used to charge the battery 6 as needed.
- Battery 6 a lead battery, a nickel-aluminum-doped battery, a nickel-metal hydride battery, a nickel-iron battery, a nickel-zinc battery, a sodium-sulfur battery, a lithium battery, and the like can be used.
- Whether the generated electricity is also supplied to the battery 6 may be determined by turning on and off a switch 8 provided between the converter 3 and the battery 6. Alternatively, electrical switching may be performed by inverter control.
- the LPG engine 1 is used exclusively for driving the generator 2, and the driving force of the LPG engine 1 is not directly used for rotating the tire 7.
- the LPG engine 1 since the LPG engine 1 is separated from the driving of the tire 7, the LPG engine 1 can always concentrate on the power generation while operating under the condition of the highest efficiency, so that the energy efficiency can be improved.
- the vehicle is driven by a motor 5 that is driven by electricity generated by the generator 2 or by electricity discharged from the battery 6, so when the LPG engine 1 is not good at starting, accelerating, climbing uphill Even at times, excellent running performance can be demonstrated.
- FIG. 2 is a schematic configuration diagram showing a drive mechanism of the parallel hybrid type electric vehicle of the present invention.
- the electric vehicle includes a PG engine 1, an electric motor (also serving as a generator) 5, a converter 3, an inverter 4, a battery 6, and tires 7.
- PG engine 1 an electric motor (also serving as a generator) 5
- converter 3 an inverter 4
- battery 6 a battery 6
- tires 7 The description of the components common to the series system shown in FIG. 1 is omitted, and the differences will be mainly described below.
- the driving force of the LPG engine 1 and the driving force of the electric motor 5 are used for driving the tire 7.
- LPG engine 1 can transmit its driving force to electric motor 5 and tire 7 via a transmission (not shown), and electric motor 5 transmits the driving force to tire 7 It is configured to be able to By this method, (1) the tire 7 is rotated only by the driving force of the engine 1, (2) the tire 7 is rotated only by the driving force of the electric motor 5, (3) both the engine 1 and the electric motor 5
- a driving method such as rotating the tire 7 with driving force can be selected.
- FIG. 3 is a graph showing the relationship between driving modes A to D and energy efficiency.
- the electric motor 15 travels mainly because the efficiency of the LPG engine 1 is low.
- the electric motor 5 stops driving and the vehicle runs with the driving force of the LPG engine 1.
- a part of the driving force of the engine 1 rotates the electric motor 5 as a generator and stores the generated power in the battery 6.
- the rotation of the tire 7 operates the electric motor 5 as a generator, and the regenerative power can be stored in the battery 6.
- Fig. 4 is a graph showing the energy efficiency when climbing a hill from high-speed running on flat ground.
- the driving power of the electric motor 15 is also used to increase the horsepower and torque. And a high efficiency state can be maintained.
- FIG. 5 is a graph showing energy efficiency when accelerating in a flat ground high-speed driving state.
- stop A it is preferable to stop the LPG engine and to omit the idling of the engine to enhance energy efficiency.
- both the driving force of the LPG engine and the driving force of the electric motor 5 can be directly used for the rotation of the tire 7, so that high-speed running performance can be obtained.
- FIG. 6 is a schematic configuration diagram illustrating a drive mechanism of an electric vehicle of the lux split hybrid type according to the present invention.
- the electric vehicle has an LPG engine 1, a power split device 9, a generator 2, a converter 3, an inverter 4, an electric motor (combined with a generator) 5, a notebook 6, and tires 7.
- This torque split hybrid system has a power split mechanism 9 that distributes the driving force of the LPG engine 1 to the tires and the generator, and has a generator 2 independent of the electric motor 5 This is different from the parallel hybrid method.
- the driving force of the LPG engine 1 is divided using, for example, a first clutch that transmits the driving force of the engine 1 to the generator 2 and a second clutch that transmits the driving force of the LPG engine 1 to the tire 7 .
- a series hybrid system and a parallel hybrid system are selectively used.
- series hybrid system When the series hybrid system is used, it is called “series mode”, and when the parallel hybrid system is used, it is called “parallel mode”.
- the first clutch is set to ON and the second clutch is set to OFF, and the LPG engine 1 is dedicated to driving the generator.
- the generated power is used to charge the battery 6 through the converter 13 and drive the electric motor 15.
- both the first clutch and the second clutch are set to 0 N. Since the second clutch is at ⁇ N, the driving force of LPG engine 1 is transmitted to tire 7. Further, the electric motor 15 is driven by electricity from the generator 2 or electricity from the battery 6, and the tire 7 is rotated by the driving force.
- both the first clutch and the second clutch are set to ⁇ N, but the rotation of the electric motor 15 stops.
- the vehicle is driven only by the driving force of the LPG engine 1.
- FCEV fuel cell electric vehicle
- Fig. 7 is a schematic diagram showing the drive mechanism of a series hybrid electric vehicle.
- This electric vehicle has an engine 1 as an engine, a power generator 2 and a converter. 3, an inverter 4, an electric motor 5, a battery 6, a tire 7, a fuel cell (FC) 11, and a DCZ DC converter 10.
- Examples of the type of engine include a reciprocating engine and an all-in-one engine. Any fuel such as gasoline, light oil, LPG, etc. can be used as the fuel for the engine.
- the fuel for the engine may use the same hydrogen gas as the fuel cell 11.
- the same fuel tank can be used by using the same hydrogen gas for both the engine and the fuel cell 11.
- the generator 2 is rotated by the driving force of the engine 1 to generate power.
- an alternator is often used as a generator for an electric vehicle, and the alternator is also used in this example.
- the electricity generated by the generator 2 is converted to DC by the converter 11, further converted to AC of an appropriate frequency via the inverter 4, and supplied to the electric motor 5.
- Electric motors can be used as the electric motor 15, but an AC synchronous electric motor is used here.
- the generated power is also used to charge the battery 6 through the switch 8 if necessary.
- a lead battery a nickel-iron cadmium battery, a nickel-metal hydride battery, a nickel-iron battery, a nickel-zinc battery, a sodium-sulfur battery, a lithium battery, and the like can be used.
- the fuel cell 11 uses hydrogen as fuel, and the DC power generated by the fuel cell 11 can be used as it is or, if necessary, converted to the required voltage DC by the DC / DC converter 110 and used.
- Can be The electric power generated by the fuel cell or the electric power converted into the DC / DC converter 10 is converted into an AC having an appropriate frequency via the inverter 4, similarly to the electric power generated by the generator 2. It is converted and supplied to the electric motor 5.
- the electricity converted into direct current of a required voltage directly from the fuel cell 11 or by the DC / DC converter 10 can be stored in the terry 6.
- the DC electricity stored in the battery 6 is also converted into an AC having an appropriate frequency via the inverter 4 and supplied to the electric motor 5. Whether or not the generated electricity is also supplied to the battery 6 side is determined by turning on and off a switch 8 provided between the converter 3 or the DC / DC converter 10 and the battery 6 (otherwise, Switching may be performed electrically by inverter control.
- the driving force of the electric motor 5 is transmitted to the axle of the tire 7 to drive the vehicle.
- the engine 1 is used exclusively for driving the generator 2, and the driving force of the engine 1 is not directly used for rotating the tire 7.
- the engine 1 is separated from the driving of the tire 7, and can concentrate on power generation while operating at the highest efficiency, thereby improving energy efficiency.
- the running of the vehicle is performed by the driving force of the electric motor 5 rotated by the electricity generated by the generator 2, the electricity generated by the fuel cell 11, or the discharge electricity from the battery 6.
- the electric motor 5 is driven by the electricity generated by the generator 2 to drive the vehicle.
- the fuel cell 11 is started up, the engine 1 is stopped, and the electric motor 15 is driven by the electricity generated by the fuel cell 11, so that the vehicle can run.
- FIG. 8 is a schematic configuration diagram illustrating a drive mechanism of an electric vehicle of the parallel hybrid system according to the present invention.
- the vehicle according to the present invention includes an engine 1, an electric motor (cum-generator) 5, a compressor 3, an inverter 4, an inverter 6, a tire 7, a fuel cell (FC) 11 and a DC / DC converter.
- DC converter 10 is provided. The description of the components common to the series system shown in FIG. 7 is omitted, and the following mainly describes the differences.
- each of the driving force of the engine 1 and the driving force of the electric motor 5 is used for driving the tire 7.
- the engine 1 transmits its driving force directly to the tires 7 via a transmission (not shown), and also drives an electric motor 5 through a generator 2 so that the electric motor 5 Also transmits the driving force of It is configured to be able to.
- the engine 1 drives (1) the tire 7 rotates only with the driving force of the engine 1, and (2) the tire 7 rotates only with the driving force of the electric motor 5. And (3) the tire 7 is rotated by both the driving force of the engine 1 and the electric motor 5.
- the electric motor 5 can be driven by the electricity generated by the fuel cell 11.
- the generator 2 is driven by the horsepower of the engine 1 and the electric motor 5 is driven by the electric power at this time to travel. .
- the electric motor 15 stops driving and the vehicle runs with the driving force of the engine 1. At this time, it is preferable to drive the generator with a part of the driving force of the engine 1 and store the generated power in the battery 6.
- the vehicle accelerates from a state in which the vehicle is traveling on flat ground at high speed using the electricity generated by the fuel cell 11. By traveling with the driving force of the engine 1, an excellent acceleration force can be obtained.
- both the driving force of the engine 1 and the driving force of the electric motor 15 can be directly used for the rotation of the tire 7, so that high-speed running performance can be obtained.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Transportation (AREA)
- Power Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
Abstract
A hybrid electric car comprising, as a drive source, an engine (1) using a liquefied petroleum gas as a fuel, an electric motor (5), a generator (2) and a battery (6) storing an electric power generated by the generator, the electric motor (5) being rotated by an electric power generated by the generator (2) or discharged from the battery (6). Wheels (tires (7)) are driven by at least one of an engine drive power and an electric motor (5) drive power to run the car. The car provides a high running performance even if a large horsepower, or a large torque is needed.
