USRE39390E1 - Biosensor - Google Patents
Biosensor Download PDFInfo
- Publication number
- USRE39390E1 USRE39390E1 US10/924,334 US92433403A USRE39390E US RE39390 E1 USRE39390 E1 US RE39390E1 US 92433403 A US92433403 A US 92433403A US RE39390 E USRE39390 E US RE39390E
- Authority
- US
- United States
- Prior art keywords
- filter
- sample solution
- side portion
- biosensor
- pressing part
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/001—Enzyme electrodes
Definitions
- the present invention relates to a biosensor, specifically a cholesterol sensor, capable of carrying out speedy, highly-sensitive, simple determination of a specific component in a sample.
- a typical glucose sensor is obtained by forming an electrode system including at least a measurement electrode and a counter electrode on an insulating base plate by a method such as screen printing and then forming an enzyme reaction layer including a hydrophilic polymer, oxidoreductase and an electron mediator on the electrode system.
- oxidoreductase used is glucose oxidase
- electron mediator used is a small complex, an organic compound or the like, such as potassium ferricyanide, ferrocene derivative or quinone derivative.
- a buffer is added to the enzyme reaction layer as required.
- the enzyme reaction layer dissolves to cause a reaction of the enzyme with the substrate, which accompanies reduction of the electron mediator.
- the substrate concentration in the sample solution can be determined from a value of oxidation current, which is obtained when the reduced electron mediator is electrochemically oxidized.
- a reductant of the electron mediator generated as a result of the enzyme reaction is oxidized at the electrode, to determine the glucose concentration from the oxidation current value.
- Such a biosensor is theoretically capable of measuring diverse substances by using an enzyme whose substrate is an object to be measured.
- an enzyme whose substrate is an object to be measured.
- cholesterol oxidase or cholesterol dehydrogenase is used as oxidoreductase
- the surfactant as being included in the reaction system, has an adverse effect on hemocytes, making it impossible to measure whole blood itself, as done in the glucose sensor.
- the sample solution flows along the surface of the filter at a faster rate than it infiltrates into the filter.
- the sample solution having flown along the surface of the filter then flows into the sample solution supply pathway from the opening thereof connecting the sample solution supply pathway to the filter, which may lead to a measurement error.
- a biosensor of the present invention comprises: an insulating base plate; an electrode system having a working electrode and a counter electrode which are provided on the base plate; a reagent including at least oxidoreductase and an electron mediator; a sample solution supply pathway which includes the electrode system, and the reagent and has an air aperture on the termination side thereof; a sample supply part; and a filter which is disposed between the sample solution supply pathway and the sample supply part and which filters out hemocytes, where plasma with which is obtained by filtering out hemocytes therein filtered with in blood by the filter is sucked into the sample solution supply pathway due to capillarity, and is characterized by further comprising: a first pressing part for holding a primary side portion of the filter from the bottom; a second pressing part for holding a secondary side portion of the filter from the top and the bottom; a third pressing part for holding the central portion of the filter from the top; and a void for surrounding the filter between the second pressing part and third pressing part.
- the primary side portion of the filter is exposed outside at the upper face of the biosensor. It is also effective that the secondary side portion of the filter and the working electrode are not in contact with each other.
- FIG. 1 is an exploded perspective view of a biosensor in accordance with one embodiment of the present invention.
- FIG. 2 is a perspective view of a biosensor in accordance with one embodiment of the present invention.
- FIG. 3 is a schematic vertical sectional view of the biosensor illustrated in FIG. 2 .
- FIG. 4 is an enlarged sectional view of the vicinity of an electrode system of a biosensor in accordance with another embodiment of the present invention.
- FIG. 5 is a diagram showing a response characteristic of a cholesterol sensor in an example of the present invention.
- the present invention relates to a biosensor comprising: a sample solution supply pathway which includes an electrode system and a reagent and has an air aperture on the termination side thereof; and a filter which is disposed between the sample solution supply pathway and a sample supply part and which filters out hemocytes, where plasma with which is obtained by filtering out hemocytes therein filtered with in blood by the filter is sucked into the sample solution supply pathway due to capillary, and is characterized by further comprising: a first pressing part for holding a primary side portion of the filter from the bottom; a second pressing part for holding a secondary side portion of the filter from the top and the bottom; a third pressing part for holding the central portion of the filter from the top; and a void for surrounding the filter between the second pressing part and third pressing part.
- This configuration enables prevention of destruction of the hemocytes caused by obstructed expansion of the filter even when a gap between the pressing parts for holding the filter from the top and the bottom is not fitted to the thickness of the filter expanded. Further, dropwise addition of a sample solution directly onto the filter can inhibit a measurement error that may occur as the hemocytes flow along the surface of the filter into the sample solution supply pathway.
- a primary side portion of the filter refers to a portion closer to the sample supply part for supplying the sample while “a secondary side portion” of the filter refers to a portion closer to the sample solution supply pathway where the electrode system is disposed.
- the base plate side of the filter is referred to as “the bottom” while the opposite side to the base plate of the filter “the top”.
- the first pressing part is in contact only with the bottom side of the filter so that the filter can expand upward when sucking the sample solution.
- the third pressing part is in contact only with the top side of the filter so that the filter can expand downward when sucking the sample solution.
- the filter having sucked in the sample solution can expand.
- the hemocytes having transmitted to the part for pressing the filter without passing through the filter, may flow into the electrode system.
- the first pressing part is in contact only with the bottom side of the filter so that an opening can be provided at the upper part to make the primary side portion exposed outside the biosensor, whereby the sample solution can be dropped directly onto the filter.
- the third pressing part present on the upper side of the central portion of the filter serves like a weir for preventing the sample solution, dropped from the opening, from flowing along the surface of the upper side of the filter. It is thereby possible to prevent the sample solution from infiltrating into the sample solution supply pathway without undergoing filtration process.
- the electron mediator for use in the present invention can be selected from potassium ferricyanide or a redox compound having the electron transferring ability to and from oxidoreductase such as cholesterol oxidase.
- Oxidoreductase is an enzyme whose substrate is an object to be measured, and glucose oxidase is applied to a sensor where glucose is the object to be measured.
- glucose oxidase which is an enzyme for catalyzing an oxidation reaction of cholesterol
- cholesterol esterase which is an enzyme for catalyzing the process of changing cholesterol dehydrogenase and cholesterol ester to cholesterol. Because the enzyme reaction of cholesterol esterase proceeds very slowly, with an appropriate surfactant added thereto, activity of cholesterol esterase can be improved to reduce the time required for the overall reaction.
- These are disposed as a reaction layer on or in the vicinity of the electrode system in the sensor. These may also be mixed with a conductive material constituting the electrode and a reagent to form the electrode system.
