USRE35790E - System for drilling deviated boreholes - Google Patents
System for drilling deviated boreholes Download PDFInfo
- Publication number
- USRE35790E USRE35790E US08/582,832 US58283296A USRE35790E US RE35790 E USRE35790 E US RE35790E US 58283296 A US58283296 A US 58283296A US RE35790 E USRE35790 E US RE35790E
- Authority
- US
- United States
- Prior art keywords
- bit
- signals
- drill
- drilling
- drill string
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000005553 drilling Methods 0.000 title claims abstract description 59
- 238000000034 method Methods 0.000 claims abstract description 29
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 23
- 238000005755 formation reaction Methods 0.000 claims abstract description 23
- 230000005291 magnetic effect Effects 0.000 claims abstract description 11
- 230000004044 response Effects 0.000 claims abstract description 11
- 239000012530 fluid Substances 0.000 claims description 10
- 238000012544 monitoring process Methods 0.000 claims description 4
- 230000005251 gamma ray Effects 0.000 claims description 3
- 239000000463 material Substances 0.000 claims 1
- 230000001681 protective effect Effects 0.000 claims 1
- 229910000792 Monel Inorganic materials 0.000 description 15
- 230000008901 benefit Effects 0.000 description 7
- 230000005540 biological transmission Effects 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 238000013500 data storage Methods 0.000 description 3
- 238000006073 displacement reaction Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 239000000523 sample Substances 0.000 description 3
- 230000000712 assembly Effects 0.000 description 2
- 238000000429 assembly Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 125000006850 spacer group Chemical group 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003302 ferromagnetic material Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000000565 sealant Substances 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B7/00—Special methods or apparatus for drilling
- E21B7/04—Directional drilling
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B47/00—Survey of boreholes or wells
- E21B47/01—Devices for supporting measuring instruments on drill bits, pipes, rods or wirelines; Protecting measuring instruments in boreholes against heat, shock, pressure or the like
- E21B47/013—Devices specially adapted for supporting measuring instruments on drill bits
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B47/00—Survey of boreholes or wells
- E21B47/01—Devices for supporting measuring instruments on drill bits, pipes, rods or wirelines; Protecting measuring instruments in boreholes against heat, shock, pressure or the like
- E21B47/017—Protecting measuring instruments
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B47/00—Survey of boreholes or wells
- E21B47/02—Determining slope or direction
- E21B47/022—Determining slope or direction of the borehole, e.g. using geomagnetism
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B47/00—Survey of boreholes or wells
- E21B47/12—Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling
- E21B47/14—Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling using acoustic waves
- E21B47/16—Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling using acoustic waves through the drill string or casing, e.g. by torsional acoustic waves
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B47/00—Survey of boreholes or wells
- E21B47/12—Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling
- E21B47/14—Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling using acoustic waves
- E21B47/18—Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling using acoustic waves through the well fluid, e.g. mud pressure pulse telemetry
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B47/00—Survey of boreholes or wells
- E21B47/26—Storing data down-hole, e.g. in a memory or on a record carrier
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B7/00—Special methods or apparatus for drilling
- E21B7/04—Directional drilling
- E21B7/06—Deflecting the direction of boreholes
- E21B7/068—Deflecting the direction of boreholes drilled by a down-hole drilling motor
Definitions
- the present invention relates to the drilling of boreholes and to survey and logging techniques used to determine the path and lithology of the drilled borehole. More particularly, the invention relates to an improved system for sensing the inclination of a borehole formed by a drill bit rotated by a downhole motor, for telemetering borehole inclination and associated logging data to the surface while drilling, and for altering the drilling trajectory in response to the telemetered data.
- Drilling operators which power a drill bit by rotating the drill string at the surface have previously measured downhole parameters with sensors located closely adjacent the drill bit, and adjusted the drilling trajectory in response to the sensed information.
- U.S. Pat. No. 4,324,297 discloses strain gages located directly above the drill bit to measure the magnitude and direction of side forces on the bit. The sensed information is transmitted to the surface by an electrical line, and the bit weight and rotational speed of the drill string may be altered in response to the sensed information to vary drilling trajectory.
- the downhole motor or "drill motor” is powered by drilling mud pressurized by pumps at the surface and transmitted to the motor through the drill string to rotate the bit.
- the entire drill string need not be continually rotated during deviated drilling, which has significant advantages over the previously described technique, particularly when drilling highly deviated boreholes.
- a bent sub or bent housing may be used above the drill motor to achieve the angular displacement between the axis of rotation of the bit and the axis of the drill string, and thereby obtain the bend to effect curved drilling.
- the angular displacement may be obtained using a bent housing within the drill motor, by using an offset drive shaft axis for the drill motor, or by positioning a non-concentric stabilizer about the drill motor housing.
- a relatively straight borehole may be drilled by simultaneously rotating the drill string and actuating the downhole motor, while a curved section of borehole is drilled by activating the downhole motor while the drill string above the motor is not rotated.
- U.S. Pat. No. 4,361,192 discloses a borehole probe positioned within the drill pipe above a drill motor and connected to surface equipment via a wireline. The probe includes magnetomers and accelerometers which measure orientation relative to the earth's magnetic field, and accordingly the probe is constructed of a non-ferromagnetic material.
- MWD measuring-while-drilling
- MWD mud pulse telemetry systems transmit signals from the sensor package to the surface through the drilling mud in the drill pipe.
- Other MWD systems such as those disclosed in U.S. Pat. Nos. 4,320,473 and 4,562,559, utilize the drill string itself as the media for the transmitted signals.
- U.S. Pat. No. 4,577,701 employs an MWD system in conjunction with a downhole motor to telemeter wellbore direction information to the surface. The telemetered information may be used to determine the duration of drill string rotation required to effect a change in the borehole curvature as previously described.
- a downhole MWD tool typically comprises a battery pack or turbine, a sensor package, a mud pulse transmitter, and an interface between the sensor package and transmitter.
- the MWD tool When used with a downhole motor, the MWD tool is located above the motor.
- the electronic components of the tool are spaced substantially from the bit and accordingly are not subject to the high vibration and centrifugal forces acting on the bit.
- the sensor package may include various sensors, such as gamma ray, resistivity, porosity and temperature sensors for measuring formation characteristics or downhole parameters.
- the sensor package typically includes one or more sets of magnetometers and accelerometers for measuring the direction and inclination of the drilled borehole.
- the tool sensor package is placed in a non-magnetic environment by utilizing monel collars in the drill string both above and below the MWD tool.
- the desired length of the monel collars will typically be a function of latitude, well bore direction, and local anomalies.
- the sensor package for the MWD system is typically located from ten meters to fifty meters from the drill bit.
- the considerable spacing between the MWD sensor package and the drill bit has long been known to cause significant problems for the drilling operator, particularly with respect to the measurement of borehole inclination.
- the operator is often attempting to drill a highly deviated or substantially horizontal borehole, so that the borehole extends over a long length through the formation of interest.
- the formation itself may be relatively thin, e.g. only three meters thick, yet the operator is typically monitoring borehole conditions or parameters, such as inclination, thirty meters from the bit.
- the substantial advantage of a real time MWD system and the flexibility of a downhole motor for drilling highly deviated boreholes are thus minimized by the reality that the sensors for the MWD system are responsive to conditions spaced substantially from the bit.
- a suitable embodiment of the invention includes an MWD tool, a downhole motor power section having a bent housing a downhole motor bearing assembly, and a drill bit in descending order in a drill string.
- a tool sensor package for the MWD tool includes one or more magnetometers, and accordingly the tool is positioned within monel collars to minimize magnetic interference.
- a power pack, an inclination sensor, and a transmitter may each be provided within a sealed cavity within the housing of the downhole motor bearing assembly, and preferably within a lower portion of the bearing housing adjacent the bit box.
- the inclinometer senses the angular orientation of the housing and thus the inclination of the well bore at a position closely adjacent the bit.
- the signal from the inclinometer is transmitted to a receiver in the MWD tool, and borehole inclination data is then transmitted by the MWD system to the surface for computation and display.
- the inclination measurements are converted to frequency signals which are transmitted through the motor housing and drill string to the receiver in the MWD tool by a wireless system. Problems associated with power and data transmission wiring extending from the MWD tool to the inclinometer are avoided, yet the drilling operator benefits from inclination data sensed closely adjacent the bit.
- the motor housing is not rotated by the motor, so that the power pack, inclination sensor, and transmitter provided therein are not subject to continual centrifugal forces.
- Other conventional downhole sensors may also be provided within the bearing assembly housing closely adjacent the drill bit, and data may be reliably obtained and transmitted to the surface during the drilling mode thereby saving valuable drilling time. Also, much of the bit chatter is absorbed in the bearing assembly and torque transmission components along the drill motor, so that the sensors are not subject to high vibration although located closely adjacent the drill bit.
- a well bore direction sensor is provided within the MWD tool which is spaced substantially above the drill bit, while a well bore inclination sensor is positioned closely adjacent the drill bit within the housing of the drill motor bearing assembly.
- Data from the inclination sensor is transmitted to the MWD tool using a transmitter within the sealed cavity in the motor housing and a receiver in the MWD tool.
- Both well bore direction and well bore inclination data may then be transmitted to the surface in real time by mud pulse telemetry.
- the drilling operator is able to analyze inclination data sensed closely adjacent the bit, and thereby control the operation of the drill motor and the rotation of the drill string in response to this data to better maintain the drilled borehole at its desired inclination.
- Yet another feature of the present invention is that sensors are provided within a cavity in the bearing housing, thereby allowing data sensed closely adjacent the drill bit to be transmitted to the surface in real time and without interrupting drilling operations.
- a power pack, inclinometer, and transmitter are located within a sealed cavity in a lower portion of the bearing housing. These components may be easily serviced or replaced at the rig site.
- FIG. 1 is a simplified pictorial view of a drill string according to the present invention.
- FIG. 2 is a simplified schematic diagram illustrating the components of a typical drilling and borehole surveying system according to the present invention to sense borehole trajectory and transmit sensed data to the surface for altering the drilling trajectory.
- FIG. 3 is an axial section through a lower portion of a drill motor housing according to the present invention which schematically illustrates certain components within a sealed cavity in the motor housing.
- FIG. 1 depicts a simplified version of a system 10 according to the present invention for drilling a deviated borehole through earth formations while monitoring borehole characteristics or formation properties.
- This system includes a drill string 12 comprising lengths of conventional drill pipe extending from the surface 14 through a plurality of earth formations 16, 18.
- Borehole 20 is drilled by a rotary drill bit 22, which is powered by a fluid driven or mud motor 24 having a bent housing 26.
- the motor 24 rotates a drive shaft 28, which is guided at its lower end by radial and thrust bearings (not shown) within a bearing housing 30 affixed to the to housing of the mud motor.
- the motor 24 is driven by drilling mud which is forced by mud pumps 32 at the surface down the drill string 12.
- the majority of the drill string comprises lengths of metallic drill pipe, and various downhole tools 34, such as cross-over subs, stabilizer, jars, etc., may be included along the length of the drill string.
- One or more non-magnetic lengths of drill string 36 may be provided at the lower end of the drill string above the drill motor.
- a conventional cross-over sub 38 preferably interconnects the lower end of a monel collar 36 to a by-pass or dump valve sub 40, and the mud motor 24 is fixedly connected directly to the sub 40.
- a lower sub 42 is fixedly connected at the lower end of the bearing housing 30, and contains a sealed cavity with electronics, as discussed subsequently.
- a rotary bit sub or bit box 44 extends from the lower sub 42, and is rotatable with the drill bit 22.
- the drill pipe, the mud motor housing, the bearing housing, and any other housings coupled to the mud motor housing are rotated by the rotary table 56, and simultaneously the pumps 32 power the motor 24 to rotate the shaft 28 and the bit 22.
- drilling data representative of various sensed downhole parameters may be transmitted to the surface by an MWD tool 46 within one of the monel collars in the form of pressure pulses in the.
- Drilling mud which are received by a near surface sensor 48.
- the sensed data is then passed by lines 50 to a surface computer 52, which stores and processes the data for the drilling operator. If desired, data may be displayed in real time on a suitable medium such as paper or a screen 54.
- the mud motor 24 When the drilling operator desires to form a deviation or curve in the borehole, the mud motor 24 remains activated while the operator stops rotation of the drill string by the rotary table 56, with the result that the bit is caused to drill at an offset.
- the MWD system conventionally is not transmitting data to the surface, but data may still be sensed and briefly stored within the MWD tool 46.
- the rotary table 56 is again rotated to drill the borehole at the deviated angle, and during this stage stored data may be transmitted to the surface by the MWD tool.
- one or more sensors located very near the drill bit 22 and below the power section of the mud motor 24 provide information to a transmitter, which forwards the information by a wireless system to the MWD tool, which in turn transmits the information to the surface.