Description
明 細 書 Specification
ハイプリッド電気自動車 Hybrid electric vehicle
く技術分野 > Technical Field>
本発明は、 内: M関エンジン (以下 「エンジン」 という) と電気モ—ターに よりハイプリッドシステムを構築して、 車輪を駆動して走行するハイプリッド 電気自動車 (HEV: Hybri d Electric Vehicle に関するものである。 く背景技術〉 The present invention relates to a hybrid electric vehicle (HEV) that drives a wheel by driving a wheel by constructing a hybrid system using an M engine (hereinafter referred to as an “engine”) and an electric motor. Background technology>
自動車に用いられるエンジンは、 環境問題、 資源問題により、 その排気量が 制限される方向になりつつある。 しかし、 エンジンの排気量が小さくなると、 小排気量車は、 発生馬力、 トルクの観点から、 大排気量のエンジンに比べて劣 つてくる。 そのため、 特に発進時、 登坂時など、 大馬力、 大トルクが必要な場 合、 加速性能が劣ることになる。 また、 このような場合にはエネルギ一効率も 大きく下がることになる。 Engines used in automobiles are becoming more limited in terms of engine displacement due to environmental and resource issues. However, as the engine displacement decreases, small displacement vehicles are inferior to large displacement engines in terms of generated horsepower and torque. Therefore, when large horsepower and large torque are required, especially when starting or climbing a slope, the acceleration performance will be poor. In such a case, the energy efficiency is greatly reduced.
一方、 自動車の駆動源に、 電気モーターを利用する電気自動車が実現されて いる。 On the other hand, electric vehicles that use electric motors as driving sources for vehicles have been realized.
現在使用されている電気自動車は、 ノ Wテリ一に蓄えられた直流電気が、 ィ ンバーターを通して必要な電圧の交流電気に変換され、 この交流電気により電 気モータ一が回転されて車輪が駆動されることにより電気自動車が走行するよ うになつている。 In electric vehicles currently in use, DC electricity stored in the battery is converted into AC electricity at a required voltage through an inverter, and the AC motor rotates the electric motor to drive wheels. This allows electric vehicles to run.
この電気自動車を用いると、 発進時などに大トルクが容易に得られるので、 前述したエンジンを用いた自動車の欠点を克服することができる。 When this electric vehicle is used, a large torque can be easily obtained at the time of starting or the like.
ところが、 前記電気自動車では、 バッテリーに蓄えられた直流電気の総量に 限度があるので、 ノ、'ッテリ一を頻繁に充電しなければならない。 したがって、 このバッテリーを自動的に充電できる電気自動車が望まれている。 ぐ発明の開示 > However, in the electric vehicle, since the total amount of DC power stored in the battery is limited, the battery must be charged frequently. Therefore, an electric vehicle that can automatically charge this battery is desired. Invention disclosure>
本発明の目的は、 エンジンによって発電機を回転させ、 発電された直流電気 が、 D C/ D Cコンバーターで必要な直流電気に変換されて蓄電手段に蓄えら
れる構成を採用したハイプリッド電気自動車を提供することにある。 An object of the present invention is to rotate a generator by an engine, and convert the generated DC electricity into DC electricity required by a DC / DC converter and store the electricity in a storage means. It is an object of the present invention to provide a hybrid electric vehicle adopting the configuration described above.
また、 本発明の他の目的は、 大馬力、 大トルクが必要な場合でも高い走 ί亍注 能を得ることができるハイプリッ ド電気自動車を提供することにある。 Another object of the present invention is to provide a hybrid electric vehicle capable of obtaining high running performance even when large horsepower and large torque are required.
本発明のさらに他の目的は、 速やかな発進が可能で、 かつ、 高速走行時は、 エンジンにより効率よく車の走行を行うようにするハイブリツド電気自動車を 提供することにある。 It is still another object of the present invention to provide a hybrid electric vehicle that can start quickly and that can efficiently drive a vehicle by an engine during high-speed running.
本発明のハイブリツド電気自動車は、 エンジンと、 発電機と、 発電機で発電 した電気を貯える蓄電手段と、 発電機で発電した電気又は蓄電手段から放電し た電気により回転される電気モーターと、 l己エンジンの駆動力及び電気モ一 ターの駆動力の少なくとも一方又は両方により駆動される車輪とを備えること を特徴とする。 The hybrid electric vehicle according to the present invention includes: an engine; a generator; a power storage unit for storing the power generated by the generator; an electric motor rotated by the power generated by the generator or discharged from the power storage unit; Wheels driven by at least one or both of the driving force of the own engine and the driving force of the electric motor.
この構成であれば、 発電機を駆動し、 発電機で発電した電気を蓄電手段に貯 えることができるので、 バッテリ一を頻繁に充電する必要はなくなる。 With this configuration, the generator can be driven and the electricity generated by the generator can be stored in the power storage means, so that it is not necessary to frequently charge the battery.
また一般に、エンジンは、 回転数を上げる時(発進時、登坂時、カロ速時など) は効率が大きく下がり、高速安定走行時には 3 0〜5 0 %の効率を示す。一方、 電気モータ一はこれらの走行モード差によらず、 一般的に 7 0 ~ 9 5 %内外の 高効率を示す。従って、 特に、 エンジンの効率が下がる走行モ一ド時に電気モ 一夕一を利用して走行することで、 エネルギー効率の高い運転を行うことがで きる。 このように、 本発明ハイブリツド電気自動車によれば、 高い走行性能と 高い燃費効率の両方を得ることができる。特に、 発進時、 力 []速時、 登坂時にお いても、 ガソリンエンジン車と遜色ない走行性能を得ることができる。 In general, the efficiency of the engine is greatly reduced when the engine speed is increased (starting, climbing a hill, at the time of caro speed, etc.), and shows an efficiency of 30 to 50% during high-speed stable running. On the other hand, electric motors generally exhibit high efficiencies between 70% and 95% regardless of these running mode differences. Therefore, in particular, when the vehicle runs using the electric motor all the time in the driving mode in which the engine efficiency is reduced, it is possible to perform the operation with high energy efficiency. As described above, according to the hybrid electric vehicle of the present invention, both high running performance and high fuel efficiency can be obtained. In particular, even at the start, at the speed [], and when climbing a hill, it is possible to obtain the same running performance as a gasoline engine vehicle.
前言己エンジンが、 液ィ匕炭化水素ガスを燃料とするエンジンである場合、 本発 明の適用は大きなメリッ卜がある。 The present invention has a great advantage in the application of the present invention when the engine is fueled by liquid hydrocarbon gas.
液化石油ガス (し P G : Li quefied Petroleum Gas) を燃料とする自動車、 中 でも液化プロパンガスを燃料に用いた自動車は夕クシ一等において広く利用さ れている。 Vehicles that use liquefied petroleum gas (PG) as a fuel, and especially vehicles that use liquefied propane gas as a fuel, are widely used in garlands.
前記液化石油ガス(し P G )や液化天然ガス( L N G: Liquefied Natural Gas) を総称して 「液化炭化水素ガス (L H G )」 ということにする。 The liquefied petroleum gas (P G) and liquefied natural gas (LNG: Liquefied Natural Gas) are collectively referred to as “liquefied hydrocarbon gas (L H G)”.
液化炭化水素ガスを燃料とするエンジン(L H Gエンジンという)は、特に、
燃料費がガソリン車に比べて大幅に安価な上、 炭酸ガスの放出面でもガソリン 車より有利なため、 増加してきている。 Engines that use liquefied hydrocarbon gas as fuel (called LHG engines) Fuel costs are significantly lower than those of gasoline-powered vehicles, and the emission of carbon dioxide is more advantageous than gasoline-powered vehicles.
しかし、 L H Gエンジンは、 ガソリンエンジンと比べて、 さらに発生馬力、 トルクが劣ってくる。 一般に、 L H Gエンジンは回幸 女を上げる時 (発進時、 登坂時、 加速時など) は効率が大きく下がり、 1 0 %を割る場合もある。 その ため、 特に発進時、 登坂時など、 大馬力、 大トルクが必要な場合、 力 []速性能が さらに劣ることになる。 また、 このような^にはエネルギー効率も大きく下 がることになる。 However, the LHG engine produces less horsepower and torque than a gasoline engine. In general, the efficiency of the LHG engine is greatly reduced when raising the driver (starting, climbing a hill, accelerating, etc.), and may fall below 10%. Therefore, when large horsepower and large torque are required, especially when starting or climbing a hill, the power [] speed performance will be further inferior. In addition, energy efficiency is greatly reduced by such ^.
そこで、 し^1 6ェンジンを駆動させて走るし^1 6車に、 発電機と電気モータ 一を付加し、発電機で得た電気をエネルギー源として電気モーターを回転させ、 この駆動力を用いて自動車を走行させることとすれば、 L H Gエンジンだけを 駆動源とする場合よりも高い走行性能を実現することができ、 ガソリンェンジ ン車に比べて遜色なし、走 ί亍 f生能を得ることができる。 Therefore, a generator and an electric motor are added to a car driven by driving a ^ 16 engine, and the electric motor is rotated using the electricity obtained by the generator as an energy source, and this driving force is used. If a car is driven by a vehicle, it can achieve higher driving performance than when using an LHG engine alone as the driving source, and achieve the same driving performance as a gasoline engine car. Can be.
L H Gエンジンに用いる液化炭化水素ガスには、 メタン、 ェタン、 プロパン 及びブタンの少なくとも一種類を主成分とするものが好適である。 これらの液 化ガスを燃料とするエンジンは、 H C、 C O、 C 02 J N O x、 黒鉛、 浮遊粒子 状物質(S P M ) などの排出量がガソリンエンジンに比べて少なく、 環境上好 ましい。 また、 これらのガスは常温加圧で容易に液化し、 積載容量を増加させ ることができる。 As the liquefied hydrocarbon gas used in the LHG engine, a gas containing at least one of methane, ethane, propane and butane as a main component is preferable. Engine using these liquefied gas fuel, HC, CO, C 0 2 J NO x, graphite, emissions, such as suspended particulate matter (SPM) is less than that of the gasoline engines, environmentally favorable preferable. In addition, these gases can be easily liquefied at room temperature under pressure to increase the load capacity.
エンジンの駆動力と電気モーターの駆動力とは、 各々単独であるいは併用し て自動車を走行させることができる。 L H Gエンジンの駆動力とモーターの駆 動力との組合せ方式として、 シリーズハイブリッド方式、 パラレルハイブリツ ド方式及びスプリツ卜ハイブリツド方式の 3つが挙げられる。 The driving force of the engine and the driving force of the electric motor can be used independently or in combination to drive the vehicle. There are three methods of combining the driving force of the LHG engine and the driving force of the motor: a series hybrid method, a parallel hybrid method, and a split hybrid method.
シリーズハイブリッド方式は、 エンジンは発電のみを行い、 その発電した電 気を蓄電手段に蓄電して、 その電力で電気モーターを駆動させて走行する方式 である。 シリーズ方式では、 車輪を回すのは電気モーターだけで、 エンジンは 車輪を回さない。 The series hybrid system is a system in which the engine only generates electricity, the generated electricity is stored in a storage means, and the electric motor is driven by the electric power to travel. In the series method, only the electric motor turns the wheels, and the engine does not turn the wheels.