- a sensor which is combined with the base plate provided with the electrode system and comprises a cover member, which forms the sample solution supply pathway for a supply of the sample solution to the electrode system between the base plate and the sensor, these can be provided at the part exposed to the sample solution supply pathway, the opening of the sample solution supply pathway, or the like. Wherever the place is, it is preferable that the sample solution introduced can dissolve the reagent with ease and then arrive at the electrode system.
- the hydrophilic polymer layer is formed in contact with the upper face of the electrode system so as to protect the electrode and prevent the reagent formed from being peeled off.
- the hydrophilic polymer layer is formed as the base of the reagent as formed or it is included in the bottom-layer reagent.
- the layer including the electron mediator is separated from the surfactant for enhancing the solubility. It is also preferable that it is separated from enzyme cholesterol oxidase and cholesterol esterase, which catalyze the oxidation reaction of cholesterol, for the sake of preservative stability.
- a layer containing lipid is formed so as to cover a layer formed on the electrode system, or the like, to facilitate introduction of the sample solution to the reagent (e.g. Japanese Laid-Open Patent Publication No. 2-062952).
- a layer containing lipid is formed so as to cover a layer formed on the electrode system, or the like, to facilitate introduction of the sample solution to the reagent
- freeze-drying e.g. Japanese Patent Application No. 2000-018834
- hydrophilicity to the surface of a cover member by processing by means of a surfactant, plasma irradiation or the like.
- hydrophilic polymer to be used include water-soluble cellulose derivatives such as, ethyl cellulose, hydroxypropyl cellulose and carboxymethyl cellulose in particular, and polyvinyl pyrrolidone, polyvinyl alcohol, gelatin, agaraose, polyacrylic acid and the salts thereof, starch and the derivatives thereof, polymers of maleic anhydride or the salts thereof, polyacrylamide, methacrylate resin, and poly-2-hydroxyethyl methacrylate.
- water-soluble cellulose derivatives such as, ethyl cellulose, hydroxypropyl cellulose and carboxymethyl cellulose in particular, and polyvinyl pyrrolidone, polyvinyl alcohol, gelatin, agaraose, polyacrylic acid and the salts thereof, starch and the derivatives thereof, polymers of maleic anhydride or the salts thereof, polyacrylamide, methacrylate resin, and poly-2-hydroxyethyl methacrylate.
- the examples of the surfactants include n-octyl- ⁇ -D-thioglucoside, polyethylene glycol monododecyl ether, sodium cholate, dodecyl- ⁇ -maltoside, sucrose monlaurate, sodium deoxycholate, sodium taurodeoxycholate, N,N-bis (3-D-gluconcamidopropyl) deoxycholcamide and polyoxyethylene (10) octyl phenyl ether.
- lipid favorable used in an amphipathic phospholipid such as lecithin, phosphatidyl choline or phosphatidyl ethanolamine.
- a two-electrode system composed only of a measurement electrode and a counter electrode and a three-electrode system further comprising a reference electrode are applicable, and in the three-electrode system, more accurate measurement is possible.
- FIG. 1 is an exploded perspective view of a biosensor in accordance with a preferred embodiment.
- An insulating base plate 1 is made of an insulating resin e.g. polyethylene terephthalate.
- an electrode system including a working electrode 2 and a counter electrode 3 is formed by forming a palladium thin film by means of vapor deposition or sputtering, followed by laser trimming. The area of the electrode is determined corresponding to a width of a slit 9 formed on a spacer 6 laser described.
- An aperture 4 is formed in the base plate 1 .
- a spacer 6 to be combined with the base plate 1 comprises an auxiliary slit 7 for accommodating a filter 5 therein, a slit 9 constituting a sample solution supply pathway 9 ′, and an opening 8 , through which the auxiliary slit 7 communicates with the slit 9 .
- a cover 10 formed are an aperture 11 and an air aperture 12 ; in an auxiliary plate 13 formed are an aperture 14 for supplying a sample solution to the filter 5 , an aperture 15 , and a partition portion 18 to serve as a third pressing part.
- an auxiliary upper cover 16 formed is an aperture 17 constituting a sample solution supply part for dropping the sample solution onto the filter 5 , and an auxiliary lower cover 20 is composed of a flat plate.
- the right side of the auxiliary slit 7 , the right side part of the aperture 11 formed in the cover 10 , the aperture 14 formed in the auxiliary plate 13 and the aperture 17 formed in the auxiliary upper cover 16 in FIG. 1 are communicated.
- the filter (hemocyte-filtering out portion) 5 is made of glass-fiber filter paper, and has an isosceles triangle shape with a bottom of 3 mm and a height of 5 mm in the projection thereof drawing to the plane face which is the same as the base plate 1 .
- a semicircular portion with a radius of 0.4 mm (not shown) is formed at the tip of the secondary side portion.
- the filter 5 has a thickness of about 300 to 400 ⁇ m.
- the base plate 1 is placed on an auxiliary lower cover 20 such that the right edge of the auxiliary lower cover 20 is aligned with that of the base plate 1 in such a positional relation shown by the dashed line in FIG. 1 to obtain a joint base plate A.
- the cover 10 and the spacer 6 are combined such that the respective right sides thereof, namely the parts corresponding to the bottom sides of the isosceles triangle shapes formed in the aperture 11 and the auxiliary slit 7 in the projection thereof drawing to the plane face which is the same as the base plate 1 , are aligned with each other, to obtain a joint base plate B.
- a reaction layer is formed, as later described, on the part of the cover 10 facing the slit 9 , namely on the upper side part of the sample solution supply pathway 9 ′.
- the joint base plate A comprising the base plate 1 and the auxiliary lower cover 20 and the joint base plate B comprising the cover 10 and the spacer 6 are combined in such a positional relation shown by the dashed line in FIG. 1 , and in the projection thereof drawing to the plane face which is the same as the base plate 1 , the filter 5 is disposed such that the right edge (bottom side) of the primary side portion of the filter 5 having an isosceles triangle shape is aligned with the right end pairs of the aperture 11 and the auxiliary slit 7 .
- the filter 5 is in the state of being disposed on the base plate 1 while being fitted in the auxiliary slit 7 of the space 6 and the aperture 11 of the cover 10 .
- the tip of the secondary side portion of the filter 5 gets into the sample solution supply pathway 9 ′ formed by the slit 9 and is interposed between the base plate 1 and the cover 10 , and this interposed part constitutes a second pressing part.
- the auxiliary plate 13 and the auxiliary upper cover 16 are disposed on the cover 10 such that the right ends of the apertures 14 and 17 are aligned with the right ends of the aperture 11 of the cover 10 and the auxiliary slit 7 of the spacer 6 in such a positional relation shown by the dashed line in FIG. 1 .
- FIG. 2 A schematic perspective view of the biosensor thus obtained is shown in FIG. 2 .