- the significant advantage of this invention is that data may be sensed very near the bit 22, rather than from 20 to 100 feet up from the bit where the MWD tool is typically located. This near bit sensing allows more meaningful data to be transmitted to the surface, since the operator would like to know the characteristics of the borehole and or the formation at a location very near the bit rather than at some location drilled hours previously.
- an accelerometer or inclinometer is preferably one of the near bit sensors, since information representing the inclination of the borehole closely adjacent the bit is valuable to the drilling operator.
- This data cannot be easily transmitted from a near bit location to the MWD tool, however, due to the presence of the intervening mud motor 24.
- the necessary complexity and desirable versatility of the mud motor are not well suited to accommodate conventional data transmission lines running through the motor. It is therefore preferred that the information is transmitted from a near bit location to the MWD tool by frequency modulated acoustic signals indicative of the sensed information.
- a near bit transmitter is provided within the lower sub 42, and a receiver is provided within the monel collar 36.
- FIG. 2 generally depicts in block diagram form the primary components of the system according to the present invention, and the same numeral designations will be used for components previously discussed.
- the drill bit 22 At the lowermost end of the drill string and moving upward are the drill bit 22, the drill bit box 44 and the drive shaft 28 which extends up to the mud motor 24.
- the bit, bit box, and drive shaft all rotate with the respect to the remaining components of the drill string.
- the lower sub 42 is provided above the bit box and includes a sealed cavity which houses an accelerometer 60, a near bit transmitter 62, a power supply 64, and preferably one or more sensors 66 other than an accelerometer. Information from each sensor is transmitted by conventional wiring to the transmitter 62, which then forwards frequency modulated signals indicative of the sensed information to the MWD receiver in the monel collar 36.
- a voltage to frequency convertor 63 may be used to convert voltage signals from any sensor to frequency signals.
- the signals from transmitter 62 may pass through the metal housing between the lower sub 42 and an MWD receiver 70 within the monel collar 36.
- the transmitted signals may have a frequency representative of the sensed data, or the amplitude of the frequency signals may be a function of the information from the near bit sensors.
- signals of various frequencies may be transmitted, preferably the transmitted signals are acoustic signals having a frequency in the range of from 500 to 2,000 Hz. Acoustic signals may be efficiently transmitted for a distance of up to 100 feet through either the drilling mud or the metal housings.
- radio frequency signals of from 30 kilo-Hz to 3,000 mega-Hz may be used as the signals transmitted between the near bit transmitter and the MWD receiver, and these radio frequency signals may require less consumption of energy than acoustic signals.
- the lower sub housing 42 may be keyed or otherwise fixed to and may structurally be an integral part of the housing for the bearing pack sub 30.
- a flexible coupling sub or bent sub 26 houses the drive shaft 28, and is fixedly connected at its lower end to the sub 30 and at its upper end to the drill motor sub 24.
- Subs 24, 26 and 30 are generally used as an assembly, and drilling operators commonly refer to this entire combination rather than only sub 24 as the downhole motor assembly.
- Fixed to the upper end of the drill motor sub 24 is by-pass sub 40, which includes conventional outlet ports for dumping excess fluid to the borehole.
- Monel collar 36 is fixed to the sub 40, and houses the MWD tool 46 generally shown in FIG. 1.
- Tool 46 includes a magnetometer or other magnetic sensor 67, a downhole data storage device or computer 68, an MWD receiver 70 a power supply 72, and an MWD transmitter 74.
- the magnetometer must be magnetically isolated from the metal housings for reasonable accuracy and reliability, and accordingly it is housed within the monel collar 36.
- other sensors such as backup sensors, could also be provided within the monel collar 36, although preferably sensors other than the magnetic sensor are located at the near bit location.
- near bit sensors provided within the sub 42 may include a weight on bit sensor, a torque sensor, resistivity sensor, a neutron porosity sensor, a formation density sensor, a gamma ray count sensor, and a temperature sensor. Data from each of these sensors may thus be transmitted by the transmitter 62 to the MWD receiver 70. Since sensor 67 is closely adjacent the downhole computer 68, information from this sensor may be hard-wired directly to the computer 68, while the remaining information is received by the receiver 70 then transmitted to the computer 68.
- Computer 68 may include both temporary data storage and data processing capabilities.
- information from various sensors may be encoded for each sensor and arranged by the computer so that like signals will be transmitted to the surface, with the signals from each sensor being coded for a particular sensor.
- Porosity signals, magnetometer signals, resistivity signals, inclination signals and temperature signals may thus be intermittantly transmitted to the surface by the MWD transmitter 74.
- Transmitter 74 preferably is a mud pulse transmitter, so that the information is passed by the pulse waves through the drilling mud in the drill string.
- the receiver 70, computer 68, transmitter 74 and any sensors within the monel collar may all be powered by the power supply 72.
- Data may be transmitted from the monel collar 36 to the surface receiver 48, and preferably is transmitted through the mud within the drill string 12.
- the surface computer 52 stores and processes this information, and information may be displayed to the drilling operator on a monitor panel or display 54.
- Information may be sensed, and data transmitted, processed and displayed in "real time", so that the drilling operator may visually see a representation of borehole or formation characteristics which are being monitored at a position closely adjacent the drill bit and below the drill motor.
- the information may be obtained and displayed while the drill motor is activated, and the displayed information represents data sensed substantially at the time it is displayed.
- FIG. 3 depicts the lower end of a suitable lower bearing housing secured to the end of the motor housing 26.
- the eccentric or set-off provided by the bent housing allows the reliable drilling of the deviated or curved borehole, and the housing 26 is provided below, i.e., nearer to the bit, than the motor 24.
- the sub 42 essentially provides a sealed cavity for the components shown in FIG. 2 within the sub 42, and may either be part of or attached to the assembly consisting of the mud motor 24 and/or the bearing housing 30, and optionally may also include the bent housing 26.
- the sealed cavity may be formed or by the housing for either the mud motor 24, the sub 26 or the housing 30, but preferably is within, below, or in part defined by the lower bearing housing so that it may be located near the bit 22.
- the mud motor 24 may either be a positive displacement motor or a turbine motor, and utilizes pressurized fluid to drive a shaft 20 which is guided by the bearing housing 30.
- the bearing housing 30 comprises one or more sleeve-shaped, axially aligned, normally stationary outer subs, which may be threadably connected to motor housing sub 26.
- the bearing housing 30 also includes a mandrel rotated by the drive shaft 28, with the mandrel in turn defining a "full bore” interior fluid passageway for transmitting fluid to cool and clean the drill bit.
- the annular spacing between the outer subs and the inner mandrel is typically occupied by a plurality of marine bearings, wear sleeves, thrust bearing assemblies, radial bearings, etc.
- the bearing housing assembly may be of the type wherein the bearings are lubricated by the drilling mud, or optionally may be sealed from the fluid passing through the mandrel and to the bit.
- FIG. 3 depicts an embodiment wherein the annular sealed cavity 76 is defined by a lower portion of the bearing housing 30 and constituting the bearing lower sub 42.
- the lower bearing sub 42 of the housing 30 includes an integral recess and U-shaped lower body 80 to define cavity 76.
- the sub 42 comprises an outer sleeve 82 which is threadably connected to body 80, with a fluid-tight seal being formed by O-rings 84, 86 between the radially outwardly projecting legs of the body 80 and the sleeve 82.
- a wear sleeve 92 and a radial bearing 88 are positioned within the sub 42.
- the inner cylindrical surface of the radial bearing 88 is slightly less than the inner diameter of body 80, so that a sleeve extension 90 of a lower spacer sleeve normally engages the radial bearing 88 but not the body 80.
- the spacer sleeve and thus the extension 90 are attached to mandrel 94, so that the sleeve 90 and mandrel 94 rotate with respect to the body 80.
- a mandrel ring 96 is attached to mandrel 94 to secure the lower end of the sleeve 90 in place.
- the mandrel defines a cylindrical full bore 98 for passing the drilling fluid to the bit, and the bit box 44 may be threadably secured directly to the lower end of mandrel 94.
- the sealed cavity 76 houses the FM transmitter 62, the accelerometer 60 to monitor borehole inclination, and a power supply 64, which may consist of a lithium battery pack or generator assembly. If the metal housings between the near bit sensors and the MWD receiver are used as the medium for transmitting FM signals, an electrical connector 61 may be used to electrically connect the output from the transmitter 62 to the sub 78. Any number of additional sensors represented by 66 may be provided within the sealed cavity to monitor near bit information. If desired, a small computer may also be provided within the cavity 76 to provide temporary data storage functions. The computer may include timing programs or circuitry to regulate the timing for transmitting FM signals for each of the sensors from the transmitter 62 to the receiver 70.
- a turbine or eddy current generator 65 may be provided for generating electrical power to recharge the battery pack 64 or to directly power the sensors, computer and transmitter within the cavity 76.
- the generator 65 is stationary with respect to the adjoining rotary mandrel 94, and accordingly may be powered by the mandrel driven by the motor 24, so that no additional power supply is required for the generator 65.
- a gel sealant 75 may be used to fill voids in the cavity 76 and thus protect the electric components from shock, vibration, etc.
- a fast, accurate, and low cost technique is provided for reliably obtaining and transmitting valuable near bit information past the drilling motor and to the surface.
- well bore inclination may be monitored at a near bit position, although well bore direction may be reliably sensed and transmitted to the surface from a position above the drill motor.
- Individual components of the system according to the present invention are commercially available, and the equipment is rig site service-able. Complex and unreliable hard-wiring techniques are not required to pass the information by the drill motor.
- the sensors are not normally rotated during ongoing drilling operations, so that the sensors and electrical components within the sealed cavity 76 are not subject to centrifugal forces caused by a drill bit rotating in the 50 to 600 RPM range.
- the sub 42 is substantially isolated from the high vibrational forces acting on the drill bit due to the various bearing assemblies within the bearing housing 30.
- the components in the sealed cavity 76 are further cushioned from vibration of the sub 78 due to the encapsulating gel 75.
- the angular or orientational position of the sensors within the sealed cavity 76 is fixed, and thus the position of any sensor with respect to the sub 42 and thus the drill string 12 may be determined and recorded.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Geology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Mining & Mineral Resources (AREA)
- Environmental & Geological Engineering (AREA)
- Fluid Mechanics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Geophysics (AREA)
- Acoustics & Sound (AREA)
- Remote Sensing (AREA)
- Earth Drilling (AREA)
- Geophysics And Detection Of Objects (AREA)
Abstract
Improved techniques are provided for drilling a deviated borehole through earth formations utilizing a rotary bit powered by a drill motor, and for obtaining information regarding the borehole or earth formations while drilling. An inclinometer is positioned below the drill motor and within a sealed cavity of a housing fixed to a drill motor sub, and a transmitter within the sealed cavity forwards acoustic or radial wave signals to a receiver provided in a measurement-while-drilling tool. The MWD tool may be provided within a non-magnetic portion of the drill string, and further houses an accelerometer for sensing borehole direction. Both borehole inclination and directional signals are transmitted to the surface by the MWD tool, and the drilling trajectory is altered in response to the signals.
Description
1. Field of the Invention
The present invention relates to the drilling of boreholes and to survey and logging techniques used to determine the path and lithology of the drilled borehole. More particularly, the invention relates to an improved system for sensing the inclination of a borehole formed by a drill bit rotated by a downhole motor, for telemetering borehole inclination and associated logging data to the surface while drilling, and for altering the drilling trajectory in response to the telemetered data.
2. Description of the Background
Drilling operators which power a drill bit by rotating the drill string at the surface have previously measured downhole parameters with sensors located closely adjacent the drill bit, and adjusted the drilling trajectory in response to the sensed information. U.S. Pat. No. 4,324,297 discloses strain gages located directly above the drill bit to measure the magnitude and direction of side forces on the bit. The sensed information is transmitted to the surface by an electrical line, and the bit weight and rotational speed of the drill string may be altered in response to the sensed information to vary drilling trajectory.
In recent years, drilling operators have increasingly utilized downhole motors to drill highly deviated wells. The downhole motor or "drill motor" is powered by drilling mud pressurized by pumps at the surface and transmitted to the motor through the drill string to rotate the bit. The entire drill string need not be continually rotated during deviated drilling, which has significant advantages over the previously described technique, particularly when drilling highly deviated boreholes. A bent sub or bent housing may be used above the drill motor to achieve the angular displacement between the axis of rotation of the bit and the axis of the drill string, and thereby obtain the bend to effect curved drilling. Alternatively, the angular displacement may be obtained using a bent housing within the drill motor, by using an offset drive shaft axis for the drill motor, or by positioning a non-concentric stabilizer about the drill motor housing. As disclosed in U.S. Pat. No. 4,492,276, a relatively straight borehole may be drilled by simultaneously rotating the drill string and actuating the downhole motor, while a curved section of borehole is drilled by activating the downhole motor while the drill string above the motor is not rotated. U.S. Pat. No. 4,361,192 discloses a borehole probe positioned within the drill pipe above a drill motor and connected to surface equipment via a wireline. The probe includes magnetomers and accelerometers which measure orientation relative to the earth's magnetic field, and accordingly the probe is constructed of a non-ferromagnetic material.