パラレルハイブリツ ド方式は、 エンジンと電気モーターの 2つの動力源が 各々車輪を直接駆動させて走行する方式である。 この方式では、 一般に電気モ
—ターが発電機を兼ねている。 同方式による利用例としては、 エンジンの駆動 力を主体として走行を行い、 場合によりエンジンの駆動力を蓄電手段の充電動 力として利用することが挙げられる。 エンジンの効率が低く、 高出力が必要と される発進や加速時に電気モ一夕一を作動し、走行の駆動力を補助する。また、 制動時や降坂時には、 電気モ—ターを発電機として利用し、 その発電電力を蓄 電手段に蓄電することもできる。 なお、 パラレルハイブリツド方式には、 一方 の動力源が前輪を、 他方の動力源が後輪を駆動する方式と、 両方の動力源が同 一の車輪を駆動する方式がある。 The parallel hybrid system is a system in which two power sources, an engine and an electric motor, each drive wheels directly to run. In this method, electric motors are generally used. —They are also generators. An example of the use of this method is that the vehicle travels mainly with the driving force of the engine, and in some cases, the driving force of the engine is used as the charging power of the power storage means. The electric motor is activated all the time when starting or accelerating when low engine efficiency is required and high output is required, and assists the driving force for driving. Also, when braking or downhill, an electric motor can be used as a generator and the generated power can be stored in the storage means. The parallel hybrid system includes a system in which one power source drives the front wheels and the other power source drives the rear wheels, and a system in which both power sources drive the same wheel.
スプリツトハイブリツド方式は、 シリーズハイブリツド方式とパラレルハイ プリッド方式の両方を兼ね備え、 両方式を使い分ける方式である。 一般に、 発 電機の機能も兼ねる電気モー夕—の他に独立した発電機を具えている。 この方 式では、 通常、 エンジンの駆動負荷が大きい低速時などに電気モーターで走行 し、 ある速度以上になるとエンジンが回転し始め、 駆動負荷が軽くなると発電 をしながら走行する。例えば、 発進時、加速時、 登板時など、 エンジンのエネ ルギ一効率が低い走行モードでは電気モーターにより走行し、 エンジンの燃料 消費を削減する。後退時も同様である。通常走行時には、ェンジンの駆動力を、 動力分割機構を介して 2系統に分けて、一系統で車輪を駆動させ、 残る一系統 で発電機を駆動させる。 その発電電力で電気モータ—を回転させて車輪を駆動 し、 エンジンと電気モータ一の駆動力の配分を制御しながら、 最も効率よく走 行する。 つまり、 電気モーターだけで走行する場合はシリーズ方式であり、 ェ ンジンと電気モ一夕一とを併用する場合はパラレル方式で走行することになる また、 車輪の回転が電気モーターを発電機として駆動させることで回生発電を 行い、 その電気エネルギーを蓄電手段に蓄える。車両の停止と同時に自動的に エンジンも停止させることで、 エネルギー効率を高めることができる。 The split hybrid system has both a series hybrid system and a parallel hybrid system, and uses both systems. In general, it has an independent generator in addition to an electric motor that also functions as a generator. In this method, the vehicle normally runs on an electric motor at low speeds when the driving load of the engine is large. When the speed exceeds a certain level, the engine starts to rotate. For example, when starting, accelerating, or climbing, the vehicle is driven by an electric motor in a driving mode with low engine energy efficiency to reduce fuel consumption of the engine. The same applies when retreating. During normal driving, the driving force of the engine is divided into two systems via a power split mechanism, one of which drives the wheels, and the other which drives the generator. The electric power is used to drive the wheels by rotating the electric motor, controlling the distribution of the driving force between the engine and the electric motor, and running most efficiently. In other words, when the vehicle is driven only by the electric motor, the vehicle runs in a series system. When the engine and the electric motor are used together, the vehicle runs in a parallel system.The rotation of the wheels is driven by the electric motor as a generator. By doing so, regenerative power is generated, and the electric energy is stored in power storage means. By automatically stopping the engine when the vehicle stops, energy efficiency can be improved.
本発明のハイプリッド電気自動車は、 エンジンと、 発電機と、 発電機で発電 した電気を貯える蓄電手段と、 発電機で発電した電気又は蓄電手段から放電し た電気により回転される電気モーターと、 ¾ΐίΙ己エンジンの駆動力及び電気モ一 ターの駆動力の少なくとも一方又は両方により駆動される車輪とを備えるとと もに、 燃料電池をさらに有し、 fill己蓄電手段が、 発電機で発電した電気、 及び
燃料電池で発電した電気を貯えるものであり、 前記電気モ—ターが、 発電機で 発電した電気、 蓄電手段から放電した電気又は燃料電池で発電した電気により 回転されるものである。 The hybrid electric vehicle according to the present invention includes an engine, a generator, a power storage means for storing the power generated by the generator, an electric motor rotated by the power generated by the generator or the power discharged from the power storage means, A wheel driven by at least one or both of a driving force of the self-engine and a driving force of the electric motor, and further comprising a fuel cell, wherein the self-charging means fills the electric power generated by the generator. , as well as The electric motor stores electricity generated by the fuel cell, and the electric motor is rotated by electricity generated by the generator, electricity discharged from the power storage means, or electricity generated by the fuel cell.
前記エンジンの種類としては、 レシプロ式のエンジンやロータリ一式のェン ジンが挙げられる。 エンジンの燃料としては、 ガソリン、 軽油、 液化天然ガス ( L N G : Liquefied Natural Gas) や液化石油ガス ( L P G : Li quefied Petroleum Gas)、 水素ガスなどが挙げられる。 Examples of the type of the engine include a reciprocating engine and a rotary engine. Engine fuels include gasoline, light oil, Liquefied Natural Gas (LNG), Liquefied Petroleum Gas (LPG), and hydrogen gas.
特に、 エンジンには、 L N G、 し?6などの液化炭化水素ガスし^1 0を燃料 とすることが好ましい。液化炭化水素ガス L H Gは、 メタン、 ェタン、 プロパ ン及びブタンの少なくとも一重類を 分とすることがさらに好ましい。 In particular, for engines, LNG, It is preferable to use a liquefied hydrocarbon gas such as 6 as fuel. More preferably, the liquefied hydrocarbon gas LHG contains at least one of methane, ethane, propane and butane.
これらの;'夜ィ匕ガスを燃料とするエンジンは、 H C、 C O、 C 02、 N O x、 黒鉛、 浮遊粒子状物質 (S P M ) などの排出量がガソリンエンジンに比べて少 なく、 水素を用いる燃料電池とともに環境上好ましい。 また、 これらのガスは 常温加圧で容易に液化し、 積載容量を増加させることができる。 These; engine to the 'Yorui匕gas as fuel, HC, CO, C 0 2 , NO x, graphite, emissions, such as suspended particulate matter (SPM) is no less than gasoline engines, hydrogen It is environmentally preferable together with the fuel cell used. In addition, these gases can be easily liquefied at room temperature under pressure and the load capacity can be increased.
燃料電池の燃料として液化炭化水素ガスを用いることにより、 自動車に後述 する改質装置を搭載しておけば、 エンジンの燃料を燃料電池にも使用すること ができ燃料タンクの共通化が図れる。 その結果、 燃料タンクを減らすことがで きながら、 よりクリ一ンにエンジンを駆動させることができ、 しかも、 車の即 時発進が可能となり、 クリ一ン排気の点においてもより好ましい。 By using liquefied hydrocarbon gas as the fuel for the fuel cell, if the reformer described later is mounted on the vehicle, the fuel for the engine can be used for the fuel cell and the fuel tank can be shared. As a result, the engine can be driven more cleanly while reducing the number of fuel tanks, and the vehicle can be started immediately, which is more preferable in terms of clean exhaust.
また、 エンジンの燃料を水素ガスとする場合は、 都市部などで十分水素燃料 の供給が受けられる地域を主として走る車両に適用することが好ましい。 When hydrogen gas is used as the fuel for the engine, it is preferably applied to vehicles that mainly run in areas where hydrogen fuel can be sufficiently supplied, such as in urban areas.
エンジンの燃料を水素ガスとし、 燃料電池の燃料も水素ガスとすることとす れば、燃料タンクの共通化が図れるだけでなく、 より環境にやさしく、 軽量化 が図れるハイプリッド車を提供できる。 If hydrogen gas is used for the engine fuel and hydrogen gas is used for the fuel cell fuel, it is possible to provide not only a common fuel tank, but also a more environmentally friendly and lightweight hybrid vehicle.
前記燃料電池の種類としては、固体高分子型( P E F C )、固体電解質型 ( S 0 F C )、 りん酸型( K P F C )などがある。固体高分子型の作動温度は常温か ら 1 0 0°Cである。 固体電解質型の作動温度は約 1 0 0 0°Cである。 りん酸型 の作動温度は約 2 0 0°Cである。 このように、 燃料電池は、 作動温度が高いの で、 立ち上げるのに時間を要する。
前記燃料電池が水素ガスを燃料とする場合は、 この水素ガスの供給方法とし ては、 水素ガスを直接供給する方法と、 改質装置を用いてガソリン、 メタノ一 ル、 天然ガス、 液化石油ガスなどから水素を得る方法がある。 Examples of the type of the fuel cell include a polymer electrolyte type (PEFC), a solid electrolyte type (SOFC), and a phosphoric acid type (KPFC). The operating temperature of the solid polymer type is from room temperature to 100 ° C. The operating temperature of the solid electrolyte type is about 100 ° C. The operating temperature of the phosphoric acid type is about 200 ° C. As described above, since the operating temperature of the fuel cell is high, it takes time to start up. When the fuel cell uses hydrogen gas as fuel, the hydrogen gas can be supplied by directly supplying hydrogen gas or gasoline, methanol, natural gas, or liquefied petroleum gas using a reformer. There is a method of obtaining hydrogen from such as.
燃料電池は、 改質装置で水素ガスを得るよりも、 直接水素ガスを供給するほ うが、 排出物が水のみで環境負荷が低く、 しかも、 重量の重い改質装置を搭載 しなくてよいという利点がある。 Fuel cells supply hydrogen gas directly, rather than hydrogen gas from the reformer.However, the only effluent is water, which has a low environmental impact and does not require a heavy reformer. There is an advantage.
本発明のハイブリツド電気自動車の蓄電手段としては、 バッテリー又はキヤ パシタ—又は S M E S (超電導磁気エネルギー貯蔵装置) あるいはこれらの組 み合わせたものが挙げられる。 As the power storage means of the hybrid electric vehicle of the present invention, a battery, a capacitor, a SMES (superconducting magnetic energy storage device), or a combination thereof can be used.
