USRE36177E - Method of packaging an adhesive composition and corresponding packaged article - Google Patents
Method of packaging an adhesive composition and corresponding packaged article Download PDFInfo
- Publication number
- USRE36177E USRE36177E US08/410,082 US41008295A USRE36177E US RE36177 E USRE36177 E US RE36177E US 41008295 A US41008295 A US 41008295A US RE36177 E USRE36177 E US RE36177E
- Authority
- US
- United States
- Prior art keywords
- adhesive
- packaging
- adhesive composition
- hot melt
- softening point
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B13/00—Conditioning or physical treatment of the material to be shaped
- B29B13/02—Conditioning or physical treatment of the material to be shaped by heating
- B29B13/022—Melting the material to be shaped
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65B—MACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
- B65B63/00—Auxiliary devices, not otherwise provided for, for operating on articles or materials to be packaged
- B65B63/08—Auxiliary devices, not otherwise provided for, for operating on articles or materials to be packaged for heating or cooling articles or materials to facilitate packaging
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D65/00—Wrappers or flexible covers; Packaging materials of special type or form
- B65D65/38—Packaging materials of special type or form
- B65D65/46—Applications of disintegrable, dissolvable or edible materials
- B65D65/466—Bio- or photodegradable packaging materials
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/04—Oxygen-containing compounds
- C08K5/10—Esters; Ether-esters
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/36—Sulfur-, selenium-, or tellurium-containing compounds
- C08K5/41—Compounds containing sulfur bound to oxygen
- C08K5/42—Sulfonic acids; Derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J175/00—Adhesives based on polyureas or polyurethanes; Adhesives based on derivatives of such polymers
- C09J175/04—Polyurethanes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2105/00—Condition, form or state of moulded material or of the material to be shaped
- B29K2105/0097—Glues or adhesives, e.g. hot melts or thermofusible adhesives
Definitions
- the present invention relates to a method of packaging an adhesive composition, especially a thermoplastic or thermosetting hot melt adhesive, and further to packaged such adhesive compositions.
- Thermoplastic adhesives can be confectioned and packaged as e.g. disclosed in German patent 22 48 046. According to this prior art now widely used throughout the world, a hot melt adhesive is squeeze-cut into roughly pillow-shaped pieces; the pieces are subsequently cooled and thus solidified and are then put into sacks, cartons and such like for packaging.
- thermoplastic adhesive compositions with a relatively high softening point i.e. above 120° C. and especially above 150° C.
- these coatings provide sufficient anti-stick properties.
- Such compositions can therefore be packaged, stored and dispensed from sacks, without any major sticking problems.
- Another well-known packaging for adhesive compositions is to wrap or cast bigger portions of the adhesive in plastics film material, such as thick polyethylene film.
- thermoplastic adhesive composition must be removed from the packaging prior to use, which means an extra handling step. Further, the packaging material must be discarded after emptying, which leads to material waste and expenditure for disposing of the used packaging material.
- thermoplastic adhesive compositions e.g. HMPSA's
- HMPSA's having a relatively low softening point, i.e. below 120° C. and especially between 60° C. and 105° C.
- Such compositions show marked creep and cold flow properties even at ambient temperatures.
- the expansion coefficients of these materials are sufficiently different from those of the coating materials as to lead to cracking and peeling of the coating materials, especially in prolonged storage at varying temperatures.
- the surfaces of the individual adhesive pillows or pieces become exposed and the pillows stick together, making the handling, especially the dosing of the adhesive more difficult and again leading to increased expenditure and handling problems. This is especially pertinent in cases where the adhesive composition is exposed to increased pressure and/or temperature during storage or handling.
- thermoplastic or thermosetting hot melt adhesive which permits the packaging of low softening point adhesives, such as HMPSA's and sprayable hot melts, without the sticking and blocking problems encountered in prior art.
- a method of packaging an adhesive composition, especially a thermoplastic or thermosetting hot melt adhesive comprises the steps of providing one substantially uniform separate portion of the adhesive composition; sufficiently solidifying said portion for packaging: substantially completely surrounding said sufficiently solidified portion with a plastics packaging material: said packaging material being meltable together with the adhesive composition and blendable into said molten adhesive composition, the kind and amount of said packaging material being chosen so as not to disadvantageously affect the properties of the adhesive composition when blended into same.
- This method is especially suited for the packaging of relatively large portion pieces of the adhesive, such as individual pieces weighing between 100 grams and 4 kilograms.
- a method of packaging an adhesive composition comprises the steps of providing a plurality of substantially uniform separate portions of the adhesive composition; sufficiently solidifying all said portions for packaging; forming a batch comprising the plurality of solidified portions, and substantially completely surrounding said batch with a plastics film packaging material or a net or similar apertured enclosure made of plastics; said packaging material being meltable together with the adhesive composition and blendable into said molten adhesive composition, the kind and amount of said packaging material being chosen so as not to disadvantageously affect the properties of the adhesive composition when blended into same.
- This method is especially advantageous for the packaging of pillow-shaped pieces of low softening point thermoplastic adhesives as described above.
- Packaging single, larger portions or batches of smaller portion pieces of the adhesive composition into sacks or bags of the plastics film packaging material according to this invention, or even wrapping suitable portions of adhesive in such packaging materials makes it possible for the user to feed the complete packaged article, i.e. the adhesive and the packaging material surrounding it, into the melter.
- the packaging material is then molten together with the adhesive composition and is blended into the composition.
- the properties of the adhesive composition are not disadvantageously affected by the additional matter.
- an apertured enclosure such as a net can be used.
- a batch comprising a plurality of separate adhesive composition portion pieces, is placed in a bag of plastics film packaging material, said bag being subsequently sealed by welding or another suitable method, and said bag being voided of air.
- This is preferably done by compressing or evacuating the bag at elevated temperatures. e.g, in a press or simply by storing stacked filled bags at temperatures of 30° C. to 150° C.
- the various thin plastic films (usually 15 um to 100 um thickness) used in this invention can easily be perforated, so that no further steps need be taken to permit the escape of air in the compression step.
- the air can leave the bag through openings in the weld seams, which are usually not 100% air-tight. It is even possible that air may leave the bag through pores in the film material.
- the adhesive pillows are compressed and compacted at the elevated temperatures mentioned, which entails a degree of deformation of the portion pieces or pillows; at the same time, the packaging plastics film material is forced into close contact with the adjoining adhesive material, and is in most cases adhered to the adhesive.
- adhesive packaged according to the invention can be stored, handled and used without any problems of the individual packs sticking together or adhering to other objects, even if exposed to increased pressure and/or temperature and even when low softening point adhesives are packaged.
- a plurality of plastics net or film materials can be used according to this invention. These materials can be selected from the groups comprising ethylene based polymers such as ethylene/vinyl acetate, ethylene acrylate, ethylene methacrylate, ethylene methyl acrylate, ethylene methyl methacrylate, high and low density polyethylene, polyethylene blends and chemically modified polyethylene, copolymers of ethylene and 1-6 mono- or di-unsaturated monomers, polyamides, polybutadiene rubber, polyesters such as polyethylene terephthalate, polybutylene terephthalate; thermoplastic polycarbonates, atactic poly-alpha-olefins, including atactic polypropylene, and others; thermoplastic polyacrylamides, polyacrylonitrile, copolymers of acrylonitrile and other monomers such as butadiene styrene; polymethyl pentene, polyphenylene sulfide, aromatic polyurethanes; styrene-acrylonitrile,
- (A--B) n --Y block copolymers wherein the A comprises a polyvinyl aromatic block, the B block comprises a rubbery midblock, which can be partly hydrogenated, and mixtures of said substances, but other similar materials can be used as well, to match the properties of the adhesive packaged.
- Specific examples include polyethylene films of between 5 ⁇ m and 200 ⁇ m, preferably between 15 ⁇ m and 50 ⁇ m thickness, depending on available dispensing equipment; such films being especially useful for packaging low softening point adhesive composition pillows batchwise into, say, 1000 gram bags with subsequent compression to remove air.
- Another suitable plastics film material is ethylene vinyl acetate copolymer, with a vinyl acetate content of between 10% and 33%, especially between 14% and 18% and a softening point between 80° C., and 100° C.
- Packaging materials having softening temperature ranges rather than sharp melting points are less advantageous, since their melting performance is less predictable and can give rise to problems of homogeneity in the molten adhesive/packaging material blend.
- packaging materials with melting or softening points below 125° C., preferably below 120° C. and often above 90° C. are useful in the context of this invention.
- the envelope containing the discrete adhesive units is made of a material that when blended into the adhesive does at least not substantially negatively influence adhesive characteristics, and preferably is either a component of the adhesive or is a component physically and chemically compatible with the adhesive in the melt prior to application.
- the polymer should not cause a physical phasing or separation of the adhesive, should not reduce adhesive properties and should not chemically react with any adhesive component.
- the envelope material could be selected to cooperate with the components of the adhesive unit to enhance a desired property including, but not limited to, adhesive strength, pressure-sensitive properties, wet-out properties, cohesive strength, peel strength, shear strength, oil bleed, rate of cure, etc.
- a large number of thermoplastic film forming polymers that can be used in hot melt adhesives, can be used in manufacturing the uniquely packaged adhesive of the invention.
- Hot melt adhesive systems can apply adhesive through nozzles as small as 0.012 to 0.025 inches.
- thermoplastic synthetic resin materials used in hot melt adhesives comprise a variety of polymerized material. These polymers are blended with other ingredients such as plasticizer, tackifier and extender, to form an adhesive.
- Such polymers include polyethylene, polypropylene, polyvinyl acetate, polyvinyl butyral, polyvinylalcohol, ethylene-vinylalcohol polymers and other polyvinyl resins; polystyrene resins, A--B--A block copolymers comprising polymers wherein A is a polystyrene block and B is a rubbery midblock section; acrylic and methacrylic acid ester resins; various other materials compounded from synthetic resins such as poly-isobutylene, polyamides, cumarone-indene products and silicones.
- thermoplastic resins usually have permanent solubility and fusability so that when hot, they can flow, or creep under stress and soften to some extent to form a bond. After cooling, the materials preferably resist creep and bond deformation. They are used in the manufacture of tape, safety glass, shoe cements, for the bonding or lamination of film, foil or non-woven laminates, metals, woods, rubber, paper and many other materials.
- thermosetting resin adhesives comprise a variety of phenol-aldehyde, urea-aldehyde, melaminiealdehyde, and other condensation polymerization materials including polyepoxy, polyurethane and silicone resins.
- Thermosetting resins are characterized by being converted to insoluble and infusible materials, sometimes by means of either heat or catalytic action.
- Thermosetting adhesive compositions include epoxies, urethanes, silicones, phenolics, resorcinol, urea, melamine, formaldehyde, phenol-furfuraldehyde, and the like and are used for the bonding of wood textiles, paper, plastics, rubber, automative, and appliance assembly and many other end uses.
- the adhesives of the natural and bitumen group consist of those made from asphalt, shellac, rosin and its esters, and similar materials. They are typically used for bonding of various materials including minerals, linoleum and the like.
- thermoplastic base polymer that can be used in the manufacture of the novel adhesive of the invention are thermoplastic polymers that are sufficiently compatible with tackifier, plasticizer, and other thermoplastic or thermosetting components to form a substantial homogenous melt and solid.
- the polymer After the application and the development of maximum modulus, the polymer provides mechanical strength and a cohesively competent adhesive bonding mass.
- thermoplastics any of a variety of available thermoplastic materials can be used in the compositions of the invention.
- thermoplastics are ethylene based polymers such as polyethylene and its co- and terpolymers, ethylene/vinyl acetate, ethylene acrylate, ethylene methacrylate, ethylene methyl acrylate, ethylene methyl methacrylate, copolymers of ethylene and 1-6 mono- or di-unsaturated monomers etc., polyamides, polybutadiene rubber, polyesters such as polyethylene terephthalate, polybutylene terephthalate, etc., thermoplastic polycarbonates, atactic poly-alpha-olefins, including atactic polypropylene, and others; thermoplastic polyacrylamides, polyacrylonitrile, copolymers of acrylonitrile and other monomers such as butadiene, styrene, etc., polymethyl pentene, polyphenylene sulfide, aromatic polyurethanes; styrene
- A--B, A--B--A, A--(B--A) n --B, (A--B) n --Y block copolymers wherein the A comprises a polyvinyl aromatic block, the B block comprises a rubbery midblock which can be partly hydrogenated, and others can be used.
- the aromatic character of the polymers provides compatibility with the aromatic plasticizing agents discussed below and provides controlled compatibility with the tackifier or the tackifier blends used to control modulus in the adhesive compositions.
- the preferred polymers should have a molecular weight sufficient that, when used in an adhesive formulation, the adhesive can maintain a high cohesive strength.
- Water soluble thermoplastics such as polyethyloxazoline, polyvinyl pyrrolidone etc., can be used in the pillow adhesive unit.
- Preferred polymers for use in the adhesives of this invention comprise EVA, APP, linear A--B--A block, linear A--(B--A) n --B multiblock copolymers, and radial or teleblock copolymers of the formula (A--B) n --Y wherein A comprises a polystyrene block, B comprises a substantially rubbery polybutadiene or polyisoprene block, Y comprises a multivalent compound, and n is an integer of at least 3.
- the midblocks can be post-treated to improve their heat stability through hydrogenation or other post-treatment removing residual unsaturation. We believe that the size and the amount of the A or end blocks in the A--B--A block of copolymer structure should be as much as 15-51 wt-% of the polymer.
- the total styrene content of the polymers can be as much as 51 wt-% of the polymer, and since the polymers can have more than two A blocks for optional performance, the largest A block should be less than or equal to about 20 wt-% of the polymers, and, most preferably, is less than or equal to 15 wt-% of the polymer.
- the preferred molecular weight is about 50,000 to 120,000, and the preferred styrene content is about 20 to 35 wt-%.
- the preferred molecular weight is about 100,000 to 150,000 and the preferred styrene content is about 14-30 wt-%. Hydrogenating the butadiene midblocks produces rubbery midblocks that are typically considered to be ethylene-butylene midblocks.
- Such block copolymers are available from Shell Chemical Company, Enichem, Fina and Dexco.
- Multiblock or tapered block copolymers (the A--(B--A) n --B type) are available from Firestone under the STEREON 840A and 845 trademarks.
- Another usable polymer is available under the trade name TUFPRENE A from Asahi, Japan.
- the adhesive compositions of the invention can contain other compatible polymers, fillers, pigments, dyes, oils. catalysts, inhibitors, antioxidants, UV absorbers, waxes, and other conventional additives.
- the adhesives of the invention can contain a tackifying resin in combination with a thermoplastic block copolymer optionally with a plasticizer or other components.
- Tackifying resins useful in the adhesives of the invention comprise rosin derivatives including wood rosin, tall oil, tall oil derivatives, rosin ester resins, natural and synthetic terpenes and aliphatic aromatic or mixed aliphatic-aromatic tackifying resins.
- Aromatic monomers useful in forming the aromatic containing resin compositions of this invention can be prepared from any monomer containing substantial aromatic qualities and a polymerizable unsaturated group.
- aromatic monomers include the styrenic monomers, styrene, alphamethyl styrene, vinyl toluene, methoxy styrene, tertiary butyl styrene, chlorostyrene, etc., indene monomers including indene, methyl indene and others.
- Aliphatic monomers are typical natural and synthetic terpenes which contain C 6 and C 5 cyclohexyl or cyclopentyl saturated groups that can additionally contain a variety of substantial aromatic ring substituents.
- Aliphatic tackifying resins can be made by polymerizine a feed stream containing sufficient aliphatic monomers such that the resulting resin exhibits aliphatic characteristics.
- feed streams can contain other aliphatic unsaturated monomers such as 1,3-butadiene, cis-1,3-pentadiene, trans-1,3-pentadiene, 2-methyl-1,3-butadiene, 2-methyl-2-butene, cyclopentadiene, dicyclopentadiene, terpene monomers and others.
- Mixed aliphatic aromatic resins contain sufficient aromatic monomers and sufficient aliphatic monomers and optionally other C 3 -C 8 unsaturated monomers to produce a resin having both aliphatic and aromatic character.
- the article by Davis, "The Chemistry of C 5 Resins" discusses synthetic C 5 resin technology.
- aliphatic resins include hydrogenated synthetic C 9 resins, synthetic branched and unbranched C 5 resins and mixtures thereof.
- aromatic tackifying resins include styrenated terpene resins, styrenated C 5 resins or mixtures thereof.
- the selection of tackifying resins is often based on the nature of the B or midblock radial block copolymer. Rosin derivatives are best for S-I-S/S-B-S blends and can be used-with either S-I-S or S-B-S alone. Hydrogenated C 9 or straight aliphatic resins are preferred for S-I-S copolymers. For S-B-S copolymers, styrenated terpenes or rosin esters are preferred.
- the adhesive compositions of the invention can contain rosin and rosin derivatives as a tackifying agent
- Rosin is a solid material that occurs naturally in the oleo rosin of pine trees and typically is derived from the oleo resinous exudate of the living tree, from aged stumps and from tall oil produced as a by-product of kraft paper manufacture. After it is obtained rosin can be treated by hydrogenation, dehydrogenation, polymerization, esterification, and other post treatment processes. Rosin is typically classed as a gum rosin, a wood rosin, or as a tall oil rosin which indicates its source.