- the cross sectional structure thereof is shown in FIG. 3 .
- FIG. 3 is a schematic vertical sectional view of the biosensor of the present invention and corresponds to the X—X line cross sectional view shown in FIG. 2 .
- the apertures 15 and 4 for making the filter 5 not in contact with the other members are formed, as shown in FIG. 3 .
- a first pressing part “a” for holding a primary side portion of the filter 5 from the bottom of the filter 5 ; a second pressing parts “b” and “b′” for holding a secondary side portion of the filter 5 from the top and the bottom of the filter 5 ; a third pressing part “c” for holding the central portion of the filter 5 from the top; and an aperture (void) 15 for surrounding the filter 5 between the second pressing parts “b” and “b′” and the third pressing part “c”.
- a cavity exists at the part corresponding to the part under the filter 5 as well as under the third pressing part “c”, which forms the aperture (void) 4 communicating to the aperture 15 .
- FIG. 4 is a schematic vertical sectional view showing still another mode of a biosensor of the present invention.
- a reaction layer and an electrode system are omitted from FIG. 2 , whereas the reaction layer and the electrode system are shown in FIG. 4.
- a hydrophilic polymer layer 21 and a reaction layer 22 a are formed on the electrode system ( 2 and 3 ) of the base plate 1 .
- a reaction layer 22 b is formed on the lower face side of the cover 10 corresponding to the sealing of the sample solution supply pathway. It is to be noted that the other members shown in FIG. 4 are equivalent to those shown in FIG. 3 .
- the auxiliary upper cover 16 and the auxiliary plate 13 may be composed of one member.
- the lower auxiliary cover 20 and the base plate 1 may further be composed of one member.
- blood as the sample solution is supplied from the sample solution supply part constituted by the aperture 17 of the auxiliary upper cover 16 to the part (sample supply part) for holding the filter 5 .
- the blood supplied here infiltrates from into the upper surface of the primary side portion of the filter 5 thereinto .
- plasma exudes from the termination of the secondary side portion of the filter 5 because the infiltrating rate of hemocytes is slower than that of the plasma which is a liquid component.
- the exuded plasma then fills the entire sample solution supply pathway 9 ′ constituted by the slit 9 extended to the vicinity of the electrode system and further to the part of the air aperture 12 , while dissolving a reaction layer carried on the position covering the electrode system and/or the reverse face of the cover.
- the entire sample solution supply pathway 9 ′ is filled with the liquid, the flow of the liquid in the filter 5 also stops and hence the hemocytes are held in the filter 5 at that time, without arriving at the termination of the secondary side portion of the filter 5 .
- a depth filter with a pore size of about 1 to 7 ⁇ m is favorably applied to the filter of the present invention.
- the filter favorably has a thickness of 300 to 400 ⁇ m.
- a chemical reaction of the reaction layer dissolved by the plasma with a component to be measured (cholesterol in the case of a cholesterol sensor) in the plasma occurs, and a current value in the electrode reaction is measured after a lapse of a certain period of time to determine a component in the plasma.
- FIG. 4 shows an example of disposition of the reaction layer in the vicinity of the electrode system of the sample solution supply pathway 9 ′.
- the hydrophilic polymer layer 21 such as sodium carboxymethyl cellulose (hereinafter simply referred to as “CMC”) as well as the reaction layer 22 a including a reaction reagent e.g. the electron mediator.
- the reaction layer 22 b including oxidoreductase is formed on the surface exposed to the sample solution supply pathway 9 ′ on the reverse face of the cover member, which is given by combining the cover 10 and the spacer 6 .
- the cross sectional area, vertical to the direction of the flowing liquid, of the sample solution supply pathway 9 ′ constituted by the slit 9 is made smaller than the cross sectional area of the primary side portion of the filter 5 , however, the part at a distance of 1 mm from the secondary side portion of the filter 5 is compressed and disposed in the vicinity of the opening 8 of the sample solution supply pathway 9 ′.
- the part of the filter 5 to be compressed was favorably at a distance of no longer than about 1 mm from the termination of the secondary side portion.
- the secondary side portion of the filter 5 was compressed into about one fourth to one third of the primary side portion. While it is difficult to represent the suction power to the sensor by a numeric value in such a compressing condition, in the case of a spacer with a thickness of 100 ⁇ m, a filter with a thickness of 370 ⁇ m exhibited a favorable measurement result (flow-in rate). It should be noted that, in the case of the filter with a thickness of 310 ⁇ m or less, the flow-in rate was slower.
- the reaction layer generally comprises an easy-to-dissolve part and a hard-to-dissolve part.
- a portion of the reaction layer at the edge of the sample solution supply pathway 9 ′, i.e. the part along the wall face of the slit 9 in the spacer 6 is easy to dissolve, whereas the central portion of the reaction layer in the flowering direction of the liquid is hard to dissolve. Since the sample solution having passed through the filter 5 flows along the spacer 6 by priority, there may be cases when the sample solution fills in the air aperture before complete dissolution of the central portion of the reaction layer.
- Protrusion of the central portion of the secondary side portion of the filter 5 into the sample solution supply pathway 9 ′ more than the both the right and left terminations thereof enables the priority flow of the sample solution through the central portion of the sample solution supply pathway 9 ′, whereby the plasma can be rapidly flown into the senor without leaving bubbles at the central portion of the sample solution supply pathway 9 ′.
- the position of the third pressing part “c” does not correspond to that of a first pressing part “a”, whereby neither the expansion of the filter 5 is obstructed nor there is the fear of destroying the hemocytes.
- the electrode system comprises a noble metal electrode.
- the width of the sample solution supply pathway being preferably not more than 1.5 mm, accuracy in determination of an electrode area is poor in a printing electrode processed by screen printing.
- the noble metal electrode exhibits a high accuracy in determination of the electrode area as being able to be subjected to laser trimming by a width of 0.1 mm.
- Polyoxyethylene (10) octyl phenyl ether (Triton X100) as the surfactant was added to an aqueous solution with cholesterol oxidase originating from Nocardia (EC1.1.3.6) and cholesterol esterase originating from Pseudomonas (EC3.1.1.13) dissolved therein.
- reaction layer 22 b including 570 U/ml of cholesterol oxidase, 1,425 U/ml of cholesterol esterase, and 2 wt % of the surfactant.
- the slit 9 had a width of 0.08 mm and a length (the length between the opening of the sample solution supply pathway 9 ′ and the air aperture) of 4.5 mm.
- the spacer 6 had a thickness (the distance between the base plate 1 and the cover 10 ) of 100 ⁇ m.
- the filter 5 used is one made of a glass fiber filter having a thickness of about 370 ⁇ m in an isosceles triangle shape with a bottom of 3 mm and a height of 5 mm.