蓄電手段を搭載することにより、 蓄電手段に蓄電されている電力を、 燃料電 池に使用するヒーターゃ改質装置に用いたり、 自動車の他の各電気機器に用い ることができる。 By mounting the power storage means, the power stored in the power storage means can be used for a heater / reformer used for a fuel cell or for other electric devices of an automobile.
本発明のハイブリッド電気自動車は、 エンジンを駆動させ、 このエンジンの 駆動力により直接車輪を駆動させて自動車を走行させたり、 発電機を発電させ ることができる。 ADVANTAGE OF THE INVENTION The hybrid electric vehicle of this invention can drive an engine, drive a wheel directly by the driving force of this engine, drive a vehicle, or generate a generator.
特に、 前記エンジンの駆動力により発電機のみを作動させ、 これによつて発 電した電気を用いて蓄電手段を充電したり、 さらに電気モ一タ一を駆動するこ とによって走行させるようにすることもできる。 このような駆動方式は、 前述 したシリーズハイプリッド方式である。 In particular, only the generator is operated by the driving force of the engine, and the electric storage means is charged using the electricity generated thereby, and the vehicle is driven by driving the electric motor. You can also. Such a driving method is the series hybrid method described above.
このようなシリ一ズハイプリッド方式の電気自動車の場合、 エンジンによつ て直接車輪を駆動することはない。 しかしながら、 このハイブリッ ド電気自動 車は、 エンジンによって電気モーターを駆動させたり、 発電機を作動させたり する方式のハイブリツド電気自動車と、 電気モーターを介して車輪を駆動し自 動車を走行可能にする点は同様である。 In the case of such a series hybrid electric vehicle, the wheels are not directly driven by the engine. However, this hybrid electric vehicle is a hybrid electric vehicle in which an electric motor is driven by an engine or a generator is activated, and a point that the vehicle can be driven by driving wheels through the electric motor. Is similar.
また、燃料電池で電気を発電させ、 この電気により電気モーターを駆動させ て車輪を駆動させて自動車を走行させることもできる。 In addition, the fuel cell can generate electricity, and the electricity can be used to drive an electric motor to drive wheels to drive a car.
本発明では、 燃料電池の立ち上げに時間がかかる場合でも、 燃料電池を立ち 上げている間は、 エンジンの駆動力や、 発電機で発電された電気により回転さ れる電気モーターにより自動車を走行させることができる。
例えば、 自動車が長時間停止している時には、 燃料電池も停止して冷えてい る。 このように燃料電池が冷え切つているときに、 自動車を発進させる場合、 まず、 エンジンの駆動力や、 発電機で発電された電気により回転される電気モ 一夕—で自動車を走行させ、 燃料電池の立ち上げが完了した後は、 燃料電池で 発電した電気により電気モ一夕一を回転させて自動車を走行させることができ る According to the present invention, even when it takes time to start the fuel cell, while the fuel cell is being started, the vehicle is driven by the driving force of the engine or the electric motor rotated by the electricity generated by the generator. be able to. For example, when a car is stopped for a long time, the fuel cell is stopped and it is getting cold. When the vehicle is started when the fuel cell is cold, the vehicle must first be driven by an electric motor that is rotated by the driving force of the engine and the electricity generated by the generator. After the battery startup is completed, the car can be driven by rotating the electric motor every day with the electricity generated by the fuel cell
その結果、 燃料電池のみで駆動させる電気自動車に比べて、 自動車の即時発 進が可能となる。 そして、 燃料電池が立ち上がった後は、 エンジンを停止させ て、クリーンで高効率の燃料電池で発電した電力で車を走らせることができる。 本発明では、 エンジンの駆動力で自動車を走行させているときに、 エンジン の駆動力で発電機も駆動させて電力を得ることができる。 このような駆動方式 は、 前述したパラレルハイブリツド方式である。 As a result, the vehicle can be started immediately compared to an electric vehicle driven only by a fuel cell. After the fuel cell is started, the engine can be stopped and the car can be run with the power generated by the clean and highly efficient fuel cell. According to the present invention, when the vehicle is driven by the driving force of the engine, the generator can be driven by the driving force of the engine to obtain electric power. Such a driving method is the above-described parallel hybrid method.
このようにして得られた電力を用いて燃料電池のスター卜アップ条件を整え ることができる。例えば、 燃料電池のヒータ一に発電機で発電された電気を通 電して昇温させる。 また、 改質装置が必要な燃料電池では、 改質装置の運転に 発電機で発電された電気を用いる。 The start-up condition of the fuel cell can be adjusted using the electric power obtained in this manner. For example, electricity generated by a generator is passed through a heater of a fuel cell to raise the temperature. In a fuel cell requiring a reformer, electricity generated by a generator is used to operate the reformer.
このように、 エンジンを搭載することによって、 速やかな発進が可能となる ばかりか、 燃料電池の立ち上げに必要な電力をエンジンで得ることができ、 十 分余裕持つて燃料電池を立ち上げることができる。 In this way, by mounting the engine, not only is it possible to start quickly, but also the engine can obtain the power required to start the fuel cell, and it is possible to start the fuel cell with sufficient margin it can.
また、 水素ガスを直接供給するタイプの燃料電池を搭載している自動車の場 合、 燃料となる水素の供給インフラ (水素ステーション) の完備がされていな し、地域を走行しているときに、 水素燃料が切れてしまう場合が生じるおそれが あ In addition, in the case of vehicles equipped with a fuel cell that directly supplies hydrogen gas, the supply infrastructure (hydrogen station) for hydrogen as fuel is not complete, and when traveling in the area, Hydrogen fuel may run out.
このような場合には、 水素燃料切れと同時にエンジンを作動させる。 ェンジ ンの燃料は適宜既設の供給インフラから随時補給を受けることができるので、 燃料電池が搭載されたハイブリツド車であっても走行が可能となり、 走行でき なし、場所が存在することは無くなり、 安心して走行することができる。 In such a case, start the engine at the same time as running out of hydrogen fuel. The fuel of the engine can be replenished as needed from the existing supply infrastructure as needed, so that even hybrid vehicles equipped with fuel cells can run, they will not be able to run, and there will be no place, You can drive with your heart in mind.
さらに、 エンジンの駆動力と電気モータ—の駆動力とは、 各々単独であるい は併用して自動車を走行させることができる。 エンジンの駆動力と電気モータ
—の駆動力の組み合わせ方式には、 既に述べてきた通りシリーズハイプリッド 方式、 パラレルハイブリツド方式が挙げられる。 Further, the driving force of the engine and the driving force of the electric motor can be used alone or in combination to drive the vehicle. Engine driving force and electric motor As mentioned earlier, the driving force combination method includes the series hybrid method and the parallel hybrid method.
シリーズハイブリツド方式の場合、 燃料電池で発電した電気は、 発電後その まま、 又は蓄電手段に充電された後、 電気モータ一を駆動させるために使用さ れ、 自動車を走行させる。 またエンジンは発電のみを行い、 その発電した電気 を発電後そのまま、 又は蓄電手段に蓄電した後に、 電気モータ一を駆動させる ために使用して自動車を走行させる。 シリーズハイブリツド方式では、 車輪を 回すのは電気モータ—だけで、 エンジンの駆動力で直接車輪は回さない。 シリーズハイブリッド方式では、 発進時には、 エンジンの馬区動力で発電機を 発電させて、 発電した電気で電気モータ一を駆動させることにより自動車を走 行させる。 又、 発電した電気の一部を燃料電池立ち上げにも用いる。 そして、 燃料電池が立ち上がった時点で、 エンジンを停止させ、 燃料電池で発電させた 電気で電気モーターを駆動させることにより自動車を走行させる。 又、 制動時 には電気モータ一を発電機として作動させ、 回生電力を蓄電手段に蓄電させる ことができる。 In the case of the series hybrid system, the electricity generated by the fuel cell is used to drive the electric motor as it is after the electricity is generated or after the electric storage means is charged, and the vehicle is driven. Also, the engine only generates power, and the generated power is used as it is after power generation or after being stored in power storage means, and then used to drive the electric motor to drive the vehicle. In the series hybrid system, only the electric motor turns the wheels, and the wheels are not turned directly by the driving force of the engine. In the series hybrid system, when starting, a generator is generated by the horsepower of the engine, and the generated motor drives the electric motor to drive the car. A part of the generated electricity is also used for fuel cell startup. Then, when the fuel cell starts up, the engine is stopped, and the electric motor is driven by the electricity generated by the fuel cell to drive the vehicle. Also, at the time of braking, the electric motor can be operated as a generator, and the regenerative electric power can be stored in the storage means.
パラレルハイブリツド方式の^、 エンジンと電気モータ一の 2つの動力源 により各々車輪を直接駆動させて走行させる。 同方式による利用例としては、 エンジンの駆動力で走行を行うか、 又は、 発電機又は燃料電池で発電した電気 でモーターを駆動させて走行を行うことが挙げられる。 このとき、 場合により エンジンで発電機を駆動させて発電した電気、 又は、燃料電池で発電した電気 を蓄電手段に充電させる。 The wheels are driven directly by two power sources, an engine and an electric motor. Examples of the use by this method include running with the driving force of an engine or running with a motor driven by electricity generated by a generator or a fuel cell. At this time, the electric power generated by driving the generator by the engine or the electric power generated by the fuel cell is charged to the electric storage means as the case may be.
パラレルハイブリツド方式では、 発進や加速時には、 エンジンの駆動力で車 輪を直接駆動させながら、 エンジンの駆動力で発電機を駆動させて電気モータ -を作動させることにより走行の駆動力を補助することができる。 そして発進 時に燃料電池を立ち上げる。 また、 制動時には、 電気モーターを発電機として 作動させ、 回生電力を蓄電手段に蓄電させることができる。 In the parallel hybrid system, when starting or accelerating, the wheels are driven directly by the engine's driving force, while the generator is driven by the engine's driving force and the electric motor is operated to assist the driving force for traveling. Can be. Then start up the fuel cell when starting. In addition, during braking, the electric motor can be operated as a generator, and the regenerative electric power can be stored in the storage means.
また、 発進や加速時には、 エンジンの駆動力で車輪を直接駆動させながら、 エンジンの駆動力で発電機を駆動させて発電して蓄電手段に蓄電しておくこと もできる。 この蓄電手段に充電されている電気を燃料電池の立ち上げに利用す
ることができる。 When starting or accelerating, the wheels can be directly driven by the engine's driving force, and the generator can be driven by the engine's driving force to generate power and store it in the storage means. The electricity charged in the storage means is used for starting up the fuel cell. Can be
さらに、 燃料電池で発電させた電気で自動車を走行させながら、 エンジンの 駆動力で発電機により発電させ、 その発電電力を蓄電手段に蓄電することもで きる。 なお、 パラレルハイブリツド方式には、 一方の動力源が前輪を、 他方の 動力源が後輪を駆動する方式と、 両方の動力源が同一の車輪を駆動する方式が のる。 In addition, it is also possible to generate electricity from a generator using the driving force of an engine while driving a car using electricity generated by a fuel cell, and store the generated power in a storage means. In the parallel hybrid system, there is a system in which one power source drives the front wheels and the other power source drives the rear wheels, and a system in which both power sources drive the same wheel.