- the materials can be used unmodified, in the form of esters of polyhydric alcohols, and can be polymerized through the inherent unsaturation of the molecules. Materials are commercially available and can be blended into the adhesive compositions using standard blending techniques. Representative examples of such rosin derivatives include pentaerythritol esters of tall oil, gum rosin, wood rosin, or mixtures thereof.
- thermoplastic resins or thermosetting resins used in the adhesives of the invention include materials such as natural and modified rosins, glycerol, and pentaerythritol esters of natural and modified rosins, copolymers and terpolymers of natural terpenes, polyterpene resins having a softening point as determined by ASTM method E28-58 T, of from about 80° C. to 150° C., phenolic modified terpene resins and hydrogenated derivatives thereof; aliphatic petroleum hydrocarbon resins having a ring and ball softening point of from about 70° C. to 135° C., aromatic petroleum hydrocarbon resins and hydrogenated derivatives thereof and alicyclic petroleum hydrocarbon resins and the hydrogenated derivatives thereof.
- a plasticizer is broadly defined as a typically organic composition that can be added to thermoplastics, rubbers and other resins to improve extrudability, flexibility workability, or stretchability.
- Typical plasticizers in adhesives are plasticizing oils that are liquid at typical ambient temperature.
- the plasticizer used in the adhesives of the invention can also be typically a solid composition at ambient temperature having a softening point of at least 45° C.
- the solid plasticizer if used is a composition with a softening point of at least 60° C. Increased softening points (60°-130° C.) can aid in improving heat resistance or preventing bond failure at high temperatures.
- Plasticizing oils are used in the construction/elastic attachment/pressure sensitive adhesives of the invention. Such oils are primarily hydrocarbon oils low in aromatic content. Preferably the oils are paraffinic or naphathenic in character. The oils are preferably low in volatility, are clear and have as little color and odor as possible.
- the use of a plasticizing oil of this invention also contemplates the use of olefin oligomers, low molecular weight polymers, vegetable oils and their derivatives and similar plasticizing liquids.
- plasticizers used in the invention comprises a cyclo-aliphatic or aromatic ester of a benzene dicarboxylic acid.
- Such plasticizers are prepared by forming an ester from a cyclo-aliphatic or aromatic alcohol such as cyclohexanol, phenol, naphthol, or other monohydroxy alcohol compounds having from 5 to 12 carbon atoms.
- the ester compounds are formed from dicarboxylic acid compounds, typically phthalic acids.
- Phthalic acids that can be used in the plasticizers are 1,2-benzene dicarboxylic acid, 1,3-benzene dicarboxylic acid (isophthalic acid), or 1,4-benzene dicarboxylic acid (terephthalic acid).
- the preferred plasticizers of this class comprise dicyclohexyl phthalate or diphenyl phthalate. Most preferably, dicyclohexyl orthophthalate is used.
- a second class of useful plasticizers comprise an aromatic carboxylic acid ester of a polyfunctional alcohol having 1 to 10 hydroxyl groups.
- Polyfunctional alcohols that can be used in the compositions of this class of plasticizers include compounds having at least two hydroxyl groups and at least two carbon atoms in the molecule.
- preferred hydroxy compounds include ethylene glycol, propylene glycol, 1,2-butylene glycol, 1,4butylene glycol, glycerine, glucose, fructose, sucrose, mannitol, trimethylol ethane, 1,4-cyclohexane dimethanol, pentaerytbritol, 2,2-dimethyl-1,3-propane diol, 2-hydroxy methyl-2-methyl-1,3-propane diol, neopentyl glycol, and other useful polyfunctional hydroxyl compounds.
- Aromatic acids that can be used with the polyfunctional alcohols to form this class ester plasticizer compounds of the invention include aromatic carboxylic acids, typically having at least one aromatic group and at least one carboxyl function.
- Representative acids include benzoic acid, naphthanoic acid, and 4-methyl benzoic acid.
- Typical examples of such useful plasticizers include triethylene glycol tribenzoate, trimethylol ethane tribenzoate, glycerol tribenzoate, sucrose benzoate, pentaerythritol tetrabenzoate, 2,2-dimethyl-1,3-propane diol dibenzoate, triethylene glycol dibenzoate, glycerol tribenzoate, 2-hydroxymethyl-2-methyl-1,3-propane diol tribenzoate, pentaerythrithol tetrabenzoate, neopentyl glycol dibenzoate, mixtures thereof and others.
- a preferred plasticizer is a solid with a softening point above 60° C. which belongs to the class of plasticizers including cyclohexane dimethanol dibenzoate compounds.
- a 1,4cyclohexane dimethanol dibenzoate (containing cis- and trans- isomers) is exemplified and produces the maximum control over variation and change in adhesive physical properties.
- a third class of useful plasticizers for use in the invention comprise a sulfonamide class made from aromatic sulfonic acids.
- Such plasticizers generally fall within the structural formula:
- each R is independently selected from the group consisting of hydrogen, aliphatic and cyclo-aliphatic radicals having 1 to 12 carbon atoms.
- Each R can be typically hydrogen, methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl, tertiary butyl, ethyl hexyl, neopentyl, cyclohexyl, deodecyl etc.
- R is preferably methyl, ethyl or cyclohexyl.
- Such sulfonamide plasticizers can also be used in the form of a resinous material formed through the condensation of formaldehyde with said sulfonamide plasticizer.
- adhesive materials that can be used to prepare the pillows which are stored in the film envelopes of the invention are as follows:
- the above table sets forth examples of fully functional water activated adhesives made using a polyethyloxazoline thermoplastic resin.
- the fully formulated adhesives made with a polyethyloxazoline resin are water dispersible or water soluble. Accordingly, a water insoluble thermoplastic resin is typically used as an envelope material.
- Such adhesives can be selected from a variety of adhesives, however, we have found that small amounts of A--B--A block copolymer are useful in the polyethyloxazoline adhesives to increase cohesion and bond strength.
- any water insoluble film compatible with the polyethyloxazoline can be used in such an application.
- A--B--A block copolymer, A--B--A--B--A--B multiblock copolymer and radical block copolymer thermoplastic resins can be used in a variety of useful adhesives. Such adhesives are disclosed in Collins. U.S. Pat. No. 4,136,609 which teaches a particular blend of A--B--A copolymer terpene or synthetic terpene tackifying resin and oil for use in the preparation of disposable articles. In addition, the following adhesives can be useful in the invention:
- Such hot melt adhesive materials based on A--B--A or other types of block copolymers can be made into pillows and can be packaged in envelopes or containers made from the A--B--A or other block copolymer technology. Since the envelope will comprise from about 0.1 to about 5 wt-% of the total adhesive mass, the amount of block copolymer used in formulating the adhesive pillow can be reduced and can be added to the melt in the form of the film enclosure.
- One part and two part polyurethane adhesive materials can be used in preparation of the adhesives of the invention. Such materials are disclosed in U.S. Pat. No. 4,412,033 and 4,390,678 found in the table set forth below.
- Such adhesives rely on the reactivity between a polyol and a urethane prepolymer wherein the isocyanate groups condense with hydroxyl groups and prepolymer.
- Other types of urethane materials including hydrocuring or moisture curing urethane adhesives can be used in the invention.
- two part urethane adhesives wherein the isocyanate material is formulated and manufactured in separate pillows from the polyol material can be made.
- thermoplastic polymers having substantial proportions of thermoplastic polymers can be used in the adhesives of the invention.
- adhesives are disclosed in the following tables.
- thermoplastic material from the adhesive can be used to form the packaging film (provided water vapor permeability of the packaging material is sufficiently small), with an equal reduction in the percentage of the thermoplastic and the pillow.
- the urethane materials set forth above free of thermoplastic polymer can be packaged in any compatible resin.
- thermoplastic materials can be used as the envelope or container material for the nets or the films enclosing the adhesive.
- thermoplastics are ethylene based polymers such as ethylene/vinyl acetate, ethylene acrylate, ethylene methacrylate, ethylene methyl acrylate, ethylene methyl methacrylate, high and low density polyethylene, polyethylene blends and chemically modified polyethylene, copolymers of ethylene and 1-6 mono- or di-unsaturated monomers, polyamides, polybutadiene rubber, polyesters such as polyethylene terephthalate, polybutylene terephthalate, etc., thermoplastic polycarbonates, atactic poly-alpha-olefins, including atactic polypropylene, and others; thermoplastic polyacrylamides, polyacrylonitrile, copolymers of acrylonitrile and other monomers such as butadiene, styrene, etc., polymethyl pentene, polyphenylene sulfide,
- A--B, A--B--A, A--(B--A) n --B, (A--B) n --Y block copolymers wherein the A comprises a polyvinyl aromatic block, the B block comprises a rubbery midblock, and others can be used.
- Such films can range in thickness from about 5 ⁇ m to 200 ⁇ m, preferably from 15 ⁇ m 50 to 50 ⁇ m for reasons of mechanical strength and product integrity.
- Such films often contain additional amounts of plasticizers, stabilizers, dyes, perfumes, fillers and other materials to increase the flexibility, handleability, visibility or other useful property of the film.
- the melting point or softening point of the film material will be chosen in view of that of the adhesive to be packaged. Generally, this melting or softening point will nevertheless be below 125° C., preferably below 120° C. and often above 90° C.
- the film material can be packaged in a second outer container or envelope for a variety of purposes including reducing the exposure of the film to moisture, or other contaminants, to increase the handleability of the adhesive and envelope, to provide a surface for labelling.
- Such envelopes would be conformed for easy opening with pull tabs, perforations, or other means well-known in the art.
- the adhesive composition e.g, a hot melt adhesive
- a hot melt adhesive is prepared by mixing polymer, synthetic or natural resin, wax or paraffin and other substances as desired and well-known in the art, this mixing or blending being carried out at elevated temperatures and by customary methods.
- the adhesive composition is then pumped to an orifice for dispensing.
- a coating with a separating anti-stick substance will be provided, and the coated composition will be pre-cooled prior to dispensing.
- the dispensed composition is squeeze-cut, and thus separated into individual, pillow-shaped portion pieces.
- the composition is already partly solidified, i.e. the individual pieces are sufficiently solidified at their outside, to be squeeze-cut and retain their pillow-like shape afterwards, although the interior of the pillows may still be fairly hot and liquid.
- the pillows are thereafter placed in a cooling bath, usually with water as the cooling liquid and are sufficiently solidified for packaging.
- a cooling bath usually with water as the cooling liquid and are sufficiently solidified for packaging.
- the heat remaining in the pillows can be adjusted by suitable choice of cooling time, to keep the pillows warm enough for deformation in a subsequent compression step.
- the sufficiently solidified pillows are now conveyed to a packaging station, e.g, a bagging machine and are placed into nets or bags of plastics film packaging material according to this invention.
- a packaging station e.g, a bagging machine
- Each filled bag is then sealed by a weld seam.
- the bag contains a fairly loose filling of relatively stiff pillows and a corresponding amount of air.
- the bag is now either put in a press and compressed as well as compacted at elevated pressure and temperature, or it is simply stacked with other, similar bags under sufficient heat, so that the compression is effected by the weight of the stack.
- the heat can be provided by either placing the stacks in a correspondingly heated room or by allowing the pillows to retain sufficient internal heat in the cooling process, this heat then re-softening the solidified outer regions of each pillow after the packaging.
- the hot melt adhesive will be extruded from an extruder provided with suitable cooling means, the adhesive having a temperature of between about 50° C. and 100° C., preferably about 80° C. upon extrusion.
- the adhesive is extruded directly into a bag or sack of the film material according to the invention.
- the adhesive can be cut or otherwise comminuted after extrusion and before packaging, but preferably, the adhesive is extruded into the packaging bag or sack without such comminution, until the desired amount of adhesive is received in the package. At this stage, the extruded adhesive is cut off, the package is sealed and a new bag or sack is connected to the extruder for filling.
- the extrusion temperature of the adhesive provides sufficient plasticity and shapability of the adhesive for substantially uniformly filling the package, without leaving undesirable voids or damaging the bag or sack in the filling or packaging process.
- Pillows of an EVA-based commercially available HMPSA were placed in a bag, the bag taking 500 gram of hot melt, and the packaging material forming 0.25 weight % of the total package.
- the bag was made of a plastics material film of 16 ⁇ m thickness, the plastics being a modified ethylene vinyl acetate copolymer with 17% vinyl acetate and a melting point of 94° C.
- the softening point determined in accordance with the method described in ASTM E 28 (Bille and Anneau) was 73° C. for the non-packaged hot melt and 74° C. for the blend of hot melt and packaging material.
- the penetration according to DIN 51579 was 47 for the non-packaged adhesive and 46 for the blend.
- the properties of the adhesive thus remain unaffected by the blending in of the packaging material in the melting stage.
- both above-mentioned adhesive samples were coated onto a polyester substrate, the adhesion properties in terms of peeling and shearing being then determined by adhering the substrate onto different materials.
- the adhesive-filled bags were placed in a melter/dispenser apparatus and melted and applied at 140° C. No influence of the packaging material component in the adhesive material was notable in the final product.
- a PE film of 30 ⁇ m thickness and DSC softening point 106° C. was used to package
- Example 3 SBS rubber based adhesive pillows (as in Example 3), by bagging as in Example 1.
- Tests according to the standard FINAT method were carried out with the adhesive a) of Example 4, with 60 ⁇ 2 g per m 2 coating on polyester RN 36.
- the following table shows the test results:
Landscapes
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Thermal Sciences (AREA)
- Physics & Mathematics (AREA)
- Biodiversity & Conservation Biology (AREA)
- Adhesives Or Adhesive Processes (AREA)
- Lining Or Joining Of Plastics Or The Like (AREA)
- Packages (AREA)
- Making Paper Articles (AREA)
- Packaging Of Annular Or Rod-Shaped Articles, Wearing Apparel, Cassettes, Or The Like (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Treating Waste Gases (AREA)
- Wrappers (AREA)
- Package Closures (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
Abstract
The invention relates to a method of packaging an adhesive composition, especially a thermoplastic or thermosetting hot melt adhesive. The method comprises the steps of providing one substantially uniform separate portion of the adhesive composition; sufficiently solidifying said portion for packaging; substantially completely surrounding said sufficiently solidified portion with a plastics packaging material. The packaging material being meltable together with the adhesive composition and blendable into said molten adhesive composition, the kind and amount of said packaging material being chosen so as not to disadvantageously affect the properties of the adhesive composition when blended into same. Preferably, the packaging material is a net, a wrap, a sack or a bag. Packagings made of plastic film are advantageously voided of air, to prevent problems in melting. The packaged adhesive can be melted as it is.
Description
This is a continuation, of application Ser. No. 07/738,176, filed Jul. 30, 1991, which was abandoned upon the filing hereof.
The present invention relates to a method of packaging an adhesive composition, especially a thermoplastic or thermosetting hot melt adhesive, and further to packaged such adhesive compositions.
Thermoplastic adhesives, especially hot melts, can be confectioned and packaged as e.g. disclosed in German patent 22 48 046. According to this prior art now widely used throughout the world, a hot melt adhesive is squeeze-cut into roughly pillow-shaped pieces; the pieces are subsequently cooled and thus solidified and are then put into sacks, cartons and such like for packaging.
In order to reduce the tendency of the individual pillows to stick, i.e. adhere to each other, it is known to coat them with a separating, anti-stick substance, e.g. a wax or a polymer, compare also DE 33 27 289 Kaiser.
From WO 84/03457 and WO 84/03468. Societe Nouvelle Raffinerie Meridionale de Ceresines-Belix, it is known to outwardly coat such autoprotected blocks with a powdery separating agent.
For thermoplastic adhesive compositions with a relatively high softening point (ASTM E28-58T), i.e. above 120° C. and especially above 150° C., these coatings provide sufficient anti-stick properties. Such compositions can therefore be packaged, stored and dispensed from sacks, without any major sticking problems.
Another well-known packaging for adhesive compositions is to wrap or cast bigger portions of the adhesive in plastics film material, such as thick polyethylene film.
These known packagings have the disadvantage that the thermoplastic adhesive composition must be removed from the packaging prior to use, which means an extra handling step. Further, the packaging material must be discarded after emptying, which leads to material waste and expenditure for disposing of the used packaging material.
A further problem arises with thermoplastic adhesive compositions, e.g. HMPSA's, having a relatively low softening point, i.e. below 120° C. and especially between 60° C. and 105° C. Such compositions show marked creep and cold flow properties even at ambient temperatures. Further, the expansion coefficients of these materials are sufficiently different from those of the coating materials as to lead to cracking and peeling of the coating materials, especially in prolonged storage at varying temperatures. Thus, the surfaces of the individual adhesive pillows or pieces become exposed and the pillows stick together, making the handling, especially the dosing of the adhesive more difficult and again leading to increased expenditure and handling problems. This is especially pertinent in cases where the adhesive composition is exposed to increased pressure and/or temperature during storage or handling.
From DE 31 38 222 and DE 32 34 065 it is already known to coat the circumference of elongated hot melt portions of between 1 and 1000 m length with a thin polyolefin film to prevent sticking problems when winding these string-like portions up onto themselves. The portions are subsequently cut to make cartridge of cartouche fillings, whereby the film stays on the circumference and is molten and applied together with the adhesive.