Significant improvements have occurred in measuring-while-drilling (MWD) technology, which allows downhole sensors to measure desired parameters and transmit data to the surface in real time, i.e., substantially instantaneously with the measurements. MWD mud pulse telemetry systems transmit signals from the sensor package to the surface through the drilling mud in the drill pipe. Other MWD systems, such as those disclosed in U.S. Pat. Nos. 4,320,473 and 4,562,559, utilize the drill string itself as the media for the transmitted signals. U.S. Pat. No. 4,577,701 employs an MWD system in conjunction with a downhole motor to telemeter wellbore direction information to the surface. The telemetered information may be used to determine the duration of drill string rotation required to effect a change in the borehole curvature as previously described.
A downhole MWD tool typically comprises a battery pack or turbine, a sensor package, a mud pulse transmitter, and an interface between the sensor package and transmitter. When used with a downhole motor, the MWD tool is located above the motor. The electronic components of the tool are spaced substantially from the bit and accordingly are not subject to the high vibration and centrifugal forces acting on the bit. The sensor package may include various sensors, such as gamma ray, resistivity, porosity and temperature sensors for measuring formation characteristics or downhole parameters. In addition, the sensor package typically includes one or more sets of magnetometers and accelerometers for measuring the direction and inclination of the drilled borehole. The tool sensor package is placed in a non-magnetic environment by utilizing monel collars in the drill string both above and below the MWD tool. The desired length of the monel collars will typically be a function of latitude, well bore direction, and local anomalies. As a result of the monel collars and the required length of the downhole motor (including the power section, the bent sub. the bearing assembly), the sensor package for the MWD system is typically located from ten meters to fifty meters from the drill bit.
The considerable spacing between the MWD sensor package and the drill bit has long been known to cause significant problems for the drilling operator, particularly with respect to the measurement of borehole inclination. The operator is often attempting to drill a highly deviated or substantially horizontal borehole, so that the borehole extends over a long length through the formation of interest. The formation itself may be relatively thin, e.g. only three meters thick, yet the operator is typically monitoring borehole conditions or parameters, such as inclination, thirty meters from the bit. The substantial advantage of a real time MWD system and the flexibility of a downhole motor for drilling highly deviated boreholes are thus minimized by the reality that the sensors for the MWD system are responsive to conditions spaced substantially from the bit.
The disadvantages of the prior art are overcome by the present invention. Improved techniques are hereinafter disclosed for more accurately monitoring borehole conditions or parameters, such as borehole inclination, while drilling a deviated borehole utilizing a downhole motor.
A suitable embodiment of the invention includes an MWD tool, a downhole motor power section having a bent housing a downhole motor bearing assembly, and a drill bit in descending order in a drill string. A tool sensor package for the MWD tool includes one or more magnetometers, and accordingly the tool is positioned within monel collars to minimize magnetic interference. A power pack, an inclination sensor, and a transmitter may each be provided within a sealed cavity within the housing of the downhole motor bearing assembly, and preferably within a lower portion of the bearing housing adjacent the bit box. The inclinometer senses the angular orientation of the housing and thus the inclination of the well bore at a position closely adjacent the bit. The signal from the inclinometer is transmitted to a receiver in the MWD tool, and borehole inclination data is then transmitted by the MWD system to the surface for computation and display.
The inclination measurements are converted to frequency signals which are transmitted through the motor housing and drill string to the receiver in the MWD tool by a wireless system. Problems associated with power and data transmission wiring extending from the MWD tool to the inclinometer are avoided, yet the drilling operator benefits from inclination data sensed closely adjacent the bit. The motor housing is not rotated by the motor, so that the power pack, inclination sensor, and transmitter provided therein are not subject to continual centrifugal forces. Other conventional downhole sensors may also be provided within the bearing assembly housing closely adjacent the drill bit, and data may be reliably obtained and transmitted to the surface during the drilling mode thereby saving valuable drilling time. Also, much of the bit chatter is absorbed in the bearing assembly and torque transmission components along the drill motor, so that the sensors are not subject to high vibration although located closely adjacent the drill bit.
According to a preferred method of the present invention, a well bore direction sensor is provided within the MWD tool which is spaced substantially above the drill bit, while a well bore inclination sensor is positioned closely adjacent the drill bit within the housing of the drill motor bearing assembly. Data from the inclination sensor is transmitted to the MWD tool using a transmitter within the sealed cavity in the motor housing and a receiver in the MWD tool. Both well bore direction and well bore inclination data may then be transmitted to the surface in real time by mud pulse telemetry. The drilling operator is able to analyze inclination data sensed closely adjacent the bit, and thereby control the operation of the drill motor and the rotation of the drill string in response to this data to better maintain the drilled borehole at its desired inclination.
It is an object of the invention to provide an improved system for enabling a drilling operator to more accurately determine borehole characteristics or formation parameters when drilling a well utilizing a downhole motor and an MWD tool for transmitting sensed information to the surface.
It is another object of the invention to provide sensors positioned closely adjacent the drill box and within a lower portion of the drill motor bearing housing. Signals from the sensors are transmitted to the MWD tool located above the drill motor utilizing a transmitter within the bearing housing and a receiver in the MWD tool. The signals are then transmitted to the surface utilizing the MWD tool.
It is a feature of the present invention that electrical conductors are not utilized extending from the MWD tool to the sensors within the lower portion of the bearing housing. The wireless transmission system avoids substantial cost increases for the downhole motor and does not adversely restrict the versatility of the motor.
Yet another feature of the present invention is that sensors are provided within a cavity in the bearing housing, thereby allowing data sensed closely adjacent the drill bit to be transmitted to the surface in real time and without interrupting drilling operations.
It is an advantage of this invention that a power pack, inclinometer, and transmitter are located within a sealed cavity in a lower portion of the bearing housing. These components may be easily serviced or replaced at the rig site.
These and further objects, features and advantages of the present invention will become apparent from the following detailed description, wherein reference is made to the figures in the accompanying drawings.
FIG. 1 is a simplified pictorial view of a drill string according to the present invention.
FIG. 2 is a simplified schematic diagram illustrating the components of a typical drilling and borehole surveying system according to the present invention to sense borehole trajectory and transmit sensed data to the surface for altering the drilling trajectory.
FIG. 3 is an axial section through a lower portion of a drill motor housing according to the present invention which schematically illustrates certain components within a sealed cavity in the motor housing.
FIG. 1 depicts a simplified version of a system 10 according to the present invention for drilling a deviated borehole through earth formations while monitoring borehole characteristics or formation properties. This system includes a drill string 12 comprising lengths of conventional drill pipe extending from the surface 14 through a plurality of earth formations 16, 18. Borehole 20 is drilled by a rotary drill bit 22, which is powered by a fluid driven or mud motor 24 having a bent housing 26. The motor 24 rotates a drive shaft 28, which is guided at its lower end by radial and thrust bearings (not shown) within a bearing housing 30 affixed to the to housing of the mud motor. The motor 24 is driven by drilling mud which is forced by mud pumps 32 at the surface down the drill string 12. The majority of the drill string comprises lengths of metallic drill pipe, and various downhole tools 34, such as cross-over subs, stabilizer, jars, etc., may be included along the length of the drill string.
One or more non-magnetic lengths of drill string 36, commonly referred to as monel collars, may be provided at the lower end of the drill string above the drill motor. A conventional cross-over sub 38 preferably interconnects the lower end of a monel collar 36 to a by-pass or dump valve sub 40, and the mud motor 24 is fixedly connected directly to the sub 40. A lower sub 42 is fixedly connected at the lower end of the bearing housing 30, and contains a sealed cavity with electronics, as discussed subsequently. A rotary bit sub or bit box 44 extends from the lower sub 42, and is rotatable with the drill bit 22.
During straight line drilling, the drill pipe, the mud motor housing, the bearing housing, and any other housings coupled to the mud motor housing are rotated by the rotary table 56, and simultaneously the pumps 32 power the motor 24 to rotate the shaft 28 and the bit 22. During such drilling data representative of various sensed downhole parameters may be transmitted to the surface by an MWD tool 46 within one of the monel collars in the form of pressure pulses in the. Drilling mud which are received by a near surface sensor 48. The sensed data is then passed by lines 50 to a surface computer 52, which stores and processes the data for the drilling operator. If desired, data may be displayed in real time on a suitable medium such as paper or a screen 54. When the drilling operator desires to form a deviation or curve in the borehole, the mud motor 24 remains activated while the operator stops rotation of the drill string by the rotary table 56, with the result that the bit is caused to drill at an offset. During this stage of drilling, the MWD system conventionally is not transmitting data to the surface, but data may still be sensed and briefly stored within the MWD tool 46. When the desired offset is drilled, the rotary table 56 is again rotated to drill the borehole at the deviated angle, and during this stage stored data may be transmitted to the surface by the MWD tool.
According to the present invention, one or more sensors located very near the drill bit 22 and below the power section of the mud motor 24 provide information to a transmitter, which forwards the information by a wireless system to the MWD tool, which in turn transmits the information to the surface. The significant advantage of this invention is that data may be sensed very near the bit 22, rather than from 20 to 100 feet up from the bit where the MWD tool is typically located. This near bit sensing allows more meaningful data to be transmitted to the surface, since the operator would like to know the characteristics of the borehole and or the formation at a location very near the bit rather than at some location drilled hours previously. In particular, an accelerometer or inclinometer is preferably one of the near bit sensors, since information representing the inclination of the borehole closely adjacent the bit is valuable to the drilling operator. This data cannot be easily transmitted from a near bit location to the MWD tool, however, due to the presence of the intervening mud motor 24. The necessary complexity and desirable versatility of the mud motor are not well suited to accommodate conventional data transmission lines running through the motor. It is therefore preferred that the information is transmitted from a near bit location to the MWD tool by frequency modulated acoustic signals indicative of the sensed information. Accordingly, a near bit transmitter is provided within the lower sub 42, and a receiver is provided within the monel collar 36.
FIG. 2 generally depicts in block diagram form the primary components of the system according to the present invention, and the same numeral designations will be used for components previously discussed. At the lowermost end of the drill string and moving upward are the drill bit 22, the drill bit box 44 and the drive shaft 28 which extends up to the mud motor 24. The bit, bit box, and drive shaft all rotate with the respect to the remaining components of the drill string. The lower sub 42 is provided above the bit box and includes a sealed cavity which houses an accelerometer 60, a near bit transmitter 62, a power supply 64, and preferably one or more sensors 66 other than an accelerometer. Information from each sensor is transmitted by conventional wiring to the transmitter 62, which then forwards frequency modulated signals indicative of the sensed information to the MWD receiver in the monel collar 36. A voltage to frequency convertor 63 may be used to convert voltage signals from any sensor to frequency signals. The signals from transmitter 62 may pass through the metal housing between the lower sub 42 and an MWD receiver 70 within the monel collar 36. The transmitted signals may have a frequency representative of the sensed data, or the amplitude of the frequency signals may be a function of the information from the near bit sensors. Although signals of various frequencies may be transmitted, preferably the transmitted signals are acoustic signals having a frequency in the range of from 500 to 2,000 Hz. Acoustic signals may be efficiently transmitted for a distance of up to 100 feet through either the drilling mud or the metal housings. Alternatively, radio frequency signals of from 30 kilo-Hz to 3,000 mega-Hz may be used as the signals transmitted between the near bit transmitter and the MWD receiver, and these radio frequency signals may require less consumption of energy than acoustic signals.
The lower sub housing 42 may be keyed or otherwise fixed to and may structurally be an integral part of the housing for the bearing pack sub 30. A flexible coupling sub or bent sub 26 houses the drive shaft 28, and is fixedly connected at its lower end to the sub 30 and at its upper end to the drill motor sub 24. Subs 24, 26 and 30 are generally used as an assembly, and drilling operators commonly refer to this entire combination rather than only sub 24 as the downhole motor assembly. Fixed to the upper end of the drill motor sub 24 is by-pass sub 40, which includes conventional outlet ports for dumping excess fluid to the borehole.
Data may be transmitted from the monel collar 36 to the surface receiver 48, and preferably is transmitted through the mud within the drill string 12. The surface computer 52 stores and processes this information, and information may be displayed to the drilling operator on a monitor panel or display 54. Information may be sensed, and data transmitted, processed and displayed in "real time", so that the drilling operator may visually see a representation of borehole or formation characteristics which are being monitored at a position closely adjacent the drill bit and below the drill motor. The information may be obtained and displayed while the drill motor is activated, and the displayed information represents data sensed substantially at the time it is displayed.