以上説明したように、 本発明ハイブリツド電気自動車によれば、 燃料電池と エンジンを併用することで、 即時発進を可能としながら、 環境に優しく、 高い 走行†生能と高い燃費効率の両方を得ることができる。特に、 発進時、 加速時、 登坂時において燃料電池電気自動車よりもはるかに優れた走行性能を得ること ができる。 また、燃料電池の大きな欠点であった、 停止から立ち上げ時の必要 な電気エネルギーをェンジンから得ることができ、 特に寒冷地での発進に効果 的である。 <図面の簡単な説明〉 As described above, according to the hybrid electric vehicle of the present invention, by using a fuel cell and an engine together, it is possible to immediately start the vehicle and to obtain both environment-friendly, high driving performance and high fuel efficiency. Can be. In particular, when starting, accelerating, and climbing a hill, it is possible to obtain much better driving performance than a fuel cell electric vehicle. Also, it is possible to obtain from the engine the electrical energy required when starting up from stoppage, which was a major drawback of fuel cells, and it is particularly effective for starting in cold regions. <Brief description of drawings>
図 1は、 本発明のシリ一ズハイプリッド方式の電気自動車の駆動機構を示す 概略構成図である。 FIG. 1 is a schematic configuration diagram showing a drive mechanism of a series hybrid electric vehicle of the present invention.
図 2は、 本発明のパラレルハイブリツド方式の電気自動車の駆動機構を示す 概略構成図である。 FIG. 2 is a schematic configuration diagram showing a drive mechanism of the parallel hybrid type electric vehicle of the present invention.
図 3は、 走行モ一ドとエネルギー効率との関係を示すグラフである。 FIG. 3 is a graph showing the relationship between the driving mode and the energy efficiency.
図 4は、 登坂時のエネルギー効率を示すグラフである。 Figure 4 is a graph showing energy efficiency when climbing a hill.
図 5は、 加速時のエネルギー効率を示すグラフである。 Figure 5 is a graph showing energy efficiency during acceleration.
図 6は、 本発明のスプリッ卜ハイプリッド方式の電気自動車の駆動機構を示 す概略構成図である。 FIG. 6 is a schematic configuration diagram showing a drive mechanism of a split-hybrid electric vehicle according to the present invention.
図 7は、 本発明のシリ—ズハイプリッド方式の燃料電池搭載電気自動車の駆 動機構を示す概略構成図である。 FIG. 7 is a schematic configuration diagram showing a driving mechanism of an electric vehicle equipped with a series hybrid fuel cell according to the present invention.
図 8は、 本発明のパラレルハイブリツド方式の燃料電池搭載電気自動車の駆 動機構を示す概略構成図である。
<発明を実 ί するための最良の形態 > FIG. 8 is a schematic configuration diagram showing a driving mechanism of an electric vehicle equipped with a fuel cell of a parallel hybrid system according to the present invention. <Best mode for carrying out the invention>
以下、 本発明の実施の形態を、 添付図面を参照しながら詳細に説明する。 一液化炭化水素ガスハイプリッド電気自動車一 Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. One liquefied hydrocarbon gas hybrid electric vehicle
以下、 液化炭化水素ガスハイブリツド電気自動車を例にとって説明する。 <シリーズハイブリッド方式 > Hereinafter, a liquefied hydrocarbon gas hybrid electric vehicle will be described as an example. <Series hybrid method>
図 1は、 本発明のシリーズハイプリッド方式の電気自動車の駆動機構を示す 概略構成図である。 FIG. 1 is a schematic configuration diagram showing a drive mechanism of a series hybrid electric vehicle of the present invention.
本発明の電気自動車は、 し 0ェンジン1と、 発電機 2と、 コンバータ— 3 と、 インバーター 4と、 電気モーター 5と、 テリー 6と、 タイヤ 7とを備 える。 8は、 発電した電気をバッテリー 6側にも供給するためのスィッチであ る。 The electric vehicle according to the present invention includes an engine 1, a generator 2, a converter 3, an inverter 4, an electric motor 5, a terry 6, and tires 7. 8 is a switch for supplying the generated electricity to the battery 6 side.
L P Gエンジン 1は、 プロパンガスなどの L P Gの燃料により駆動されるェ ンジンである。 エンジンの種類としては、 レシプロ式のエンジンやロータリー 式のェンジンが挙げられる。 The LPG engine 1 is an engine driven by LPG fuel such as propane gas. Types of engines include reciprocating engines and rotary engines.
このエンジン 1の作動により発電機 2を回転させる。発電機 2は L P Gェン ジン 1の駆動力により回転されて発電を行う。 一般に電気自動車の発電機には 交流発電機が用いられることが多く、 本例でも交流発電機を用いている。 発電機 2で発電された電気は、 コンバータ一 3で直流に変換され、 さらにィ ンバーター 4を介して適正な周波数の交流に変換されて電気モーター 5へと供 給される。 電気モータ一 5には、 種々の電気モーターが利用できるが、 ここで は交流同期電気モーターを用いている。 The operation of the engine 1 causes the generator 2 to rotate. The generator 2 is rotated by the driving force of the LPG engine 1 to generate power. Generally, an alternator is often used as a generator for an electric vehicle, and the alternator is also used in this example. The electricity generated by the generator 2 is converted to DC by the converter 13, further converted to AC of an appropriate frequency via the inverter 4, and supplied to the electric motor 5. Various electric motors can be used for the electric motor 15, but an AC synchronous electric motor is used here.
また、 必要に応じて、 発電電力はバッテリー 6の充電にも利用される。 'ッテリー 6には、鉛電池、 ニッケル■力ドミゥ厶電池、 ニッケル ·水素電 池、 ニッケル■鉄電池、 ニッケル ·亜鉛電池、 ナトリウム '硫黄電池、 リチウ ム電池などが利用できる。 The generated power is also used to charge the battery 6 as needed. For Battery 6, a lead battery, a nickel-aluminum-doped battery, a nickel-metal hydride battery, a nickel-iron battery, a nickel-zinc battery, a sodium-sulfur battery, a lithium battery, and the like can be used.
発電した電気をバッテリー 6側にも供給するかどうかを、 コンバーター 3と バッテリー 6との間に設けられたスィッチ 8のオンオフにより行ってもよい。 その他、 ィンバーター制御により電気的にスイッチングしても良い。 Whether the generated electricity is also supplied to the battery 6 may be determined by turning on and off a switch 8 provided between the converter 3 and the battery 6. Alternatively, electrical switching may be performed by inverter control.
この電気モ—夕— 5の駆動力をタイャ 7の車軸に伝達して、 自動車を走行さ
せる。 The drive power of this electric motor 5 is transmitted to the axle of tire 7 to drive the car. Let
このシリーズハイブリッド方式では、 L P Gエンジン 1は、 専ら発電機 2の 駆動に利用され、 L P Gエンジン 1の駆動力を直接タイヤ 7の回転に用いてい ない。 つまり、 L P Gエンジン 1は、 タイヤ 7の駆動とは切り離されているの で、 常時、 最高効率の条件で運転しながら発電に専念できるため、 エネルギー 効率を高めることができる。 In this series hybrid system, the LPG engine 1 is used exclusively for driving the generator 2, and the driving force of the LPG engine 1 is not directly used for rotating the tire 7. In other words, since the LPG engine 1 is separated from the driving of the tire 7, the LPG engine 1 can always concentrate on the power generation while operating under the condition of the highest efficiency, so that the energy efficiency can be improved.
自動車の走行は、 発電機 2で発電された電気あるいはバッテリー 6からの放 電電気により回転駆動されるモ一夕一 5により行われるため、 L P Gエンジン 1が苦手とする発進時、 加速時、 登坂時などでも優れた走 i〒f生能を発揮するこ とができる。 The vehicle is driven by a motor 5 that is driven by electricity generated by the generator 2 or by electricity discharged from the battery 6, so when the LPG engine 1 is not good at starting, accelerating, climbing uphill Even at times, excellent running performance can be demonstrated.
<パラレルハイプリッド方式 > <Parallel hybrid method>
図 2は、 本発明のパラレルハイブリツド方式の電気自動車の駆動機構を示す 概略構成図である。 FIG. 2 is a schematic configuration diagram showing a drive mechanism of the parallel hybrid type electric vehicle of the present invention.
本電気自動車は、 し P Gエンジン 1と、 電気モータ一 (兼発電機) 5と、 コ ンバーター 3と、 インバーター 4と、 ノ ツテリ一 6と、 タイヤ 7とを具える。 図 1に示すシリーズ方式と共通する構成要素の説明は省略し、 以下、 相違点を 主として説明する。 The electric vehicle includes a PG engine 1, an electric motor (also serving as a generator) 5, a converter 3, an inverter 4, a battery 6, and tires 7. The description of the components common to the series system shown in FIG. 1 is omitted, and the differences will be mainly described below.
パラレルハイブリツド方式では、 L P Gエンジン 1の駆動力と電気モーター 5の駆動力の各々をタイヤ 7の駆動に利用する。 L P Gエンジン 1は、 変速機 (図示せず) を介してその駆動力を電気モ一夕一 5とタイヤ 7に伝達すること ができ、 電気モ一ター 5はその駆動力をタイヤ 7に伝達することができるよう に構成されている。この方式により、(1 )エンジン 1の駆動力だけでタイャ 7を 回転する、 (2)電気モータ一 5の駆動力だけでタイヤ 7を回転する、 (3)ェンジ ン 1 と電気モーター 5の両駆動力でタイヤ 7を回転する、 といった駆動方式を 選択することができる。 In the parallel hybrid system, the driving force of the LPG engine 1 and the driving force of the electric motor 5 are used for driving the tire 7. LPG engine 1 can transmit its driving force to electric motor 5 and tire 7 via a transmission (not shown), and electric motor 5 transmits the driving force to tire 7 It is configured to be able to By this method, (1) the tire 7 is rotated only by the driving force of the engine 1, (2) the tire 7 is rotated only by the driving force of the electric motor 5, (3) both the engine 1 and the electric motor 5 A driving method such as rotating the tire 7 with driving force can be selected.