A similar proposal for extruding a hot melt adhesive into a tubular film is known from the lecture manuscript reprinted in "Kontinuierliche Aufbereitung von Haftklebstoffen", 5. Munchener Klebstoff- und Veredelungs-Seminar, 20. through 22. October 1980. The use of a co-extruded polyethylene film for manteling a long string of hot melt adhesive is further known from Swiss patent 431 177.
The above-mentioned prior art documents only relate to the concept of preventing individual hot melt portion pieces from sticking by individually coating them with a plastics material film. This is not suitable for mass-produced thermoplastic adhesive composition pillows, since it would be very expensive, it would lead to marked dilution of the adhesive with coating film material and it would further not be efficient, since in the squeeze-cutting step of adhesive composition pillow production, it would not be possible to produce a complete enclosure of the individual pillows by the film. Thus, relatively large areas of the pillow-shaped portion pieces would remain uncovered and the sticking problems would not be effectively overcome.
From German patent 36 25 358 to Hausdorf, it is known to completely wrap a single solid hot melt adhesive material block in a thermoplastic, especially a copolyamide film material with melting point between 120° C. and 150° C., to prevent sticking of the adhesive to the internal surfaces of a melting apparatus when pressure-melting the adhesive. The film material is melted and mixed with the adhesive. This prior art centers on copolyamide materials in view of their inherent hot melt adhesive properties.
Today, application temperatures of less than 150° C., preferably in the range of 110° C. to 140° C. are required by the end user to reduce thermal degradation problems of the adhesive as well as distortion of the substrates used. Therefore, for most applications, copolyamide films are not advantageous, in view of their high melting points and problems encountered in homogeneously melting and mixing such materials together with customary holt melt adhesives.
It is an important object of this invention to provide a method of packaging an adhesive composition, especially a thermoplastic or thermosetting hot melt adhesive, which reduces the amount of handling necessary in using the adhesive and also reduces or even eliminates packaging waste.
It is another important object of this invention to provide a method of packaging an adhesive composition, especially a thermoplastic or thermosetting hot melt adhesive, which permits the packaging of low softening point adhesives, such as HMPSA's and sprayable hot melts, without the sticking and blocking problems encountered in prior art.
To attain these and other objects and advantages, a method of packaging an adhesive composition, especially a thermoplastic or thermosetting hot melt adhesive according to the present invention comprises the steps of providing one substantially uniform separate portion of the adhesive composition; sufficiently solidifying said portion for packaging: substantially completely surrounding said sufficiently solidified portion with a plastics packaging material: said packaging material being meltable together with the adhesive composition and blendable into said molten adhesive composition, the kind and amount of said packaging material being chosen so as not to disadvantageously affect the properties of the adhesive composition when blended into same.
This method is especially suited for the packaging of relatively large portion pieces of the adhesive, such as individual pieces weighing between 100 grams and 4 kilograms.
In another aspect of the present invention, a method of packaging an adhesive composition, especially a thermoplastic or thermosetting hot melt adhesive, comprises the steps of providing a plurality of substantially uniform separate portions of the adhesive composition; sufficiently solidifying all said portions for packaging; forming a batch comprising the plurality of solidified portions, and substantially completely surrounding said batch with a plastics film packaging material or a net or similar apertured enclosure made of plastics; said packaging material being meltable together with the adhesive composition and blendable into said molten adhesive composition, the kind and amount of said packaging material being chosen so as not to disadvantageously affect the properties of the adhesive composition when blended into same.
This method is especially advantageous for the packaging of pillow-shaped pieces of low softening point thermoplastic adhesives as described above.
The further independent claims and subclaims as appended hereto define and describe other advantageous aspects and preferred embodiments of the present invention.
Packaging single, larger portions or batches of smaller portion pieces of the adhesive composition into sacks or bags of the plastics film packaging material according to this invention, or even wrapping suitable portions of adhesive in such packaging materials, makes it possible for the user to feed the complete packaged article, i.e. the adhesive and the packaging material surrounding it, into the melter. The packaging material is then molten together with the adhesive composition and is blended into the composition. In view of the minor amounts of packaging material required, and the suitable choice of packaging material, especially with respect to its melting point and compatibility with the adhesive composition, the properties of the adhesive composition are not disadvantageously affected by the additional matter.
Thus, it is neither necessary to unpack the adhesive composition prior to melting and subsequent use, nor is it necessary to dispose of the packaging material in a separate step.
Larger portions of adhesive composition can be individually wrapped or bagged in the plastics film packaging material, irrespective of their softening point.
For adhesives that do not block easily, an apertured enclosure such as a net can be used.
In the packaging of adhesive compositions, especially sprayable hot melt adhesives and HMPSA's it is advantageous to employ a further, more specific aspect of the present invention. It has been shown in corresponding tests that plastics film sacks containing larger batches of portion pieces, e.g. pillows of adhesives can cause problems in melting. In some cases, the film forming the sack does not melt and blend uniformly into the molten adhesive instead floating on the surface of the melt and/or adhering to the melter walls, which can cause major problems. Without wanting to restrict the invention by any theoretical explanation, it is presently assumed that this inhomogeneous, non-uniform melting performance is due to the air enclosed in a plastics film material sack loosely filled with adhesive composition portion pieces, such as pillow-shaped pieces, respectively the missing mutual contact between film material and adhesive composition pieces.
In such cases, it is possible to overcome the homogeneity problem by using another aspect of the present invention, according to which a batch, comprising a plurality of separate adhesive composition portion pieces, is placed in a bag of plastics film packaging material, said bag being subsequently sealed by welding or another suitable method, and said bag being voided of air. This is preferably done by compressing or evacuating the bag at elevated temperatures. e.g, in a press or simply by storing stacked filled bags at temperatures of 30° C. to 150° C. The various thin plastic films (usually 15 um to 100 um thickness) used in this invention can easily be perforated, so that no further steps need be taken to permit the escape of air in the compression step. Additionally, the air can leave the bag through openings in the weld seams, which are usually not 100% air-tight. It is even possible that air may leave the bag through pores in the film material.
In any case, the adhesive pillows are compressed and compacted at the elevated temperatures mentioned, which entails a degree of deformation of the portion pieces or pillows; at the same time, the packaging plastics film material is forced into close contact with the adjoining adhesive material, and is in most cases adhered to the adhesive.
This proved to be very advantageous upon subsequent cooling and storage as well as handling of the finished adhesive packs. Since the film sticks to the adhesive in the package, it is not easily damaged and even if punctured or slit, the adhesive remains covered by the packaging material.
Thus, adhesive packaged according to the invention can be stored, handled and used without any problems of the individual packs sticking together or adhering to other objects, even if exposed to increased pressure and/or temperature and even when low softening point adhesives are packaged.
Of course, also such low softening point adhesive packages can be molten with the packaging material blending into the adhesive, thus realizing the already mentioned advantages with respect to expenditure.
A plurality of plastics net or film materials can be used according to this invention. These materials can be selected from the groups comprising ethylene based polymers such as ethylene/vinyl acetate, ethylene acrylate, ethylene methacrylate, ethylene methyl acrylate, ethylene methyl methacrylate, high and low density polyethylene, polyethylene blends and chemically modified polyethylene, copolymers of ethylene and 1-6 mono- or di-unsaturated monomers, polyamides, polybutadiene rubber, polyesters such as polyethylene terephthalate, polybutylene terephthalate; thermoplastic polycarbonates, atactic poly-alpha-olefins, including atactic polypropylene, and others; thermoplastic polyacrylamides, polyacrylonitrile, copolymers of acrylonitrile and other monomers such as butadiene styrene; polymethyl pentene, polyphenylene sulfide, aromatic polyurethanes; styrene-acrylonitrile, acrylonitrilebutadiene-styrene, styrene-butadiene rubbers, polyethylene terephthalate, acrylonitrile-butadiene-styrene elastomers, polyphenylene sulfide, A--B, A--B--A, A--(B--A)n --B. (A--B)n --Y block copolymers wherein the A comprises a polyvinyl aromatic block, the B block comprises a rubbery midblock, which can be partly hydrogenated, and mixtures of said substances, but other similar materials can be used as well, to match the properties of the adhesive packaged. Specific examples include polyethylene films of between 5 μm and 200 μm, preferably between 15 μm and 50 μm thickness, depending on available dispensing equipment; such films being especially useful for packaging low softening point adhesive composition pillows batchwise into, say, 1000 gram bags with subsequent compression to remove air.
Another suitable plastics film material is ethylene vinyl acetate copolymer, with a vinyl acetate content of between 10% and 33%, especially between 14% and 18% and a softening point between 80° C., and 100° C.
In any case, it is advantageous to restrict the amount of packaging material used to between 0.1 and 3% by weight with respect to the weight of the adhesive composition contained in the package. This prevents undue dilution and corresponding modification of the adhesives characteristics.
It is further advantageous to suit the softening point of the packaging material to that of the adhesive composition. Packaging materials having softening temperature ranges rather than sharp melting points are less advantageous, since their melting performance is less predictable and can give rise to problems of homogeneity in the molten adhesive/packaging material blend.
Generally, packaging materials with melting or softening points below 125° C., preferably below 120° C. and often above 90° C. are useful in the context of this invention.
The envelope containing the discrete adhesive units is made of a material that when blended into the adhesive does at least not substantially negatively influence adhesive characteristics, and preferably is either a component of the adhesive or is a component physically and chemically compatible with the adhesive in the melt prior to application. The polymer should not cause a physical phasing or separation of the adhesive, should not reduce adhesive properties and should not chemically react with any adhesive component. Further, the envelope material could be selected to cooperate with the components of the adhesive unit to enhance a desired property including, but not limited to, adhesive strength, pressure-sensitive properties, wet-out properties, cohesive strength, peel strength, shear strength, oil bleed, rate of cure, etc. A large number of thermoplastic film forming polymers that can be used in hot melt adhesives, can be used in manufacturing the uniquely packaged adhesive of the invention.
Hot melt adhesive systems can apply adhesive through nozzles as small as 0.012 to 0.025 inches.
Briefly, thermoplastic synthetic resin materials used in hot melt adhesives comprise a variety of polymerized material. These polymers are blended with other ingredients such as plasticizer, tackifier and extender, to form an adhesive. Such polymers include polyethylene, polypropylene, polyvinyl acetate, polyvinyl butyral, polyvinylalcohol, ethylene-vinylalcohol polymers and other polyvinyl resins; polystyrene resins, A--B--A block copolymers comprising polymers wherein A is a polystyrene block and B is a rubbery midblock section; acrylic and methacrylic acid ester resins; various other materials compounded from synthetic resins such as poly-isobutylene, polyamides, cumarone-indene products and silicones. Such thermoplastic resins usually have permanent solubility and fusability so that when hot, they can flow, or creep under stress and soften to some extent to form a bond. After cooling, the materials preferably resist creep and bond deformation. They are used in the manufacture of tape, safety glass, shoe cements, for the bonding or lamination of film, foil or non-woven laminates, metals, woods, rubber, paper and many other materials.
Briefly, thermosetting resin adhesives comprise a variety of phenol-aldehyde, urea-aldehyde, melaminiealdehyde, and other condensation polymerization materials including polyepoxy, polyurethane and silicone resins. Thermosetting resins are characterized by being converted to insoluble and infusible materials, sometimes by means of either heat or catalytic action. Thermosetting adhesive compositions include epoxies, urethanes, silicones, phenolics, resorcinol, urea, melamine, formaldehyde, phenol-furfuraldehyde, and the like and are used for the bonding of wood textiles, paper, plastics, rubber, automative, and appliance assembly and many other end uses.
Briefly, the adhesives of the natural and bitumen group consist of those made from asphalt, shellac, rosin and its esters, and similar materials. They are typically used for bonding of various materials including minerals, linoleum and the like.
The thermoplastic base polymer that can be used in the manufacture of the novel adhesive of the invention are thermoplastic polymers that are sufficiently compatible with tackifier, plasticizer, and other thermoplastic or thermosetting components to form a substantial homogenous melt and solid. Typically in the adhesives of the invention, after the application and the development of maximum modulus, the polymer provides mechanical strength and a cohesively competent adhesive bonding mass.
Any of a variety of available thermoplastic materials can be used in the compositions of the invention. Examples of such thermoplastics are ethylene based polymers such as polyethylene and its co- and terpolymers, ethylene/vinyl acetate, ethylene acrylate, ethylene methacrylate, ethylene methyl acrylate, ethylene methyl methacrylate, copolymers of ethylene and 1-6 mono- or di-unsaturated monomers etc., polyamides, polybutadiene rubber, polyesters such as polyethylene terephthalate, polybutylene terephthalate, etc., thermoplastic polycarbonates, atactic poly-alpha-olefins, including atactic polypropylene, and others; thermoplastic polyacrylamides, polyacrylonitrile, copolymers of acrylonitrile and other monomers such as butadiene, styrene, etc., polymethyl pentene, polyphenylene sulfide, aromatic polyurethanes; styrene-acrylonitrile, acrylonitrile-butadiene-styrene, styrene-butadiene rubbers, polyethylene terephthalate, acrylonitrile-butadiene-styrene elastomers, polyphenylene sulfide. Also, A--B, A--B--A, A--(B--A)n --B, (A--B)n --Y block copolymers wherein the A comprises a polyvinyl aromatic block, the B block comprises a rubbery midblock which can be partly hydrogenated, and others can be used. The aromatic character of the polymers provides compatibility with the aromatic plasticizing agents discussed below and provides controlled compatibility with the tackifier or the tackifier blends used to control modulus in the adhesive compositions. The preferred polymers should have a molecular weight sufficient that, when used in an adhesive formulation, the adhesive can maintain a high cohesive strength.
Water soluble thermoplastics such as polyethyloxazoline, polyvinyl pyrrolidone etc., can be used in the pillow adhesive unit.
Preferred polymers for use in the adhesives of this invention comprise EVA, APP, linear A--B--A block, linear A--(B--A)n --B multiblock copolymers, and radial or teleblock copolymers of the formula (A--B)n --Y wherein A comprises a polystyrene block, B comprises a substantially rubbery polybutadiene or polyisoprene block, Y comprises a multivalent compound, and n is an integer of at least 3. The midblocks can be post-treated to improve their heat stability through hydrogenation or other post-treatment removing residual unsaturation. We believe that the size and the amount of the A or end blocks in the A--B--A block of copolymer structure should be as much as 15-51 wt-% of the polymer.
While the total styrene content of the polymers can be as much as 51 wt-% of the polymer, and since the polymers can have more than two A blocks for optional performance, the largest A block should be less than or equal to about 20 wt-% of the polymers, and, most preferably, is less than or equal to 15 wt-% of the polymer. In an S-B-S (styrene-butadiene-styrene) copolymer, the preferred molecular weight is about 50,000 to 120,000, and the preferred styrene content is about 20 to 35 wt-%. In an S-I-S (styrene-isoprene-styrene) copolymer, the preferred molecular weight is about 100,000 to 150,000 and the preferred styrene content is about 14-30 wt-%. Hydrogenating the butadiene midblocks produces rubbery midblocks that are typically considered to be ethylene-butylene midblocks.
Such block copolymers are available from Shell Chemical Company, Enichem, Fina and Dexco. Multiblock or tapered block copolymers (the A--(B--A)n --B type) are available from Firestone under the STEREON 840A and 845 trademarks.
Another usable polymer is available under the trade name TUFPRENE A from Asahi, Japan.
The adhesive compositions of the invention can contain other compatible polymers, fillers, pigments, dyes, oils. catalysts, inhibitors, antioxidants, UV absorbers, waxes, and other conventional additives.
The adhesives of the invention can contain a tackifying resin in combination with a thermoplastic block copolymer optionally with a plasticizer or other components.
Tackifying resins useful in the adhesives of the invention comprise rosin derivatives including wood rosin, tall oil, tall oil derivatives, rosin ester resins, natural and synthetic terpenes and aliphatic aromatic or mixed aliphatic-aromatic tackifying resins. Aromatic monomers useful in forming the aromatic containing resin compositions of this invention can be prepared from any monomer containing substantial aromatic qualities and a polymerizable unsaturated group. Typical examples of such aromatic monomers include the styrenic monomers, styrene, alphamethyl styrene, vinyl toluene, methoxy styrene, tertiary butyl styrene, chlorostyrene, etc., indene monomers including indene, methyl indene and others. Aliphatic monomers are typical natural and synthetic terpenes which contain C6 and C5 cyclohexyl or cyclopentyl saturated groups that can additionally contain a variety of substantial aromatic ring substituents. Aliphatic tackifying resins can be made by polymerizine a feed stream containing sufficient aliphatic monomers such that the resulting resin exhibits aliphatic characteristics. Such feed streams can contain other aliphatic unsaturated monomers such as 1,3-butadiene, cis-1,3-pentadiene, trans-1,3-pentadiene, 2-methyl-1,3-butadiene, 2-methyl-2-butene, cyclopentadiene, dicyclopentadiene, terpene monomers and others. Mixed aliphatic aromatic resins contain sufficient aromatic monomers and sufficient aliphatic monomers and optionally other C3 -C8 unsaturated monomers to produce a resin having both aliphatic and aromatic character. The article by Davis, "The Chemistry of C5 Resins", discusses synthetic C5 resin technology.