- the tip of the secondary side portion (the part in contact with the opening 8 of the sample solution supply pathway 9 ′) was roundly processed and then placed between the joint base plate A comprising the base plate 1 and the auxiliary lower cover 20 and the joint base plate B comprising the cover 10 and the spacer 6 .
- the member obtained by placing the filter 5 between the joint base plate A and the joint base plate B was bonded to the member obtained by integrating the auxiliary plate 13 with the auxiliary upper cover 16 , to produce a cholesterol sensor having the structures shown in FIGS. 1 , 2 and 4 .
- FIG. 5 is a graph showing relations between the total cholesterol concentration and the response current.
- x indicates the result of plasma with a ratio of red cell volume of 0%
- O indicates the result of whole blood with a ratio of red cell volume of 35%
- ⁇ indicates the result of whole blood with a ratio of red cell volume of 60%.
- hemocytes as interfering substances can be removed without the destruction thereof by a filter, and plasma with which is obtained by filtering out hemocytes therein removed in blood can be supplied with rapidity to an electrode system even with the thickness of the filter being thin. Accordingly, there can be provided a chemical biosensor excellent in response characteristic.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Microbiology (AREA)
- Biochemistry (AREA)
- Physics & Mathematics (AREA)
- Molecular Biology (AREA)
- Biotechnology (AREA)
- Biophysics (AREA)
- Analytical Chemistry (AREA)
- Immunology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Investigating Or Analysing Biological Materials (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
Description
Claims (4)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001152868A JP4213361B2 (en) | 2001-05-22 | 2001-05-22 | Biosensor |
PCT/JP2002/004826 WO2002095385A1 (en) | 2001-05-22 | 2002-05-17 | Biosensor |
Publications (1)
Publication Number | Publication Date |
---|---|
USRE39390E1 true USRE39390E1 (en) | 2006-11-14 |
Family
ID=18997478
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/924,334 Expired - Fee Related USRE39390E1 (en) | 2001-05-22 | 2002-05-17 | Biosensor |
US10/363,589 Ceased US6706232B2 (en) | 2001-05-22 | 2002-05-17 | Biosensor |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/363,589 Ceased US6706232B2 (en) | 2001-05-22 | 2002-05-17 | Biosensor |
Country Status (5)
Country | Link |
---|---|
US (2) | USRE39390E1 (en) |
EP (1) | EP1318396B1 (en) |
JP (1) | JP4213361B2 (en) |
CN (1) | CN1207563C (en) |
WO (1) | WO2002095385A1 (en) |
Cited By (54)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050072670A1 (en) * | 2002-03-01 | 2005-04-07 | Miwa Hasegawa | Biosensor |
US7648468B2 (en) | 2002-04-19 | 2010-01-19 | Pelikon Technologies, Inc. | Method and apparatus for penetrating tissue |
US7666149B2 (en) | 1997-12-04 | 2010-02-23 | Peliken Technologies, Inc. | Cassette of lancet cartridges for sampling blood |
US7674232B2 (en) | 2002-04-19 | 2010-03-09 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US7682318B2 (en) | 2001-06-12 | 2010-03-23 | Pelikan Technologies, Inc. | Blood sampling apparatus and method |
US7699791B2 (en) | 2001-06-12 | 2010-04-20 | Pelikan Technologies, Inc. | Method and apparatus for improving success rate of blood yield from a fingerstick |
US7713214B2 (en) | 2002-04-19 | 2010-05-11 | Pelikan Technologies, Inc. | Method and apparatus for a multi-use body fluid sampling device with optical analyte sensing |
US7717863B2 (en) | 2002-04-19 | 2010-05-18 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US7725148B2 (en) * | 2005-09-23 | 2010-05-25 | Medtronic Minimed, Inc. | Sensor with layered electrodes |
US7731729B2 (en) | 2002-04-19 | 2010-06-08 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US7822454B1 (en) | 2005-01-03 | 2010-10-26 | Pelikan Technologies, Inc. | Fluid sampling device with improved analyte detecting member configuration |
US7833171B2 (en) | 2002-04-19 | 2010-11-16 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US7841992B2 (en) | 2001-06-12 | 2010-11-30 | Pelikan Technologies, Inc. | Tissue penetration device |
US7850621B2 (en) | 2003-06-06 | 2010-12-14 | Pelikan Technologies, Inc. | Method and apparatus for body fluid sampling and analyte sensing |
US7862520B2 (en) | 2002-04-19 | 2011-01-04 | Pelikan Technologies, Inc. | Body fluid sampling module with a continuous compression tissue interface surface |
US7874994B2 (en) | 2002-04-19 | 2011-01-25 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US7892183B2 (en) | 2002-04-19 | 2011-02-22 | Pelikan Technologies, Inc. | Method and apparatus for body fluid sampling and analyte sensing |
US7901362B2 (en) | 2002-04-19 | 2011-03-08 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US7909775B2 (en) | 2001-06-12 | 2011-03-22 | Pelikan Technologies, Inc. | Method and apparatus for lancet launching device integrated onto a blood-sampling cartridge |
US7909777B2 (en) | 2002-04-19 | 2011-03-22 | Pelikan Technologies, Inc | Method and apparatus for penetrating tissue |
US7909778B2 (en) | 2002-04-19 | 2011-03-22 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US7914465B2 (en) | 2002-04-19 | 2011-03-29 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US7959582B2 (en) | 2002-04-19 | 2011-06-14 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US7976476B2 (en) | 2002-04-19 | 2011-07-12 | Pelikan Technologies, Inc. | Device and method for variable speed lancet |
US7988645B2 (en) | 2001-06-12 | 2011-08-02 | Pelikan Technologies, Inc. | Self optimizing lancing device with adaptation means to temporal variations in cutaneous properties |
US8007446B2 (en) | 2002-04-19 | 2011-08-30 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US8079960B2 (en) | 2002-04-19 | 2011-12-20 | Pelikan Technologies, Inc. | Methods and apparatus for lancet actuation |
US8197421B2 (en) | 2002-04-19 | 2012-06-12 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US8221334B2 (en) | 2002-04-19 | 2012-07-17 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for penetrating tissue |
US8267870B2 (en) | 2002-04-19 | 2012-09-18 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for body fluid sampling with hybrid actuation |
US8282576B2 (en) | 2003-09-29 | 2012-10-09 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for an improved sample capture device |