図 3は、 走行モ—ド A〜Dとエネルギー効率との関係を示すグラフである。 発進時 Bは、 L P Gエンジン 1の効率が低いため、 電気モータ一 5を主とし て走行を行う。 自動車が一定速度以上に達してエンジン 1の方が高効率の範囲 Cでは電気モ一ター 5の駆動をやめて L P Gエンジン 1の駆動力で走行する。
3 014096 FIG. 3 is a graph showing the relationship between driving modes A to D and energy efficiency. At the start B, the electric motor 15 travels mainly because the efficiency of the LPG engine 1 is low. In the range C where the car reaches a certain speed or higher and the engine 1 has higher efficiency, the electric motor 5 stops driving and the vehicle runs with the driving force of the LPG engine 1. 3 014096
12 その際、エンジン 1の駆動力の一部が電気モーター 5を発電機として回転させ、 発電された電力をバッテリー 6に蓄電することが好ましい。制動時 Dや降坂時 はタイヤ 7の回転が電気モーター 5を発電機として動作させ、 回生電力をバッ テリー 6に蓄電することができる。 12 At that time, it is preferable that a part of the driving force of the engine 1 rotates the electric motor 5 as a generator and stores the generated power in the battery 6. During braking D or downhill, the rotation of the tire 7 operates the electric motor 5 as a generator, and the regenerative power can be stored in the battery 6.
また、 図 4は、 平地高速走行状態から登坂する場合のエネルギー効率を示す グラフである。 Fig. 4 is a graph showing the energy efficiency when climbing a hill from high-speed running on flat ground.
同図に示すように、 L P Gエンジン 1により平地高速走行を行っていた状態 Eから登坂状態 Fに移る場合、 電気モータ一 5の駆動力も併用して走行するこ とで、 より高い馬力やトルクを得ることができ、 高効率状態を維持することが できる。 As shown in the figure, when the vehicle moves from the state E, which is running at high speed on level ground, using the LPG engine 1 to the state F, which is climbing a hill, the driving power of the electric motor 15 is also used to increase the horsepower and torque. And a high efficiency state can be maintained.
さらに、 図 5は、 平地高速走行状態の中で加速走行する場合のエネルギー効 率を示すグラフである。 Further, FIG. 5 is a graph showing energy efficiency when accelerating in a flat ground high-speed driving state.
同図に示すように、 L P Gエンジン 1により平地高速走行を行っていた状態 から加速する場合、 電気モータ一 5の駆動力も併用して走行することで、 優れ た加速力を得ることができ、 高効率状態を維持することができる。 As shown in the figure, when accelerating from a state in which the LPG engine 1 is running at high speed on level ground, by using the driving force of the electric motor 15 together, an excellent acceleration force can be obtained. The efficiency state can be maintained.
また、 停止時 Aは L P Gエンジンを停止させ、 エンジンのアイドリングを省 略してエネルギ一一効率を高めることが好ましい。 At the time of stop A, it is preferable to stop the LPG engine and to omit the idling of the engine to enhance energy efficiency.
前述したシリーズハイブリツド方式により高速走行するには、 電気モーター 5の高速回転が必要である力、'、 電気モ一ター 5からギア一を用いて大トルクを 取り出すことが困難になる^がある。 このパラレルハイブリッド方式では、 L P Gェンジンの駆動力と電気モー夕— 5の駆動力の両方を直接タイヤ 7の回 転に利用できるため、 高い高速走行性能を得ることができる。 In order to run at high speed by the series hybrid system described above, there is a force that requires high-speed rotation of the electric motor 5, and it becomes difficult to extract large torque from the electric motor 5 using a gear. In this parallel hybrid system, both the driving force of the LPG engine and the driving force of the electric motor 5 can be directly used for the rotation of the tire 7, so that high-speed running performance can be obtained.
<卜ルクスプリッ卜ハイブリッド方式 > <Torx split hybrid system>
図 6は、 本発明の卜ルクスプリッ卜ハイプリッド方式の電気自動車の駆動機 構を示す概略構成図である。 FIG. 6 is a schematic configuration diagram illustrating a drive mechanism of an electric vehicle of the lux split hybrid type according to the present invention.
本電気自動車は、 L P Gエンジン 1と、 動力分割機構 9と、 発電機 2と、 コ ンバーター 3と、 インバーター 4と、 電気モータ一 (兼発電機) 5と、 ノ ツテ リー 6と、 タイヤ 7とを備える。 図 2に示すパラレルハイブリツド方式と共通 する構成要素の説明は省略し、 以下、相違点を主として説明する。
この卜ルクスプリッ卜ハイブリッド方式では、 L P Gエンジン 1の駆動力を タィャと発電機へと分配する動力分割機構 9を有し、 電気モ一夕一 5とは独立 して発電機 2を具えている点でパラレルハイプリッド方式とは相違している。 The electric vehicle has an LPG engine 1, a power split device 9, a generator 2, a converter 3, an inverter 4, an electric motor (combined with a generator) 5, a notebook 6, and tires 7. Is provided. Descriptions of the same components as those of the parallel hybrid system shown in FIG. 2 are omitted, and the differences will be mainly described below. This torque split hybrid system has a power split mechanism 9 that distributes the driving force of the LPG engine 1 to the tires and the generator, and has a generator 2 independent of the electric motor 5 This is different from the parallel hybrid method.
L P Gエンジン 1の駆動力の分割は、 例えばエンジン 1の駆動力を発電機 2 へと伝達する第 1クラッチと、 L P Gエンジン 1の駆動力をタイヤ 7へと伝達 する第 2クラッチとを用いて行う。 The driving force of the LPG engine 1 is divided using, for example, a first clutch that transmits the driving force of the engine 1 to the generator 2 and a second clutch that transmits the driving force of the LPG engine 1 to the tire 7 .
この卜ルクスプリツ卜ハイブリツド方式では、 シリーズハイブリツド方式と パラレルハイブリツド方式とを切り替えて使い分ける。 シリーズハイブリツド 方式採用時を 「シリーズモード」 といい、 パラレルハイブリッド方式採用時を 「パラレルモ一ド」 という。 In the torque split hybrid system, a series hybrid system and a parallel hybrid system are selectively used. When the series hybrid system is used, it is called “series mode”, and when the parallel hybrid system is used, it is called “parallel mode”.
シリーズモ一ドでは、 第一クラッチを O N、 第二クラッチを O F Fとして、 L P Gエンジン 1を発電機駆動専用とする。発電された電力は、 コンバータ一 3を通してノ ッテリー 6への充電や電気モータ一 5の駆動に使われる。 In the series mode, the first clutch is set to ON and the second clutch is set to OFF, and the LPG engine 1 is dedicated to driving the generator. The generated power is used to charge the battery 6 through the converter 13 and drive the electric motor 15.
また、パラレルモードは、第一クラッチと第二クラツチの両者を 0 Nとする。 第二クラッチが〇Nであるため、 L P Gエンジン 1の駆動力はタイヤ 7に伝達 される。 また、 電気モータ一 5は、 発電機 2からの電気又はバッテリー 6から の電気により駆動され、 その駆動力でもタイヤ 7を回転させる。 In the parallel mode, both the first clutch and the second clutch are set to 0 N. Since the second clutch is at ΔN, the driving force of LPG engine 1 is transmitted to tire 7. Further, the electric motor 15 is driven by electricity from the generator 2 or electricity from the battery 6, and the tire 7 is rotated by the driving force.
その他、 高速安定走行時などは、 第一クラッチと第二クラッチの両者を〇N とするが電気モータ一 5の違転は停止する。 自動車の駆動は L P Gエンジン 1 の駆動力のみにより行われる。 In addition, during high-speed stable running, both the first clutch and the second clutch are set to ΔN, but the rotation of the electric motor 15 stops. The vehicle is driven only by the driving force of the LPG engine 1.
^燃料電池ハイブリツド電気自動車一 ^ Fuel cell hybrid electric vehicle
以下、 燃料電池を電源として電気モーターを駆動して走る燃料電池電気自動 車 (F C E V : Fuel Cel l Electric Vehicle に、 エンジンを付力□した燃料電 池ハイブリッド電気自動車 (H F C E V : Hybrid Fuel Cel l Electric Vehicle 例にとって説明する。 The following is a fuel cell electric vehicle (FCEV) that runs by driving an electric motor using a fuel cell as a power source. An example will be described.
<シリーズハイプリッド方式 > <Series hybrid method>
図 7はシリーズハイプリッド方式の電気自動車の駆動機構を示す概略構成図 Fig. 7 is a schematic diagram showing the drive mechanism of a series hybrid electric vehicle.
^める め る
本電気自動車は、 エンジンとなるエンジン 1 と、 発電キ幾 2と、 コンバーター
3と、 インバーター 4と、 電気モーター 5と、 ノ、'ッテリ一 6と、 タイヤ 7と、 燃料電池 (F C ) 1 1と、 D CZ D Cコンバータ一 1 0とを備える。 This electric vehicle has an engine 1 as an engine, a power generator 2 and a converter. 3, an inverter 4, an electric motor 5, a battery 6, a tire 7, a fuel cell (FC) 11, and a DCZ DC converter 10.
前記ェンジンの種類としては、 レシプロ式のェンジンや口一夕リ一式のェン ジンが挙げられる。 エンジンの燃料としては、 ガソリン、 軽油、 L P Gなど任 意のものを用いることができる。 Examples of the type of engine include a reciprocating engine and an all-in-one engine. Any fuel such as gasoline, light oil, LPG, etc. can be used as the fuel for the engine.
なお、 エンジンの燃料は、 燃料電池 1 1と同様の水素ガスを用いるようにす ることもできる。 この場合は同一水素ガスをエンジンと燃料電池 1 1の両方に 用いることにより燃料タンクの共通化が図れる。 The fuel for the engine may use the same hydrogen gas as the fuel cell 11. In this case, the same fuel tank can be used by using the same hydrogen gas for both the engine and the fuel cell 11.
発電機 2はエンジン 1の駆動力により回転されて発電を行う。 一般に電気自 動車の発電機には交流発電機が用いられることが多く、 本例でも交流発電機を 用いている。発電機 2で発電された電気は、 コンバータ一一 3で直流に変換さ れ、 さらにインバーター 4を介して適正な周波数の交流に変換されて電気モ— タ一 5へと供給される。 The generator 2 is rotated by the driving force of the engine 1 to generate power. Generally, an alternator is often used as a generator for an electric vehicle, and the alternator is also used in this example. The electricity generated by the generator 2 is converted to DC by the converter 11, further converted to AC of an appropriate frequency via the inverter 4, and supplied to the electric motor 5.