Representative examples of such aliphatic resins include hydrogenated synthetic C9 resins, synthetic branched and unbranched C5 resins and mixtures thereof. Representative examples of such aromatic tackifying resins include styrenated terpene resins, styrenated C5 resins or mixtures thereof. The selection of tackifying resins is often based on the nature of the B or midblock radial block copolymer. Rosin derivatives are best for S-I-S/S-B-S blends and can be used-with either S-I-S or S-B-S alone. Hydrogenated C9 or straight aliphatic resins are preferred for S-I-S copolymers. For S-B-S copolymers, styrenated terpenes or rosin esters are preferred.
The adhesive compositions of the invention can contain rosin and rosin derivatives as a tackifying agent Rosin is a solid material that occurs naturally in the oleo rosin of pine trees and typically is derived from the oleo resinous exudate of the living tree, from aged stumps and from tall oil produced as a by-product of kraft paper manufacture. After it is obtained rosin can be treated by hydrogenation, dehydrogenation, polymerization, esterification, and other post treatment processes. Rosin is typically classed as a gum rosin, a wood rosin, or as a tall oil rosin which indicates its source. The materials can be used unmodified, in the form of esters of polyhydric alcohols, and can be polymerized through the inherent unsaturation of the molecules. Materials are commercially available and can be blended into the adhesive compositions using standard blending techniques. Representative examples of such rosin derivatives include pentaerythritol esters of tall oil, gum rosin, wood rosin, or mixtures thereof.
Specific examples of useful tackifying resins that can be compatible with a variety of the thermoplastic resins or thermosetting resins used in the adhesives of the invention include materials such as natural and modified rosins, glycerol, and pentaerythritol esters of natural and modified rosins, copolymers and terpolymers of natural terpenes, polyterpene resins having a softening point as determined by ASTM method E28-58 T, of from about 80° C. to 150° C., phenolic modified terpene resins and hydrogenated derivatives thereof; aliphatic petroleum hydrocarbon resins having a ring and ball softening point of from about 70° C. to 135° C., aromatic petroleum hydrocarbon resins and hydrogenated derivatives thereof and alicyclic petroleum hydrocarbon resins and the hydrogenated derivatives thereof.
A plasticizer is broadly defined as a typically organic composition that can be added to thermoplastics, rubbers and other resins to improve extrudability, flexibility workability, or stretchability. Typical plasticizers in adhesives are plasticizing oils that are liquid at typical ambient temperature. The plasticizer used in the adhesives of the invention can also be typically a solid composition at ambient temperature having a softening point of at least 45° C. Preferably, the solid plasticizer if used is a composition with a softening point of at least 60° C. Increased softening points (60°-130° C.) can aid in improving heat resistance or preventing bond failure at high temperatures.
Plasticizing oils are used in the construction/elastic attachment/pressure sensitive adhesives of the invention. Such oils are primarily hydrocarbon oils low in aromatic content. Preferably the oils are paraffinic or naphathenic in character. The oils are preferably low in volatility, are clear and have as little color and odor as possible. The use of a plasticizing oil of this invention also contemplates the use of olefin oligomers, low molecular weight polymers, vegetable oils and their derivatives and similar plasticizing liquids.
One useful class of plasticizers used in the invention comprises a cyclo-aliphatic or aromatic ester of a benzene dicarboxylic acid. Such plasticizers are prepared by forming an ester from a cyclo-aliphatic or aromatic alcohol such as cyclohexanol, phenol, naphthol, or other monohydroxy alcohol compounds having from 5 to 12 carbon atoms. The ester compounds are formed from dicarboxylic acid compounds, typically phthalic acids. Phthalic acids that can be used in the plasticizers are 1,2-benzene dicarboxylic acid, 1,3-benzene dicarboxylic acid (isophthalic acid), or 1,4-benzene dicarboxylic acid (terephthalic acid). The preferred plasticizers of this class comprise dicyclohexyl phthalate or diphenyl phthalate. Most preferably, dicyclohexyl orthophthalate is used.
A second class of useful plasticizers comprise an aromatic carboxylic acid ester of a polyfunctional alcohol having 1 to 10 hydroxyl groups. Polyfunctional alcohols that can be used in the compositions of this class of plasticizers include compounds having at least two hydroxyl groups and at least two carbon atoms in the molecule. Specific examples of preferred hydroxy compounds include ethylene glycol, propylene glycol, 1,2-butylene glycol, 1,4butylene glycol, glycerine, glucose, fructose, sucrose, mannitol, trimethylol ethane, 1,4-cyclohexane dimethanol, pentaerytbritol, 2,2-dimethyl-1,3-propane diol, 2-hydroxy methyl-2-methyl-1,3-propane diol, neopentyl glycol, and other useful polyfunctional hydroxyl compounds. Aromatic acids that can be used with the polyfunctional alcohols to form this class ester plasticizer compounds of the invention include aromatic carboxylic acids, typically having at least one aromatic group and at least one carboxyl function. Representative acids include benzoic acid, naphthanoic acid, and 4-methyl benzoic acid. Typical examples of such useful plasticizers include triethylene glycol tribenzoate, trimethylol ethane tribenzoate, glycerol tribenzoate, sucrose benzoate, pentaerythritol tetrabenzoate, 2,2-dimethyl-1,3-propane diol dibenzoate, triethylene glycol dibenzoate, glycerol tribenzoate, 2-hydroxymethyl-2-methyl-1,3-propane diol tribenzoate, pentaerythrithol tetrabenzoate, neopentyl glycol dibenzoate, mixtures thereof and others.
A preferred plasticizer is a solid with a softening point above 60° C. which belongs to the class of plasticizers including cyclohexane dimethanol dibenzoate compounds. A 1,4cyclohexane dimethanol dibenzoate (containing cis- and trans- isomers) is exemplified and produces the maximum control over variation and change in adhesive physical properties.
A third class of useful plasticizers for use in the invention comprise a sulfonamide class made from aromatic sulfonic acids. Such plasticizers generally fall within the structural formula:
R--Ar--SO.sub.2 --NR.sub.2
wherein each R is independently selected from the group consisting of hydrogen, aliphatic and cyclo-aliphatic radicals having 1 to 12 carbon atoms. Each R can be typically hydrogen, methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl, tertiary butyl, ethyl hexyl, neopentyl, cyclohexyl, deodecyl etc. R is preferably methyl, ethyl or cyclohexyl. Such sulfonamide plasticizers can also be used in the form of a resinous material formed through the condensation of formaldehyde with said sulfonamide plasticizer.
Specific examples of adhesive materials that can be used to prepare the pillows which are stored in the film envelopes of the invention are as follows:
TABLE I __________________________________________________________________________ Typical Adhesive Formulations Contact Water Moisture Book Repulpable Lens Resealable Activated Binding Hot Melt Mounting Ingredient HM-PSA Adhesive Adhesive Adhesive Adhesive __________________________________________________________________________ Polyalkylenimine 20-45 30-55 15-60 30-55 15-50 Tackifying Agent 15-40 2-5 -- 2-50 -- Plasticizer + -- 0-20+ 10-30 15-40 -- Wax (hydroxy) -- 10-35 10-40 5-40 5-60 Filler 25-40 -- -- 0-35 -- Plasticizer (Hydroxy Compound) __________________________________________________________________________ +Preferably having an agreeable taste or no taste.
The above table sets forth examples of fully functional water activated adhesives made using a polyethyloxazoline thermoplastic resin. The fully formulated adhesives made with a polyethyloxazoline resin are water dispersible or water soluble. Accordingly, a water insoluble thermoplastic resin is typically used as an envelope material. Such adhesives can be selected from a variety of adhesives, however, we have found that small amounts of A--B--A block copolymer are useful in the polyethyloxazoline adhesives to increase cohesion and bond strength. However, any water insoluble film compatible with the polyethyloxazoline can be used in such an application.
We have found the A--B--A block copolymer, A--B--A--B--A--B multiblock copolymer and radical block copolymer thermoplastic resins can be used in a variety of useful adhesives. Such adhesives are disclosed in Collins. U.S. Pat. No. 4,136,609 which teaches a particular blend of A--B--A copolymer terpene or synthetic terpene tackifying resin and oil for use in the preparation of disposable articles. In addition, the following adhesives can be useful in the invention:
TABLE II ______________________________________ Low Polymer Resin Compositions Most Useful Preferred Preferred ______________________________________ Solid Plasiticizer 5-75 10-60 40-50 Tackifier 25-95 30-90 35-65 Polymer 0-15 0-12 0.1-10 ______________________________________
TABLE III ______________________________________ Higher Polymer Resin Compositions Most Useful Preferred Preferred ______________________________________ Solid Plasiticizer 5-70 10-50 20-30 Tackifier 20-85 30-75 35-60 Polymer 10-55 12-35 15-30 ______________________________________
TABLE IV ______________________________________ Most Useful Preferred Preferred ______________________________________ Radial block copolymer* 5-14 7-13 8-12 A-B-A block copolymer* 0-14 0-12 0-10 Tackifier 45-85 50-80 55-75 Plasticizing Oil 5-35 6-30 8-20 Synthetic 0-10 0.1-9 0.25-5 polyethylene wax (or other oil complexing agent) ______________________________________ *Total polymer content (including both radial block and linear block polymer is typically about 15 wt % or less of the adhesive.
Such hot melt adhesive materials based on A--B--A or other types of block copolymers can be made into pillows and can be packaged in envelopes or containers made from the A--B--A or other block copolymer technology. Since the envelope will comprise from about 0.1 to about 5 wt-% of the total adhesive mass, the amount of block copolymer used in formulating the adhesive pillow can be reduced and can be added to the melt in the form of the film enclosure.
One part and two part polyurethane adhesive materials can be used in preparation of the adhesives of the invention. Such materials are disclosed in U.S. Pat. No. 4,412,033 and 4,390,678 found in the table set forth below.
Such adhesives rely on the reactivity between a polyol and a urethane prepolymer wherein the isocyanate groups condense with hydroxyl groups and prepolymer. Other types of urethane materials including hydrocuring or moisture curing urethane adhesives can be used in the invention. Additionally, two part urethane adhesives wherein the isocyanate material is formulated and manufactured in separate pillows from the polyol material can be made.
Additionally, one part urethane adhesives having substantial proportions of thermoplastic polymers can be used in the adhesives of the invention. Such adhesives are disclosed in the following tables.
TABLE V ______________________________________ Typical Preferred Most Preferred Adhesive Adhesive Adhesive Parts by Parts by Parts by Weight Weight Weight ______________________________________ Thermoplastic Polymer 1-200 20-175 20-150 Isocyanate Terminated 100 100 100 Prepolymer Tackifying Resin 1-200 20-200 40-135 ______________________________________
When using these one part adhesives, the thermoplastic material from the adhesive can be used to form the packaging film (provided water vapor permeability of the packaging material is sufficiently small), with an equal reduction in the percentage of the thermoplastic and the pillow. The urethane materials set forth above free of thermoplastic polymer can be packaged in any compatible resin.
Any of a wide variety of thermoplastic materials can be used as the envelope or container material for the nets or the films enclosing the adhesive. Examples of such thermoplastics are ethylene based polymers such as ethylene/vinyl acetate, ethylene acrylate, ethylene methacrylate, ethylene methyl acrylate, ethylene methyl methacrylate, high and low density polyethylene, polyethylene blends and chemically modified polyethylene, copolymers of ethylene and 1-6 mono- or di-unsaturated monomers, polyamides, polybutadiene rubber, polyesters such as polyethylene terephthalate, polybutylene terephthalate, etc., thermoplastic polycarbonates, atactic poly-alpha-olefins, including atactic polypropylene, and others; thermoplastic polyacrylamides, polyacrylonitrile, copolymers of acrylonitrile and other monomers such as butadiene, styrene, etc., polymethyl pentene, polyphenylene sulfide, aromatic polyurethanes; styrene-acrylonitrile, acrylonitrile-butadiene-styrene, styrene-butadiene rubbers, polyethylene terephthalate, acrylonitrile-butadiene-styrene elastomers, polyphenylene sulfide. Also, A--B, A--B--A, A--(B--A)n --B, (A--B)n --Y block copolymers wherein the A comprises a polyvinyl aromatic block, the B block comprises a rubbery midblock, and others can be used.
The manufacture of such films from thermoplastic materials is well-known. Such films can range in thickness from about 5 μm to 200 μm, preferably from 15 μm 50 to 50 μm for reasons of mechanical strength and product integrity.
Such films often contain additional amounts of plasticizers, stabilizers, dyes, perfumes, fillers and other materials to increase the flexibility, handleability, visibility or other useful property of the film.
The melting point or softening point of the film material will be chosen in view of that of the adhesive to be packaged. Generally, this melting or softening point will nevertheless be below 125° C., preferably below 120° C. and often above 90° C.
The film material can be packaged in a second outer container or envelope for a variety of purposes including reducing the exposure of the film to moisture, or other contaminants, to increase the handleability of the adhesive and envelope, to provide a surface for labelling. Such envelopes would be conformed for easy opening with pull tabs, perforations, or other means well-known in the art.
In the practice of the present invention, the adhesive composition. e.g, a hot melt adhesive, is prepared by mixing polymer, synthetic or natural resin, wax or paraffin and other substances as desired and well-known in the art, this mixing or blending being carried out at elevated temperatures and by customary methods.
The adhesive composition is then pumped to an orifice for dispensing. Usually, a coating with a separating anti-stick substance will be provided, and the coated composition will be pre-cooled prior to dispensing.
In a preferred embodiment of this invention, the dispensed composition is squeeze-cut, and thus separated into individual, pillow-shaped portion pieces. At this stage, the composition is already partly solidified, i.e. the individual pieces are sufficiently solidified at their outside, to be squeeze-cut and retain their pillow-like shape afterwards, although the interior of the pillows may still be fairly hot and liquid.
The pillows are thereafter placed in a cooling bath, usually with water as the cooling liquid and are sufficiently solidified for packaging. At this stage, the heat remaining in the pillows can be adjusted by suitable choice of cooling time, to keep the pillows warm enough for deformation in a subsequent compression step.
The sufficiently solidified pillows are now conveyed to a packaging station, e.g, a bagging machine and are placed into nets or bags of plastics film packaging material according to this invention. For packaging the customary coated hot melt pillows, it is presently preferred to produce bags from a tubular film of polyethylene or EVA co- or terpolymer material with 15 μm to 50 μm thickness, each bag taking about 1000 gram of pillows, although other plastics materials are also suitable.
Each filled bag is then sealed by a weld seam. At this stage, the bag contains a fairly loose filling of relatively stiff pillows and a corresponding amount of air.
In order to reduce the initially mentioned problems in subsequent use of low softening point adhesive composition pillows packaged according to this invention, the bag is now either put in a press and compressed as well as compacted at elevated pressure and temperature, or it is simply stacked with other, similar bags under sufficient heat, so that the compression is effected by the weight of the stack. In the latter case, the heat can be provided by either placing the stacks in a correspondingly heated room or by allowing the pillows to retain sufficient internal heat in the cooling process, this heat then re-softening the solidified outer regions of each pillow after the packaging.
In another preferred embodiment, the hot melt adhesive will be extruded from an extruder provided with suitable cooling means, the adhesive having a temperature of between about 50° C. and 100° C., preferably about 80° C. upon extrusion. The adhesive is extruded directly into a bag or sack of the film material according to the invention. The adhesive can be cut or otherwise comminuted after extrusion and before packaging, but preferably, the adhesive is extruded into the packaging bag or sack without such comminution, until the desired amount of adhesive is received in the package. At this stage, the extruded adhesive is cut off, the package is sealed and a new bag or sack is connected to the extruder for filling.
In this embodiment, the extrusion temperature of the adhesive provides sufficient plasticity and shapability of the adhesive for substantially uniformly filling the package, without leaving undesirable voids or damaging the bag or sack in the filling or packaging process.
Preferred embodiments of the invention will now be described in more detail, by reference to the following examples.
Pillows of an EVA-based commercially available HMPSA were placed in a bag, the bag taking 500 gram of hot melt, and the packaging material forming 0.25 weight % of the total package.
The bag was made of a plastics material film of 16 μm thickness, the plastics being a modified ethylene vinyl acetate copolymer with 17% vinyl acetate and a melting point of 94° C.
As a comparison, unpackaged pillows of said adhesive were used.
Both the packaged and the non-packaged hot melt samples were then molten; the following table shows the properties of the adhesives thus obtained:
TABLE VI ______________________________________ Brookfield viscosity (mPa · s) at 20 rounds Non-packaged Packaged per minute Adhesive Adhesive ______________________________________ at 120° C. 17 750 18 000 at 130° C. 11 750 11 875 at 140° C. 8 000 7 750 at 150° C. 5 000 5 125 at 160° C. 3 625 3 625 at 170° C. 2 625 2 700 at 180° C. 1 940 2 000 ______________________________________
The softening point, determined in accordance with the method described in ASTM E 28 (Bille and Anneau) was 73° C. for the non-packaged hot melt and 74° C. for the blend of hot melt and packaging material.
At 25° C., the penetration according to DIN 51579 was 47 for the non-packaged adhesive and 46 for the blend.
Within the experimental error margins, the properties of the adhesive thus remain unaffected by the blending in of the packaging material in the melting stage.
In another experiment, both above-mentioned adhesive samples were coated onto a polyester substrate, the adhesion properties in terms of peeling and shearing being then determined by adhering the substrate onto different materials.