US8333710B2 (en) | 2002-04-19 | 2012-12-18 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
US8435190B2 (en) | 2002-04-19 | 2013-05-07 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for penetrating tissue |
US8439872B2 (en) | 1998-03-30 | 2013-05-14 | Sanofi-Aventis Deutschland Gmbh | Apparatus and method for penetration with shaft having a sensor for sensing penetration depth |
US8652831B2 (en) | 2004-12-30 | 2014-02-18 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for analyte measurement test time |
US8668656B2 (en) | 2003-12-31 | 2014-03-11 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for improving fluidic flow and sample capture |
US8702624B2 (en) | 2006-09-29 | 2014-04-22 | Sanofi-Aventis Deutschland Gmbh | Analyte measurement device with a single shot actuator |
US8721671B2 (en) | 2001-06-12 | 2014-05-13 | Sanofi-Aventis Deutschland Gmbh | Electric lancet actuator |
US8828203B2 (en) | 2004-05-20 | 2014-09-09 | Sanofi-Aventis Deutschland Gmbh | Printable hydrogels for biosensors |
US8965476B2 (en) | 2010-04-16 | 2015-02-24 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
US9034639B2 (en) | 2002-12-30 | 2015-05-19 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus using optical techniques to measure analyte levels |
US9072842B2 (en) | 2002-04-19 | 2015-07-07 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for penetrating tissue |
US9144401B2 (en) | 2003-06-11 | 2015-09-29 | Sanofi-Aventis Deutschland Gmbh | Low pain penetrating member |
US9226699B2 (en) | 2002-04-19 | 2016-01-05 | Sanofi-Aventis Deutschland Gmbh | Body fluid sampling module with a continuous compression tissue interface surface |
US9248267B2 (en) | 2002-04-19 | 2016-02-02 | Sanofi-Aventis Deustchland Gmbh | Tissue penetration device |
US9314194B2 (en) | 2002-04-19 | 2016-04-19 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
US9351680B2 (en) | 2003-10-14 | 2016-05-31 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for a variable user interface |
US9375169B2 (en) | 2009-01-30 | 2016-06-28 | Sanofi-Aventis Deutschland Gmbh | Cam drive for managing disposable penetrating member actions with a single motor and motor and control system |
US9386944B2 (en) | 2008-04-11 | 2016-07-12 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for analyte detecting device |
US9427532B2 (en) | 2001-06-12 | 2016-08-30 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
US9560993B2 (en) | 2001-11-21 | 2017-02-07 | Sanofi-Aventis Deutschland Gmbh | Blood testing apparatus having a rotatable cartridge with multiple lancing elements and testing means |
US9795747B2 (en) | 2010-06-02 | 2017-10-24 | Sanofi-Aventis Deutschland Gmbh | Methods and apparatus for lancet actuation |
US9820684B2 (en) | 2004-06-03 | 2017-11-21 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for a fluid sampling device |
US9839386B2 (en) | 2002-04-19 | 2017-12-12 | Sanofi-Aventis Deustschland Gmbh | Body fluid sampling device with capacitive sensor |
Families Citing this family (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050103624A1 (en) | 1999-10-04 | 2005-05-19 | Bhullar Raghbir S. | Biosensor and method of making |
JP4183902B2 (en) * | 2000-12-27 | 2008-11-19 | 松下電器産業株式会社 | Biosensor |
US6977032B2 (en) | 2001-11-14 | 2005-12-20 | Matsushita Electric Industrial Co., Ltd. | Biosensor |
WO2003042679A1 (en) | 2001-11-14 | 2003-05-22 | Matsushita Electric Industrial Co., Ltd. | Biosensor |
US7892185B2 (en) | 2002-04-19 | 2011-02-22 | Pelikan Technologies, Inc. | Method and apparatus for body fluid sampling and analyte sensing |
US8360992B2 (en) | 2002-04-19 | 2013-01-29 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for penetrating tissue |
US7265881B2 (en) * | 2002-12-20 | 2007-09-04 | Hewlett-Packard Development Company, L.P. | Method and apparatus for measuring assembly and alignment errors in sensor assemblies |
CN100523800C (en) | 2003-05-15 | 2009-08-05 | 松下电器产业株式会社 | Sensor |
WO2004107975A2 (en) | 2003-05-30 | 2004-12-16 | Pelikan Technologies, Inc. | Method and apparatus for fluid injection |
US7452457B2 (en) | 2003-06-20 | 2008-11-18 | Roche Diagnostics Operations, Inc. | System and method for analyte measurement using dose sufficiency electrodes |
US8206565B2 (en) | 2003-06-20 | 2012-06-26 | Roche Diagnostics Operation, Inc. | System and method for coding information on a biosensor test strip |
US8148164B2 (en) | 2003-06-20 | 2012-04-03 | Roche Diagnostics Operations, Inc. | System and method for determining the concentration of an analyte in a sample fluid |
WO2004113900A2 (en) | 2003-06-20 | 2004-12-29 | Roche Diagnostics Gmbh | Test strip with flared sample receiving chamber |
US8058077B2 (en) | 2003-06-20 | 2011-11-15 | Roche Diagnostics Operations, Inc. | Method for coding information on a biosensor test strip |
US7645373B2 (en) | 2003-06-20 | 2010-01-12 | Roche Diagnostic Operations, Inc. | System and method for coding information on a biosensor test strip |
US8071030B2 (en) | 2003-06-20 | 2011-12-06 | Roche Diagnostics Operations, Inc. | Test strip with flared sample receiving chamber |
US7718439B2 (en) | 2003-06-20 | 2010-05-18 | Roche Diagnostics Operations, Inc. | System and method for coding information on a biosensor test strip |
US7645421B2 (en) | 2003-06-20 | 2010-01-12 | Roche Diagnostics Operations, Inc. | System and method for coding information on a biosensor test strip |
US7553625B2 (en) * | 2003-12-22 | 2009-06-30 | John Wayne Cancer Institute | Method and apparatus for in vivo collection of circulating biological components |
US20050153309A1 (en) * | 2003-12-22 | 2005-07-14 | David Hoon | Method and apparatus for in vivo surveillance of circulating biological components |
JP2005202893A (en) * | 2004-01-19 | 2005-07-28 | Hitachi Ltd | Storage device controller, storage system, recording medium recording program, information processor, and method for controlling storage system |
US9775553B2 (en) * | 2004-06-03 | 2017-10-03 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for a fluid sampling device |
US7569126B2 (en) | 2004-06-18 | 2009-08-04 | Roche Diagnostics Operations, Inc. | System and method for quality assurance of a biosensor test strip |
GB0414550D0 (en) * | 2004-06-29 | 2004-08-04 | Oxford Biosensors Ltd | Electrochemical sensing method |