FIG. 3 depicts the lower end of a suitable lower bearing housing secured to the end of the motor housing 26. The eccentric or set-off provided by the bent housing allows the reliable drilling of the deviated or curved borehole, and the housing 26 is provided below, i.e., nearer to the bit, than the motor 24. The sub 42 essentially provides a sealed cavity for the components shown in FIG. 2 within the sub 42, and may either be part of or attached to the assembly consisting of the mud motor 24 and/or the bearing housing 30, and optionally may also include the bent housing 26. The sealed cavity may be formed or by the housing for either the mud motor 24, the sub 26 or the housing 30, but preferably is within, below, or in part defined by the lower bearing housing so that it may be located near the bit 22.
The mud motor 24 may either be a positive displacement motor or a turbine motor, and utilizes pressurized fluid to drive a shaft 20 which is guided by the bearing housing 30. The bearing housing 30 comprises one or more sleeve-shaped, axially aligned, normally stationary outer subs, which may be threadably connected to motor housing sub 26. The bearing housing 30 also includes a mandrel rotated by the drive shaft 28, with the mandrel in turn defining a "full bore" interior fluid passageway for transmitting fluid to cool and clean the drill bit. The annular spacing between the outer subs and the inner mandrel is typically occupied by a plurality of marine bearings, wear sleeves, thrust bearing assemblies, radial bearings, etc. to guide the rotatable mandrel with respect to the outer subs and absorb some of the thrust load on the drill bit. The bearing housing assembly may be of the type wherein the bearings are lubricated by the drilling mud, or optionally may be sealed from the fluid passing through the mandrel and to the bit.
FIG. 3 depicts an embodiment wherein the annular sealed cavity 76 is defined by a lower portion of the bearing housing 30 and constituting the bearing lower sub 42. The lower bearing sub 42 of the housing 30 includes an integral recess and U-shaped lower body 80 to define cavity 76. The sub 42 comprises an outer sleeve 82 which is threadably connected to body 80, with a fluid-tight seal being formed by O- rings 84, 86 between the radially outwardly projecting legs of the body 80 and the sleeve 82. A wear sleeve 92 and a radial bearing 88 are positioned within the sub 42. The inner cylindrical surface of the radial bearing 88 is slightly less than the inner diameter of body 80, so that a sleeve extension 90 of a lower spacer sleeve normally engages the radial bearing 88 but not the body 80. The spacer sleeve and thus the extension 90 are attached to mandrel 94, so that the sleeve 90 and mandrel 94 rotate with respect to the body 80. A mandrel ring 96 is attached to mandrel 94 to secure the lower end of the sleeve 90 in place. The mandrel defines a cylindrical full bore 98 for passing the drilling fluid to the bit, and the bit box 44 may be threadably secured directly to the lower end of mandrel 94.
The sealed cavity 76 houses the FM transmitter 62, the accelerometer 60 to monitor borehole inclination, and a power supply 64, which may consist of a lithium battery pack or generator assembly. If the metal housings between the near bit sensors and the MWD receiver are used as the medium for transmitting FM signals, an electrical connector 61 may be used to electrically connect the output from the transmitter 62 to the sub 78. Any number of additional sensors represented by 66 may be provided within the sealed cavity to monitor near bit information. If desired, a small computer may also be provided within the cavity 76 to provide temporary data storage functions. The computer may include timing programs or circuitry to regulate the timing for transmitting FM signals for each of the sensors from the transmitter 62 to the receiver 70. Also, a turbine or eddy current generator 65 may be provided for generating electrical power to recharge the battery pack 64 or to directly power the sensors, computer and transmitter within the cavity 76. The generator 65 is stationary with respect to the adjoining rotary mandrel 94, and accordingly may be powered by the mandrel driven by the motor 24, so that no additional power supply is required for the generator 65. Once the electrical components are properly positioned and electrically connected within the cavity 76, a gel sealant 75 may be used to fill voids in the cavity 76 and thus protect the electric components from shock, vibration, etc.
Those skilled in the art should now appreciate the numerous advantages of the system according to the present invention. A fast, accurate, and low cost technique is provided for reliably obtaining and transmitting valuable near bit information past the drilling motor and to the surface. In particular, well bore inclination may be monitored at a near bit position, although well bore direction may be reliably sensed and transmitted to the surface from a position above the drill motor. Individual components of the system according to the present invention are commercially available, and the equipment is rig site service-able. Complex and unreliable hard-wiring techniques are not required to pass the information by the drill motor. Although reliable near bit information is obtained, the sensors are not normally rotated during ongoing drilling operations, so that the sensors and electrical components within the sealed cavity 76 are not subject to centrifugal forces caused by a drill bit rotating in the 50 to 600 RPM range. Moreover, the sub 42 is substantially isolated from the high vibrational forces acting on the drill bit due to the various bearing assemblies within the bearing housing 30. Moreover, the components in the sealed cavity 76 are further cushioned from vibration of the sub 78 due to the encapsulating gel 75. The angular or orientational position of the sensors within the sealed cavity 76 is fixed, and thus the position of any sensor with respect to the sub 42 and thus the drill string 12 may be determined and recorded.
While the invention has been described in connection with certain preferred embodiments, it should be understood that the disclosure of these embodiments is not intended to limit the invention. Dissimilarly, the described method is illustrative, and other methods and procedure variations will be suggested by this disclosure. Accordingly, the invention is intended to cover various alternatives, modifications, and equivalents in the described method and apparatus which are included within the scope of the claims.
Claims (20)
1. A method of drilling a borehole through earth formations with a drill string including a rotary bit at the lower end thereof, and obtaining information regarding a downhole parameter indicative of the borehole or the earth formations, the bit being powered by a drill motor within the drill string and including a power assembly of the drill motor for converting pressurized fluid to rotation of a mandrel interconnected with the bit, a bearing assembly between the power assembly and the bit for guiding the mandrel, and a bearing housing for housing the bearing assembly, the method comprising:
sensing the downhole parameter using a sensor fixedly located in the drill string at a location axially below the power assembly;
transmitting signals functionally related to the sensed downhole parameter from a location axially below the power assembly;
receiving the transmitted signals at the surface to determine the downhole parameter; and
altering the drilling trajectory in response to the transmitted signals.
2. The method as defined in claim 1, further comprising:
providing a non-magnetic portion of the drill string axially above the drill motor;
further sensing well bore direction at a location axially within the non-magnetic portion of the drill string;
inputting well bore direction signals to a measuring-while-drilling tool positioned within the drill string at a location above the drill motor;
transmitting the well bore direction signals to the surface to determine the direction of the well bore; and
the drilling trajectory is altered in response to the transmitted downhole parameter signals and the transmitted well bore direction signals.
3. The method as defined in claim 2, wherein the measuring-while-drilling tool includes a mud pulse transmitter for transmitting data to the surface.
4. The method as defined in claim 1, further comprising:
providing a near bit housing having a sealed cavity rotationally fixed to the bearing housing; and
sensing the downhole parameter utilizing a sensor positioned within the sealed cavity.
5. The method as defined in claim 4, further comprising:
providing one or more formation sensors within the sealed cavity to sense at least a selected one of formation characteristics from a group consisting weight on bit, torque, of resistivity, porosity, density, gamma ray count, and temperature.
6. The method as defined in claim 4, further comprising:
providing a power supply within the sealed cavity.
7. The method as defined in claim 6, wherein the power supply is driven in response to rotation of the mandrel with respect to the near bit housing.
8. The method as defined in claim 4, further comprising:
filling the sealed cavity with a protective material to minimize vibration to components within the sealed cavity.
9. The method as defined in claim 1, wherein the transmitted signals are acoustic signals having a frequency in the range of from 500 to 2,000 Hz.
10. The method as defined in claim 1, wherein the transmitted signals are radio signals having a frequency in the range of from 30 kilo-Hz to 3000 mega-Hz.
11. The method of drilling a deviated borehole through earth formations with a drill string including a rotary bit at the end thereof and obtaining information regarding a downhole parameter indicative of the borehole or the earth formations, the bit being powered by a drill motor within the drill string and including a power assembly for converting pressurized fluid to rotation of a mandrel interconnected with the bit, and a bearing assembly between the power assembly and the bit for guiding the mandrel, the method comprising:
monitoring borehole or earth formation characteristics using a sensor fixedly located in the drill string at a location axially below the power assembly;
transmitting signals functionally related to the monitored information from the location axially below the power assembly;
receiving the transmitted signals at the surface to determine the borehole or formation characteristic; and
altering the drilling trajectory in response to the transmitted signals.
12. The method as defined in claim 11, further comprising:
providing a near bit housing having a sealed cavity rotationally affixed to the bearing housing; and
sensing the borehole or formation information with a sensor provided within the sealed cavity.
13. The method as defined in claim 11, wherein the transmitted signals are acoustic signals having a frequency in the range of from 500 to 2,000 Hz.
14. The method as defined in claim 11, further comprising:
inputting the transmitted signals to a measuring-while-drilling tool positioned within the drill string at a location above the drill motor; and
using a mud pulse transmitter within the measuring-while-drilling tool for transmitting data to the surface.
15. A system for drilling a deviated borehole through earth formations, including a drill string including a drill bit, the bit powered by a drill motor having a power assembly for converting pressurized fluid to rotation of a mandrel interconnected with the bit, a bearing assembly between the power assembly and the bit for guiding the mandrel, and a bearing housing for housing the bearing assembly, the system comprising:
a sealed cavity within the drill string at a location below the power assembly;
a sensor within the sealed cavity for sensing a downhole parameter;
a transmitter within the cavity for transmitting signals functionally related to the sensed downhole parameter; and
a receiver spaced axially above the drill motor for receiving the transmitted signals and outputting downhole parameter signals.
16. The system as defined in claim 15, further comprising:
a non-magnetic portion of the drill string spaced axially above the drill motor;
a well bore direction sensor spaced within the non-magnetic portion of the drill string for outputting well bore direction signals; and
a second transmitter for transmitting the well bore direction signals to the surface.
17. The system as defined in claim 15, further comprising:
an electrical power source within the cavity for powering the sensor and transmitter.
18. The system as defined in claim 17, wherein the electrical power source is an eddy current generator for generating electrical power in response to rotation of the mandrel.
19. The system as defined in claim 15, wherein the transmitter comprises:
a voltage to frequency converter for receiving voltage signals from the sensor and generating frequency signals in response thereto.