The following results were obtained:
TABLE VII ______________________________________ Non-packaged Packaged Adhesive Adhesive ______________________________________ Shearing on cotton 1,46 N 1,31 N Peeling at 23° C.: on cotton 0,03 N 0,03 N on nylon 0,27 N 0,23 N on silk 0,27 N 0,25 N Peeling at 35° C.: on cotton 0,62 N 0,66 N on nylon 2.02 N 1.92 N on silk 2,76 N 2,77 N Peeling at 30° C. on cotton: AFNOR norm) t= 0 minutes 2.37 N 2.68 N T = 15 minutes 2.05 N 2.68 N ______________________________________
Again, the experimental error is larger than the differences of properties detected, so that it can be stated that the adhesives show identical performance irrespective of the blending in of the packaging material in the melting step.
An EVA film of 100 μm thickness and DSC softening point 108.2° C. was used to package
a) EVA based adhesive pillows
b) APP based adhesive pillows into bags, following the general procedure as in Example 1.
The adhesive-filled bags were placed in a melter/dispenser apparatus and melted and applied at 140° C. No influence of the packaging material component in the adhesive material was notable in the final product.
An EVA film of 50 μm thickness (vinyl acetate content 18%) and DSC softening point 84.3° C. was used to package
a) SB rubber (Tufprene A) based adhesive blocks by wrapping
b) APP based adhesive pillows and
c) SBS rubber based adhesive pillows, both by bagging as in Example 1.
In melting and application of the packaged adhesives a) at 150° C. and b) at 140° C., no influence of the packaging material was again detectable. When adhesive c) was melted and applied at 120° C. with air still contained in the bags, inhomogeneity of the melt was observed. This problem could be overcome by evacuation of the bags.
A PE film of 30 μm thickness and DSC softening point 106° C. was used to package
a) SB rubber based adhesive pillows;
b) SBS rubber based adhesive pillows (as in Example 3), by bagging as in Example 1.
The unevacuated packs of adhesive a) could be melted at 150° C. and the adhesive applied without any notable effect of the plastic film material. Adhesive b) melted and applied at 120° C. again gave inhomogeneity problems unless the packs were substantially voided of air.
Tests according to the standard FINAT method were carried out with the adhesive a) of Example 4, with 60±2 g per m2 coating on polyester RN 36. The following table shows the test results:
______________________________________ I. Tack Free Hanging Loop N/25 mm Non-Packaged Packaged Adhesive Adhesive ______________________________________ without ageing 28.0 28.0 after ageing for 22.5 26.5 12 weeks at 23° C. after ageing for 23.0 23.7 12 weeks at 50° C. ______________________________________
______________________________________ II. 180° peel adhesion resistance N/25 mm Non-Packaged Packaged Adhesive Adhesive ______________________________________ without ageing 25.2 24.0 after ageing for 20.2 20.6 12 weeks at 23° C. after ageing for 20.6 19.6 12 weeks at 50° C. ______________________________________
These test results show that the adhesive properties of the samples were unaffected by the admixture of the packaging material.
Claims (43)
1. A method of packaging a thermoplastic or thermosetting hot melt adhesive, said method comprising the steps of:
a) providing one substantially uniform separate portion of an adhesive composition;
b) sufficiently solidifying said portion for packaging;
c) selecting a plastic packaging material having a softening point below about 120° C., and having physical characteristics which are compatible with and do not substantially adversely affect the adhesive characteristics of a molten mixture of said adhesive and said material and whereby said mixture is substantially compatible with the operation of hot melt application equipment;
d) substantially completely surrounding said sufficiently solidified adhesive portion with said plastic packaging material.
2. The method according to claim 1, further comprising, before step b), as a step a) coating the adhesive with a separating, anti-stick substance and pre-cooling the adhesive composition.
3. The method according to claim 1, wherein the packaging material is a wrap, a sack or a bag made of a plastic film or a net or a similar apertured enclosure made of plastic, preferably weighing between 0.1 and 3% by weight with respect to the weight of the adhesive composition contained in the package.
4. The method according to claim 3, wherein the packaging material is a sack or bag sealed by welding after filling with the adhesive composition.
5. A method of packaging a thermoplastic or thermosetting hot melt adhesive, said method comprising the steps of:
a) providing a plurality of substantially uniform separate portions of an adhesive composition;
b) sufficiently solidifying all said portions for packaging;
c) forming a batch comprising the plurality of solidified portions,
d) selecting a plastic packaging material having a softening point below about 120° C. and having physical characteristics which are compatible with and do not substantially adversely affect the adhesive characteristics of a molten mixture of said adhesive and said material and whereby said mixture is substantially compatible with the operation of hot melt application equipment;
e) substantially completely surrounding said batch with said plastic packaging material.
6. The method according to claim 5, further comprising, before step b), as a step a) coating the adhesive with a separating, anti-stick substance and pre-cooling the adhesive composition.
7. The method according to claim 5, wherein the packaging material is a sack or a bag made of plastic film or a net or similar apertured enclosure made of plastic, preferably weighing between 0.1 and 3% by weight with respect to the weight of the adhesive composition contained in the package.
8. The method according to claim 5, the portions being provided by separating a continuous mass of adhesive composition into roughly pillow-shaped pieces weighing between 0.1 and 50 grams.
9. The method according to claim 8, the adhesive composition having a high softening point above about 120° C. and the packaging being a sack of plastic film material or a net or similar apertured enclosure made of plastic.
10. The method according to claim 8, the adhesive composition having a low softening point between about 50° C. and 105° C., and the packaging being a bag of plastic film material, said bag being sealed by welding after filling with the adhesive.
11. The method according to claim 10, the bag taking a batch of about 100 to 4000 grams of pillow-shaped adhesive composition portion pieces.
12. The method according to claim 10, the plastics film packaging material having a softening point substantially corresponding to the softening point of the adhesive composition.
13. The method according to claim 10, the plastics film material having a thickness in the range between about 5 μm and 200 μm.
14. The method according to claim 9, the plastic material being selected from the group consisting of ethylene based polymers, including ethylene/vinyl acetate, ethylene acrylate, ethylene methacrylate, ethylene methyl acrylate, ethylene methyl methacrylate, high and low density polyethylene, polyethylene blends and chemically modified polyethylene, copolymers of ethylene and 1-6 mono- or di-unsaturated monomers, polyamides, polybutadiene rubber, polyesters such as polyethylene terephthalate, polybutylene terephthalate; thermoplastic polycarbonates, atactic poly-alphaolefins, including atactic polypropylene, and others; thermoplastic polyacrylamides, polyacrylonitrile, copolymers of acrylonitrile and other monomers such as butadiene styrene; polymethyl pentene, polyphenylene sulfide, aromatic polyurethanes; styrene-acrylonitrile, acrylonitrile-butadiene-styrene, styrene-butadiene rubbers, polyethylene terephthalate, acrylonitrile-butadiene-styrene elastomers, polyphenylene sulfide, A--B, A--B--A, A--(B--A)n --B, (A--B)n --Y block polymers wherein the A comprises a polyvinyl aromatic block, the B block comprises a rubbery midblock which can be partly hydrogenated, and mixtures of said substances.
15. The method according to claim 9, the adhesive composition portion pieces being cooled to ambient or below ambient in a cooling bath at least on their outsides and thereafter conveyed to a netting or bagging station for packaging.
16. The method according to claim 10, the bag filled with the adhesive composition portion pieces being weld-sealed.
17. The method according to claim 10, at least most of the air remaining in the bag after filling being removed, bringing the packaging film material into close contact with the adjoining adhesive composition pieces.
18. The method according to claim 17, the filled and sealed bag being compressed or evacuated, and air being forced out from around and between the portion pieces and out of the bag through pores, punctures and perforations in the film material and/or through openings in the weld seam, the batch of adhesive composition pieces being compacted and the packaging film material being adhered to the surfaces of the compacted batch.
19. The method according to claim 18, the adhesive in the bag being sufficiently re-heated before compression or allowed to retain sufficient internal heat in the cooling step to facilitate deformation of the packaged adhesive composition portion pieces during compression.
20. The method according to claim 18, the compression being provided by means of a press.
21. The method according to claim 18, the compression being provided by the weight of the stacked filled bags under the influence of elevated ambient temperature, especially through stacking the bags in delivery boxes, crates, cartons and such like, and storing same in a sufficiently heated room.
22. The method according to claim 18, the compression being carried out at an elevated temperature of 30° C. to 150° C.
23. A method of packaging a thermoplastic or thermosetting hot melt adhesive, said method comprising the steps of:
a) providing an adhesive composition in flowable form, . .sufficiently plastified.!. for packaging;
b) inserting at least one portion of said flowable. .,plastified.!. adhesive composition into a plastics packaging material enclosure;
c) selecting a packaging material having a softening point below about 120° C. and having physical characteristics which are compatible with and do not substantially adversely affect the adhesive characteristics of a molten mixture of said adhesive and said material and whereby said mixture is substantially compatible with the operation of the hot melt application equipment; and
d) separating and substantially surrounding said at least one portion with said plastics packaging material.
24. The method according to claim 23, further comprising, before step b), . .as a.!. .Iadd.and after .Iaddend.step a) .Iadd.an additional step a') .Iaddend.coating the adhesive with a separate, anti-stick substance and pre-cooling the adhesive to a flowable. ., plastified.!. state. ., of the adhesive composition.!..
25. The method according to claim 23, wherein the packaging material enclosure is a sack or a bag made of plastic film or a net or a similar apertured enclosure made of plastic, preferably weighing between 0.1 and 3% by weight with respect to the weight of the adhesive composition contained in the package.
26. The method according to claim 25, wherein the packaging material enclosure is a sack or bag sealed by welding after filling with the adhesive composition.
27. The method according to claim 23, wherein the flowable. ., plastified.!. composition has a softening point temperature of between 50° C. and 100° C.
28. The method according to claim 23, wherein the flowable. ., plastified.!. composition is provided by means of a melt extruder having cooling means for adjusting the temperature of the extrudate.
29. The method according to claim 1, the plastic packaging material having a melting or softening point of below about 125° C.
30. The method of claim 8 wherein the softening point of the adhesive is below 120° C.
31. The method of claim 8 wherein the softening point of the adhesive is about 80° C.
32. The method of claim 8 wherein the batch is about 250 to 1000 grams.
33. The method of claim 10 wherein the film thickness is 15 μm to 50 μm.
34. The method of claim 1 wherein the packaging material has a softening point of about 90° C. to 120° C.
35. A method of packaging a synthetic block polymer based hot melt adhesive, said method comprising the steps of:
(a) providing one substantially uniform separate portion of an adhesive composition comprising a synthetic block polymer based hot-melt adhesive;
(b) sufficiently solidifying said portion for packaging;
(c) selecting a polyethylene packaging material which is meltable together with the adhesive composition and blendable into the adhesive composition in a molten state, said packaging material being chosen so as to not disadvantageously effect the properties of the adhesive composition when blended into same, and to be substantially compatible with the operation of hot melt application equipment; and
(d) substantially completely surrounding said sufficiently solidified portion with said polyethylene packaging material.
36. The method according to claim 35 wherein said film material has a thickness in the range between about 5 μm and 50 μm.
37. The method according to claim 35 wherein said film material has a softening point below about 120° C.
38. The method of claim 1 comprising the additional step of applying said molten mixture through hot melt application equipment having an orifice less than about 0.025 inches in diameter.
39. The method of claim 5 comprising the additional step of applying said molten mixture through hot melt application equipment having an orifice less than about 0.025 inches in diameter.
40. The method of claim 23 comprising the additional step of applying said molten mixture through hot melt application equipment having an orifice less than about 0.025 inches in diameter. .Iadd.
41. A method of packaging a thermoplastic or thermosetting hot melt adhesive, said method comprising the steps of:
a) providing an enclosure comprising a film material having a softening point below about 120° C., said film material being compatible with and not substantially adversely affecting the adhesive characteristics of a molten mixture of said adhesive and said material, and the operation of hot melt application equipment;
b) extruding a hot melt adhesive directly into said enclosure until a desired amount of adhesive is received; and
c) sealing said enclosure to substantially surround said hot melt adhesive. .Iaddend..Iadd.42. The method according to claim 41 wherein the adhesive has a softening point between about 50° C. and 100° C. .Iaddend..Iadd.43. The method according to claim 41 wherein the film material has a softening point of about 90° C. to 120° C. .Iadd.44. A method of packaging a thermoplastic or thermosetting hot melt adhesive, said method comprising the steps of:
a) providing an enclosure comprising a film material having a softening point below about 120° C., said film material being compatible with and not substantially adversely affecting the adhesive characteristics of a molten mixture of said adhesive and said material, and the operation of hot melt application equipment;
b) filling said enclosure with hot melt adhesive until a desired amount of adhesive is received;
c) sealing said enclosure to substantially surround said hot melt adhesive.