KR100735898B1 (en) * | 2006-08-25 | 2007-07-04 | 한국기계연구원 | The portable micro blood separator |
WO2008078263A1 (en) * | 2006-12-21 | 2008-07-03 | Koninklijke Philips Electronics N.V. | Aperture biosensor with trenches |
KR101522322B1 (en) * | 2007-07-26 | 2015-05-21 | 아가매트릭스, 인코포레이티드 | Electrochemical Test Strips |
EP2721407B1 (en) * | 2011-06-15 | 2017-09-20 | Pfaff, Tim | Plasma or serum separator |
JP2013257310A (en) * | 2012-05-18 | 2013-12-26 | Arkray Inc | Biosensor |
TW201437636A (en) * | 2013-03-22 | 2014-10-01 | Ichia Tech Inc | Method for manufacturing test plate for biological liquid and structure for the same |
US20140318278A1 (en) * | 2013-04-24 | 2014-10-30 | Honeywell International Inc. | Particle imaging utilizing a filter |
CN104569088B (en) * | 2014-12-25 | 2017-06-13 | 北京怡成生物电子技术股份有限公司 | Electrochemical process blood testing test strips and its manufacture method |
SG11201810969RA (en) | 2016-06-09 | 2019-01-30 | Haimachek Inc | Collector for detection and reversible capturing of cells from body fluids in vivo |
WO2019208847A1 (en) * | 2018-04-25 | 2019-10-31 | 주식회사 비비비 | Blood analysis device |
JP7243994B2 (en) * | 2018-04-25 | 2023-03-22 | ビービービー インコーポレイテッド | hematology analyzer |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6358149A (en) * | 1986-08-28 | 1988-03-12 | Matsushita Electric Ind Co Ltd | Biosensor |
JPH0262952A (en) * | 1988-01-29 | 1990-03-02 | Matsushita Electric Ind Co Ltd | Biosensor and its production |
US5609749A (en) * | 1993-12-29 | 1997-03-11 | Mochida Pharmaceutical Co., Ltd. | Electrochemical assay method with novel p-phenylenediamine compound |
EP0849589A1 (en) | 1996-12-20 | 1998-06-24 | Matsushita Electric Industrial Co., Ltd. | Cholesterol sensor and method for producing the same |
JPH11344461A (en) | 1998-05-29 | 1999-12-14 | Matsushita Electric Ind Co Ltd | Biosensor |
WO2002010734A1 (en) * | 2000-07-31 | 2002-02-07 | Matsushita Electric Industrial Co., Ltd. | Biosensor |
WO2002054054A1 (en) * | 2000-12-27 | 2002-07-11 | Matsushita Electric Industrial Co., Ltd. | Biosensor |
-
2001
- 2001-05-22 JP JP2001152868A patent/JP4213361B2/en not_active Expired - Fee Related
-
2002
- 2002-05-17 US US10/924,334 patent/USRE39390E1/en not_active Expired - Fee Related
- 2002-05-17 WO PCT/JP2002/004826 patent/WO2002095385A1/en active Application Filing
- 2002-05-17 CN CNB028018044A patent/CN1207563C/en not_active Expired - Fee Related
- 2002-05-17 EP EP02771728A patent/EP1318396B1/en not_active Expired - Lifetime
- 2002-05-17 US US10/363,589 patent/US6706232B2/en not_active Ceased
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6358149A (en) * | 1986-08-28 | 1988-03-12 | Matsushita Electric Ind Co Ltd | Biosensor |
JPH0262952A (en) * | 1988-01-29 | 1990-03-02 | Matsushita Electric Ind Co Ltd | Biosensor and its production |
US5609749A (en) * | 1993-12-29 | 1997-03-11 | Mochida Pharmaceutical Co., Ltd. | Electrochemical assay method with novel p-phenylenediamine compound |
EP0849589A1 (en) | 1996-12-20 | 1998-06-24 | Matsushita Electric Industrial Co., Ltd. | Cholesterol sensor and method for producing the same |
JPH11344461A (en) | 1998-05-29 | 1999-12-14 | Matsushita Electric Ind Co Ltd | Biosensor |
WO2002010734A1 (en) * | 2000-07-31 | 2002-02-07 | Matsushita Electric Industrial Co., Ltd. | Biosensor |
US20030132110A1 (en) * | 2000-07-31 | 2003-07-17 | Matsushita Electric Industrial Co., Ltd. | Biosensor |
WO2002054054A1 (en) * | 2000-12-27 | 2002-07-11 | Matsushita Electric Industrial Co., Ltd. | Biosensor |
JP2002202283A (en) * | 2000-12-27 | 2002-07-19 | Matsushita Electric Ind Co Ltd | Biosensor |
US6719887B2 (en) * | 2000-12-27 | 2004-04-13 | Matsushita Electric Industrial Co., Ltd. | Biosensor |
Non-Patent Citations (1)
Title |
---|
Lin et al., "Preparing and characterization of novel, blood-plasma-separation membranes for use in biosensors", Journal of Membrane Science, Elseivier Science, Amsterdam, NL, vol. 173(1), pp. 73-81 (2000). |
Cited By (108)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7666149B2 (en) | 1997-12-04 | 2010-02-23 | Peliken Technologies, Inc. | Cassette of lancet cartridges for sampling blood |
US8439872B2 (en) | 1998-03-30 | 2013-05-14 | Sanofi-Aventis Deutschland Gmbh | Apparatus and method for penetration with shaft having a sensor for sensing penetration depth |
US7850622B2 (en) | 2001-06-12 | 2010-12-14 | Pelikan Technologies, Inc. | Tissue penetration device |
US8123700B2 (en) | 2001-06-12 | 2012-02-28 | Pelikan Technologies, Inc. | Method and apparatus for lancet launching device integrated onto a blood-sampling cartridge |
US7682318B2 (en) | 2001-06-12 | 2010-03-23 | Pelikan Technologies, Inc. | Blood sampling apparatus and method |
US7699791B2 (en) | 2001-06-12 | 2010-04-20 | Pelikan Technologies, Inc. | Method and apparatus for improving success rate of blood yield from a fingerstick |
US7988645B2 (en) | 2001-06-12 | 2011-08-02 | Pelikan Technologies, Inc. | Self optimizing lancing device with adaptation means to temporal variations in cutaneous properties |
US9427532B2 (en) | 2001-06-12 | 2016-08-30 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
US8845550B2 (en) | 2001-06-12 | 2014-09-30 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
US8721671B2 (en) | 2001-06-12 | 2014-05-13 | Sanofi-Aventis Deutschland Gmbh | Electric lancet actuator |
US8679033B2 (en) | 2001-06-12 | 2014-03-25 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
US8641643B2 (en) | 2001-06-12 | 2014-02-04 | Sanofi-Aventis Deutschland Gmbh | Sampling module device and method |
US7841992B2 (en) | 2001-06-12 | 2010-11-30 | Pelikan Technologies, Inc. | Tissue penetration device |
US8622930B2 (en) | 2001-06-12 | 2014-01-07 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
US8016774B2 (en) | 2001-06-12 | 2011-09-13 | Pelikan Technologies, Inc. | Tissue penetration device |
US9694144B2 (en) | 2001-06-12 | 2017-07-04 | Sanofi-Aventis Deutschland Gmbh | Sampling module device and method |
US7909775B2 (en) | 2001-06-12 | 2011-03-22 | Pelikan Technologies, Inc. | Method and apparatus for lancet launching device integrated onto a blood-sampling cartridge |
US8360991B2 (en) | 2001-06-12 | 2013-01-29 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
US8343075B2 (en) | 2001-06-12 | 2013-01-01 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