20. The system as defined in claim 15, further comprising:
a downhole computer for storing the transmitted signals.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/582,832 USRE35790E (en) | 1990-08-27 | 1996-01-02 | System for drilling deviated boreholes |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA002024061A CA2024061C (en) | 1990-08-27 | 1990-08-27 | System for drilling deviated boreholes |
CA2024061 | 1990-08-27 | ||
US07/750,650 US5163521A (en) | 1990-08-27 | 1991-08-27 | System for drilling deviated boreholes |
US08/582,832 USRE35790E (en) | 1990-08-27 | 1996-01-02 | System for drilling deviated boreholes |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US07/750,650 Reissue US5163521A (en) | 1990-08-27 | 1991-08-27 | System for drilling deviated boreholes |
Publications (1)
Publication Number | Publication Date |
---|---|
USRE35790E true USRE35790E (en) | 1998-05-12 |
Family
ID=4145822
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US07/750,650 Ceased US5163521A (en) | 1990-08-27 | 1991-08-27 | System for drilling deviated boreholes |
US08/582,832 Expired - Lifetime USRE35790E (en) | 1990-08-27 | 1996-01-02 | System for drilling deviated boreholes |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US07/750,650 Ceased US5163521A (en) | 1990-08-27 | 1991-08-27 | System for drilling deviated boreholes |
Country Status (3)
Country | Link |
---|---|
US (2) | US5163521A (en) |
CA (1) | CA2024061C (en) |
GB (1) | GB2247477B (en) |
Cited By (50)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000061916A1 (en) * | 1999-04-14 | 2000-10-19 | Western Well Tool, Inc. | Three-dimensional steering tool for controlled downhole extended-reach directional drilling |
US6176327B1 (en) * | 1999-05-10 | 2001-01-23 | Atlantic Richfield Company | Method and toolstring for operating a downhole motor |
WO2001033044A1 (en) * | 1999-11-05 | 2001-05-10 | Halliburton Energy Services, Inc. | Drilling formation tester, apparatus and methods of testing and monitoring status of tester |
WO2001049965A1 (en) * | 2000-01-04 | 2001-07-12 | Hunting Performance, Inc. | Integrated transmitter surveying while boring (swb) entrenching powering device for the continuation of a guided bore hole |
US6405808B1 (en) | 2000-03-30 | 2002-06-18 | Schlumberger Technology Corporation | Method for increasing the efficiency of drilling a wellbore, improving the accuracy of its borehole trajectory and reducing the corresponding computed ellise of uncertainty |
US6467557B1 (en) | 1998-12-18 | 2002-10-22 | Western Well Tool, Inc. | Long reach rotary drilling assembly |
US6561290B2 (en) | 2001-01-12 | 2003-05-13 | Performance Boring Technologies, Inc. | Downhole mud motor |
US20030234120A1 (en) * | 1999-11-05 | 2003-12-25 | Paluch William C. | Drilling formation tester, apparatus and methods of testing and monitoring status of tester |
US6670880B1 (en) | 2000-07-19 | 2003-12-30 | Novatek Engineering, Inc. | Downhole data transmission system |
US6705406B2 (en) * | 2002-03-26 | 2004-03-16 | Baker Hughes Incorporated | Replaceable electrical device for a downhole tool and method thereof |
US6717501B2 (en) | 2000-07-19 | 2004-04-06 | Novatek Engineering, Inc. | Downhole data transmission system |
US20040113808A1 (en) * | 2002-12-10 | 2004-06-17 | Hall David R. | Signal connection for a downhole tool string |
US20040145492A1 (en) * | 2000-07-19 | 2004-07-29 | Hall David R. | Data Transmission Element for Downhole Drilling Components |
US20040150532A1 (en) * | 2003-01-31 | 2004-08-05 | Hall David R. | Method and apparatus for transmitting and receiving data to and from a downhole tool |
US20040150533A1 (en) * | 2003-02-04 | 2004-08-05 | Hall David R. | Downhole tool adapted for telemetry |
US20040164833A1 (en) * | 2000-07-19 | 2004-08-26 | Hall David R. | Inductive Coupler for Downhole Components and Method for Making Same |
US20040164838A1 (en) * | 2000-07-19 | 2004-08-26 | Hall David R. | Element for Use in an Inductive Coupler for Downhole Drilling Components |
US6799632B2 (en) | 2002-08-05 | 2004-10-05 | Intelliserv, Inc. | Expandable metal liner for downhole components |
US20040219831A1 (en) * | 2003-01-31 | 2004-11-04 | Hall David R. | Data transmission system for a downhole component |
US20040223410A1 (en) * | 2003-05-07 | 2004-11-11 | West Phillip B. | Methods and apparatus for use in detecting seismic waves in a borehole |
US20040221995A1 (en) * | 2003-05-06 | 2004-11-11 | Hall David R. | Loaded transducer for downhole drilling components |
US20040244964A1 (en) * | 2003-06-09 | 2004-12-09 | Hall David R. | Electrical transmission line diametrical retention mechanism |
US20040246142A1 (en) * | 2003-06-03 | 2004-12-09 | Hall David R. | Transducer for downhole drilling components |
US20050001738A1 (en) * | 2003-07-02 | 2005-01-06 | Hall David R. | Transmission element for downhole drilling components |
US20050001736A1 (en) * | 2003-07-02 | 2005-01-06 | Hall David R. | Clamp to retain an electrical transmission line in a passageway |
US20050001735A1 (en) * | 2003-07-02 | 2005-01-06 | Hall David R. | Link module for a downhole drilling network |
US20050016770A1 (en) * | 2003-07-25 | 2005-01-27 | Schlumberger Technology Corporation | While drilling system and method |
US20050045339A1 (en) * | 2003-09-02 | 2005-03-03 | Hall David R. | Drilling jar for use in a downhole network |
US20050046590A1 (en) * | 2003-09-02 | 2005-03-03 | Hall David R. | Polished downhole transducer having improved signal coupling |
US20050067159A1 (en) * | 2003-09-25 | 2005-03-31 | Hall David R. | Load-Resistant Coaxial Transmission Line |
US20050074988A1 (en) * | 2003-05-06 | 2005-04-07 | Hall David R. | Improved electrical contact for downhole drilling networks |
US20050074998A1 (en) * | 2003-10-02 | 2005-04-07 | Hall David R. | Tool Joints Adapted for Electrical Transmission |
US20050082092A1 (en) * | 2002-08-05 | 2005-04-21 | Hall David R. | Apparatus in a Drill String |
US6888473B1 (en) | 2000-07-20 | 2005-05-03 | Intelliserv, Inc. | Repeatable reference for positioning sensors and transducers in drill pipe |
US20050092499A1 (en) * | 2003-10-31 | 2005-05-05 | Hall David R. | Improved drill string transmission line |
US20050095827A1 (en) * | 2003-11-05 | 2005-05-05 | Hall David R. | An internal coaxial cable electrical connector for use in downhole tools |
US20050115717A1 (en) * | 2003-11-29 | 2005-06-02 | Hall David R. | Improved Downhole Tool Liner |
US20050118848A1 (en) * | 2003-11-28 | 2005-06-02 | Hall David R. | Seal for coaxial cable in downhole tools |
US20050154532A1 (en) * | 2003-03-25 | 2005-07-14 | Close David A. | System and method for determining the inclination of a wellbore |
US20050173128A1 (en) * | 2004-02-10 | 2005-08-11 | Hall David R. | Apparatus and Method for Routing a Transmission Line through a Downhole Tool |
US20050212530A1 (en) * | 2004-03-24 | 2005-09-29 | Hall David R | Method and Apparatus for Testing Electromagnetic Connectivity in a Drill String |
US20060065395A1 (en) * | 2004-09-28 | 2006-03-30 | Adrian Snell | Removable Equipment Housing for Downhole Measurements |
US20060106587A1 (en) * | 2004-11-15 | 2006-05-18 | Rodney Paul F | Method and apparatus for surveying a borehole with a rotating sensor package |
US7105098B1 (en) | 2002-06-06 | 2006-09-12 | Sandia Corporation | Method to control artifacts of microstructural fabrication |
US20070169929A1 (en) * | 2003-12-31 | 2007-07-26 | Hall David R | Apparatus and method for bonding a transmission line to a downhole tool |
US20090298597A1 (en) * | 2008-06-02 | 2009-12-03 | Wall Kevin W | Power transmission line section |
US9007231B2 (en) | 2013-01-17 | 2015-04-14 | Baker Hughes Incorporated | Synchronization of distributed measurements in a borehole |
WO2014043073A3 (en) * | 2012-09-14 | 2015-07-16 | Scientific Drilling International, Inc. | Early detection and anti-collision system |
US20150275656A1 (en) * | 2014-04-01 | 2015-10-01 | Bench Tree Group, Llc | System and method of triggering, acquiring and communicating borehole data for a mwd system |
US9222350B2 (en) | 2011-06-21 | 2015-12-29 | Diamond Innovations, Inc. | Cutter tool insert having sensing device |
Families Citing this family (103)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5390153A (en) * | 1977-12-05 | 1995-02-14 | Scherbatskoy; Serge A. | Measuring while drilling employing cascaded transmission systems |
US5160925C1 (en) * | 1991-04-17 | 2001-03-06 | Halliburton Co | Short hop communication link for downhole mwd system |
FR2681900B1 (en) * | 1991-09-26 | 1999-02-26 | Elf Aquitaine | DEVICE FOR PROCESSING AND INTERPRETATION OF DRILLING DATA PROVIDED AT THE BOTTOM OF A WELL. |
EP0567460A4 (en) * | 1991-10-09 | 1997-01-29 | Allen Kent Rives | Well tool and method of use |
NO306522B1 (en) * | 1992-01-21 | 1999-11-15 | Anadrill Int Sa | Procedure for acoustic transmission of measurement signals when measuring during drilling |
EP0747570A1 (en) * | 1992-12-07 | 1996-12-11 | Akishima Laboratories (Mitsui Zosen) Inc. | Mid pulse valve for measurement-while-drilling system |
US5325714A (en) * | 1993-05-12 | 1994-07-05 | Baker Hughes Incorporated | Steerable motor system with integrated formation evaluation logging capacity |
US5456106A (en) * | 1993-05-12 | 1995-10-10 | Baker Hughes Incorporated | Modular measurement while drilling sensor assembly |
BE1007274A5 (en) * | 1993-07-20 | 1995-05-09 | Baroid Technology Inc | Method for controlling the head of drilling core drilling or device and installation for implementing the method. |
US5720355A (en) * | 1993-07-20 | 1998-02-24 | Baroid Technology, Inc. | Drill bit instrumentation and method for controlling drilling or core-drilling |
US5358059A (en) * | 1993-09-27 | 1994-10-25 | Ho Hwa Shan | Apparatus and method for the dynamic measurement of a drill string employed in drilling |
US5368109A (en) * | 1993-11-04 | 1994-11-29 | Slim Dril International Inc. | Apparatus for arcuate drilling |
US5473158A (en) * | 1994-01-14 | 1995-12-05 | Schlumberger Technology Corporation | Logging while drilling method and apparatus for measuring formation characteristics as a function of angular position within a borehole |
US5484029A (en) * | 1994-08-05 | 1996-01-16 | Schlumberger Technology Corporation | Steerable drilling tool and system |
US5617926A (en) * | 1994-08-05 | 1997-04-08 | Schlumberger Technology Corporation | Steerable drilling tool and system |
US5667023B1 (en) * | 1994-11-22 | 2000-04-18 | Baker Hughes Inc | Method and apparatus for drilling and completing wells |
US5842528A (en) * | 1994-11-22 | 1998-12-01 | Johnson; Michael H. | Method of drilling and completing wells |
AU692620B2 (en) * | 1994-12-08 | 1998-06-11 | Noranda Inc. | Method for real time location of deep boreholes while drilling |
US5812068A (en) * | 1994-12-12 | 1998-09-22 | Baker Hughes Incorporated | Drilling system with downhole apparatus for determining parameters of interest and for adjusting drilling direction in response thereto |
US5842149A (en) * | 1996-10-22 | 1998-11-24 | Baker Hughes Incorporated | Closed loop drilling system |
US6088294A (en) * | 1995-01-12 | 2000-07-11 | Baker Hughes Incorporated | Drilling system with an acoustic measurement-while-driving system for determining parameters of interest and controlling the drilling direction |
US6206108B1 (en) | 1995-01-12 | 2001-03-27 | Baker Hughes Incorporated | Drilling system with integrated bottom hole assembly |
EP1632643B1 (en) * | 1995-02-16 | 2011-06-01 | Baker Hughes Incorporated | Method and apparatus for monitoring and recording of operating conditions of a downhole drill bit during drilling operations |
US6230822B1 (en) * | 1995-02-16 | 2001-05-15 | Baker Hughes Incorporated | Method and apparatus for monitoring and recording of the operating condition of a downhole drill bit during drilling operations |
US6068394A (en) * | 1995-10-12 | 2000-05-30 | Industrial Sensors & Instrument | Method and apparatus for providing dynamic data during drilling |
US6021377A (en) * | 1995-10-23 | 2000-02-01 | Baker Hughes Incorporated | Drilling system utilizing downhole dysfunctions for determining corrective actions and simulating drilling conditions |
US5676212A (en) * | 1996-04-17 | 1997-10-14 | Vector Magnetics, Inc. | Downhole electrode for well guidance system |
ATE228201T1 (en) | 1996-08-19 | 2002-12-15 | Tech 21 Ltd | METHOD AND DEVICE FOR PROVIDING A MAGNETIC REFERENCE DIRECTION |
EP0857855B1 (en) * | 1997-02-06 | 2002-09-11 | Halliburton Energy Services, Inc. | Downhole directional measurement system |
US5817937A (en) * | 1997-03-25 | 1998-10-06 | Bico Drilling Tools, Inc. | Combination drill motor with measurement-while-drilling electronic sensor assembly |
US6148912A (en) * | 1997-03-25 | 2000-11-21 | Dresser Industries, Inc. | Subsurface measurement apparatus, system, and process for improved well drilling control and production |
US5924499A (en) * | 1997-04-21 | 1999-07-20 | Halliburton Energy Services, Inc. | Acoustic data link and formation property sensor for downhole MWD system |
US6057784A (en) * | 1997-09-02 | 2000-05-02 | Schlumberger Technology Corporatioin | Apparatus and system for making at-bit measurements while drilling |
US6283208B1 (en) | 1997-09-05 | 2001-09-04 | Schlumberger Technology Corp. | Orienting tool and method |
US6012516A (en) * | 1997-09-05 | 2000-01-11 | Schlumberger Technology Corporation | Deviated borehole drilling assembly |
US6188222B1 (en) | 1997-09-19 | 2001-02-13 | Schlumberger Technology Corporation | Method and apparatus for measuring resistivity of an earth formation |
US6351891B1 (en) * | 1997-12-18 | 2002-03-05 | Honeywell International, Inc. | Miniature directional indication instrument |
US6092610A (en) * | 1998-02-05 | 2000-07-25 | Schlumberger Technology Corporation | Actively controlled rotary steerable system and method for drilling wells |
US6247542B1 (en) * | 1998-03-06 | 2001-06-19 | Baker Hughes Incorporated | Non-rotating sensor assembly for measurement-while-drilling applications |
CA2285759C (en) * | 1999-10-08 | 2005-06-14 | Ian Gillis | Adjustable gauge downhole drilling assembly |
US6328119B1 (en) | 1998-04-09 | 2001-12-11 | Halliburton Energy Services, Inc. | Adjustable gauge downhole drilling assembly |
CA2280481A1 (en) | 1998-08-25 | 2000-02-25 | Bico Drilling Tools, Inc. | Downhole oil-sealed bearing pack assembly |
US6279659B1 (en) | 1998-10-20 | 2001-08-28 | Weatherford Lamb, Inc. | Assembly and method for providing a means of support and positioning for drilling multi-lateral wells and for reentry therein through a premilled window |
US6152246A (en) * | 1998-12-02 | 2000-11-28 | Noble Drilling Services, Inc. | Method of and system for monitoring drilling parameters |
US6158529A (en) * | 1998-12-11 | 2000-12-12 | Schlumberger Technology Corporation | Rotary steerable well drilling system utilizing sliding sleeve |
US6392561B1 (en) | 1998-12-18 | 2002-05-21 | Dresser Industries, Inc. | Short hop telemetry system and method |
US6429784B1 (en) * | 1999-02-19 | 2002-08-06 | Dresser Industries, Inc. | Casing mounted sensors, actuators and generators |
WO2000055467A1 (en) | 1999-03-03 | 2000-09-21 | Earth Tool Company, L.L.C. | Method and apparatus for directional boring |
US6109372A (en) * | 1999-03-15 | 2000-08-29 | Schlumberger Technology Corporation | Rotary steerable well drilling system utilizing hydraulic servo-loop |
WO2001034935A1 (en) | 1999-11-10 | 2001-05-17 | Schlumberger Holdings Limited | Control method for use with a steerable drilling system |
US6725924B2 (en) | 2001-06-15 | 2004-04-27 | Schlumberger Technology Corporation | System and technique for monitoring and managing the deployment of subsea equipment |
US7163065B2 (en) * | 2002-12-06 | 2007-01-16 | Shell Oil Company | Combined telemetry system and method |
US7084782B2 (en) * | 2002-12-23 | 2006-08-01 | Halliburton Energy Services, Inc. | Drill string telemetry system and method |
US7086484B2 (en) * | 2003-06-09 | 2006-08-08 | Halliburton Energy Services, Inc. | Determination of thermal properties of a formation |
US20060201713A1 (en) * | 2004-04-29 | 2006-09-14 | Snow David T | Deviated drilling method for water production |
US7243719B2 (en) * | 2004-06-07 | 2007-07-17 | Pathfinder Energy Services, Inc. | Control method for downhole steering tool |
US7730967B2 (en) | 2004-06-22 | 2010-06-08 | Baker Hughes Incorporated | Drilling wellbores with optimal physical drill string conditions |
GB2458577B (en) * | 2005-02-21 | 2009-12-09 | I Sub Drilling Systems Ltd | A device for monitoring a drilling or coring operation and installation comprising such a device |
BE1016460A3 (en) | 2005-02-21 | 2006-11-07 | Diamant Drilling Services Sa | Device for monitoring a drilling operation or core drilling and equipment including such device. |
US7552761B2 (en) * | 2005-05-23 | 2009-06-30 | Schlumberger Technology Corporation | Method and system for wellbore communication |
CA2545377C (en) * | 2006-05-01 | 2011-06-14 | Halliburton Energy Services, Inc. | Downhole motor with a continuous conductive path |
US8408333B2 (en) * | 2006-05-11 | 2013-04-02 | Schlumberger Technology Corporation | Steer systems for coiled tubing drilling and method of use |
US7595737B2 (en) * | 2006-07-24 | 2009-09-29 | Halliburton Energy Services, Inc. | Shear coupled acoustic telemetry system |
US20080030365A1 (en) * | 2006-07-24 | 2008-02-07 | Fripp Michael L | Multi-sensor wireless telemetry system |
US7557492B2 (en) | 2006-07-24 | 2009-07-07 | Halliburton Energy Services, Inc. | Thermal expansion matching for acoustic telemetry system |
US7654343B2 (en) * | 2007-03-15 | 2010-02-02 | Snow David T | Deviated drilling method for water production |
EP2065553B1 (en) | 2007-11-30 | 2013-12-25 | Services Pétroliers Schlumberger | System and method for drilling lateral boreholes |
EP2065554B1 (en) | 2007-11-30 | 2014-04-02 | Services Pétroliers Schlumberger | System and method for drilling and completing lateral boreholes |
US20110153217A1 (en) * | 2009-03-05 | 2011-06-23 | Halliburton Energy Services, Inc. | Drillstring motion analysis and control |
US8459379B2 (en) * | 2010-01-12 | 2013-06-11 | Halliburton Energy Services, Inc. | Bearing contact pressure reduction in well tools |
US20110168450A1 (en) * | 2010-01-12 | 2011-07-14 | Halliburton Energy Services, Inc. | Drill bit bearing contact pressure reduction |
US8839871B2 (en) * | 2010-01-15 | 2014-09-23 | Halliburton Energy Services, Inc. | Well tools operable via thermal expansion resulting from reactive materials |
US8893547B2 (en) * | 2010-09-02 | 2014-11-25 | Baker Hughes Incorporated | Acoustic transducers using quantum tunneling composite active elements |
US8474533B2 (en) | 2010-12-07 | 2013-07-02 | Halliburton Energy Services, Inc. | Gas generator for pressurizing downhole samples |
US9920614B2 (en) | 2011-05-06 | 2018-03-20 | Baker Hughes, A Ge Company, Llc | Apparatus and method for drilling wellbores based on mechanical specific energy determined from bit-based weight and torque sensors |
US8947094B2 (en) | 2011-07-18 | 2015-02-03 | Schlumber Technology Corporation | At-bit magnetic ranging and surveying |
US9651711B1 (en) * | 2012-02-27 | 2017-05-16 | SeeScan, Inc. | Boring inspection systems and methods |
US9726007B2 (en) * | 2012-03-12 | 2017-08-08 | Globaltech Corporation Pty Ltd | Downhole surveying |
GB201204386D0 (en) * | 2012-03-13 | 2012-04-25 | Smart Stabilizer Systems Ltd | Controllable deflection housing, downhole steering assembly and method of use |
US10988678B2 (en) | 2012-06-26 | 2021-04-27 | Baker Hughes, A Ge Company, Llc | Well treatment operations using diverting system |
WO2014007796A1 (en) * | 2012-07-02 | 2014-01-09 | Halliburton Energy Services, Inc. | Angular position sensor with magnetometer |
EP3940196A1 (en) * | 2012-08-21 | 2022-01-19 | Halliburton Energy Services, Inc. | Turbine drilling assembly with near drill bit sensors |
US9169705B2 (en) | 2012-10-25 | 2015-10-27 | Halliburton Energy Services, Inc. | Pressure relief-assisted packer |
CN103884643B (en) * | 2012-12-20 | 2016-03-02 | 上海经映信息科技有限公司 | A kind of ore deposit class material on-line continuous checkout equipment |
US9587486B2 (en) | 2013-02-28 | 2017-03-07 | Halliburton Energy Services, Inc. | Method and apparatus for magnetic pulse signature actuation |
US9982530B2 (en) | 2013-03-12 | 2018-05-29 | Halliburton Energy Services, Inc. | Wellbore servicing tools, systems and methods utilizing near-field communication |
US9284817B2 (en) | 2013-03-14 | 2016-03-15 | Halliburton Energy Services, Inc. | Dual magnetic sensor actuation assembly |
US9425619B2 (en) * | 2013-03-15 | 2016-08-23 | Merlin Technology, Inc. | Advanced inground device power control and associated methods |
US9752414B2 (en) | 2013-05-31 | 2017-09-05 | Halliburton Energy Services, Inc. | Wellbore servicing tools, systems and methods utilizing downhole wireless switches |
US20150075770A1 (en) | 2013-05-31 | 2015-03-19 | Michael Linley Fripp | Wireless activation of wellbore tools |
US9739120B2 (en) * | 2013-07-23 | 2017-08-22 | Halliburton Energy Services, Inc. | Electrical power storage for downhole tools |
FR3021487B3 (en) * | 2014-05-26 | 2016-07-08 | Canberra France | CAMERA SYSTEM AND METHOD FOR RADIATION |
US9506335B1 (en) * | 2014-05-27 | 2016-11-29 | Gary Smith | Multi-directionally rotating downhole drilling assembly and method |
US9857498B2 (en) | 2014-06-05 | 2018-01-02 | Baker Hughes Incorporated | Devices and methods for detecting chemicals |
GB2547354B (en) | 2014-11-25 | 2021-06-23 | Halliburton Energy Services Inc | Wireless activation of wellbore tools |
WO2016133519A1 (en) * | 2015-02-19 | 2016-08-25 | Halliburton Energy Services, Inc. | Gamma detection sensors in a rotary steerable tool |
US10976463B2 (en) | 2015-11-04 | 2021-04-13 | Halliburton Energy Services, Inc. | Conductivity-depth transforms of electromagnetic telemetry signals |
CN108590632B (en) * | 2018-05-17 | 2024-05-14 | 长春市斯普瑞新技术有限责任公司 | Downhole sucker rod string parameter tester |
WO2021108520A1 (en) | 2019-11-27 | 2021-06-03 | Ms Directional, Llc | Electric motor for operating in conductive fluids and related method |
US11473418B1 (en) | 2020-01-22 | 2022-10-18 | Vermeer Manufacturing Company | Horizontal directional drilling system and method |
CN111608580B (en) * | 2020-04-30 | 2021-12-24 | 中国石油天然气集团有限公司 | Rotary steering intelligent instruction downloading system and method |
RU206311U1 (en) * | 2021-06-22 | 2021-09-06 | Общество с ограниченной ответственностью "Навигационные технологии" | Signal receiving device |
CN115653496A (en) * | 2022-09-20 | 2023-01-31 | 西南石油大学 | Two-stage torque-resistant bending screw rod orientation tool |
Citations (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3255353A (en) * | 1962-12-21 | 1966-06-07 | Serge A Scherbatskoy | Apparatus for nuclear well logging while drilling |
GB1268938A (en) * | 1969-04-08 | 1972-03-29 | Michael King Russell | Improvements in or relating to control means for drilling devices |
US3841420A (en) * | 1972-03-24 | 1974-10-15 | M Russell | Directional drilling means |
US3889228A (en) * | 1973-11-16 | 1975-06-10 | Sun Oil Co | Two-way acoustic telemetering system |
US3930220A (en) * | 1973-09-12 | 1975-12-30 | Sun Oil Co Pennsylvania | Borehole signalling by acoustic energy |
US4001773A (en) * | 1973-09-12 | 1977-01-04 | American Petroscience Corporation | Acoustic telemetry system for oil wells utilizing self generated noise |
US4019148A (en) * | 1975-12-29 | 1977-04-19 | Sperry-Sun, Inc. | Lock-in noise rejection circuit |
US4021773A (en) * | 1974-10-29 | 1977-05-03 | Sun Oil Company Of Pennsylvania | Acoustical pick-up for reception of signals from a drill pipe |
US4067404A (en) * | 1976-05-04 | 1978-01-10 | Smith International, Inc. | Angle adjustment sub |
US4139836A (en) * | 1977-07-01 | 1979-02-13 | Sperry-Sun, Inc. | Wellbore instrument hanger |
US4156229A (en) * | 1977-01-31 | 1979-05-22 | Sperry-Sun, Inc. | Bit identification system for borehole acoustical telemetry system |
US4254481A (en) * | 1979-08-10 | 1981-03-03 | Sperry-Sun, Inc. | Borehole telemetry system automatic gain control |
US4293936A (en) * | 1976-12-30 | 1981-10-06 | Sperry-Sun, Inc. | Telemetry system |
US4293937A (en) * | 1979-08-10 | 1981-10-06 | Sperry-Sun, Inc. | Borehole acoustic telemetry system |
US4298970A (en) * | 1979-08-10 | 1981-11-03 | Sperry-Sun, Inc. | Borehole acoustic telemetry system synchronous detector |
US4320473A (en) * | 1979-08-10 | 1982-03-16 | Sperry Sun, Inc. | Borehole acoustic telemetry clock synchronization system |
US4324297A (en) * | 1980-07-03 | 1982-04-13 | Shell Oil Company | Steering drill string |
US4361192A (en) * | 1980-02-08 | 1982-11-30 | Kerr-Mcgee Corporation | Borehole survey method and apparatus for drilling substantially horizontal boreholes |
GB2102475A (en) * | 1981-07-20 | 1983-02-02 | Amf Inc | Down-hole well drilling fluid motor and telemetry system |
US4379493A (en) * | 1981-05-22 | 1983-04-12 | Gene Thibodeaux | Method and apparatus for preventing wireline kinking in a directional drilling system |
US4492276A (en) * | 1982-11-17 | 1985-01-08 | Shell Oil Company | Down-hole drilling motor and method for directional drilling of boreholes |
GB2157746A (en) * | 1984-04-18 | 1985-10-30 | Conoco Inc | Borehole monitoring device and method |
US4562559A (en) * | 1981-01-19 | 1985-12-31 | Nl Sperry Sun, Inc. | Borehole acoustic telemetry system with phase shifted signal |
US4577701A (en) * | 1984-08-08 | 1986-03-25 | Mobil Oil Corporation | System of drilling deviated wellbores |
US4662458A (en) * | 1985-10-23 | 1987-05-05 | Nl Industries, Inc. | Method and apparatus for bottom hole measurement |
US4697651A (en) * | 1986-12-22 | 1987-10-06 | Mobil Oil Corporation | Method of drilling deviated wellbores |
US4733733A (en) * | 1986-02-11 | 1988-03-29 | Nl Industries, Inc. | Method of controlling the direction of a drill bit in a borehole |
US4854397A (en) * | 1988-09-15 | 1989-08-08 | Amoco Corporation | System for directional drilling and related method of use |
US5148408A (en) * | 1990-11-05 | 1992-09-15 | Teleco Oilfield Services Inc. | Acoustic data transmission method |
US5160925A (en) * | 1991-04-17 | 1992-11-03 | Smith International, Inc. | Short hop communication link for downhole mwd system |
US5410303A (en) * | 1991-05-15 | 1995-04-25 | Baroid Technology, Inc. | System for drilling deivated boreholes |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1433265A (en) * | 1973-10-31 | 1976-04-22 | Mccullogh I J | Method and apparatus for simultaneously drilling and logging |
-
1990
- 1990-08-27 CA CA002024061A patent/CA2024061C/en not_active Expired - Lifetime
-
1991
- 1991-05-15 GB GB9110516A patent/GB2247477B/en not_active Expired - Lifetime
- 1991-08-27 US US07/750,650 patent/US5163521A/en not_active Ceased
-
1996
- 1996-01-02 US US08/582,832 patent/USRE35790E/en not_active Expired - Lifetime
Patent Citations (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3255353A (en) * | 1962-12-21 | 1966-06-07 | Serge A Scherbatskoy | Apparatus for nuclear well logging while drilling |
GB1268938A (en) * | 1969-04-08 | 1972-03-29 | Michael King Russell | Improvements in or relating to control means for drilling devices |
US3841420A (en) * | 1972-03-24 | 1974-10-15 | M Russell | Directional drilling means |
US3930220A (en) * | 1973-09-12 | 1975-12-30 | Sun Oil Co Pennsylvania | Borehole signalling by acoustic energy |
US4001773A (en) * | 1973-09-12 | 1977-01-04 | American Petroscience Corporation | Acoustic telemetry system for oil wells utilizing self generated noise |
US3889228A (en) * | 1973-11-16 | 1975-06-10 | Sun Oil Co | Two-way acoustic telemetering system |
US4021773A (en) * | 1974-10-29 | 1977-05-03 | Sun Oil Company Of Pennsylvania | Acoustical pick-up for reception of signals from a drill pipe |
US4019148A (en) * | 1975-12-29 | 1977-04-19 | Sperry-Sun, Inc. | Lock-in noise rejection circuit |
US4067404A (en) * | 1976-05-04 | 1978-01-10 | Smith International, Inc. | Angle adjustment sub |
US4293936A (en) * | 1976-12-30 | 1981-10-06 | Sperry-Sun, Inc. | Telemetry system |
US4156229A (en) * | 1977-01-31 | 1979-05-22 | Sperry-Sun, Inc. | Bit identification system for borehole acoustical telemetry system |
US4139836A (en) * | 1977-07-01 | 1979-02-13 | Sperry-Sun, Inc. | Wellbore instrument hanger |
US4254481A (en) * | 1979-08-10 | 1981-03-03 | Sperry-Sun, Inc. | Borehole telemetry system automatic gain control |
US4293937A (en) * | 1979-08-10 | 1981-10-06 | Sperry-Sun, Inc. | Borehole acoustic telemetry system |
US4298970A (en) * | 1979-08-10 | 1981-11-03 | Sperry-Sun, Inc. | Borehole acoustic telemetry system synchronous detector |
US4320473A (en) * | 1979-08-10 | 1982-03-16 | Sperry Sun, Inc. | Borehole acoustic telemetry clock synchronization system |
US4361192A (en) * | 1980-02-08 | 1982-11-30 | Kerr-Mcgee Corporation | Borehole survey method and apparatus for drilling substantially horizontal boreholes |
US4324297A (en) * | 1980-07-03 | 1982-04-13 | Shell Oil Company | Steering drill string |
US4562559A (en) * | 1981-01-19 | 1985-12-31 | Nl Sperry Sun, Inc. | Borehole acoustic telemetry system with phase shifted signal |
US4379493A (en) * | 1981-05-22 | 1983-04-12 | Gene Thibodeaux | Method and apparatus for preventing wireline kinking in a directional drilling system |
GB2102475A (en) * | 1981-07-20 | 1983-02-02 | Amf Inc | Down-hole well drilling fluid motor and telemetry system |
US4492276B1 (en) * | 1982-11-17 | 1991-07-30 | Shell Oil Co | |
US4492276A (en) * | 1982-11-17 | 1985-01-08 | Shell Oil Company | Down-hole drilling motor and method for directional drilling of boreholes |
GB2157746A (en) * | 1984-04-18 | 1985-10-30 | Conoco Inc | Borehole monitoring device and method |
US4577701A (en) * | 1984-08-08 | 1986-03-25 | Mobil Oil Corporation | System of drilling deviated wellbores |
US4662458A (en) * | 1985-10-23 | 1987-05-05 | Nl Industries, Inc. | Method and apparatus for bottom hole measurement |
US4733733A (en) * | 1986-02-11 | 1988-03-29 | Nl Industries, Inc. | Method of controlling the direction of a drill bit in a borehole |
US4697651A (en) * | 1986-12-22 | 1987-10-06 | Mobil Oil Corporation | Method of drilling deviated wellbores |
US4854397A (en) * | 1988-09-15 | 1989-08-08 | Amoco Corporation | System for directional drilling and related method of use |
US5148408A (en) * | 1990-11-05 | 1992-09-15 | Teleco Oilfield Services Inc. | Acoustic data transmission method |
US5160925A (en) * | 1991-04-17 | 1992-11-03 | Smith International, Inc. | Short hop communication link for downhole mwd system |
US5160925C1 (en) * | 1991-04-17 | 2001-03-06 | Halliburton Co | Short hop communication link for downhole mwd system |
US5410303A (en) * | 1991-05-15 | 1995-04-25 | Baroid Technology, Inc. | System for drilling deivated boreholes |
Non-Patent Citations (20)
Title |
---|
"Downhole Recording System for MWD", Franz, SPE 10054, 1991. |
"Field Measurements of Downhole Drillstring Vibrations", Wolf et al, SPE 14330, 1985. |
"NL MWD Services", NL Industries, Inc., Houston, Texas. |
"NL Sperry-Sun", 1987. |
"Sperry-Sun Horizontal Drilling: A Total Engineering Concept", 1989. |
A photographic image of the tool shown at the lecture, the photographic image being taken off the videotape. * |
A portion of a lecture recorded on videotape entitled: "MWD: An Idea Whose Time Has Come", by Kenneth R. Weeks, beginning at position 28:23, the lecture was given on Jul. 25, 1990. |
A portion of a lecture recorded on videotape entitled: MWD: An Idea Whose Time Has Come , by Kenneth R. Weeks, beginning at position 28:23, the lecture was given on Jul. 25, 1990. * |
A relevant portion of a videotape entitled: "MWD: An Idea Whose Time Has Come". |
A relevant portion of a videotape entitled: MWD: An Idea Whose Time Has Come . * |
A transcript of a relevant portion of the lecture recorded on Videotape. * |
Downhole Recording System for MWD , Franz, SPE 10054, 1991. * |
Field Measurements of Downhole Drillstring Vibrations , Wolf et al, SPE 14330, 1985. * |
NL MWD Services , NL Industries, Inc., Houston, Texas. * |
NL Sperry Sun , 1987. * |
Proceedings, Measurement While Drilling Symposiu, Louisiana State University; Wireless Electromagnetic Borehole Communications A State of the Art Review; Baton Rouge, LA, Feb. 26 27, 1990, pp. 59 71, by L.A. Rubin, Wm. H. Harrison. * |
Proceedings, Measurement While Drilling Symposiu, Louisiana State University; Wireless Electromagnetic Borehole Communications A State-of-the-Art Review; Baton Rouge, LA, Feb. 26-27, 1990, pp. 59-71, by L.A. Rubin, Wm. H. Harrison. |
Proceedings, Measurement While Drilling Symposium, Louisiana State University; Telemetry Using the Propagation of an Electromagnetic Wave Along A Drill Pipe String; Baton Rouge, LA, Feb. 26 27, 1990, pp. 47 58, by R. Grudzinski and O. Issenmann. * |
Proceedings, Measurement While Drilling Symposium, Louisiana State University; Telemetry Using the Propagation of an Electromagnetic Wave Along A Drill Pipe String; Baton Rouge, LA, Feb. 26-27, 1990, pp. 47-58, by R. Grudzinski and O. Issenmann. |
Sperry Sun Horizontal Drilling: A Total Engineering Concept , 1989. * |
Cited By (96)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6467557B1 (en) | 1998-12-18 | 2002-10-22 | Western Well Tool, Inc. | Long reach rotary drilling assembly |
WO2000061916A1 (en) * | 1999-04-14 | 2000-10-19 | Western Well Tool, Inc. | Three-dimensional steering tool for controlled downhole extended-reach directional drilling |
US6708783B2 (en) | 1999-04-14 | 2004-03-23 | Western Well Tool, Inc. | Three-dimensional steering tool for controlled downhole extended-reach directional drilling |
US6942044B2 (en) | 1999-04-14 | 2005-09-13 | Western Well Tools, Inc. | Three-dimensional steering tool for controlled downhole extended-reach directional drilling |
US6470974B1 (en) | 1999-04-14 | 2002-10-29 | Western Well Tool, Inc. | Three-dimensional steering tool for controlled downhole extended-reach directional drilling |
US6176327B1 (en) * | 1999-05-10 | 2001-01-23 | Atlantic Richfield Company | Method and toolstring for operating a downhole motor |
US20030234120A1 (en) * | 1999-11-05 | 2003-12-25 | Paluch William C. | Drilling formation tester, apparatus and methods of testing and monitoring status of tester |
US7096976B2 (en) * | 1999-11-05 | 2006-08-29 | Halliburton Energy Services, Inc. | Drilling formation tester, apparatus and methods of testing and monitoring status of tester |
US20030141055A1 (en) * | 1999-11-05 | 2003-07-31 | Paluch William C. | Drilling formation tester, apparatus and methods of testing and monitoring status of tester |
US7093674B2 (en) * | 1999-11-05 | 2006-08-22 | Halliburton Energy Services, Inc. | Drilling formation tester, apparatus and methods of testing and monitoring status of tester |
WO2001033045A1 (en) * | 1999-11-05 | 2001-05-10 | Halliburton Energy Services, Inc. | Drilling formation tester, apparatus and methods of testing and monitoring status of tester |
WO2001033044A1 (en) * | 1999-11-05 | 2001-05-10 | Halliburton Energy Services, Inc. | Drilling formation tester, apparatus and methods of testing and monitoring status of tester |
US20020053471A1 (en) * | 2000-01-04 | 2002-05-09 | Blair Paris E. | Intergrated transmitter surveying while boring entrenching powering device for the continuation of a guided bore hole |
US6349778B1 (en) * | 2000-01-04 | 2002-02-26 | Performance Boring Technologies, Inc. | Integrated transmitter surveying while boring entrenching powering device for the continuation of a guided bore hole |
US6749030B2 (en) * | 2000-01-04 | 2004-06-15 | Hunting Performance, Inc. | Integrated transmitter surveying while boring entrenching powering device for the continuation of a guided bore hole |
WO2001049965A1 (en) * | 2000-01-04 | 2001-07-12 | Hunting Performance, Inc. | Integrated transmitter surveying while boring (swb) entrenching powering device for the continuation of a guided bore hole |
US6405808B1 (en) | 2000-03-30 | 2002-06-18 | Schlumberger Technology Corporation | Method for increasing the efficiency of drilling a wellbore, improving the accuracy of its borehole trajectory and reducing the corresponding computed ellise of uncertainty |
US20040164838A1 (en) * | 2000-07-19 | 2004-08-26 | Hall David R. | Element for Use in an Inductive Coupler for Downhole Drilling Components |
US7040003B2 (en) | 2000-07-19 | 2006-05-09 | Intelliserv, Inc. | Inductive coupler for downhole components and method for making same |
US6992554B2 (en) | 2000-07-19 | 2006-01-31 | Intelliserv, Inc. | Data transmission element for downhole drilling components |
US20040145492A1 (en) * | 2000-07-19 | 2004-07-29 | Hall David R. | Data Transmission Element for Downhole Drilling Components |
US7064676B2 (en) | 2000-07-19 | 2006-06-20 | Intelliserv, Inc. | Downhole data transmission system |
US6670880B1 (en) | 2000-07-19 | 2003-12-30 | Novatek Engineering, Inc. | Downhole data transmission system |
US20040164833A1 (en) * | 2000-07-19 | 2004-08-26 | Hall David R. | Inductive Coupler for Downhole Components and Method for Making Same |
US6717501B2 (en) | 2000-07-19 | 2004-04-06 | Novatek Engineering, Inc. | Downhole data transmission system |
US7098767B2 (en) | 2000-07-19 | 2006-08-29 | Intelliserv, Inc. | Element for use in an inductive coupler for downhole drilling components |
US20040104797A1 (en) * | 2000-07-19 | 2004-06-03 | Hall David R. | Downhole data transmission system |
US6888473B1 (en) | 2000-07-20 | 2005-05-03 | Intelliserv, Inc. | Repeatable reference for positioning sensors and transducers in drill pipe |
US6827160B2 (en) | 2001-01-12 | 2004-12-07 | Hunting Performance, Inc. | Downhole mud motor |
US6561290B2 (en) | 2001-01-12 | 2003-05-13 | Performance Boring Technologies, Inc. | Downhole mud motor |
US6705406B2 (en) * | 2002-03-26 | 2004-03-16 | Baker Hughes Incorporated | Replaceable electrical device for a downhole tool and method thereof |
US7105098B1 (en) | 2002-06-06 | 2006-09-12 | Sandia Corporation | Method to control artifacts of microstructural fabrication |
US20050039912A1 (en) * | 2002-08-05 | 2005-02-24 | Hall David R. | Conformable Apparatus in a Drill String |
US7261154B2 (en) | 2002-08-05 | 2007-08-28 | Intelliserv, Inc. | Conformable apparatus in a drill string |
US7243717B2 (en) | 2002-08-05 | 2007-07-17 | Intelliserv, Inc. | Apparatus in a drill string |
US6799632B2 (en) | 2002-08-05 | 2004-10-05 | Intelliserv, Inc. | Expandable metal liner for downhole components |
US20050082092A1 (en) * | 2002-08-05 | 2005-04-21 | Hall David R. | Apparatus in a Drill String |
US20040113808A1 (en) * | 2002-12-10 | 2004-06-17 | Hall David R. | Signal connection for a downhole tool string |
US7098802B2 (en) | 2002-12-10 | 2006-08-29 | Intelliserv, Inc. | Signal connection for a downhole tool string |
US7190280B2 (en) | 2003-01-31 | 2007-03-13 | Intelliserv, Inc. | Method and apparatus for transmitting and receiving data to and from a downhole tool |
US6830467B2 (en) | 2003-01-31 | 2004-12-14 | Intelliserv, Inc. | Electrical transmission line diametrical retainer |
US20040150532A1 (en) * | 2003-01-31 | 2004-08-05 | Hall David R. | Method and apparatus for transmitting and receiving data to and from a downhole tool |
US20040219831A1 (en) * | 2003-01-31 | 2004-11-04 | Hall David R. | Data transmission system for a downhole component |
US20040150533A1 (en) * | 2003-02-04 | 2004-08-05 | Hall David R. | Downhole tool adapted for telemetry |
US7852232B2 (en) | 2003-02-04 | 2010-12-14 | Intelliserv, Inc. | Downhole tool adapted for telemetry |
US6944545B2 (en) | 2003-03-25 | 2005-09-13 | David A. Close | System and method for determining the inclination of a wellbore |
US20050154532A1 (en) * | 2003-03-25 | 2005-07-14 | Close David A. | System and method for determining the inclination of a wellbore |
US20050074988A1 (en) * | 2003-05-06 | 2005-04-07 | Hall David R. | Improved electrical contact for downhole drilling networks |
US20040221995A1 (en) * | 2003-05-06 | 2004-11-11 | Hall David R. | Loaded transducer for downhole drilling components |
US6913093B2 (en) | 2003-05-06 | 2005-07-05 | Intelliserv, Inc. | Loaded transducer for downhole drilling components |
US6929493B2 (en) | 2003-05-06 | 2005-08-16 | Intelliserv, Inc. | Electrical contact for downhole drilling networks |
US7048089B2 (en) | 2003-05-07 | 2006-05-23 | Battelle Energy Alliance, Llc | Methods and apparatus for use in detecting seismic waves in a borehole |
US7178627B2 (en) | 2003-05-07 | 2007-02-20 | Battelle Energy Alliance, Llc | Methods for use in detecting seismic waves in a borehole |
US20040223410A1 (en) * | 2003-05-07 | 2004-11-11 | West Phillip B. | Methods and apparatus for use in detecting seismic waves in a borehole |
US20060175125A1 (en) * | 2003-05-07 | 2006-08-10 | West Phillip B | Methods for use in detecting seismic waves in a borehole |
US20040246142A1 (en) * | 2003-06-03 | 2004-12-09 | Hall David R. | Transducer for downhole drilling components |
US7053788B2 (en) | 2003-06-03 | 2006-05-30 | Intelliserv, Inc. | Transducer for downhole drilling components |
US6981546B2 (en) | 2003-06-09 | 2006-01-03 | Intelliserv, Inc. | Electrical transmission line diametrical retention mechanism |
US20040244964A1 (en) * | 2003-06-09 | 2004-12-09 | Hall David R. | Electrical transmission line diametrical retention mechanism |
US7224288B2 (en) | 2003-07-02 | 2007-05-29 | Intelliserv, Inc. | Link module for a downhole drilling network |
US20050001736A1 (en) * | 2003-07-02 | 2005-01-06 | Hall David R. | Clamp to retain an electrical transmission line in a passageway |
US20050001738A1 (en) * | 2003-07-02 | 2005-01-06 | Hall David R. | Transmission element for downhole drilling components |
US20050001735A1 (en) * | 2003-07-02 | 2005-01-06 | Hall David R. | Link module for a downhole drilling network |
US20050016770A1 (en) * | 2003-07-25 | 2005-01-27 | Schlumberger Technology Corporation | While drilling system and method |
US7178607B2 (en) | 2003-07-25 | 2007-02-20 | Schlumberger Technology Corporation | While drilling system and method |
US7178608B2 (en) | 2003-07-25 | 2007-02-20 | Schlumberger Technology Corporation | While drilling system and method |
US20050045339A1 (en) * | 2003-09-02 | 2005-03-03 | Hall David R. | Drilling jar for use in a downhole network |
US6991035B2 (en) | 2003-09-02 | 2006-01-31 | Intelliserv, Inc. | Drilling jar for use in a downhole network |
US20050046590A1 (en) * | 2003-09-02 | 2005-03-03 | Hall David R. | Polished downhole transducer having improved signal coupling |
US6982384B2 (en) | 2003-09-25 | 2006-01-03 | Intelliserv, Inc. | Load-resistant coaxial transmission line |
US20050067159A1 (en) * | 2003-09-25 | 2005-03-31 | Hall David R. | Load-Resistant Coaxial Transmission Line |
US20050074998A1 (en) * | 2003-10-02 | 2005-04-07 | Hall David R. | Tool Joints Adapted for Electrical Transmission |
US7017667B2 (en) | 2003-10-31 | 2006-03-28 | Intelliserv, Inc. | Drill string transmission line |
US20050092499A1 (en) * | 2003-10-31 | 2005-05-05 | Hall David R. | Improved drill string transmission line |
US6968611B2 (en) | 2003-11-05 | 2005-11-29 | Intelliserv, Inc. | Internal coaxial cable electrical connector for use in downhole tools |
US20050095827A1 (en) * | 2003-11-05 | 2005-05-05 | Hall David R. | An internal coaxial cable electrical connector for use in downhole tools |
US6945802B2 (en) | 2003-11-28 | 2005-09-20 | Intelliserv, Inc. | Seal for coaxial cable in downhole tools |
US20050118848A1 (en) * | 2003-11-28 | 2005-06-02 | Hall David R. | Seal for coaxial cable in downhole tools |
US20050115717A1 (en) * | 2003-11-29 | 2005-06-02 | Hall David R. | Improved Downhole Tool Liner |
US20070169929A1 (en) * | 2003-12-31 | 2007-07-26 | Hall David R | Apparatus and method for bonding a transmission line to a downhole tool |
US7291303B2 (en) | 2003-12-31 | 2007-11-06 | Intelliserv, Inc. | Method for bonding a transmission line to a downhole tool |
US20050173128A1 (en) * | 2004-02-10 | 2005-08-11 | Hall David R. | Apparatus and Method for Routing a Transmission Line through a Downhole Tool |
US7069999B2 (en) | 2004-02-10 | 2006-07-04 | Intelliserv, Inc. | Apparatus and method for routing a transmission line through a downhole tool |
US20050212530A1 (en) * | 2004-03-24 | 2005-09-29 | Hall David R | Method and Apparatus for Testing Electromagnetic Connectivity in a Drill String |
US20060065395A1 (en) * | 2004-09-28 | 2006-03-30 | Adrian Snell | Removable Equipment Housing for Downhole Measurements |
US20060106587A1 (en) * | 2004-11-15 | 2006-05-18 | Rodney Paul F | Method and apparatus for surveying a borehole with a rotating sensor package |
US7650269B2 (en) | 2004-11-15 | 2010-01-19 | Halliburton Energy Services, Inc. | Method and apparatus for surveying a borehole with a rotating sensor package |
US20090298597A1 (en) * | 2008-06-02 | 2009-12-03 | Wall Kevin W | Power transmission line section |
US8062140B2 (en) | 2008-06-02 | 2011-11-22 | Wall Kevin W | Power transmission line section |
US9222350B2 (en) | 2011-06-21 | 2015-12-29 | Diamond Innovations, Inc. | Cutter tool insert having sensing device |
WO2014043073A3 (en) * | 2012-09-14 | 2015-07-16 | Scientific Drilling International, Inc. | Early detection and anti-collision system |
US9007231B2 (en) | 2013-01-17 | 2015-04-14 | Baker Hughes Incorporated | Synchronization of distributed measurements in a borehole |
US20150275656A1 (en) * | 2014-04-01 | 2015-10-01 | Bench Tree Group, Llc | System and method of triggering, acquiring and communicating borehole data for a mwd system |
US10087749B2 (en) * | 2014-04-01 | 2018-10-02 | Bench Tree Group, Llc | System and method of triggering, acquiring and communicating borehole data for a MWD system |
US20190234201A1 (en) * | 2014-04-01 | 2019-08-01 | Bench Tree Group, Llc | System and method of triggering, acquiring and communicating borehole data for a mwd system |
US10941650B2 (en) * | 2014-04-01 | 2021-03-09 | Bench Tree Group, Llc | System and method of triggering, acquiring and communicating borehole data for a MWD system |
Also Published As
Publication number | Publication date |
---|---|
GB9110516D0 (en) | 1991-07-03 |
US5163521A (en) | 1992-11-17 |
GB2247477B (en) | 1995-03-01 |
CA2024061A1 (en) | 1992-02-28 |
CA2024061C (en) | 2001-10-02 |
GB2247477A (en) | 1992-03-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
USRE35790E (en) | System for drilling deviated boreholes | |
US5410303A (en) | System for drilling deivated boreholes | |
US6057784A (en) | Apparatus and system for making at-bit measurements while drilling | |
US4992787A (en) | Method and apparatus for remote signal entry into measurement while drilling system | |
CA2714874C (en) | Method and apparatus for transmitting sensor response data and power through a mud motor | |
US5448227A (en) | Method of and apparatus for making near-bit measurements while drilling | |
CA1222882A (en) | Mud turbine tachometer | |
US6564883B2 (en) | Rib-mounted logging-while-drilling (LWD) sensors | |
US4992997A (en) | Stress wave telemetry system for drillstems and tubing strings | |
US6839000B2 (en) | Integrated, single collar measurement while drilling tool | |
US5325714A (en) | Steerable motor system with integrated formation evaluation logging capacity | |
US20100008188A1 (en) | System and method for acquiring information during underground drilling operations | |
EP3530876B1 (en) | Turbine drilling assembly with near drill bit sensors | |
GB2280463A (en) | Borehole drilling and telemetry | |
Inglis et al. | Measurement while drilling (MWD) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Fee payment |
Year of fee payment: 8 |
|
AS | Assignment |
Owner name: HALLIBURTON ENERGY SERVICES, INC., TEXAS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BAROID TECHNOLOGY, INC.;REEL/FRAME:013821/0799 Effective date: 20030202 |
|
FPAY | Fee payment |
Year of fee payment: 12 |