.Iaddend..Iadd.45. The method according to claim 44 wherein the adhesive has a softening point between about 50° C. and 100° C. .Iaddend..Iadd.46. The method according to claim 44 wherein the film material has a softening point of about 90° C. to 120° C. .Iaddend..Iadd.47. A method of packaging a hot melt adhesive, the method comprising forming a film material enclosure substantially surrounding a thermoplastic hot melt adhesive composition having a softening point less than about 120° C., the adhesive comprising a thermoplastic polymer and a tackifying resin, the film material having a softening point less than about 125° C., being compatible with and not substantially adversely affecting the adhesive characteristics of a molten mixture of said adhesive and said film material. .Iaddend..Iadd.48. The method of claim 1 wherein the packaging material has a sharp melting point. .Iaddend..Iadd.49. The method of claim 5 wherein the packaging material
has a sharp melting point. .Iaddend..Iadd.50. The method of claim 23 wherein the packaging material has a sharp melting point. .Iaddend..Iadd.51. The method of claim 35 wherein the packaging material has a sharp melting point. .Iaddend..Iadd.52. The method of claim 41 wherein the film material has a sharp melting point. .Iaddend..Iadd.53. The method of claim 44 wherein the film material has a sharp melting point. .Iaddend..Iadd.54. The method of claim 47 wherein the film material has a sharp melting point. .Iaddend..Iadd.55. The method according to claim 47 wherein the film material has a sharp melting point. .Iaddend.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/410,082 USRE36177E (en) | 1990-08-01 | 1995-03-24 | Method of packaging an adhesive composition and corresponding packaged article |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/EP1990/001267 WO1992002348A1 (en) | 1990-08-01 | 1990-08-01 | Method of packaging an adhesive composition and corresponding packaged article |
US73817691A | 1991-07-30 | 1991-07-30 | |
US08/017,962 US5257491A (en) | 1990-08-01 | 1993-02-12 | Method of packaging an adhesive composition and corresponding packaged article |
US08/410,082 USRE36177E (en) | 1990-08-01 | 1995-03-24 | Method of packaging an adhesive composition and corresponding packaged article |
Related Parent Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US73817691A Continuation | 1990-08-01 | 1991-07-30 | |
US08/017,962 Reissue US5257491A (en) | 1990-08-01 | 1993-02-12 | Method of packaging an adhesive composition and corresponding packaged article |
Publications (1)
Publication Number | Publication Date |
---|---|
USRE36177E true USRE36177E (en) | 1999-04-06 |
Family
ID=8165507
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/017,962 Ceased US5257491A (en) | 1990-08-01 | 1993-02-12 | Method of packaging an adhesive composition and corresponding packaged article |
US08/410,082 Expired - Lifetime USRE36177E (en) | 1990-08-01 | 1995-03-24 | Method of packaging an adhesive composition and corresponding packaged article |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/017,962 Ceased US5257491A (en) | 1990-08-01 | 1993-02-12 | Method of packaging an adhesive composition and corresponding packaged article |
Country Status (22)
Country | Link |
---|---|
US (2) | US5257491A (en) |
EP (2) | EP0469564B1 (en) |
JP (1) | JP2543273B2 (en) |
KR (1) | KR0120396B1 (en) |
AT (2) | ATE172661T1 (en) |
AU (1) | AU636237B2 (en) |
BR (1) | BR9103273A (en) |
CA (1) | CA2048151C (en) |
DE (3) | DE69130428T3 (en) |
DK (2) | DK0649718T4 (en) |
ES (2) | ES2125391T5 (en) |
FI (1) | FI94510C (en) |
HK (1) | HK1004747A1 (en) |
HU (1) | HU210916B (en) |
IE (1) | IE76733B1 (en) |
LV (1) | LV10406B (en) |
NO (1) | NO912990L (en) |
NZ (1) | NZ239178A (en) |
RU (1) | RU2096277C1 (en) |
TR (1) | TR27884A (en) |
TW (1) | TW209199B (en) |
WO (1) | WO1992002348A1 (en) |
Cited By (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6217697B1 (en) | 1996-08-15 | 2001-04-17 | Santrade Ltd. | Method for producing and coating melt portions as well as system and apparatus |
US6294249B1 (en) * | 1994-09-09 | 2001-09-25 | 3M Innovative Properties Company | Packaged pre-adhesive composition |
US20030100645A1 (en) * | 2001-08-01 | 2003-05-29 | Ahmed Sharf U. | Breathable biodegradable hot melt composition |
US20040018332A1 (en) * | 2002-07-25 | 2004-01-29 | Yuhong Hu | Remoistenable pre-applied adhesive |
US20040018333A1 (en) * | 2002-07-25 | 2004-01-29 | Chen Hao A. | Flooring with a 2-part adhesive |
US6706399B1 (en) | 2000-08-29 | 2004-03-16 | Eastman Chemical Company | Non-blocking polymeric articles |
US20060075723A1 (en) * | 2004-10-12 | 2006-04-13 | Herve Burriez | Device and method for packaging in block form a sheathed hot-melt adhesive product |
US20060093764A1 (en) * | 2004-10-29 | 2006-05-04 | Atul Mehta | Process for packaging plastic materials like hot melt adhesives |
US20070047853A1 (en) * | 2005-08-29 | 2007-03-01 | Exopack-Technology, Llc | Grease-resistant bag having adhesive closure, adhesive closure for bag, and related methods |
US20070047852A1 (en) * | 2005-08-29 | 2007-03-01 | Exopack-Technology, Llc | Grease-resistant pinch-bottom bag, adhesive closure for bag, and related methods |
US7232535B1 (en) * | 1995-05-08 | 2007-06-19 | Eastman Chemical Compamy | Process for coextruding a tacky amorphous propylene copolymer composition with a low viscosity polyolefin and article prepared thereby |
US20070249761A1 (en) * | 2006-03-30 | 2007-10-25 | Guymon Michael P | Systems and methods for providing a thermoplastic product that includes packaging therefor |
US7326042B2 (en) | 2002-12-24 | 2008-02-05 | Bostik Findley, Inc. | Apparatus for packaging hot melt adhesives using a mold and carrier |
US7350644B2 (en) * | 2002-10-21 | 2008-04-01 | National Starch And Chemical Investment Holding Corporation | Multi-layer film packaging of hot melt adhesive |
US20090324143A1 (en) * | 2005-08-19 | 2009-12-31 | Exopack, Llc. | Bags having composite structures and related methods |
US20100150479A1 (en) * | 2008-12-15 | 2010-06-17 | Exopack, Llc | Multi-layered bags and methods of manufacturing the same |
US20100158417A1 (en) * | 2008-12-22 | 2010-06-24 | Exopack, Llc | Multi-layered bags and methods of manufacturing the same |
WO2011005528A1 (en) | 2009-06-22 | 2011-01-13 | Gala Industries, Inc. | Continuous pelletizing, drying and bagging systems with improved throughput |
US20110089168A1 (en) * | 2009-10-19 | 2011-04-21 | Exopack, Llc | Microwavable bags for use with liquid oil and related methods |
US20110121222A1 (en) * | 2009-09-30 | 2011-05-26 | Guymon Michael P | Systems and methods for providing a dry froth material |
WO2011082049A1 (en) | 2009-12-31 | 2011-07-07 | Bostik Inc. | Process for packaging tacky polyester resins |
US8303871B2 (en) | 2005-11-28 | 2012-11-06 | Gala Industries, Inc | Apparatus and method for controlled pelletization processing |
US20130075298A1 (en) * | 2011-09-26 | 2013-03-28 | Crafco, Incorporated | Durable, consumable packaging system for hot melt materials and methods of making and using same |
US20130118128A1 (en) * | 2011-11-15 | 2013-05-16 | Andreas LUECKE | Composite film and packaging produced therefrom |
US20140099502A1 (en) * | 2011-05-31 | 2014-04-10 | Stora Enso Oyj | Heat-sealable biodegradable packaging material, a package made thereof, and use of a resin in extrusion coating |
US8955294B2 (en) | 2009-02-24 | 2015-02-17 | Gala Industries, Inc. | Continuous bagging processes and systems |
AU2013201055B2 (en) * | 2006-03-30 | 2015-11-26 | Maxwell Properties, Llc | Methods for providing a thermoplastic product that includes packaging therefor |
US20160137371A1 (en) * | 2012-05-17 | 2016-05-19 | Henkel IP & Holding GmbH | Integral hot melt adhesive packaging films and use thereof |
WO2016118687A1 (en) | 2015-01-21 | 2016-07-28 | Gala Industries, Inc. | Continuous bagging processes and systems |
US9925694B2 (en) | 2009-02-24 | 2018-03-27 | Gala Industries, Inc. | Continuous bagging processes and systems |
US9926102B2 (en) | 2014-06-05 | 2018-03-27 | Maxwell Properties, Llc | Systems and methods for providing a packaged thermoplastic material |
US10358296B2 (en) | 2015-09-18 | 2019-07-23 | Maxwell Properties, Llc | Systems and methods for delivering asphalt concrete |
US10619081B2 (en) | 2017-05-22 | 2020-04-14 | H.B. Fuller Company | Hot melt adhesive composition |
US11383496B2 (en) * | 2014-11-14 | 2022-07-12 | Maag Gala, Inc. | Film for bagging tacky materials |
US11993410B2 (en) | 2018-11-13 | 2024-05-28 | Tesa Se | Packaged viscoelastic polymer substance |
Families Citing this family (102)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2778631B1 (en) * | 1998-05-14 | 2002-08-23 | Nordson Corp | PROCESS AND INSTALLATION FOR PACKAGING A STICKY PRODUCT AND SIMILAR PRODUCTS |
RU2096277C1 (en) * | 1990-08-01 | 1997-11-20 | Х.Б.Фуллер Лайсенсинг энд Файнэнсинг Инк. | Glueing composition packing method (versions) and packed glueing composition (versions) |
AT397386B (en) * | 1992-02-24 | 1994-03-25 | Klepsch Liliana | DETACHABLE HOT SEALABLE FILM |
KR930017965A (en) * | 1992-02-28 | 1993-09-21 | 핀들리 어드히시브, 인코포레이티드 | Film for packaging cold flow adhesive composition |
EP0642404B1 (en) * | 1992-05-18 | 1998-09-02 | National Starch and Chemical Investment Holding Corporation | Method for packaging hot melt adhesives |
US5373682A (en) * | 1992-05-18 | 1994-12-20 | National Starch And Chemical Investment Holding Corporation | Method for tackless packaging of hot melt adhesives |
ES2106358T3 (en) * | 1992-07-06 | 1997-11-01 | Fuller H B Licensing Financ | A METHOD FOR PACKAGING AN ADHESIVE COMPOSITION AND THE COMPOSITION OF PACKAGING MATERIAL. |
EP0578857A1 (en) * | 1992-07-17 | 1994-01-19 | STEINMEYER KLEBETECHNIK GmbH | Method of melting adhesive thermo- or duroplastic materials |
US5333439A (en) * | 1992-09-22 | 1994-08-02 | Croda Apex Adhesives, Inc. | Hot-melt pressure sensitive adhesive packaging, preform, and method |
KR100253023B1 (en) * | 1992-12-09 | 2000-04-15 | 쉬한 존 엠. | Method for tackless packaging of hot melt adhesives |
US5443903A (en) * | 1993-02-25 | 1995-08-22 | Minnesota Mining And Manufacturing Company | Hot melt stick |
FR2704162B1 (en) * | 1993-04-22 | 1995-06-23 | Henkel France | METHOD OF CONTINUOUSLY ADHESIVE TREATMENT OF A HOT-MELT ADHESIVE ON THE SURFACE. |
US5819505A (en) * | 1993-04-22 | 1998-10-13 | Henkel France | Process for continuous abherent treatment of a surface adherent holt-melt adhesive |
US5499386A (en) * | 1993-07-09 | 1996-03-12 | Telefonaktiebolaget L M Ericsson | Best server selection in layered cellular radio system |
US6138441A (en) * | 1993-08-30 | 2000-10-31 | Henkel Kommanditgesellschaft Auf Aktien | Process for production of hotmelt adhesives |
DE4428746A1 (en) * | 1993-09-13 | 1995-03-16 | Inhaco Indanlagen Gmbh | Process for producing blanks for carriageway-marking material and bitumen as well as an apparatus for carrying out this process |
US5747573A (en) * | 1994-02-07 | 1998-05-05 | H. B. Fuller Licensing & Financing, Inc. | High heat resistant hot melt adhesive |
DE4404631A1 (en) * | 1994-02-14 | 1995-08-24 | Henkel Kgaa | Process for the self-sealing sealing of containers |
WO1996000747A1 (en) * | 1994-06-30 | 1996-01-11 | National Starch And Chemical Investment Holding Corporation | Process for coating hot melt adhesives |
AU672555B2 (en) | 1994-08-12 | 1996-10-03 | National Starch And Chemical Investment Holding Corporation | A production technique for blocks of hot melt adhesives |
AU704620B2 (en) * | 1994-09-09 | 1999-04-29 | Minnesota Mining And Manufacturing Company | Improvements in or relating to the manufacture of a packaged hot melt adhesive, of a hot melt adhesive material, and of an adhesive coated sheet |
IT1271770B (en) | 1994-12-16 | 1997-06-09 | Sav Ind Srl | MELTING PACKAGING PROCEDURE OF STICKY SUBSTANCES AND PACKAGING PLANT USING THAT PROCEDURE |
US6630238B2 (en) | 1995-02-16 | 2003-10-07 | 3M Innovative Properties Company | Blended pressure-sensitive adhesives |
US6063838A (en) * | 1995-02-16 | 2000-05-16 | 3M Innovative Properties Company | Blended pressure-sensitive adhesives |
CA2210479A1 (en) * | 1995-02-16 | 1996-08-29 | The Minnesota Mining & Manufacturing Company | Articles incorporating pressure-sensitive adhesives having improved adhesion to plasticized polyvinyl chloride |
US6632522B1 (en) | 1995-02-16 | 2003-10-14 | 3M Innovative Properties Company | Blended pressure-sensitive adhesives |
US5715654A (en) * | 1995-06-07 | 1998-02-10 | H. B. Fuller Licensing And Financing Inc. | Method for packaging thermoplastic compositions using a thermally conductive rigid mold |
US5669207A (en) * | 1995-06-23 | 1997-09-23 | H.B. Fuller Licensing & Financing, Inc. | Method for tackless packaging of hot melt adhesive |
DE69604402T2 (en) * | 1995-06-29 | 2000-03-23 | Minnesota Mining & Mfg | RETROREFLECTIVE MARKING BODY FOR WET ENVIRONMENTAL CONDITIONS |
US6451408B1 (en) | 1995-06-29 | 2002-09-17 | 3M Innovative Properties Company | Retroreflective article |
US6703108B1 (en) | 1995-06-29 | 2004-03-09 | 3M Innovative Properties Company | Wet retroreflective marking material |
US5902654A (en) * | 1995-09-08 | 1999-05-11 | Minnesota Mining And Manufacturing Company | Process for the packaged polymerization of olefinic monomers |
JP3792724B2 (en) * | 1995-11-16 | 2006-07-05 | エイチ・ビー・フラー・ライセンシング・アンド・ファイナンシング・インコーポレイテッド | Pellet polymer composition |
US5795834A (en) * | 1995-12-22 | 1998-08-18 | Minnesota Mining & Manufacturing Company | Adhesive tape and method of making |
US6303058B1 (en) | 1996-06-27 | 2001-10-16 | 3M Innovative Properties Company | Method of making profiled retroreflective marking material |
FR2753715B1 (en) * | 1996-09-26 | 1998-11-27 | METHOD OF ANTI-ADHERENT TREATMENT OF A HOT-MELT SURFACE ADHESIVE | |
FR2753714A1 (en) * | 1996-09-26 | 1998-03-27 | Henkel France | METHOD OF ANTI-ADHERENT TREATMENT OF A HOT-MELT SURFACE ADHESIVE |
US5725820A (en) * | 1996-10-03 | 1998-03-10 | The Reynolds Company | Method for forming a package of adhesive material in a non-tacky mold |
WO1998019852A1 (en) * | 1996-11-05 | 1998-05-14 | Minnesota Mining And Manufacturing Company | Process for packaging large blocks of cold-formable pressure-sensitive adhesives and resultant products |
FR2756258B1 (en) * | 1996-11-22 | 1998-12-24 | Ato Findley Sa | PACKAGING OF REACTIVE HOT MELT ADHESIVES |
US5848696A (en) * | 1996-11-25 | 1998-12-15 | Minnesota Mining & Manufacturing Company | Wrapped material, and method and apparatus for wrapping and unwrapping such material |
US6006497A (en) * | 1997-03-26 | 1999-12-28 | Reichhold Chemicals, Inc. | Methods and apparatus for preparing a hot melt adhesive |
US5945375A (en) * | 1997-03-31 | 1999-08-31 | Kimberly-Clark Worldwide, Inc. | Thermal dye diffusion coating and substrate |
DE19720705A1 (en) * | 1997-05-16 | 1998-11-19 | Basf Ag | Method and device for producing pressure sensitive adhesive tapes |
US6067776A (en) * | 1998-04-29 | 2000-05-30 | H. B. Fuller Licensing & Financing, Inc. | Method for packaging thermoplastic compositions comprising sufficiently cooling composition |
US6281166B1 (en) | 1998-02-20 | 2001-08-28 | Kimberly-Clark Worldwide | Thermal dye diffusion coating and substrate |
DE19913034A1 (en) * | 1998-05-13 | 1999-11-18 | Henkel Kgaa | Packaging of hot-melt adhesive |
US6076674A (en) | 1998-05-27 | 2000-06-20 | 3M Innovative Properties Company | Wrapped material, and method and apparatus for wrapping such material |
AU2347700A (en) * | 1998-12-10 | 2000-06-26 | Henkel Kommanditgesellschaft Auf Aktien | A process for packaging pressure-sensitive hotmelt adhesive |
US6430898B1 (en) * | 1998-12-18 | 2002-08-13 | H.B. Fuller Licensing & Financing, Inc. | Method of packaging a thermoplastic composition with a film having a low complex viscosity and corresponding packaged article |
US6533564B1 (en) * | 1999-02-10 | 2003-03-18 | Jowat Corporation | Apparatus for forming adhesive cartridges |
US6440334B2 (en) | 1999-06-11 | 2002-08-27 | 3M Innovative Properties Company | Method of making a retroreflective article |