電気モータ一 5には、 種々の電気モータ一が利用できるが、 ここでは交流同 期電気モータ—を用いている。 また、 必要に応じて、 発電電力はスィッチ 8を 通してバッテリー 6の充電にも利用される。 Various electric motors can be used as the electric motor 15, but an AC synchronous electric motor is used here. The generated power is also used to charge the battery 6 through the switch 8 if necessary.
ノ ツテリー 6には、 鉛電池、 ニッケル ·力ドミゥ厶電池、 ニッケル■水素電 池、 ニッケル■鉄電池、 ニッケル■亜鉛電池、 ナトリウム '硫黄電池、 リテゥ 厶電池などが利用できる。 For the battery 6, a lead battery, a nickel-iron cadmium battery, a nickel-metal hydride battery, a nickel-iron battery, a nickel-zinc battery, a sodium-sulfur battery, a lithium battery, and the like can be used.
燃料電池 1 1は、 水素を燃料としており、 燃料電池 1 1で発電された直流電 気は、 そのまま用いられるか、 必要時 D C/ D Cコンバータ一 1 0において必 要な電圧の直流に変換されて用いられる。 この燃料電池によつて発電された電 気、 又は D C/ D Cコンバーター 1 0に変換された電気は、 発電機 2で発電さ れた電気と同様に、 ィンバーター 4を介して適正な周波数の交流に変換されて 電気モーター 5へと供給される。 The fuel cell 11 uses hydrogen as fuel, and the DC power generated by the fuel cell 11 can be used as it is or, if necessary, converted to the required voltage DC by the DC / DC converter 110 and used. Can be The electric power generated by the fuel cell or the electric power converted into the DC / DC converter 10 is converted into an AC having an appropriate frequency via the inverter 4, similarly to the electric power generated by the generator 2. It is converted and supplied to the electric motor 5.
また、燃料電池 1 1から直接に、あるいは D C / D Cコンバーター 1 0によつ て所要の電圧の直流に変換された電気は テリー 6に蓄えることもできる。 バッテリー 6に蓄えられた直流電気も、 インバーター 4を介して適正な周波数 の交流に変換されて電気モーター 5へと供給される。
発電電気をバッテリー 6の側にも供給するかどうかを、 コンバーター 3又は D C/ D Cコンパ一ター 1 0と、 バッテリー 6との間に設けられたスィッチ 8 のオンオフ (こより行ってもよい。 その他、 インバーター制御により電気的にス ィツチングしてもよい。 In addition, the electricity converted into direct current of a required voltage directly from the fuel cell 11 or by the DC / DC converter 10 can be stored in the terry 6. The DC electricity stored in the battery 6 is also converted into an AC having an appropriate frequency via the inverter 4 and supplied to the electric motor 5. Whether or not the generated electricity is also supplied to the battery 6 side is determined by turning on and off a switch 8 provided between the converter 3 or the DC / DC converter 10 and the battery 6 (otherwise, Switching may be performed electrically by inverter control.
そして、 電気モ—ター 5の駆動力をタイヤ 7の車軸に伝達して、 自動車を走 行させる。 Then, the driving force of the electric motor 5 is transmitted to the axle of the tire 7 to drive the vehicle.
このシリーズハイプリッド方式では、 エンジン 1は専ら発電機 2の駆動に利 用され、 同エンジン 1の駆動力を直接タイヤ 7の回転に用いることはない。 つ まり、 エンジン 1はタイヤ 7の駆動とは切り離されて、 最高効率運転をしなが ら発電に専念できるため、 エネルギー効率を高めることができる。 自動車の走 行は、 発電機 2で発電された電気、 燃料電池 1 1で発電された電気、 あるいは バッテリー 6からの放電電気により回転された電気モ—ター 5の駆動力により 行われる。 In this series hybrid system, the engine 1 is used exclusively for driving the generator 2, and the driving force of the engine 1 is not directly used for rotating the tire 7. In other words, the engine 1 is separated from the driving of the tire 7, and can concentrate on power generation while operating at the highest efficiency, thereby improving energy efficiency. The running of the vehicle is performed by the driving force of the electric motor 5 rotated by the electricity generated by the generator 2, the electricity generated by the fuel cell 11, or the discharge electricity from the battery 6.
シリーズハイブリッド方式においては、 自動車の発進時においては、 発電機 2で発電した電気により電気モーター 5を駆動させて自動車を走行させる。燃 料電池 1 1が立ち上がった時点で、 エンジン 1を停止させて燃料電池 1 1で発 電させた電気により電気モータ一 5を駆動させ、 自動車を走行させることがで きる。 In the series hybrid system, when the vehicle starts moving, the electric motor 5 is driven by the electricity generated by the generator 2 to drive the vehicle. When the fuel cell 11 is started up, the engine 1 is stopped, and the electric motor 15 is driven by the electricity generated by the fuel cell 11, so that the vehicle can run.
<パラレルハイブリツド方式 > <Parallel hybrid method>
図 8は、 本発明のパラレルハイプリッド方式の電気自動車の駆動機構を示す 概略構成図である。 FIG. 8 is a schematic configuration diagram illustrating a drive mechanism of an electric vehicle of the parallel hybrid system according to the present invention.
本発明自動車は、 エンジン 1 と、 電気モーター (兼発電機) 5と、 コンパ一 夕一 3と、 インバーター 4と、ノ ンテリー 6と、 タイヤ 7と、燃料電池(F C ) 1 1と、 D C/ D Cコンバーター 1 0とを備える。 図 7に示すシリーズ方式と 共通する構成要素の説明は省略し、 以下、 相違点を主として説明する。 The vehicle according to the present invention includes an engine 1, an electric motor (cum-generator) 5, a compressor 3, an inverter 4, an inverter 6, a tire 7, a fuel cell (FC) 11 and a DC / DC converter. DC converter 10 is provided. The description of the components common to the series system shown in FIG. 7 is omitted, and the following mainly describes the differences.
このパラレルハイブリツド方式では、 エンジン 1の駆動力と電気モ一夕一 5 の駆動力の各々をタイヤ 7の駆動に利用する。 エンジン 1は、 変速機 (図示せ ず) を介してその駆動力を直接タイヤ 7に伝達し、 また、 発電機 2を介して電 気モ—夕一 5を駆動きせ、 その電気モー夕一 5の駆動力もタイヤ 7に伝達する
ことができるように構成されている。 In the parallel hybrid system, each of the driving force of the engine 1 and the driving force of the electric motor 5 is used for driving the tire 7. The engine 1 transmits its driving force directly to the tires 7 via a transmission (not shown), and also drives an electric motor 5 through a generator 2 so that the electric motor 5 Also transmits the driving force of It is configured to be able to.
このパラレルハイプリッド方式によれば、エンジン 1の駆動により、(1 )ェン ジン 1の駆動力だけでタィャ 7を回転する、(2)電気モータ— 5の駆動力だけで タイヤ 7を回転する、(3)エンジン 1と電気モーター 5の両駆動力でタイヤ 7を 回転する、 といった駆動方式を選択することができる。 According to this parallel hybrid system, the engine 1 drives (1) the tire 7 rotates only with the driving force of the engine 1, and (2) the tire 7 rotates only with the driving force of the electric motor 5. And (3) the tire 7 is rotated by both the driving force of the engine 1 and the electric motor 5.
さらに、 本実施形態においても、 シリーズハイブリツド方式と同様に、 燃料 電池 1 1で発電された電気により、電気モーター 5を駆動させることができる。 発進時は、 エンジン 1で直接タイヤ 7を回転させるには効率が低いため、 ェ ンジン 1の馬区動力で発電機 2を駆動させ、 このときの電気で電気モーター 5を 駆動させて走行を行う。 Further, also in the present embodiment, similarly to the series hybrid system, the electric motor 5 can be driven by the electricity generated by the fuel cell 11. At the time of starting, since the efficiency of rotating the tire 7 directly by the engine 1 is low, the generator 2 is driven by the horsepower of the engine 1 and the electric motor 5 is driven by the electric power at this time to travel. .
自動車が一定 以上に達し、 エンジン 1の駆動力でタイヤ 7を回転させる 方が高効率となる範囲になると、 電気モータ一 5の駆動をやめてエンジン 1の 駆動力で走行する。 その際、 エンジン 1の駆動力の一部で発電機を駆動させ、 発電された電力をバッテリー 6に蓄電することが好ましい。 When the vehicle reaches a certain level or more and it is in a range where it is more efficient to rotate the tire 7 with the driving force of the engine 1, the electric motor 15 stops driving and the vehicle runs with the driving force of the engine 1. At this time, it is preferable to drive the generator with a part of the driving force of the engine 1 and store the generated power in the battery 6.
そして、 燃料電池 1 1が立ち上がった時点で、 エンジン 1を停止させて燃料 電池 1 1で発電させた電気により電気モーター 5を駆動させ、 自動車を走行さ せる。 When the fuel cell 11 starts up, the engine 1 is stopped and the electric motor 5 is driven by the electricity generated by the fuel cell 11 to drive the car.
また、 燃料電池 1 1で発電させた電気により平地高速走行を行っていた状態 から登坂する場合、 エンジン 1の駆動力も併用して走行することで、 より高い 馬力やトルクを得ることができる。 In addition, when climbing a hill from a state where high-speed running on level ground is performed by electricity generated by the fuel cell 11, higher horsepower and torque can be obtained by running with the driving force of the engine 1 together.
さらに、 燃料電池 1 1で発電させた電気により平地高速走行を行っていた状 態から加速する^、 エンジン 1の駆動力も併用して走行することで、 優れた 加速力を得ることができる。 In addition, the vehicle accelerates from a state in which the vehicle is traveling on flat ground at high speed using the electricity generated by the fuel cell 11. By traveling with the driving force of the engine 1, an excellent acceleration force can be obtained.
前言己シリーズハイブリツド方式により高速運転させるには、 電気モーター 5 の高速回転が必要であるが、 電気モーター 5からギア—を用いて大トルクを取 り出すことが困難になる場合がある。 パラレルハイブリツド方式では、 ェンジ ン 1の駆動力と電気モータ一 5の駆動力の両方を直接タイヤ 7の回転に利用で きるため、 高い高速走行性能も得ることができる。 In order to operate at high speed by the series hybrid system, high-speed rotation of the electric motor 5 is necessary, but it may be difficult to extract a large torque from the electric motor 5 using gears. In the parallel hybrid system, both the driving force of the engine 1 and the driving force of the electric motor 15 can be directly used for the rotation of the tire 7, so that high-speed running performance can be obtained.
以上、 本発明の実施の形態を説明してきたが、 本発明の実施は、 it己の形態
に限定されるものではなく、本発明の範囲内で種々の変更を施すことが可能で ある。
The embodiment of the present invention has been described above. The present invention is not limited to this, and various changes can be made within the scope of the present invention.
Claims
1 . エンジンと、 1. Engine and
発電機と、 A generator,
発電機で発電した電気を貯える蓄電手段と、 Power storage means for storing electricity generated by the generator,
発電機で発電した電気又は蓄電手段から放電した電気により回転される電気 モータ一と、 An electric motor rotated by electricity generated by the generator or electricity discharged from the storage means;
前記エンジンの駆動力及び電気モーターの駆動力の少なくとも一方又は両方 により駆動される車輪とを備えることを特徴とするハイプリッド電気自動車。 And a wheel driven by at least one or both of the driving force of the engine and the driving force of the electric motor.
2 . 己エンジンが、 液化炭化水素ガスを燃料とする請求項 1記載のハイプリ ッド電気自動車。 2. The hybrid electric vehicle according to claim 1, wherein the own engine uses liquefied hydrocarbon gas as a fuel.
3 . l己液化炭化水素ガスがメタン、 ェタン、 プロパン及びブタンの少なくと も一種類を主成分とする請求項 2記載のハイプリッド電気自動車。 3. The hybrid electric vehicle according to claim 2, wherein the self-liquefied hydrocarbon gas contains at least one of methane, ethane, propane, and butane as a main component.
4 . l己蓄電手段としては、 バッテリー又はキャパシター又は S M E S (超電 導磁気エネルギー貯蔵装置) あるいはこれらの組み合わせたものである請求項 1から請求項 3のいずれかに記載のハイプリッド電気自動車。 4. The hybrid electric vehicle according to any one of claims 1 to 3, wherein the self-power storage means is a battery, a capacitor, a SMES (superconducting magnetic energy storage device), or a combination thereof.
5 . エンジンは発電のみを行い、 その発電した電気を蓄電手段に蓄電して、 そ の電力で電気モーターを駆動させて走行するシリーズハイプリッド方式を採用 した請求項 1から請求項 4のいずれかに記載のハイプリッド電気自動車。 5. The series hybrid system according to any one of claims 1 to 4, which employs a series hybrid system in which the engine only generates power, the generated power is stored in a power storage means, and the electric motor is driven by the power to travel. A hybrid electric vehicle according to claim 1.
6 . エンジンと電気モーターの 2つの動力源が各々車輪を直接駆動させて走行 するパラレルハイプリッド方式を採用した請求項 1から請求項 4のいずれかに 記載の/ヽィブリッド電気自動車。 6. The hybrid electric vehicle according to any one of claims 1 to 4, wherein the engine and the electric motor use a parallel hybrid system in which each of the two power sources directly drives wheels to travel.
7 .シリーズハイブリツド方式とパラレルハイブリツド方式の両方を兼ね備え、
両方式を使い分けるスプリッ卜ハイプリッド方式を採用した請求項 1から請求 項 4のいずれかに記載のハイプリッド電気自動車。 7.It has both series hybrid system and parallel hybrid system, The hybrid electric vehicle according to any one of claims 1 to 4, wherein a split hybrid system that uses both types is adopted.
8 . 燃料電池をさらに有し、 8. It further has a fuel cell,
前記蓄電手段が、 発電機で発電した電気、 及び燃料電池で発電した電気を貯 えるものであり、 The power storage means stores electricity generated by a generator and electricity generated by a fuel cell,
前記電気モータ一が、 発電機で発電した電気、 蓄電手段から放電した電気又 は燃料電池で発電した電気により回転されるものである請求項 1から請求項 7 のいずれかに記載のハイプリッド電気自動車。 The hybrid electric vehicle according to any one of claims 1 to 7, wherein the electric motor is rotated by electricity generated by a generator, electricity discharged from power storage means, or electricity generated by a fuel cell. .
9 . till己エンジンが、 液化炭化水素ガスを燃料とする請求項 8記載のハイプリ ッド電気自動車。 9. The hybrid electric vehicle according to claim 8, wherein the till engine uses liquefied hydrocarbon gas as fuel.
1 0 . 前言己液化炭化水素ガスがメタン、 ェタン、 プロパン及びブタンの少なく とも一種類を主成分とする請求項 9記載のハイプリッド電気自動車。 10. The hybrid electric vehicle according to claim 9, wherein the self-liquefied hydrocarbon gas contains at least one of methane, ethane, propane, and butane as a main component.
1 1 . 前言己エンジンが水素ガスを燃料とする請求項 8に記載のハイブリツド電 気自動車。 11. The hybrid electric vehicle according to claim 8, wherein the engine uses hydrogen gas as fuel.
1 2 . 前言己燃料電池が、 液化炭化水素ガスを燃料とする請求項 8から請求項 1 1のいずれかに記載のハイプリッド電気自動車。 12. The hybrid electric vehicle according to any one of claims 8 to 11, wherein the fuel cell uses liquefied hydrocarbon gas as fuel.
1 3 . 前記燃料電池が水素ガスを燃料とする請求項 8から請求項 1 1のいずれ かに記載のハイプリッド電気自動車。 13. The hybrid electric vehicle according to any one of claims 8 to 11, wherein the fuel cell uses hydrogen gas as fuel.
1 4 . 前言己蓄電手段は、 バッテリー又はキャパシ夕一又は S M E S (超電導磁 気エネルギー貯蔵装置) あるいはこれらの組み合わせたものである請求項 8か ら請求項 1 3のいずれかに記載のハイブリツド電気自動車。
14. The hybrid electric vehicle according to any one of claims 8 to 13, wherein the self-energy storage means is a battery, a capacitor, a SMES (superconducting magnetic energy storage device), or a combination thereof. .
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002-323115 | 2002-11-06 | ||
JP2002323115A JP2004156536A (en) | 2002-11-06 | 2002-11-06 | Hybrid electric vehicle using liquefied hydrocarbon gas |
JP2002345185 | 2002-11-28 | ||
JP2002-345185 | 2002-11-28 | ||
JP2003030761A JP2004229480A (en) | 2002-11-28 | 2003-02-07 | Hybrid electric vehicle |
JP2003-30761 | 2003-02-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2004041574A1 true WO2004041574A1 (en) | 2004-05-21 |
Family
ID=32314774
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2003/014096 WO2004041574A1 (en) | 2002-11-06 | 2003-11-05 | Hybrid electric car |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2004041574A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107918305A (en) * | 2017-12-07 | 2018-04-17 | 中国科学院紫金山天文台 | A kind of South Pole is astronomical to ensure control method of the platform generating set with time restriction |
DE102018103246A1 (en) | 2018-02-14 | 2019-08-14 | HELLA GmbH & Co. KGaA | Motor vehicle drive system and motor vehicle |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05112145A (en) * | 1991-10-21 | 1993-05-07 | Tomihiko Okayama | Electric automobile |
JPH0723504A (en) * | 1993-06-30 | 1995-01-24 | Aqueous Res:Kk | Power supply circuit for hybrid vehicle |
JPH07163013A (en) * | 1993-11-30 | 1995-06-23 | Toshiba Corp | Electric brake equipment of automobile |
US5988307A (en) * | 1995-05-19 | 1999-11-23 | Toyota Jidosha Kabushiki Kaisha | Power transmission apparatus, four-wheel drive vehicle with power transmission apparatus incorporated therein, method of transmitting power, and method of four-wheel driving |
JP2000303836A (en) * | 1999-02-18 | 2000-10-31 | Toyota Motor Corp | Hybrid system of fuel cell and internal combustion engine and automobile provided with the same |
-
2003
- 2003-11-05 WO PCT/JP2003/014096 patent/WO2004041574A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05112145A (en) * | 1991-10-21 | 1993-05-07 | Tomihiko Okayama | Electric automobile |
JPH0723504A (en) * | 1993-06-30 | 1995-01-24 | Aqueous Res:Kk | Power supply circuit for hybrid vehicle |
JPH07163013A (en) * | 1993-11-30 | 1995-06-23 | Toshiba Corp | Electric brake equipment of automobile |
US5988307A (en) * | 1995-05-19 | 1999-11-23 | Toyota Jidosha Kabushiki Kaisha | Power transmission apparatus, four-wheel drive vehicle with power transmission apparatus incorporated therein, method of transmitting power, and method of four-wheel driving |
JP2000303836A (en) * | 1999-02-18 | 2000-10-31 | Toyota Motor Corp | Hybrid system of fuel cell and internal combustion engine and automobile provided with the same |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107918305A (en) * | 2017-12-07 | 2018-04-17 | 中国科学院紫金山天文台 | A kind of South Pole is astronomical to ensure control method of the platform generating set with time restriction |
DE102018103246A1 (en) | 2018-02-14 | 2019-08-14 | HELLA GmbH & Co. KGaA | Motor vehicle drive system and motor vehicle |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7147072B2 (en) | Method and apparatus for providing hybrid power in vehicle | |
Vidyanandan | Overview of electric and hybrid vehicles | |
US6580977B2 (en) | High efficiency fuel cell and battery for a hybrid powertrain | |
US5359308A (en) | Vehicle energy management system using superconducting magnetic energy storage | |
CN100581867C (en) | Fuel battery power system of mixed power vehicle | |
CN103204056B (en) | Hybrid power drives assembly | |
US20060219448A1 (en) | Electric vehicle having multiple-use APU system | |
CN102358201A (en) | Extended range type electric vehicle power system based on fuel battery and control method for extended range type electric vehicle power system | |
CN106515468A (en) | Energy storage tram control system and tram with the same | |
WO2010133330A1 (en) | Multi component propulsion systems for road vehicles | |
CN104626958A (en) | High-power solar intelligent hybrid power automobile | |
US20120136517A1 (en) | Power generation method and apparatus | |
CN102358162B (en) | Hybrid oil-electricity energy-saving power device and control method thereof | |
CN102501778A (en) | Extended-range electric vehicle energy distribution method based on dual-voltage composite energy storage system | |
US20080277174A1 (en) | High-grade ethanol vehicle with fuel-cell motors and optional flexible-fuel engine | |
CN103010044A (en) | Power supply system of hybrid electric vehicle | |
US20130133180A1 (en) | Electric vehicle motion generator | |
WO2004041574A1 (en) | Hybrid electric car | |
Kumar et al. | Architecture and configuration of electrified vehicles: A review | |
JP2004229480A (en) | Hybrid electric vehicle | |
KR20150074437A (en) | Hybrid vehicle and control method thereof | |
CN202242943U (en) | Hybrid oil-electricity energy-saving power device | |
EP2463169A1 (en) | A hybride vehicle | |
JP2004156536A (en) | Hybrid electric vehicle using liquefied hydrocarbon gas | |
JP2001238308A (en) | Vehicle drive motor and power supply apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): CN KR US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
122 | Ep: pct application non-entry in european phase |