US8282577B2 (en) | 2001-06-12 | 2012-10-09 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for lancet launching device integrated onto a blood-sampling cartridge |
US8382683B2 (en) | 2001-06-12 | 2013-02-26 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
US8216154B2 (en) | 2001-06-12 | 2012-07-10 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
US8211037B2 (en) | 2001-06-12 | 2012-07-03 | Pelikan Technologies, Inc. | Tissue penetration device |
US8206317B2 (en) | 2001-06-12 | 2012-06-26 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
US8206319B2 (en) | 2001-06-12 | 2012-06-26 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
US8162853B2 (en) | 2001-06-12 | 2012-04-24 | Pelikan Technologies, Inc. | Tissue penetration device |
US7981055B2 (en) | 2001-06-12 | 2011-07-19 | Pelikan Technologies, Inc. | Tissue penetration device |
US9802007B2 (en) | 2001-06-12 | 2017-10-31 | Sanofi-Aventis Deutschland Gmbh | Methods and apparatus for lancet actuation |
US9560993B2 (en) | 2001-11-21 | 2017-02-07 | Sanofi-Aventis Deutschland Gmbh | Blood testing apparatus having a rotatable cartridge with multiple lancing elements and testing means |
US20050072670A1 (en) * | 2002-03-01 | 2005-04-07 | Miwa Hasegawa | Biosensor |
US7959582B2 (en) | 2002-04-19 | 2011-06-14 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US7874994B2 (en) | 2002-04-19 | 2011-01-25 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US8007446B2 (en) | 2002-04-19 | 2011-08-30 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US7981056B2 (en) | 2002-04-19 | 2011-07-19 | Pelikan Technologies, Inc. | Methods and apparatus for lancet actuation |
US8062231B2 (en) | 2002-04-19 | 2011-11-22 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US8079960B2 (en) | 2002-04-19 | 2011-12-20 | Pelikan Technologies, Inc. | Methods and apparatus for lancet actuation |
US7976476B2 (en) | 2002-04-19 | 2011-07-12 | Pelikan Technologies, Inc. | Device and method for variable speed lancet |
US7938787B2 (en) | 2002-04-19 | 2011-05-10 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US8197423B2 (en) | 2002-04-19 | 2012-06-12 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US8197421B2 (en) | 2002-04-19 | 2012-06-12 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US8202231B2 (en) | 2002-04-19 | 2012-06-19 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for penetrating tissue |
US7914465B2 (en) | 2002-04-19 | 2011-03-29 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US7909778B2 (en) | 2002-04-19 | 2011-03-22 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US7909777B2 (en) | 2002-04-19 | 2011-03-22 | Pelikan Technologies, Inc | Method and apparatus for penetrating tissue |
US7909774B2 (en) | 2002-04-19 | 2011-03-22 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US8221334B2 (en) | 2002-04-19 | 2012-07-17 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for penetrating tissue |
US9089294B2 (en) | 2002-04-19 | 2015-07-28 | Sanofi-Aventis Deutschland Gmbh | Analyte measurement device with a single shot actuator |
US8267870B2 (en) | 2002-04-19 | 2012-09-18 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for body fluid sampling with hybrid actuation |
US7901362B2 (en) | 2002-04-19 | 2011-03-08 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US7988644B2 (en) | 2002-04-19 | 2011-08-02 | Pelikan Technologies, Inc. | Method and apparatus for a multi-use body fluid sampling device with sterility barrier release |
US9089678B2 (en) | 2002-04-19 | 2015-07-28 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for penetrating tissue |
US8333710B2 (en) | 2002-04-19 | 2012-12-18 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
US8337419B2 (en) | 2002-04-19 | 2012-12-25 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
US8337420B2 (en) | 2002-04-19 | 2012-12-25 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
US7892183B2 (en) | 2002-04-19 | 2011-02-22 | Pelikan Technologies, Inc. | Method and apparatus for body fluid sampling and analyte sensing |
US9839386B2 (en) | 2002-04-19 | 2017-12-12 | Sanofi-Aventis Deustschland Gmbh | Body fluid sampling device with capacitive sensor |
US8382682B2 (en) | 2002-04-19 | 2013-02-26 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for penetrating tissue |
US9186468B2 (en) | 2002-04-19 | 2015-11-17 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for penetrating tissue |
US8388551B2 (en) | 2002-04-19 | 2013-03-05 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for multi-use body fluid sampling device with sterility barrier release |
US8403864B2 (en) | 2002-04-19 | 2013-03-26 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for penetrating tissue |
US8414503B2 (en) | 2002-04-19 | 2013-04-09 | Sanofi-Aventis Deutschland Gmbh | Methods and apparatus for lancet actuation |
US8430828B2 (en) | 2002-04-19 | 2013-04-30 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for a multi-use body fluid sampling device with sterility barrier release |
US8435190B2 (en) | 2002-04-19 | 2013-05-07 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for penetrating tissue |
US7862520B2 (en) | 2002-04-19 | 2011-01-04 | Pelikan Technologies, Inc. | Body fluid sampling module with a continuous compression tissue interface surface |
US8579831B2 (en) | 2002-04-19 | 2013-11-12 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for penetrating tissue |
US9072842B2 (en) | 2002-04-19 | 2015-07-07 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for penetrating tissue |
US7833171B2 (en) | 2002-04-19 | 2010-11-16 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US7648468B2 (en) | 2002-04-19 | 2010-01-19 | Pelikon Technologies, Inc. | Method and apparatus for penetrating tissue |
US9795334B2 (en) | 2002-04-19 | 2017-10-24 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for penetrating tissue |
US9724021B2 (en) | 2002-04-19 | 2017-08-08 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for penetrating tissue |
US8690796B2 (en) | 2002-04-19 | 2014-04-08 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for penetrating tissue |
US7674232B2 (en) | 2002-04-19 | 2010-03-09 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US7731729B2 (en) | 2002-04-19 | 2010-06-08 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US7713214B2 (en) | 2002-04-19 | 2010-05-11 | Pelikan Technologies, Inc. | Method and apparatus for a multi-use body fluid sampling device with optical analyte sensing |