DE10030909A1 (en) | 1999-07-09 | 2001-03-01 | Henkel Kgaa | Hot-melt adhesive in granulate form use for adhesive bonding of substrates where the granulate is melted and then applied to the substrate, has compact outer shell |
FR2797215B1 (en) * | 1999-08-06 | 2002-07-05 | Socrep Sa | EXTRUDED, MULTILAYERED AND TRANSPARENT PRODUCT COMPRISING A POLYCARBONATE LAYER |
US6155029A (en) * | 1999-11-02 | 2000-12-05 | Jain; Surendra | Packaging of hot melt adhesives |
DE19953971A1 (en) * | 1999-11-10 | 2001-05-31 | Henkel Kgaa | Containers containing a moisture-curing hot melt adhesive |
US6451236B1 (en) | 2000-02-02 | 2002-09-17 | Gentex Optics, Inc. | Method of making photochromic thermoplastics |
US6719812B1 (en) * | 2000-04-11 | 2004-04-13 | Gentex Optics, Inc. | Infusion of dye using a plasticizer |
EP1330391B1 (en) * | 2000-11-04 | 2008-08-13 | National Starch and Chemical Investment Holding Corporation | Packaging of low application hot melt adhesive formulations |
WO2002062677A1 (en) * | 2001-02-07 | 2002-08-15 | Webcater Ltd. | Glue stick package |
US20020160527A1 (en) | 2001-02-26 | 2002-10-31 | 3M Innovative Properties Company | Combinatorial library comprising pouches as packages for library members and method therefor |
KR20010102884A (en) * | 2001-10-12 | 2001-11-17 | 유명천 | Process for preparation of adhesives for wall papers and its packing system |
DE20201655U1 (en) | 2002-02-04 | 2002-04-18 | TESSERAUX SPEZIALVERPACKUNGEN GMBH, 68642 BüRSTADT | Composite film for packaging and packaging consisting of such a composite film |
EP1506337A4 (en) * | 2002-05-22 | 2007-08-22 | Armstrong World Ind Inc | Method of seaming linoleum sheets and the resulting visually seamless linoleum flooring system |
DE20213779U1 (en) * | 2002-09-06 | 2004-01-22 | Bischof + Klein Gmbh & Co. Kg | packaging |
US7010901B2 (en) | 2003-06-18 | 2006-03-14 | Matsumura Oil Research Corp. | Adhesive solid having anti-mutual adhesion, method of producing the same and method of packaging the same |
DE102004005877B3 (en) * | 2004-02-05 | 2005-10-06 | MÖKO Klebstoff GmbH Leipzig | Packaging for cold-rolled masses |
DE102004012611A1 (en) * | 2004-03-12 | 2005-10-06 | Pacomelt Gmbh | Packaging unit comprises a cover consisting of an inner layer and an outer layer joined to one another by means of a poorly adhesive glue layer |
US20050221035A1 (en) * | 2004-04-01 | 2005-10-06 | Derek Wyatt | Method for reducing freeze-thaw voids in uncured adhesives |
US7677419B2 (en) * | 2004-04-21 | 2010-03-16 | Nordson Corporation | Syringes and methods of syringe manufacturing |
GB0421856D0 (en) * | 2004-10-01 | 2004-11-03 | Bostik Ltd | Packaged sealants |
DE102005003162B4 (en) * | 2005-01-21 | 2007-10-25 | Svd Verpackungen Gmbh | Container for packaging strongly adhesive substances and the like, and method and device for its production |
DE102005020756B4 (en) * | 2005-05-02 | 2007-07-26 | Adtracon Gmbh | Packaging, process for further processing the hotmelt adhesive in the hotmelt-containing packaging, process for feeding the packaging |
JP4654812B2 (en) * | 2005-07-22 | 2011-03-23 | 株式会社デンソー | Machining method |
US20070178208A1 (en) | 2006-01-31 | 2007-08-02 | Moidl Joseph B | Method of reducing voids in dough |
DE102006060452A1 (en) * | 2006-12-19 | 2008-06-26 | Tesseraux Spezialverpackungen Gmbh | Composite film packaging for food and some cleaning agents comprises a multi-layered composite film having a surface consisting of a carrier film and a further layer having anti-adhesion properties |
JP2010526900A (en) | 2007-05-10 | 2010-08-05 | シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ | Paraffin wax composition |
HUE042651T2 (en) * | 2007-07-06 | 2019-09-30 | Coloplast As | Permeable pressure sensitive adhesive |
US8202934B2 (en) * | 2007-07-31 | 2012-06-19 | 3M Innovative Properties Company | Hot melt processable polyurea copolymers and methods of their preparation and use |
US20090078590A1 (en) * | 2008-01-21 | 2009-03-26 | Smith Dennis R | Ultrasecure card package |
EP2379662B1 (en) * | 2008-12-18 | 2018-02-21 | Coloplast A/S | A permeable pressure sensitive adhesive |
DE102010003896A1 (en) | 2010-04-13 | 2011-10-13 | Heimbach Gmbh & Co. Kg | adhesive assembly |
EP2415572A1 (en) | 2010-08-04 | 2012-02-08 | Henkel AG & Co. KGaA | Free-flowing pressure sensitive adhesives |
KR20140012666A (en) * | 2011-03-17 | 2014-02-03 | 헨켈 아게 운트 코. 카게아아 | Coated psa granules |
GB201120137D0 (en) * | 2011-11-22 | 2012-01-04 | Dynea Oy | Modified binder compositions |
KR20150095811A (en) * | 2012-12-14 | 2015-08-21 | 쓰리엠 이노베이티브 프로퍼티즈 캄파니 | Method of making packaged viscoelastic compositions by polymerizing ethylenically-unsaturated materials using ionizing radiation |
KR102213696B1 (en) | 2012-12-14 | 2021-02-08 | 쓰리엠 이노베이티브 프로퍼티즈 캄파니 | Method of polymerizing ethylenically-unsaturated materials using ionizing radiation |
JP6125317B2 (en) * | 2013-05-09 | 2017-05-10 | 東京応化工業株式会社 | Mold material processing method and structure manufacturing method |
WO2014194094A2 (en) | 2013-05-29 | 2014-12-04 | H.B. Fuller Company | Packaged hot-melt pressure sensitive adhesive |
US10550248B2 (en) * | 2013-08-23 | 2020-02-04 | Kuraray Co., Ltd. | Rubber composition and tire |
KR101540524B1 (en) * | 2013-12-24 | 2015-07-31 | 신재호 | Hot-melt adhesive and hot-melt wall paper |
DK2954995T3 (en) | 2014-06-12 | 2017-05-01 | Organik Kimya Sanayi Ve Tic A S | Process for producing a hot-melt pressure-sensitive adhesive HMPSA having a non-adhesive coating |
DE102015204468A1 (en) | 2015-03-12 | 2016-09-15 | Henkel Ag & Co. Kgaa | Cover material for pressure sensitive hot melt adhesives |
WO2016167924A1 (en) | 2015-04-13 | 2016-10-20 | 3M Innovative Properties Company | Method of preparing crosslinked pressure-sensitive adhesives using a light-emitting diode for crosslinking |
ITUB20156845A1 (en) * | 2015-12-11 | 2017-06-11 | Sav Holding S P A | PACKAGING PROCEDURE IN THIN FILM OF SUBSTANCES STURDY TO THE MOLTEN STATE |
PT3181323T (en) | 2015-12-15 | 2018-04-16 | Organik Kimya Sanayi Ve Tic A S | Process for producing tack-free hotmelt material and device for producing the same |
ITUA20161888A1 (en) * | 2016-03-22 | 2017-09-22 | Durante & Vivan S P A | REACTIVE HOT COLLE IN THE FORM OF 'BEARINGS'. |
KR101690953B1 (en) * | 2016-07-06 | 2016-12-29 | 김영남 | A wrapping paper for binder and manufacturing method thereof |
JP2019108144A (en) * | 2017-12-18 | 2019-07-04 | ヘンケルジャパン株式会社 | Film packaging type hot-melt adhesive |
KR102660597B1 (en) * | 2018-09-03 | 2024-04-26 | 코베스트로 (네덜란드) 비.브이. | Shoes comprising soles of thermoplastic materials and methods used to manufacture such shoes |
EP4018024A1 (en) | 2019-08-19 | 2022-06-29 | 3M Innovative Properties Company | Core-sheath filaments including crosslinkable and crosslinked adhesive compositions and methods of making the same |
RU2740290C1 (en) * | 2020-02-12 | 2021-01-12 | Николай Анатольевич Бердников | Method for atactic polypropylene molding |
Citations (50)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US619810A (en) * | 1899-02-21 | Richard dana upham | ||
US931350A (en) * | 1908-05-06 | 1909-08-17 | Thoma Corp | Package of sticky cement and method of making the same. |
US1056010A (en) * | 1910-08-04 | 1913-03-18 | Fred A Dailey | Plastic packing. |
US1607626A (en) * | 1922-02-06 | 1926-11-23 | Gen Rubber Co | Latex-shipping bale |
US2269660A (en) * | 1938-03-02 | 1942-01-13 | Goodrich Co B F | Method of preventing the adhesion of rubber |
US2287849A (en) * | 1940-08-17 | 1942-06-30 | Fruit Growers Exchange Ca | Antistick surface coating |
US2310712A (en) * | 1940-06-08 | 1943-02-09 | Reynolds Res Corp | Asphalt or resin shipping container |
US2332373A (en) * | 1942-03-03 | 1943-10-19 | Du Pont | Flexible transparent sheet material |
US2352865A (en) * | 1940-07-01 | 1944-07-04 | Smith Harry | Container for asphalt, tar, and like products |
GB567360A (en) * | 1942-06-17 | 1945-02-12 | Du Pont | Welding of ethylene polymer articles |
US2394616A (en) * | 1942-12-09 | 1946-02-12 | Standard Oil Dev Co | Surface coating for packaging polymers |
US2396633A (en) * | 1943-11-23 | 1946-03-19 | H D Roosen Company Inc | Nonadherent coating composition |
US2403964A (en) * | 1942-12-09 | 1946-07-16 | Standard Oil Dev Co | Surface coating for packaging polymers |
US2496609A (en) * | 1944-07-19 | 1950-02-07 | Martin Van Antwerpen | Combination presser and sealer |
US2572959A (en) * | 1945-03-24 | 1951-10-30 | Standard Oil Dev Co | Packaging tacky isobutylene-diolefin rubber in film of compatible styrene-isobutylene copolymer |
US2639808A (en) * | 1947-03-13 | 1953-05-26 | Du Pont | Packaging of tacky materials |
US2762504A (en) * | 1951-10-10 | 1956-09-11 | Exxon Research Engineering Co | Packaging tacky hydrocarbon polymers in polyethylene film |
US2791326A (en) * | 1955-12-07 | 1957-05-07 | Exxon Research Engineering Co | Packaging tacky butadiene-styrene rubber in film of compatible styrene-isobutylene copolymer |
US2931148A (en) * | 1957-06-10 | 1960-04-05 | Texas Us Chem Co | Method of wrapping tacky polymer as shipping package and apparatus therefor |
US3314536A (en) * | 1962-12-10 | 1967-04-18 | Swift & Co | Packaging adhesives in casings |
FR2000139A1 (en) * | 1968-01-11 | 1969-08-29 | Basf Ag | Powdered polyethylene as a separating agent for |
US3469363A (en) * | 1965-08-20 | 1969-09-30 | Exxon Research Engineering Co | Method and apparatus for packaging solid or semisolid material |
US3564808A (en) * | 1968-11-08 | 1971-02-23 | Exxon Research Engineering Co | Liquefiable material packaged in flexible plastic containers |
US3723035A (en) * | 1970-10-29 | 1973-03-27 | Fuller Co H | Apparatus for forming hot melt adhesives into a readily packageable form |
DE2248046A1 (en) * | 1972-09-30 | 1974-04-25 | Fuller H B Co | Packaging thermoplastics material - by melting forming to shape solidifying the outer surface and cutting |
US3827778A (en) * | 1971-12-13 | 1974-08-06 | Hughes Aircraft Co | Dual imaging concentric optics |
US3837778A (en) * | 1972-12-22 | 1974-09-24 | R Parker | Apparatus for package molding, roofing asphalt |
US3851438A (en) * | 1969-01-30 | 1974-12-03 | Nynaes Petroleum Ab | Method of producing a unit package containing bituminous material |
US4054632A (en) * | 1970-10-29 | 1977-10-18 | H. B. Fuller Company | Method for forming hot melt adhesives into a readily packageable form |
JPS5390324A (en) * | 1977-01-18 | 1978-08-09 | Yamabumi Yuka Kk | Packaging asphalt compound |
US4112158A (en) * | 1975-09-29 | 1978-09-05 | The Goodyear Tire & Rubber Company | Packaging films and packaged articles therewith |
US4306657A (en) * | 1974-02-12 | 1981-12-22 | Giorgio Levy | System for metering and film packaging of bitumen and like materials |
US4318475A (en) * | 1980-05-09 | 1982-03-09 | Crafco, Inc. | Asphalt container |
US4334615A (en) * | 1979-07-23 | 1982-06-15 | The Goodyear Tire & Rubber Company | Package for compounding rubber and compounded rubber |
DE3234065A1 (en) * | 1981-09-25 | 1983-04-14 | Dr. Rudolf Schieber Chemische Fabrik GmbH & Co KG, 7085 Bopfingen | Process for treating pressure-sensitive hot melt plastics produced in mixing units |
DE3138222C1 (en) * | 1981-09-25 | 1983-05-19 | Dr. Rudolf Schieber Chemische Fabrik GmbH & Co KG, 7085 Bopfingen | Release means for producing strands of hot-melt adhesive |
US4450962A (en) * | 1979-03-23 | 1984-05-29 | Russell Matthews Industries Limited | Packaging or containing of bituminous products |
GB2132164A (en) * | 1982-12-10 | 1984-07-04 | Bostik Ltd | Packing and dispensing meltable, moisture curable compositions |
EP0115307A2 (en) * | 1983-01-28 | 1984-08-08 | National Starch and Chemical Corporation | Process for preparing non-blocking hot melt adhesives |
EP0125126A1 (en) * | 1983-05-05 | 1984-11-14 | Protective Treatments Inc. | Article of hot-melt adhesive |
DE3327289A1 (en) * | 1983-07-28 | 1985-02-07 | Gebr. Kaiser, 4150 Krefeld | Process for finishing hot-melt contact adhesives |
US4514446A (en) * | 1978-08-07 | 1985-04-30 | Toray Silicone Company, Ltd. | Water impermeable package for room temperature-moisture curing one-part sealants |
GB2156302A (en) * | 1984-03-30 | 1985-10-09 | Nippon Spindle Mfg Co Ltd | Method and apparatus for packing a semisolid compound in bags |
DE8628513U1 (en) * | 1986-10-25 | 1986-12-04 | Heinrich Steinmeyer GmbH & Co KG, 6277 Bad Camberg | Individual packaging with a closed bottom area for cast-in hot melt adhesive |
DE8710132U1 (en) * | 1987-07-24 | 1987-09-17 | Elf Atochem Deutschland GmbH, 40474 Düsseldorf | Closed container for hot melt adhesive |
DE3625358A1 (en) * | 1986-07-26 | 1988-02-04 | H & H Hausdorf Ohg | Process for processing of viscous compositions, for example hot-melt adhesives |
US4748796A (en) * | 1983-03-01 | 1988-06-07 | Societe Nouvelle Raffinerie Meridionale De Ceresines - Belix | Method for conditioning in a well plate in a permanent adhesive composition |
EP0469564A1 (en) * | 1990-08-01 | 1992-02-05 | H.B. FULLER LICENSING & FINANCING, INC. | Method of packaging an adhesive composition and corresponding packaged article |
US5110641A (en) * | 1990-12-14 | 1992-05-05 | E. I. Du Pont De Nemours And Company | Melt-dispersible package for melt-processible polymers |
US5112552A (en) * | 1986-07-21 | 1992-05-12 | Ceca S.A. | Thermofusible autoadhesive shapes and process for their production |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3317368A (en) * | 1963-12-20 | 1967-05-02 | United Shoe Machinery Corp | Composite thermoplastic adhesives |
JPS55105517A (en) * | 1979-02-06 | 1980-08-13 | Du Pont | Method of melting and cutting ethylene polymer |
-
1990
- 1990-08-01 RU SU915001998A patent/RU2096277C1/en active
- 1990-08-01 WO PCT/EP1990/001267 patent/WO1992002348A1/en active Application Filing
-
1991
- 1991-07-30 DK DK94118872T patent/DK0649718T4/en active
- 1991-07-30 AT AT94118872T patent/ATE172661T1/en not_active IP Right Cessation
- 1991-07-30 AU AU81498/91A patent/AU636237B2/en not_active Expired
- 1991-07-30 ES ES94118872T patent/ES2125391T5/en not_active Expired - Lifetime
- 1991-07-30 ES ES91112831T patent/ES2097773T3/en not_active Expired - Lifetime
- 1991-07-30 DE DE69130428T patent/DE69130428T3/en not_active Expired - Lifetime
- 1991-07-30 EP EP91112831A patent/EP0469564B1/en not_active Revoked
- 1991-07-30 CA CA002048151A patent/CA2048151C/en not_active Expired - Lifetime
- 1991-07-30 DK DK91112831.2T patent/DK0469564T3/en active
- 1991-07-30 EP EP94118872A patent/EP0649718B2/en not_active Expired - Lifetime
- 1991-07-30 DE DE9116662U patent/DE9116662U1/en not_active Expired - Lifetime
- 1991-07-30 NZ NZ239178A patent/NZ239178A/en not_active IP Right Cessation
- 1991-07-30 DE DE69123301T patent/DE69123301T2/en not_active Revoked
- 1991-07-30 AT AT91112831T patent/ATE145582T1/en active
- 1991-07-31 FI FI913652A patent/FI94510C/en active
- 1991-07-31 TR TR00762/91A patent/TR27884A/en unknown
- 1991-07-31 BR BR919103273A patent/BR9103273A/en not_active IP Right Cessation
- 1991-07-31 NO NO91912990A patent/NO912990L/en not_active Application Discontinuation
- 1991-07-31 KR KR91013215A patent/KR0120396B1/en not_active IP Right Cessation
- 1991-07-31 IE IE270291A patent/IE76733B1/en not_active IP Right Cessation
- 1991-08-01 HU HU912564A patent/HU210916B/en unknown
- 1991-08-01 JP JP3192982A patent/JP2543273B2/en not_active Expired - Fee Related
- 1991-09-27 TW TW080107682A patent/TW209199B/zh active
-
1992
- 1992-12-29 LV LVP-92-557A patent/LV10406B/en unknown
-
1993
- 1993-02-12 US US08/017,962 patent/US5257491A/en not_active Ceased
-
1995
- 1995-03-24 US US08/410,082 patent/USRE36177E/en not_active Expired - Lifetime
-
1998
- 1998-05-06 HK HK98103875A patent/HK1004747A1/en not_active IP Right Cessation
Patent Citations (50)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US619810A (en) * | 1899-02-21 | Richard dana upham | ||
US931350A (en) * | 1908-05-06 | 1909-08-17 | Thoma Corp | Package of sticky cement and method of making the same. |
US1056010A (en) * | 1910-08-04 | 1913-03-18 | Fred A Dailey | Plastic packing. |
US1607626A (en) * | 1922-02-06 | 1926-11-23 | Gen Rubber Co | Latex-shipping bale |
US2269660A (en) * | 1938-03-02 | 1942-01-13 | Goodrich Co B F | Method of preventing the adhesion of rubber |
US2310712A (en) * | 1940-06-08 | 1943-02-09 | Reynolds Res Corp | Asphalt or resin shipping container |
US2352865A (en) * | 1940-07-01 | 1944-07-04 | Smith Harry | Container for asphalt, tar, and like products |
US2287849A (en) * | 1940-08-17 | 1942-06-30 | Fruit Growers Exchange Ca | Antistick surface coating |
US2332373A (en) * | 1942-03-03 | 1943-10-19 | Du Pont | Flexible transparent sheet material |
GB567360A (en) * | 1942-06-17 | 1945-02-12 | Du Pont | Welding of ethylene polymer articles |
US2403964A (en) * | 1942-12-09 | 1946-07-16 | Standard Oil Dev Co | Surface coating for packaging polymers |
US2394616A (en) * | 1942-12-09 | 1946-02-12 | Standard Oil Dev Co | Surface coating for packaging polymers |
US2396633A (en) * | 1943-11-23 | 1946-03-19 | H D Roosen Company Inc | Nonadherent coating composition |
US2496609A (en) * | 1944-07-19 | 1950-02-07 | Martin Van Antwerpen | Combination presser and sealer |
US2572959A (en) * | 1945-03-24 | 1951-10-30 | Standard Oil Dev Co | Packaging tacky isobutylene-diolefin rubber in film of compatible styrene-isobutylene copolymer |
US2639808A (en) * | 1947-03-13 | 1953-05-26 | Du Pont | Packaging of tacky materials |
US2762504A (en) * | 1951-10-10 | 1956-09-11 | Exxon Research Engineering Co | Packaging tacky hydrocarbon polymers in polyethylene film |
US2791326A (en) * | 1955-12-07 | 1957-05-07 | Exxon Research Engineering Co | Packaging tacky butadiene-styrene rubber in film of compatible styrene-isobutylene copolymer |
US2931148A (en) * | 1957-06-10 | 1960-04-05 | Texas Us Chem Co | Method of wrapping tacky polymer as shipping package and apparatus therefor |
US3314536A (en) * | 1962-12-10 | 1967-04-18 | Swift & Co | Packaging adhesives in casings |
US3469363A (en) * | 1965-08-20 | 1969-09-30 | Exxon Research Engineering Co | Method and apparatus for packaging solid or semisolid material |
FR2000139A1 (en) * | 1968-01-11 | 1969-08-29 | Basf Ag | Powdered polyethylene as a separating agent for |
US3564808A (en) * | 1968-11-08 | 1971-02-23 | Exxon Research Engineering Co | Liquefiable material packaged in flexible plastic containers |
US3851438A (en) * | 1969-01-30 | 1974-12-03 | Nynaes Petroleum Ab | Method of producing a unit package containing bituminous material |
US3723035A (en) * | 1970-10-29 | 1973-03-27 | Fuller Co H | Apparatus for forming hot melt adhesives into a readily packageable form |
US4054632A (en) * | 1970-10-29 | 1977-10-18 | H. B. Fuller Company | Method for forming hot melt adhesives into a readily packageable form |
US3827778A (en) * | 1971-12-13 | 1974-08-06 | Hughes Aircraft Co | Dual imaging concentric optics |
DE2248046A1 (en) * | 1972-09-30 | 1974-04-25 | Fuller H B Co | Packaging thermoplastics material - by melting forming to shape solidifying the outer surface and cutting |
US3837778A (en) * | 1972-12-22 | 1974-09-24 | R Parker | Apparatus for package molding, roofing asphalt |
US4306657A (en) * | 1974-02-12 | 1981-12-22 | Giorgio Levy | System for metering and film packaging of bitumen and like materials |
US4112158A (en) * | 1975-09-29 | 1978-09-05 | The Goodyear Tire & Rubber Company | Packaging films and packaged articles therewith |
JPS5390324A (en) * | 1977-01-18 | 1978-08-09 | Yamabumi Yuka Kk | Packaging asphalt compound |
US4514446A (en) * | 1978-08-07 | 1985-04-30 | Toray Silicone Company, Ltd. | Water impermeable package for room temperature-moisture curing one-part sealants |
US4450962A (en) * | 1979-03-23 | 1984-05-29 | Russell Matthews Industries Limited | Packaging or containing of bituminous products |
US4334615A (en) * | 1979-07-23 | 1982-06-15 | The Goodyear Tire & Rubber Company | Package for compounding rubber and compounded rubber |
US4318475A (en) * | 1980-05-09 | 1982-03-09 | Crafco, Inc. | Asphalt container |
DE3234065A1 (en) * | 1981-09-25 | 1983-04-14 | Dr. Rudolf Schieber Chemische Fabrik GmbH & Co KG, 7085 Bopfingen | Process for treating pressure-sensitive hot melt plastics produced in mixing units |
DE3138222C1 (en) * | 1981-09-25 | 1983-05-19 | Dr. Rudolf Schieber Chemische Fabrik GmbH & Co KG, 7085 Bopfingen | Release means for producing strands of hot-melt adhesive |
GB2132164A (en) * | 1982-12-10 | 1984-07-04 | Bostik Ltd | Packing and dispensing meltable, moisture curable compositions |
EP0115307A2 (en) * | 1983-01-28 | 1984-08-08 | National Starch and Chemical Corporation | Process for preparing non-blocking hot melt adhesives |
US4748796A (en) * | 1983-03-01 | 1988-06-07 | Societe Nouvelle Raffinerie Meridionale De Ceresines - Belix | Method for conditioning in a well plate in a permanent adhesive composition |
EP0125126A1 (en) * | 1983-05-05 | 1984-11-14 | Protective Treatments Inc. | Article of hot-melt adhesive |
DE3327289A1 (en) * | 1983-07-28 | 1985-02-07 | Gebr. Kaiser, 4150 Krefeld | Process for finishing hot-melt contact adhesives |
GB2156302A (en) * | 1984-03-30 | 1985-10-09 | Nippon Spindle Mfg Co Ltd | Method and apparatus for packing a semisolid compound in bags |
US5112552A (en) * | 1986-07-21 | 1992-05-12 | Ceca S.A. | Thermofusible autoadhesive shapes and process for their production |
DE3625358A1 (en) * | 1986-07-26 | 1988-02-04 | H & H Hausdorf Ohg | Process for processing of viscous compositions, for example hot-melt adhesives |
DE8628513U1 (en) * | 1986-10-25 | 1986-12-04 | Heinrich Steinmeyer GmbH & Co KG, 6277 Bad Camberg | Individual packaging with a closed bottom area for cast-in hot melt adhesive |
DE8710132U1 (en) * | 1987-07-24 | 1987-09-17 | Elf Atochem Deutschland GmbH, 40474 Düsseldorf | Closed container for hot melt adhesive |
EP0469564A1 (en) * | 1990-08-01 | 1992-02-05 | H.B. FULLER LICENSING & FINANCING, INC. | Method of packaging an adhesive composition and corresponding packaged article |
US5110641A (en) * | 1990-12-14 | 1992-05-05 | E. I. Du Pont De Nemours And Company | Melt-dispersible package for melt-processible polymers |
Non-Patent Citations (7)
Title |
---|
"Verpackungs-alternative fur Haftschmelz-klebstoffe", Allgemeiner Vliesstoff-Report Mar. 1992, Aus den Unternehmen Translated as Alternative Packaging for Hot melt Pressure-Sensitive Adhesive, General Report on Non-Woven Fabrics Mar. 1992--News from the Company. |
Derwent s Abstract, No. 92 44437/06, week 9206, Abstract of JP, A1, 3287683 (Tokiwa Kogyo KK), 18 Dec. 1991. * |
Derwent's Abstract, No. 92-44437/06, week 9206, Abstract of JP, A1, 3287683 (Tokiwa Kogyo KK), 18 Dec. 1991. |
France 2,544,654; translation, Oct. 1984. * |
Pack Free For Pressure Sensitive Hot Melt Adhesives, Surepack Ltd., product literature. * |
Swiss Patent 431,777, Translation. * |
Verpackungs alternative fur Haftschmelz klebstoffe , Allgemeiner Vliesstoff Report Mar. 1992, Aus den Unternehmen Translated as Alternative Packaging for Hot melt Pressure Sensitive Adhesive, General Report on Non Woven Fabrics Mar. 1992 News from the Company. * |
Cited By (55)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6294249B1 (en) * | 1994-09-09 | 2001-09-25 | 3M Innovative Properties Company | Packaged pre-adhesive composition |
US7232535B1 (en) * | 1995-05-08 | 2007-06-19 | Eastman Chemical Compamy | Process for coextruding a tacky amorphous propylene copolymer composition with a low viscosity polyolefin and article prepared thereby |
US6217697B1 (en) | 1996-08-15 | 2001-04-17 | Santrade Ltd. | Method for producing and coating melt portions as well as system and apparatus |
US6706399B1 (en) | 2000-08-29 | 2004-03-16 | Eastman Chemical Company | Non-blocking polymeric articles |
US7910645B2 (en) | 2001-08-01 | 2011-03-22 | H.B. Fuller Company | Breathable biodegradable hot melt composition |
US20030100645A1 (en) * | 2001-08-01 | 2003-05-29 | Ahmed Sharf U. | Breathable biodegradable hot melt composition |
US20040018333A1 (en) * | 2002-07-25 | 2004-01-29 | Chen Hao A. | Flooring with a 2-part adhesive |
US6794001B2 (en) * | 2002-07-25 | 2004-09-21 | Mannington Mills, Inc. | Flooring with a 2-part adhesive |
US20040018332A1 (en) * | 2002-07-25 | 2004-01-29 | Yuhong Hu | Remoistenable pre-applied adhesive |
US7235608B2 (en) | 2002-07-25 | 2007-06-26 | National Starch And Chemical Investment Holding Corporation | Remoistenable pre-applied adhesive |
US7350644B2 (en) * | 2002-10-21 | 2008-04-01 | National Starch And Chemical Investment Holding Corporation | Multi-layer film packaging of hot melt adhesive |
US20080141629A1 (en) * | 2002-12-24 | 2008-06-19 | Bostik Findley, Inc. | Method and Apparatus for Packaging Hot Melt Adhesives Using a Mold and Carrier |
US7326042B2 (en) | 2002-12-24 | 2008-02-05 | Bostik Findley, Inc. | Apparatus for packaging hot melt adhesives using a mold and carrier |
US20060075723A1 (en) * | 2004-10-12 | 2006-04-13 | Herve Burriez | Device and method for packaging in block form a sheathed hot-melt adhesive product |
US7137235B2 (en) | 2004-10-12 | 2006-11-21 | Bostik Sa | Device and method for packaging in block form a sheathed hot-melt adhesive product |
US20060093764A1 (en) * | 2004-10-29 | 2006-05-04 | Atul Mehta | Process for packaging plastic materials like hot melt adhesives |
US7572494B2 (en) | 2004-10-29 | 2009-08-11 | Atul Mehta | Process for packaging plastic materials like hot melt adhesives |
US7328547B2 (en) | 2004-10-29 | 2008-02-12 | Bostik, Inc. | Process for packaging plastic materials like hot melt adhesives |
US20090324143A1 (en) * | 2005-08-19 | 2009-12-31 | Exopack, Llc. | Bags having composite structures and related methods |
US20070047852A1 (en) * | 2005-08-29 | 2007-03-01 | Exopack-Technology, Llc | Grease-resistant pinch-bottom bag, adhesive closure for bag, and related methods |
US20070047853A1 (en) * | 2005-08-29 | 2007-03-01 | Exopack-Technology, Llc | Grease-resistant bag having adhesive closure, adhesive closure for bag, and related methods |
US8303871B2 (en) | 2005-11-28 | 2012-11-06 | Gala Industries, Inc | Apparatus and method for controlled pelletization processing |
WO2007124237A3 (en) * | 2006-03-30 | 2009-04-16 | Maxwell Products Inc | Systems and methods for providing a thermoplastic product that includes packaging therefor |
US20070249761A1 (en) * | 2006-03-30 | 2007-10-25 | Guymon Michael P | Systems and methods for providing a thermoplastic product that includes packaging therefor |
US8283409B2 (en) | 2006-03-30 | 2012-10-09 | Maxwell Products, Inc. | Systems and methods for providing a thermoplastic product that includes packaging therefor |
US9592941B2 (en) | 2006-03-30 | 2017-03-14 | Maxwell Products, Inc. | Systems and methods for providing a thermoplastic product that includes packaging therefor |
AU2013201055B2 (en) * | 2006-03-30 | 2015-11-26 | Maxwell Properties, Llc | Methods for providing a thermoplastic product that includes packaging therefor |
US8952089B2 (en) | 2006-03-30 | 2015-02-10 | Maxwell Products, Inc. | Systems and methods for providing a thermoplastic product that includes packaging therefor |
AU2007240532B2 (en) * | 2006-03-30 | 2013-08-22 | Maxwell Properties, Llc | Systems and methods for providing a thermoplastic product that includes packaging therefor |
US8017681B2 (en) | 2006-03-30 | 2011-09-13 | Maxwell Products, Inc. | Systems and methods for providing a thermoplastic product that includes packaging therefor |
US9056697B2 (en) | 2008-12-15 | 2015-06-16 | Exopack, Llc | Multi-layered bags and methods of manufacturing the same |
US20100150479A1 (en) * | 2008-12-15 | 2010-06-17 | Exopack, Llc | Multi-layered bags and methods of manufacturing the same |
US20100158417A1 (en) * | 2008-12-22 | 2010-06-24 | Exopack, Llc | Multi-layered bags and methods of manufacturing the same |
US8282539B2 (en) | 2008-12-22 | 2012-10-09 | Exopack, Llc | Multi-layered bags and methods of manufacturing the same |
US9925694B2 (en) | 2009-02-24 | 2018-03-27 | Gala Industries, Inc. | Continuous bagging processes and systems |
US8955294B2 (en) | 2009-02-24 | 2015-02-17 | Gala Industries, Inc. | Continuous bagging processes and systems |
WO2011005528A1 (en) | 2009-06-22 | 2011-01-13 | Gala Industries, Inc. | Continuous pelletizing, drying and bagging systems with improved throughput |
US20110121222A1 (en) * | 2009-09-30 | 2011-05-26 | Guymon Michael P | Systems and methods for providing a dry froth material |
US8604399B2 (en) | 2009-10-19 | 2013-12-10 | Exopack, Llc | Microwavable bags for use with liquid oil and related methods |
US20110089168A1 (en) * | 2009-10-19 | 2011-04-21 | Exopack, Llc | Microwavable bags for use with liquid oil and related methods |
WO2011082049A1 (en) | 2009-12-31 | 2011-07-07 | Bostik Inc. | Process for packaging tacky polyester resins |
US20140099502A1 (en) * | 2011-05-31 | 2014-04-10 | Stora Enso Oyj | Heat-sealable biodegradable packaging material, a package made thereof, and use of a resin in extrusion coating |
US10399744B2 (en) * | 2011-05-31 | 2019-09-03 | Stora Enso Oyj | Heat-sealable biodegradable packaging material, a package made thereof, and use of a resin in extrusion coating |
US20130075298A1 (en) * | 2011-09-26 | 2013-03-28 | Crafco, Incorporated | Durable, consumable packaging system for hot melt materials and methods of making and using same |
US9919854B2 (en) * | 2011-09-26 | 2018-03-20 | Crafco, Incorporated | Durable, consumable packaging system for hot melt materials and methods of making and using same |
US10220993B2 (en) | 2011-09-26 | 2019-03-05 | Crafco, Incorporated | Durable, consumable packaging system for hot melt materials and methods of making and using same |
US20130118128A1 (en) * | 2011-11-15 | 2013-05-16 | Andreas LUECKE | Composite film and packaging produced therefrom |
US20160137371A1 (en) * | 2012-05-17 | 2016-05-19 | Henkel IP & Holding GmbH | Integral hot melt adhesive packaging films and use thereof |
US10364079B2 (en) * | 2012-05-17 | 2019-07-30 | Henkel IP & Holding GmbH | Integral hot melt adhesive packaging films and use thereof |
US9926102B2 (en) | 2014-06-05 | 2018-03-27 | Maxwell Properties, Llc | Systems and methods for providing a packaged thermoplastic material |
US11383496B2 (en) * | 2014-11-14 | 2022-07-12 | Maag Gala, Inc. | Film for bagging tacky materials |
WO2016118687A1 (en) | 2015-01-21 | 2016-07-28 | Gala Industries, Inc. | Continuous bagging processes and systems |
US10358296B2 (en) | 2015-09-18 | 2019-07-23 | Maxwell Properties, Llc | Systems and methods for delivering asphalt concrete |
US10619081B2 (en) | 2017-05-22 | 2020-04-14 | H.B. Fuller Company | Hot melt adhesive composition |
US11993410B2 (en) | 2018-11-13 | 2024-05-28 | Tesa Se | Packaged viscoelastic polymer substance |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
USRE36177E (en) | Method of packaging an adhesive composition and corresponding packaged article | |
US5387623A (en) | Biodegradable adhesive packaging | |
EP1812297B1 (en) | Process for packaging plastic materials like hot melt adhesives | |
US5624986A (en) | Hot melt adhesive having controlled property change | |
US5627229A (en) | Hot melt adhesive having controlled property change | |
JP6463356B2 (en) | Hot melt adhesive and use thereof | |
EP0410412B1 (en) | Hot melt adhesive having controlled property change | |
EP0649378B1 (en) | A method of packaging an adhesive composition and the composition of the packaging | |
JP2709353B2 (en) | Self-adhesive adhesive and adhesive tape | |
US4247502A (en) | Cutting of high surface-tack hot melt adhesives | |
JP6669676B2 (en) | Hot melt adhesive and its use | |
US5404692A (en) | Process and composition for protecting and cushioning exterior surfaces | |
DK2954995T3 (en) | Process for producing a hot-melt pressure-sensitive adhesive HMPSA having a non-adhesive coating | |
KR100454196B1 (en) | The method of preparing filter paper coated by cross stripes with hot melt resin's compassion for package of medicine tool |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: H.B. FULLER LICENSING & FINANCING, INC., MINNESOTA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ROUYER, ALAIN;PARIENTE, EMMANUELLE;YEBOA-KODIE, PETER;AND OTHERS;REEL/FRAME:008463/0968;SIGNING DATES FROM 19961125 TO 19961129 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
FPAY | Fee payment |
Year of fee payment: 12 |