US9498160B2 (en) | 2002-04-19 | 2016-11-22 | Sanofi-Aventis Deutschland Gmbh | Method for penetrating tissue |
US7717863B2 (en) | 2002-04-19 | 2010-05-18 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US9314194B2 (en) | 2002-04-19 | 2016-04-19 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
US8905945B2 (en) | 2002-04-19 | 2014-12-09 | Dominique M. Freeman | Method and apparatus for penetrating tissue |
US9248267B2 (en) | 2002-04-19 | 2016-02-02 | Sanofi-Aventis Deustchland Gmbh | Tissue penetration device |
US9226699B2 (en) | 2002-04-19 | 2016-01-05 | Sanofi-Aventis Deutschland Gmbh | Body fluid sampling module with a continuous compression tissue interface surface |
US9034639B2 (en) | 2002-12-30 | 2015-05-19 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus using optical techniques to measure analyte levels |
US7850621B2 (en) | 2003-06-06 | 2010-12-14 | Pelikan Technologies, Inc. | Method and apparatus for body fluid sampling and analyte sensing |
US8251921B2 (en) | 2003-06-06 | 2012-08-28 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for body fluid sampling and analyte sensing |
US10034628B2 (en) | 2003-06-11 | 2018-07-31 | Sanofi-Aventis Deutschland Gmbh | Low pain penetrating member |
US9144401B2 (en) | 2003-06-11 | 2015-09-29 | Sanofi-Aventis Deutschland Gmbh | Low pain penetrating member |
US8282576B2 (en) | 2003-09-29 | 2012-10-09 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for an improved sample capture device |
US8945910B2 (en) | 2003-09-29 | 2015-02-03 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for an improved sample capture device |
US9351680B2 (en) | 2003-10-14 | 2016-05-31 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for a variable user interface |
US8296918B2 (en) | 2003-12-31 | 2012-10-30 | Sanofi-Aventis Deutschland Gmbh | Method of manufacturing a fluid sampling device with improved analyte detecting member configuration |
US8668656B2 (en) | 2003-12-31 | 2014-03-11 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for improving fluidic flow and sample capture |
US9561000B2 (en) | 2003-12-31 | 2017-02-07 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for improving fluidic flow and sample capture |
US8828203B2 (en) | 2004-05-20 | 2014-09-09 | Sanofi-Aventis Deutschland Gmbh | Printable hydrogels for biosensors |
US9261476B2 (en) | 2004-05-20 | 2016-02-16 | Sanofi Sa | Printable hydrogel for biosensors |
US9820684B2 (en) | 2004-06-03 | 2017-11-21 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for a fluid sampling device |
US8652831B2 (en) | 2004-12-30 | 2014-02-18 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for analyte measurement test time |
US7822454B1 (en) | 2005-01-03 | 2010-10-26 | Pelikan Technologies, Inc. | Fluid sampling device with improved analyte detecting member configuration |
US7725148B2 (en) * | 2005-09-23 | 2010-05-25 | Medtronic Minimed, Inc. | Sensor with layered electrodes |
US8850688B2 (en) | 2005-09-23 | 2014-10-07 | Medtronic Minimed, Inc. | Method of making a sensor with layered electrodes |
US9693722B2 (en) | 2005-09-23 | 2017-07-04 | Medtronic Minimed, Inc. | Sensor with layered electrodes |
US9179870B2 (en) | 2005-09-23 | 2015-11-10 | Medtronic Minimed, Inc. | Method of making a sensor with layered electrodes |
US9364177B2 (en) | 2005-09-23 | 2016-06-14 | Medtronic Minimed, Inc. | Sensor with layered electrodes |
US8850687B2 (en) | 2005-09-23 | 2014-10-07 | Medtronic Minimed, Inc. | Method of making a sensor |
US7882611B2 (en) | 2005-09-23 | 2011-02-08 | Medtronic Minimed, Inc. | Method of making an analyte sensor |
US8702624B2 (en) | 2006-09-29 | 2014-04-22 | Sanofi-Aventis Deutschland Gmbh | Analyte measurement device with a single shot actuator |
US9386944B2 (en) | 2008-04-11 | 2016-07-12 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for analyte detecting device |
US9375169B2 (en) | 2009-01-30 | 2016-06-28 | Sanofi-Aventis Deutschland Gmbh | Cam drive for managing disposable penetrating member actions with a single motor and motor and control system |
US8965476B2 (en) | 2010-04-16 | 2015-02-24 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
US9795747B2 (en) | 2010-06-02 | 2017-10-24 | Sanofi-Aventis Deutschland Gmbh | Methods and apparatus for lancet actuation |
Also Published As
Publication number | Publication date |
---|---|
WO2002095385A1 (en) | 2002-11-28 |
US20030183519A1 (en) | 2003-10-02 |
CN1463360A (en) | 2003-12-24 |
EP1318396A1 (en) | 2003-06-11 |
EP1318396A4 (en) | 2006-05-24 |
US6706232B2 (en) | 2004-03-16 |
JP4213361B2 (en) | 2009-01-21 |
CN1207563C (en) | 2005-06-22 |
EP1318396B1 (en) | 2012-08-29 |
JP2002340839A (en) | 2002-11-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
USRE39390E1 (en) | Biosensor | |
US6977032B2 (en) | Biosensor | |
US7056425B2 (en) | Biosensor | |
EP1347292B1 (en) | Biosensor | |
EP1314978B1 (en) | Biosensor | |
EP1482307B1 (en) | Biosensor | |
JP4184074B2 (en) | Biosensor | |
US6436255B2 (en) | Biosensor | |
US20040055885A1 (en) | Biosensor | |
JP3856438B2 (en) | Biosensor | |
JP3856436B2 (en) | Biosensor | |
JP3856437B2 (en) | Biosensor | |
JP2004325384A (en) | Biosensor | |
JP4100196B2 (en) | Biosensor | |
Hasegawa et al. | Biosensor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
CC | Certificate of correction | ||
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
AS | Assignment |
Owner name: PANASONIC CORPORATION, JAPAN Free format text: CHANGE OF NAME;ASSIGNOR:MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.;REEL/FRAME:032332/0082 Effective date: 20081001 |
|
AS | Assignment |
Owner name: PANASONIC HEALTHCARE CO., LTD., JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:PANASONIC CORPORATION;REEL/FRAME:032360/0795 Effective date: 20131127 |
|
AS | Assignment |
Owner name: PANASONIC CORPORATION, JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:PANASONIC HEALTHCARE CO., LTD.;REEL/FRAME:032480/0433 Effective date: 20140301 |
|
AS | Assignment |
Owner name: PANASONIC HEALTHCARE HOLDINGS CO., LTD., JAPAN Free format text: CHANGE OF NAME;ASSIGNOR:PHC HOLDINGS CO., LTD.;REEL/FRAME:032785/0563 Effective date: 20140331 Owner name: PHC HOLDINGS CO., LTD., JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:PANASONIC CORPORATION;REEL/FRAME:032785/0498 Effective date: 20140331 |
|
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees |