US8568915B2 - Battery with integrally formed terminal - Google Patents
Battery with integrally formed terminal Download PDFInfo
- Publication number
- US8568915B2 US8568915B2 US12/368,938 US36893809A US8568915B2 US 8568915 B2 US8568915 B2 US 8568915B2 US 36893809 A US36893809 A US 36893809A US 8568915 B2 US8568915 B2 US 8568915B2
- Authority
- US
- United States
- Prior art keywords
- battery
- flange
- housing
- terminal
- cell
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
- 230000008878 coupling Effects 0.000 claims abstract description 12
- 238000010168 coupling process Methods 0.000 claims abstract description 12
- 238000005859 coupling reaction Methods 0.000 claims abstract description 12
- 229910001416 lithium ion Inorganic materials 0.000 claims description 12
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical group [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 claims description 8
- 229910052782 aluminium Inorganic materials 0.000 claims description 8
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 8
- 238000003466 welding Methods 0.000 description 26
- 238000000034 method Methods 0.000 description 13
- 239000000463 material Substances 0.000 description 10
- 238000013461 design Methods 0.000 description 9
- 239000007789 gas Substances 0.000 description 8
- 239000012212 insulator Substances 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 8
- 239000003792 electrolyte Substances 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 6
- 229910052987 metal hydride Inorganic materials 0.000 description 5
- 238000012986 modification Methods 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- 229920000642 polymer Polymers 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 239000004020 conductor Substances 0.000 description 4
- 238000010297 mechanical methods and process Methods 0.000 description 4
- 230000005226 mechanical processes and functions Effects 0.000 description 4
- -1 polyethylene Polymers 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 238000005304 joining Methods 0.000 description 3
- 229910052744 lithium Inorganic materials 0.000 description 3
- 238000013022 venting Methods 0.000 description 3
- 229910000838 Al alloy Inorganic materials 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229910000881 Cu alloy Inorganic materials 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 239000002828 fuel tank Substances 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229920001296 polysiloxane Polymers 0.000 description 2
- 238000004080 punching Methods 0.000 description 2
- 238000012552 review Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910005813 NiMH Inorganic materials 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003502 gasoline Substances 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- RSNHXDVSISOZOB-UHFFFAOYSA-N lithium nickel Chemical compound [Li].[Ni] RSNHXDVSISOZOB-UHFFFAOYSA-N 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/10—Primary casings; Jackets or wrappings
- H01M50/147—Lids or covers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L50/00—Electric propulsion with power supplied within the vehicle
- B60L50/50—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
- B60L50/60—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
- B60L50/66—Arrangements of batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/10—Primary casings; Jackets or wrappings
- H01M50/102—Primary casings; Jackets or wrappings characterised by their shape or physical structure
- H01M50/107—Primary casings; Jackets or wrappings characterised by their shape or physical structure having curved cross-section, e.g. round or elliptic
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/30—Arrangements for facilitating escape of gases
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/50—Current conducting connections for cells or batteries
- H01M50/543—Terminals
- H01M50/552—Terminals characterised by their shape
- H01M50/559—Terminals adapted for cells having curved cross-section, e.g. round, elliptic or button cells
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2200/00—Type of vehicles
- B60L2200/12—Bikes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2200/00—Type of vehicles
- B60L2200/18—Buses
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2200/00—Type of vehicles
- B60L2200/32—Waterborne vessels
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L50/00—Electric propulsion with power supplied within the vehicle
- B60L50/50—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
- B60L50/60—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
- B60L50/64—Constructional details of batteries specially adapted for electric vehicles
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2220/00—Batteries for particular applications
- H01M2220/20—Batteries in motive systems, e.g. vehicle, ship, plane
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/20—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
- H01M50/249—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/20—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
- H01M50/271—Lids or covers for the racks or secondary casings
- H01M50/273—Lids or covers for the racks or secondary casings characterised by the material
- H01M50/276—Inorganic material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/50—Current conducting connections for cells or batteries
- H01M50/502—Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
- H01M50/507—Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing comprising an arrangement of two or more busbars within a container structure, e.g. busbar modules
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/50—Current conducting connections for cells or batteries
- H01M50/502—Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
- H01M50/514—Methods for interconnecting adjacent batteries or cells
- H01M50/516—Methods for interconnecting adjacent batteries or cells by welding, soldering or brazing
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/50—Current conducting connections for cells or batteries
- H01M50/502—Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
- H01M50/521—Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the material
- H01M50/522—Inorganic material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/50—Current conducting connections for cells or batteries
- H01M50/543—Terminals
- H01M50/564—Terminals characterised by their manufacturing process
- H01M50/566—Terminals characterised by their manufacturing process by welding, soldering or brazing
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49002—Electrical device making
- Y10T29/49108—Electric battery cell making
Definitions
- the present disclosure relates to the field of batteries and battery systems. More specifically, the present disclosure relates to integrally formed terminals for batteries or cells (e.g., lithium-ion batteries).
- batteries or cells e.g., lithium-ion batteries
- batteries or cells for use in vehicles such as automobiles.
- lead-acid batteries have been used in starting, lighting, and ignition applications.
- hybrid electric vehicles are being developed which utilize a battery (e.g., a lithium-ion or nickel-metal-hydride battery) in combination with other systems (e.g., an internal combustion engine) to provide power for the vehicle.
- a battery e.g., a lithium-ion or nickel-metal-hydride battery
- other systems e.g., an internal combustion engine
- a battery generally includes two terminals (e.g., a positive terminal and a negative terminal, etc.) through which the battery is electrically connected to other batteries or other components.
- a battery may have terminals that protrude from the battery surface and/or have a casing that acts as a terminal. These terminals are provided as separate elements that are coupled to the battery (e.g., by welding to a battery cover). This adds an additional step to the manufacturing process, as well as increased cost. The integrity of this weld or other coupling mechanism may present issues over the life of the battery.
- Battery systems or assemblies include a number of batteries or cells electrically coupled to each other and/or to other elements of the system. Such cells are conventionally coupled together using conductive members (e.g., bus bars). Such conductive members may be welded to the terminals of the batteries or secured using fasteners. It would be advantageous to eliminate the need for such conductive members to remove the additional cost and manufacturing time associated with such components (e.g., to reduce the number of parts in the battery system and to eliminate the need to handle and assemble the components during manufacturing).
- conductive members e.g., bus bars.
- Such conductive members may be welded to the terminals of the batteries or secured using fasteners. It would be advantageous to eliminate the need for such conductive members to remove the additional cost and manufacturing time associated with such components (e.g., to reduce the number of parts in the battery system and to eliminate the need to handle and assemble the components during manufacturing).
- a battery that includes one or more terminals that are integrally formed with the body or cover of the battery. It would also be advantageous to configure the terminals so they can be directly coupled to terminals of adjacent batteries.
- One exemplary embodiment relates to a battery including a housing having a central longitudinal axis.
- the battery also includes a cover coupled to the housing and a first flange integrally formed with the cover.
- the first flange is configured to act as a first terminal for the battery. At least a portion of the first flange extends away from the housing in a direction generally perpendicular to the central longitudinal axis.
- the first flange is configured for electrical coupling with a terminal of an adjacent battery in a battery system.
- a battery module including a plurality of electrochemical cells.
- Each of the cells comprise a housing having a longitudinal axis and a lid coupled to the housing.
- the lid comprises a member configured to act as a first terminal for the cell. At least a portion of the member extends away from the housing in a direction generally perpendicular to the longitudinal axis.
- the member is conductively coupled to a terminal of an adjacent cell.
- Another exemplary embodiment relates to a method of producing a battery module including providing a plurality of electrochemical cells.
- Each of the cells comprises a housing having a longitudinal axis and a cover coupled to the housing at a first end of the cell.
- the cover comprises a member configured to act as a first terminal for the cell. At least a portion of the member extends away from the housing in a direction generally perpendicular to the longitudinal axis.
- the method also includes coupling the member of one of the plurality of cells to a terminal of an adjacent cell.
- FIG. 1 is a perspective view of a vehicle having a battery system according to an exemplary embodiment.
- FIG. 1A is a schematic cutaway view of a hybrid electric vehicle according to an exemplary embodiment.
- FIG. 2 is a perspective view of a battery system according to an exemplary embodiment.
- FIG. 2A is a cutaway perspective view of a battery system according to an exemplary embodiment.
- FIG. 3 is a perspective view of a battery or cell according to an exemplary embodiment.
- FIG. 4 is an exploded view of the battery of FIG. 3 according to an exemplary embodiment.
- FIG. 5 is a perspective view of a cover for a battery according to an exemplary embodiment.
- FIG. 6 is a top view of the cover of FIG. 5 according to an exemplary embodiment.
- FIG. 7 is a cross-section view of the cover of FIG. 6 taken along line 7 - 7 according to an exemplary embodiment.
- FIG. 8 is a perspective view of a battery according to an exemplary embodiment.
- FIG. 9 is a perspective view of the cover of the battery of FIG. 8 according to an exemplary embodiment.
- FIG. 10 is a view of multiple batteries connected together according to an exemplary embodiment.
- FIGS. 11A-11G are views of a battery according to various exemplary embodiments.
- FIG. 12 is an exploded view of a battery according to an exemplary embodiment.
- FIG. 13 is an exploded view of a battery according to an exemplary embodiment.
- FIG. 14 is a perspective view of a first electrochemical cell coupled to a second electrochemical cell with a bus bar according to an exemplary embodiment.
- FIG. 15 is a perspective view of a bus bar coupled to a terminal of an adjacent electrochemical cell according to an exemplary embodiment.
- FIG. 16 is a perspective view of a portion of a battery module having a first electrochemical cell coupled to a second electrochemical cell with the bus bar as shown in FIG. 15 .
- FIG. 17 is a cutaway perspective view of a portion of an electrochemical cell shown without electrodes according to an exemplary embodiment.
- FIG. 18 is an exploded view of the electrochemical cell as shown in FIG. 17 .
- FIG. 19 is a perspective view of a lid having an integral bus bar coupled to a terminal according to an exemplary embodiment.
- FIG. 20 is a perspective view of the lid as shown in FIG. 19 .
- FIG. 21 is a perspective view of a battery module according to an exemplary embodiment.
- FIG. 22 is a perspective view of the battery module as shown in FIG. 21 with an upper tray removed.
- FIG. 23 is a perspective view of a plurality of electrochemical cells provided in an upper tray according to an exemplary embodiment.
- FIG. 24 is a perspective view of a plurality of electrochemical cells provided in an upper tray according to an exemplary embodiment.
- FIG. 25 is a top view of the upper tray as shown in FIG. 21 .
- FIG. 26 is a perspective view of the upper tray as shown in FIG. 21 .
- FIG. 27 is a bottom view of the upper tray as shown in FIG. 21 .
- FIG. 28 is a bottom perspective view of the upper tray as shown in FIG. 21 .
- a vehicle 12 is shown according to an exemplary embodiment and includes a battery system 14 .
- the size, shape, configuration, and location of battery system 14 and the type of vehicle 12 may vary according to various exemplary embodiments.
- vehicle 12 in FIG. 1 is shown as an automobile, according to various exemplary embodiments, vehicle 12 may comprise a wide variety of differing types of vehicles including, among others, motorcycles, buses, recreational vehicles, boats, and the like.
- vehicle 12 has a battery system 14 for providing all or a portion of the motive power for the vehicle 12 .
- Such a vehicle can be an electric vehicle (EV), a hybrid electric vehicle (HEV), a plug-in hybrid electric vehicle (PHEV), or other type of vehicle using electric power for propulsion (collectively referred to as “electric vehicles”).
- EV electric vehicle
- HEV hybrid electric vehicle
- PHEV plug-in hybrid electric vehicle
- the location of the battery system 14 may differ.
- the position of the battery system 14 may be selected based on the available space within the vehicle 12 , the desired weight balance of the vehicle 12 , the location of other components used with the battery system 14 (e.g., battery management systems, vents or cooling devices, etc.), and a variety of other considerations.
- FIG. 1A illustrates a cutaway schematic view of a vehicle 100 provided in the form of a PHEV according to an exemplary embodiment.
- a battery system 102 is provided toward the rear of the vehicle 100 proximate to a fuel tank 104 (battery system 102 may be provided immediately adjacent to the fuel tank 104 or may be provided in a separate compartment in the rear of the vehicle 100 (e.g., a trunk) or may be provided elsewhere in the vehicle 100 ).
- An internal combustion engine 106 is provided for times when the vehicle 100 utilizes gasoline power to propel itself.
- An electric motor 108 , a power split device 112 , and a generator 114 are also provided as part of the vehicle drive system of vehicle 100 .
- the vehicle 100 may be powered or driven by just the battery system 102 , by just the engine 106 , or by both the battery system 102 and the engine 106 .
- battery system 14 is shown according to an exemplary embodiment.
- Battery system 14 includes a plurality of electrochemical cells or batteries, shown as batteries 10 (e.g., lithium-ion batteries, NiMH batteries, lithium polymer batteries, etc.).
- Batteries 10 may be positioned within a housing that may include such features as a battery management system, a cooling fan, plenum assembly, etc. Other configurations of battery system 14 may be used in accordance with various other exemplary embodiments.
- a battery system 116 is shown according to an exemplary embodiment and is responsible for packaging or containing a battery module 117 containing electrochemical cells or batteries 118 , connecting the electrochemical cells 118 to each other and/or to other components of the vehicle electrical system, and regulating the electrochemical cells 118 and other features of the battery system 116 .
- the battery system 116 may include features that are responsible for monitoring and controlling the electrical performance of the battery system 116 , managing the thermal behavior of the battery system 116 , containment and/or routing of effluent (e.g., gases that may be vented from a cell 118 ), and other aspects of the battery system 116 .
- effluent e.g., gases that may be vented from a cell 118
- the battery module 117 includes a plurality of electrochemical cells or batteries 118 (e.g., lithium-ion batteries, nickel-metal-hydride cells, lithium polymer cells, etc., or other types of electrochemical cells now known or hereafter developed).
- the electrochemical cells 118 are generally cylindrical lithium-ion cells configured to store an electrical charge.
- cells 118 could have other physical configurations (e.g., oval, prismatic, polygonal, etc.).
- the capacity, size, design, and other features of the cells 118 may also differ from those shown according to other exemplary embodiments.
- the cells 118 each have at least one terminal 119 located at an end thereof.
- the cells each have two terminals 119 (e.g., a first or positive terminal, and a second or negative terminal) located at an end thereof.
- the size, shape, and location of the battery module 117 or battery system 116 , the type of vehicle 100 , the type of vehicle technology (e.g., EV, HEV, PHEV, etc.), and the battery chemistry, among other features, may differ from those shown or described.
- electrochemical cells 118 Although illustrated in FIG. 2A as having a particular number of electrochemical cells 118 , it should be noted that according to other exemplary embodiments, a different number and/or arrangement of electrochemical cells 118 may be used depending on any of a variety of considerations (e.g., the desired power for the battery system 116 , the available space within which the battery system 116 must fit, etc.).
- a series of members or elements in the form of trays 140 or similar structures are provided to contain the various cells 118 in relation to each other.
- the trays 140 may be made of a polymeric material or other suitable materials (e.g., electrically insulative materials).
- the trays 140 may also include features to provide spacing of the cells 118 away from the surface of the trays 140 and/or from adjacent cells 118 .
- a housing or cover 142 and a base plate may be provided to partially or completely surround or enclose the cells 118 and trays 140 .
- FIG. 2A shows an exemplary embodiment of a battery module 117
- the battery module 117 is not limited to any particular arrangement as will be appreciated by those reviewing this disclosure.
- the battery module 117 shown in FIG. 2A is shown with horizontally oriented cells 118 arranged back-to-back in two banks or groups by parallel frame members (i.e., trays 140 ), it should be understood that the battery module 117 may have many different configurations.
- the cells 118 may also be generally vertical, be several separate groups, or arranged in other configurations.
- different numbers and types (e.g., nickel-metal-hydride, etc.) of cells 118 may be used.
- the cover 142 may include features (e.g., sidewalls, etc.) that are intended to receive and arrange the cells 118 .
- Battery 10 is generally cylindrical and comprises a container 20 (e.g., housing, casing, can, etc.), a cover or lid 30 coupled to container 20 , a member or element in the form of an insulator 40 that separates container 20 and cover 30 , and one or more terminals 50 .
- Container 20 is a generally hollow body (e.g., can, cup, canister, etc.) made of aluminum or another conductive material.
- Container 20 has provided therein electrodes 60 and an electrolyte (not shown) and may act as a terminal 50 for battery 10 .
- battery 10 is a lithium-ion battery, although those reviewing this disclosure will recognize that other types of batteries may also use features described herein (e.g., nickel-metal-hydride batteries, lithium-polymer batteries, etc.).
- Cover 30 is a generally planar member or element (e.g., lid, cap, top, etc) that encloses electrodes 60 and the electrolyte in container 20 and is conductively separated from container 20 by insulator 40 .
- cover 30 is aluminum or another suitable conductive material and is conductively coupled to electrode 60 in battery 10 .
- terminal 50 is a protrusion or extension that is extruded, drawn, molded, cast, or otherwise formed as an integral part of cover 30 .
- terminal 50 may be a variety of shapes other than that shown in FIGS. 5-7 (e.g. cylindrical, rectangular, trapezoidal, etc.) and may be provided in a variety of positions (e.g., central, near the edge, etc.) and orientations.
- terminal 50 may be provided on container 20 or terminals 50 may be provided both on container 20 and on cover 30 .
- Terminal 50 may be further machined or shaped to provide a feature for coupling terminal 50 to wires, sockets, bus bars, or other components. It should be noted that terminal 50 can either follow the contour of the cover 30 or can be flattened so that a standard spade connector can be placed flat on the surface of the terminal 50 according to other exemplary embodiments.
- Battery 110 is generally cylindrical and comprises a container or housing 120 and a cover or lid 130 coupled to container 120 .
- Container 120 is a generally thin-walled hollow body (e.g., a can, cup, canister, etc.) made of aluminum or another conductive material and is conductively coupled to an electrode (e.g., cathode or anode).
- Container 120 holds electrodes and an electrolyte (not shown) and may act as a terminal for battery 110 .
- Container 120 includes a side wall 122 with a rim 123 .
- Container 120 also includes a feature shown as a flange 124 (e.g., a tab, flap, projection, extension, protrusion, projection, lip, overhang, protuberance, etc.).
- Flange 124 is a generally flat member (e.g., a tab, flap, projection, extension, protrusion, projection, lip, overhang, protuberance, etc.) that is integrally formed with side wall 122 and extends upward past rim 123 .
- Flange 124 may be bent and have a vertical portion 126 and a horizontal portion 128 that extends beyond side wall 122 (e.g., in a direction generally perpendicular to the axial or longitudinal direction for the cell).
- Flange 124 is configured to engage flange 134 on cover 130 of an adjacent battery 110 (described in more detail below with respect to FIG. 10 ).
- Cover 130 is a generally flat body (e.g., lid, cap, top, etc.) that encloses electrodes and electrolyte in container 120 and is conductively separated from container 120 with an insulator (not shown).
- cover 130 is aluminum or another suitable conductive material and is conductively coupled to an electrode in battery 110 .
- Cover 130 comprises a generally flat, circular surface or body 132 , and a generally vertical side wall 133 that extends upward from and substantially perpendicular to surface 132 .
- Side wall 133 is a curved feature that substantially follows the contour of side wall 122 of container 120 and has an outer diameter less than the inner diameter of side wall 122 .
- Cover 130 is configured to fit inside the open end of container 120 .
- Cover 130 also includes a feature shown as flange 134 .
- Flange 134 is a generally flat member (e.g., tab, flap, projection, extension, etc.) that is integrally formed with side wall 133 and extends upward therefrom. Flange 134 may be bent and have a vertical portion 136 and a horizontal portion 138 that extends outward past side wall 133 in a direction generally opposite horizontal portion 128 of flange 124 .
- a plurality of batteries 110 are shown connected in series to form a portion of a battery module or battery system.
- vertical portion 136 of flange 134 on cover 130 is longer than vertical portion 126 of flange 124 on container 120 .
- horizontal portion 138 of flange 134 on one battery 110 rests on horizontal portion 128 of flange 124 on another battery 110 .
- flanges 124 , 134 are welded together.
- flanges 124 , 134 may be coupled in another suitable manner, either permanently or temporarily (e.g., bolted, riveted, crimped, clamped, etc.). Flanges 124 , 134 may act as terminals that can directly and conductively couple two batteries together, eliminating the need for a separate member to conductively couple the batteries.
- FIGS. 11A-11G a number of batteries are shown according to various exemplary embodiments.
- Each battery comprises a first terminal and a second terminal.
- one or both of the terminals may be integrally formed as a part of the cover and/or container of the battery.
- FIG. 11A illustrates a battery 210 with terminals 220 , 230 that are located on the same end of battery 210 and are substantially smooth pins.
- FIG. 11B illustrates a battery 310 with a first terminal 320 on one end and a second terminal 330 on an opposite end.
- terminals 320 , 330 are substantially smooth pins.
- FIG. 11C shows an exemplary embodiment of a battery 410 with terminals 420 , 430 that are located on the same end of battery 410 and are generally thin flat members (e.g., blades).
- terminals 420 , 430 are generally parallel.
- terminals 420 , 430 may be at some other angle relative to each other (e.g., perpendicular to each other as in FIG. 11D ).
- FIG. 11E shows an exemplary embodiment of a battery 510 with a first terminal 520 on one end and a second terminal 530 on an opposite end.
- Terminals 520 , 530 are generally thin flat members (e.g. blades).
- FIG. 11F shows an exemplary embodiment of a battery 610 with terminals 620 , 630 that are located on the same end of battery 610 and are generally thin flat members bent into a generally L-shaped profile.
- first terminal 620 and second terminal 630 are bent such that the horizontal portions of terminals 620 , 630 extend toward and beyond the periphery of battery 610 .
- First terminal 620 and second terminal 630 are configured to have horizontal portions of slightly different lengths such that first terminal 620 on one battery 610 may rest on second terminal 630 of an adjacent battery 610 .
- FIG. 11G shows an exemplary embodiment of a battery 710 with a first terminal 720 on one end and a second terminal 730 on an opposite end.
- Terminals 720 , 730 are generally thin flat members bent into a generally L-shape profile. According to an exemplary embodiment, terminals 720 , 730 are bent such that the horizontal portions of terminals 720 , 730 extend in the same direction. According to other exemplary embodiments, terminals 720 , 730 may be bent in opposite directions or may extend at some other angle relative to each other.
- a battery 810 is shown according to an exemplary embodiment and includes a top portion, or cover 830 , a bottom portion, or container 820 , and a seal portion 860 .
- cover 830 is provided with raised portions or terminals 840 , 850 that may act as positive and/or negative terminals for battery 810 .
- Terminals 840 , 850 may be integrally formed with cover 830 (e.g., not welded) so as to reduce manufacturing costs and the number of component parts associated with battery 810 .
- seal 860 may be applied around the upper portion of container 820 .
- seal 860 comprises a polymer material such as a polyethylene, etc.
- other materials may be used to make seal 860 .
- Seal 860 may be provided in a tape or strip form and wrapped around container 820 as shown in FIG. 12 and, if necessary, held in place with an adhesive (e.g., either as an integral part of seal 860 or as a separately provided component).
- cover 830 in order to attach cover 830 to container 820 , cover 830 is first heated to expand the inside diameter of cover 830 . While in the expanded condition, cover 830 is fitted over container 820 and seal 860 such that the heat from cover 830 at least partially melts seal 860 , thereby helping to seal cover 830 to container 820 . As cover 830 is allowed to cool, cover 830 contracts while positioned over container 820 , forming a tight, sealed joint between cover 830 and container 820 .
- the inside diameter of cover 830 is approximately the same as the outside diameter of container 820 , thereby providing a secure fit between cover 830 and container 820 after coupling of cover 830 to housing 820 .
- the dimensions of cover 830 and/or container 820 may be varied to provide a more or less snug fit for various applications.
- seal 860 may be provided on cover 830 rather than container 820 .
- seal 860 is configured to act as a vent for battery 810 .
- seal 860 may deteriorate (e.g., melt, etc.) as a result of the pressure and/or temperature within battery 810 reaching a predetermined level, thereby permitting pressurized gases or other fluids to escape from within battery 810 .
- This provides for a method of venting battery 810 that avoids the expense and time of manufacturing and assembling separate components to provide for venting of battery 810 .
- battery 810 is provided as a generally cylindrical battery having a generally circular cross-section.
- Terminals 840 , 850 shown in FIG. 12 are integrally formed with cover 830 .
- Cover 830 may be either conductively coupled to or insulated from container 820 .
- battery 810 may take other shapes and forms, and terminals 840 , 850 may be provided as integrally formed terminals in a variety of locations.
- battery 910 is shown according to an exemplary embodiment.
- battery 910 includes a cover 930 and a container 920 .
- container 920 includes terminals 940 , 950 that may be integrally formed with container 920 .
- a seal 960 that may be similar to seal 860 discussed with respect to FIG. 12 is provided around the lower portion of container 920 to seal cover 930 to container 920 in a manner similar to that discussed with respect to FIG. 12 .
- battery 910 is similar to battery 810 and may be manufactured and assembled in a similar manner except that terminals 940 , 950 are integrally formed with container 920 (rather than with cover 930 ), and cover 930 is intended to engage the bottom portion of container 920 (rather than the top portion as shown in FIG. 12 ). Furthermore, battery 910 is provided with an elongated (e.g., oval, etc.) cross-section, rather than the generally circular cross-section of battery 810 . According to various other exemplary embodiments, other modifications may be made to batteries 810 , 910 in order to accommodate various specific applications. For example, seals 860 , 960 may be reinforced by other methods of sealing (e.g., laser welding, sonic welding, adhesives, etc.).
- FIG. 14 a method of connecting the terminals 1012 , 1014 of adjacent cells 1010 is shown according to an exemplary embodiment.
- Each of the cells 1010 are electrically coupled to one or more other cells 1010 or other components of the battery system 116 (shown, e.g., in FIG. 2A ) using connectors provided in the form of bus bars 1016 or similar elements.
- FIG. 14 shows two cells 1010 coupled together with a bus bar 1016 according to an exemplary embodiment. A portion of the bus bar 1016 is shown as a broken view to show the interface between the bus bar 1016 and the terminal 1012 .
- the bus bar 1016 is a metallic member (e.g., copper, copper alloy, aluminum, aluminum alloy, etc.) that couples the negative terminal 1014 of a first cell 1010 to the positive terminal 1012 of a second cell 1010 .
- the bus bar 1016 includes a first end 1018 that is coupled to the negative terminal 1014 of the first cell 1010 (e.g., by an interference fit, by welding, etc.) and a second end 1020 that is coupled to the positive terminal 1012 of a second cell 1010 (e.g., by an interference fit, by welding etc.).
- the first end 1018 and the second end 1020 of the bus bar 1016 each include a projection 1022 (e.g., protruding ridge, lip, flange, extension, etc.) that is configured to substantially surround the terminal 1012 , 1014 of a cell 1010 .
- the projection 1022 may be cast or formed by a mechanical process such as a stamping operation, a punching operation, or an extrusion operation. The mechanical process causes the projection 1022 to extend outward from the top surface 1024 of the bus bar 1016 .
- the projection 1022 forms a generally vertical wall 1026 that defines an aperture 1028 that is configured to receive the terminal 1012 , 1014 of the projection 1022 .
- the aperture 1028 has a diameter that is smaller than the diameter of the terminal 1012 , 1014 so that the bus bar 1016 is coupled to the cell 1010 with an interference fit when the terminal 1012 , 1014 is received by the aperture 1028 .
- the bus bar 1016 is assembled with the cells 1010 by first heating the bus bar 1016 (e.g., by induction heating, by an oven, by a flame or heating element, etc.).
- the heating of the bus bar 1016 occurs as part of an assembly line process where the bus bars 1016 being are heated (e.g., in an oven) in the assembly line and directly assembled with the cells 1010 .
- the bus bar 1016 is heated to a temperature sufficient to expand the material of the bus bar 1016 , widening the aperture 1028 formed by the projection 1022 and allowing the terminal 1012 , 1014 to be received by the aperture 1028 in the bus bar 1016 .
- these temperatures may vary depending on the material properties of the bus bars 1016 (e.g., coefficient of thermal expansion).
- An insulator 1132 (e.g., as shown in FIG. 15 ) may be provided below the bus bar 1016 and around the terminal 1012 , 1014 to reduce the chance of inadvertent contact between the bus bar 1016 and the lid or cover 1034 of the cell 1010 .
- the bus bar 1016 may be further coupled to the cell 1010 with a welding operation such as an ultrasonic welding operation, a laser welding operation, or a resistance welding operation.
- a welding operation such as an ultrasonic welding operation, a laser welding operation, or a resistance welding operation.
- the bus bar 1016 may only be welded to the terminals 1012 , 1014 of the cells 1010 instead of being provided with an interference fit and welded to the terminals 1012 , 1014 of the cells 1010 .
- the bus bar 1016 may only be press fit to the terminals 1012 , 1014 of the cells 1010 instead of being welded to the terminals 1012 , 1014 of the cells 1010 .
- FIGS. 15-16 show a bus bar 1116 according to another exemplary embodiment coupled to a terminal 1112 of a cell 1110 .
- a portion of the bus bar 1116 is shown as a broken view to show the interface between the bus bar 1116 and the terminal 1112 .
- the bus bar 1116 is a metallic member (e.g., copper, copper alloy, aluminum, aluminum alloy, etc.) that couples a first cell 1110 to a second cell (e.g., as shown in FIG. 16 ).
- the bus bar 1116 includes a first end 1118 that is coupled to a terminal 1112 of the first cell 1110 (e.g., by an interference fit, by welding, etc.) and a second end 1120 that is coupled to the housing 1136 of the second cell 1110 (e.g., by a press fit, by an interference fit, by welding, etc.).
- the first end 1118 of the bus bar 1116 shown in FIG. 15 is similar to the first end 1018 of the bus bar 1016 shown in FIG. 14 .
- the second end 1120 of the bus bar 1116 shown in FIG. 15 is configured to be coupled to the housing 1136 of a second, adjacent cell 1110 and to act as a cover for the second cell.
- the first end 1118 of the bus bar 1116 includes a projection 1122 (e.g., protruding ridge, lip, flange, extension, etc.) that is configured to substantially surround the terminal 1112 of a first cell 1110 .
- the projection 1122 may be cast or may be formed by a mechanical process such as a stamping operation, a punching operation, or an extrusion operation. The mechanical process causes the projection 1122 to extend outward from a top surface 1124 of the bus bar 1116 .
- the projection 1122 forms a generally vertical wall 1126 that defines an aperture 1128 that is configured to receive the terminal 1112 of the cell 1010 . In other words, the terminal 1112 is received in the aperture 1128 defined by the projection 1122 of the bus bar 1116 such that contact is made between the terminal 1112 and an inner surface 1130 of the projection 1122 .
- FIG. 16 shows a portion of a battery module including two cells 1110 coupled together with the bus bar 1116 of FIG. 15 .
- the cells 1110 are generally cylindrical bodies with a top or first surface 1134 having a terminal 1112 (e.g., a negative terminal, a positive terminal) that extends generally upward from the top surface 1134 .
- the terminal 1112 is electrically coupled to a first electrode (not shown) inside the housing 1136 of the cell 1110 (e.g., a negative electrode, a positive electrode). However, the terminal 1112 is electrically insulated from the housing 1136 itself (e.g., by an insulator 1132 ).
- the housing 1136 of the cell 1110 including the top surface 1134 of the cell 1110 , is electrically coupled to a second electrode (not shown) inside the housing 1136 of the cell 1010 (e.g., a positive electrode, a negative electrode).
- the bus bar 1116 is coupled to the cells 1110 by first coupling the second end 1120 of the bus bar 1116 to the top surface 1134 of the of the second cell 1110 .
- the second end 1120 of the bus bar 1116 is press fit into the top of the housing 1136 of the second cell 1110 and then welded (e.g., ultrasonic, laser, resistance, etc.) to form a cover for the cell 1110 (i.e., the cover includes an extension or flange that acts as a bus bar or terminal for coupling to an adjacent cell).
- the second end 1120 of the bus bar 1116 is larger than the diameter of the top of the second cell 1110 and is coupled to the top of the second cell 1110 with an interference fit.
- the second end 1120 of the bus bar 1116 is shrunk (e.g., reduced in size, made smaller, etc.) by a cooling process (e.g., using liquid nitrogen).
- the second end 1120 of the bus bar 1116 is then placed into the open end of the top of the second cell 1110 and allowed to return to room temperature.
- the second end 1120 of the bus bar 1116 may then be further coupled to the cell 1110 by a welding operation such as an ultrasonic welding operation, a laser welding operation, or a resistance welding operation.
- the first end 1118 of the bus bar 1116 is then coupled to the terminal 1112 of the first cell 1110 .
- the first end 1118 of the bus bar 1116 is welded (e.g., ultrasonic, laser, resistance, etc.) to the terminal 1112 of the first cell 1110 .
- the first end 1118 of the bus bar 1116 is press fit to the terminal 1112 of the first cell 1110 .
- the aperture 1128 in the first end 1118 of the bus bar 1116 has a diameter that is smaller than the diameter of the terminal 1112 so that the first end 1118 of the bus bar 1116 is coupled to the terminal 1112 of the first cell 1110 with an interference fit.
- the first end 1118 of the bus bar 1116 is heated (e.g., by placing the first end 1118 near a heating element or a flame). Heating the first end 1118 of the bus bar 1116 expands the metal, widening the aperture 1128 formed by the projection 1122 and allowing the terminal 1112 to be received in the aperture 1128 in the first end 1118 of the bus bar 1116 . As the bus bar 1116 cools, the diameter of the aperture 1128 shrinks, forming an interference fit with the terminal 1112 .
- An insulator 1132 (e.g., as shown in FIG. 16 ) may be provided below the bus bar 1116 and around the terminal 1112 to reduce the chance of inadvertent contact between the bus bar 1116 and the housing 1136 of the cell 1010 .
- the bus bar 1116 may then be further coupled to the terminal 1112 of the cell 1010 with a welding operation such as an ultrasonic welding operation, a laser welding operation, or a resistance welding operation.
- a cell can or housing 1212 e.g., a container, casing, etc.
- the housing 1212 is configured to receive or house a cell element (e.g., a wound cylindrical cell element) that is not shown.
- the housing 1212 comprises a three-piece structure, comprising a main body 1214 (that may, e.g., be made from an aluminum tube or tubing), a first cover or bottom 1216 , and a second cover or lid 1218 that includes a flange (e.g., a tab, flap, projection, extension, protrusion, projection, lip, overhang, protuberance, etc.) that acts as a bus bar or terminal for coupling the cell 1210 to a terminal of an adjacent cell.
- a flange e.g., a tab, flap, projection, extension, protrusion, projection, lip, overhang, protuberance, etc.
- the three-piece housing 1212 provides for a flexible design that may be varied (e.g., in length) to provide for various sizes and capacities of cell elements.
- a different length main body 1214 may be used with the same bottom 1216 and lid 1218 .
- internal connections e.g., current collectors, etc.
- this type of separate component design allows for lower cost tooling for development and higher efficiencies in economies of scale in that the same design for the bottom 1216 and the lid 1218 may be used interchangeably with different lengths of the main body 1214 .
- the separate components are easier to clean and handle than previous designs.
- the main body 1214 , bottom 1216 , and lid 1218 may be cleaned separately and then assembled together.
- Previous designs having the bottom or the lid integral with the main body made it difficult to clean the inside of the main body and/or the bottom or lid. Having separate components allows for full accessibility to all of the components of the housing 1212 .
- the bottom 1216 may have an integral vent feature 1220 according to an exemplary embodiment.
- the vent feature 1220 may be configured to separate or deploy from the bottom 1216 if the pressure inside the housing 1212 reaches a predetermined amount.
- Various sized vents 1220 may be used with the bottom 1216 , allowing different internal pressures to be obtained depending on the design (e.g., size) of the vent 1220 used. Additionally, the various sized vents 1220 may be interchanged with different sized housings 1212 , dependent upon the needs of the application.
- the bottom 1216 is coupled (e.g., by a welding process, such as laser welding) to a lower portion of the housing 1212 .
- the lid 1218 includes a first terminal 1222 (e.g., a positive terminal) that may be provided, for example, in the center of the lid 1218 .
- the first terminal 1222 is insulated from the lid 1218 by the use of an insulating material or insulating device shown as an insulator 1224 .
- the first terminal 1222 may be coupled to an electrode (e.g., a positive electrode) of the cell element (not shown) with a current collector (not shown).
- the lid 1218 is coupled (e.g., by welding process, such as laser welding) to an upper portion of the housing 1212 .
- the lid 1218 also comprises a member shown as a flange (e.g., a tab, flap, projection, extension, protrusion, projection, lip, overhang, protuberance, etc.) that may act as a terminal or bus bar 1226 for the cell 1210 .
- the bus bar 1226 is integral with the lid 1218 (i.e., the bus bar 1226 and lid 1218 are a single unitary body). Having the bus bar 1226 integral with the lid 1218 reduces the overall component count of the system. Additionally, the number of fasteners (not shown) required (e.g., to couple the bus bars 1226 to the terminals 1222 ) is reduced. Furthermore, the overall system cost may be reduced by eliminating or reducing the amount of copper used by having integral bus bars 1226 .
- the bus bar 1226 extends out and away from the lid 1218 .
- the bus bar 1226 is at a height that is different (i.e., higher) than the height of the lid 1218 , allowing the bus bar 1226 to be placed over (i.e., on top of) a terminal 1222 of an adjacent cell 1210 .
- the bus bar 1226 is configured with an aperture 1228 at an end of the of the bus bar 1226 .
- the aperture 1228 is configured to allow a fastener (not shown) to be placed through the aperture 1228 in order to couple the bus bar 1226 to a terminal 1222 of an adjacent cell 1210 .
- the lid 1218 may also comprise an aperture or hole shown as fill hole 1230 .
- Fill hole 1230 is configured to allow a substance (e.g., electrolyte) to be placed in the cell 1210 after the cell 1210 is assembled.
- the lid may also comprise an aperture or hole 1234 (e.g., as shown in FIG. 20 ) configured to receive the first terminal 1222 and insulator 1224 .
- the bus bar 1226 may function as a second terminal 1232 (e.g., a negative terminal) of the cell 1210 due to the fact that the bus bar 1226 may be electrically connected to an electrode (e.g., a negative electrode) of the cell element (not shown).
- the bus bar 1226 being integral with the lid 1218 , may be connected to the electrode by the lid 1218 being electrically connected to the main body 1214 of the housing 1212 .
- the main body 1214 of the housing 1212 is electrically connected to the bottom 1216 of the housing 1212 , which in turn is then electrically connected to the electrode of the cell element, completing the connection from the bus bar 1226 to the electrode.
- the battery module 1300 may be electrically coupled with other battery modules 1300 to form a battery system (not shown) or may be used independently to form its own battery system.
- the battery system may include other features (not shown) that are responsible for monitoring and controlling the electrical performance of the system, managing the thermal behavior of the system, containment and/or routing of effluent (e.g., gases that may be vented from a cell 1310 ), and other aspects of the battery module 1300 or battery system.
- the battery module 1300 includes a plurality of electrochemical cells 1310 each having a flange (e.g., a tab, flap, projection, extension, protrusion, projection, lip, overhang, protuberance, etc.) shown as an integral terminal or bus bar 1314 formed in the lid 1312 of the cell 1310 , a first structure or upper tray 1316 , and a second structure or the lower tray 1318 .
- the plurality of cells 1310 are provided in between the upper tray 1316 and the lower tray 1318 .
- electrochemical cells 1310 may be used depending on any of a variety of considerations (e.g., the desired power for the battery module 1300 , the available space within which the battery module 1300 must fit, etc.).
- the upper tray 1316 comprises features 1320 (e.g., raised portions, cutouts, channels, spaces, molded areas, etc.) that receive the integral bus bars 1314 of the individual cells 1310 to properly orientate or align the cells 1310 (and the integral bus bars 1314 ) so that the bus bars 1314 are properly aligned to be connected to an adjacent cell 1310 .
- the upper tray 1316 also comprises a feature shown as a wall 1322 (as shown, e.g., in FIG. 24 ) that partially surrounds the upper portion of the cell 1310 to aid in properly locating the cell 1310 .
- bus bars 1314 used in connection with the upper tray 1316 need not be integral with the lid 1312 (i.e., the upper tray 1316 will still be able to properly align and orientate cells 1310 having non-integral bus bars 1314 ).
- the upper tray 1316 also comprises openings or apertures 1324 that expose a portion of the bus bar 1314 (e.g., the end of the bus bar 1314 having an aperture 1326 ) to be coupled (e.g., with a fastener, by welding, etc.) to a terminal 1328 of an adjacent cell 1310 .
- the terminal 1328 of the adjacent cell 1310 is threaded (e.g., to receive a fastener 1329 , as shown in FIG. 22 ).
- the terminal 1328 of the adjacent cell 1310 may be flat so that the terminal 1328 may be welded to the bus bar 1314 .
- the upper tray 1316 may be made of a polymer (e.g., polypropylene, polyethylene, etc.) or any other suitable material (e.g., insulative material).
- the battery module 1300 is shown to include a seal 1330 provided along an upper surface of the lower tray 1318 in order to seal a chamber (not shown) located inside the lower tray 1318 .
- the seal 1330 is configured to seal the gap between the lower portion of the cells 1310 and the lower tray 1318 (when the cells 1310 are placed in the lower tray 1318 ).
- the seal 1330 may be constructed from silicone (e.g., molded silicone) or other appropriate material.
- the seal 1330 is configured to aid in containing any gases that are vented from the cells 1310 into the chamber.
- gases may be vented from the cells 1310 via a vent device or vent feature 1334 located at the lower end of each of the cells 1310 (shown, e.g., in FIGS. 23-24 ).
- an opening or outlet 1336 e.g., as shown in FIG. 21
- the outlet 1336 may be used to direct gases from the chamber (after having been vented from the cells 1310 ) to outside the battery module 1300 (e.g., outside the vehicle).
- the battery module 1300 is shown with the upper tray 1316 removed.
- the bus bars 1314 of the cells 1310 are properly oriented so that they are ready for connection to a terminal 1328 of an adjacent cell 1310 (or for connection to another module 1300 or other component of the battery system).
- the battery module 1300 may also include an aperture or hole shown as fill hole 1332 in the lid 1312 of the cell 1310 .
- the fill hole 1332 allows a substance (e.g., an electrolyte) to enter the cell 1310 .
- the upper tray 1316 may be used as an assembly tool or fixture according to an exemplary embodiment.
- the cells 1310 having the integral bus bars 1314 are provided in the upper tray 1316 (which is provided upside down).
- the alignment features 1320 shown as depressions in FIGS. 24 , and 27 - 28 ) provided in the upper tray 1316 provide for an assembly/fixturing tool for properly aligning and orientating the individual cells 1310 into place when assembling the module 1300 . Utilizing the upper tray 1316 as an assembly tool saves time, energy, and money in assembling the battery module 1300 .
- bus bars 1314 used in connection with the upper tray 1316 need not be integral with the lid 1312 (i.e., the upper tray 1316 will still be able to properly align and orientate cells 1310 having non-integral bus bars 1314 ).
- the cells 1310 (having either an integral bus bar 1314 or a separate bus bar coupled to the lid 1312 ) are provided upside down into the upper tray 1316 (i.e., the end of the cell 1310 having the lid 1312 and bus bar 1314 are placed into the upper tray 1316 ).
- the bus bar 1314 of each individual cell 1310 will be aligned for proper coupling with the terminal 1328 of another cell 1310 (or to other components of the battery module 1300 or battery system).
- the wall features 1322 of the upper tray 1316 may aid in properly locating the individual cells 1310 .
- the bottom tray 1318 is assembled to the cells 1310 (again, upside down).
- the bottom tray 1318 may have a seal 1330 provided on it to seal the lower end of the cells 1310 (as shown in FIG. 21 ).
- the battery module 1300 is then turned right side up where the bus bars 1314 are then coupled to their respective terminal 1328 (e.g., by a fastener, by welding, etc.).
- a battery module includes a plurality of electrochemical cells provided in between a bottom tray and an upper tray.
- the electrochemical cells may include a housing having a tubular main body, a bottom, and a lid.
- the bottom may include a vent feature to allow venting of gases and/or effluent from inside the housing.
- the lid may include a first terminal that is insulated from the lid and a bus bar that is integral to the lid.
- the integral bus bar may serve as a second terminal of the cell.
- the battery module may also include a seal provided between the lower end of the cell and the lower tray to seal a chamber configured to receive vented gases from the cells.
- the upper tray may include features and/or cutouts to help properly align and orientate the cells having integral bus bars.
- the battery module includes a plurality of electrochemical cells provided in between a first structure and a second structure.
- Each of the electrochemical cells includes a feature extending from a top of the electrochemical cells, the feature configured to electrically couple the electrochemical cell to a terminal of an adjacent electrochemical cell or other component of the battery module.
- the first structure includes features to properly orientate each of the electrochemical cells.
- a method of assembling a battery module includes providing a plurality of electrochemical cells in a first structure.
- Each of the plurality of electrochemical cells has a lid having an integral bus bar.
- the first structure has features to properly orientate the integral bus bars of each of the plurality of electrochemical cells.
- the method further includes providing a second structure over the ends of the electrochemical cells.
- One advantageous feature of providing terminals that are integrally formed with a cover, lid, or container for a battery or cell is that the need to separately manufacture and couple the terminal to the cover, lid, or container is eliminated. In this manner, labor and manufacturing costs may be reduced as compared to other cells in which terminals are separately manufactured from the lid, cover, or container (e.g., by eliminating steps in the manufacturing operation). Additionally, providing terminals that are integrally formed reduces the opportunity for failure modes to take effect (e.g., because the terminal is not welded to the cover or container, there is not a weld point which may be a point of electrical shorting or failure).
- Coupled means the joining of two members directly or indirectly to one another. Such joining may be stationary (e.g., permanent) or moveable (e.g., removable or releasable). Such joining may be achieved with the two members or the two members and any additional intermediate members being integrally formed as a single unitary body with one another or with the two members or the two members and any additional intermediate members being attached to one another.
- the battery may be non-cylindrical (e.g., oval, rectangular, etc.), the position of elements may be reversed or otherwise varied (e.g., orientation of terminals), and the battery could be a number of different of types (e.g., nickel metal hydride, lithium ion, lithium polymer, etc.). Accordingly, all such modifications are intended to be included within the scope of the present inventions. The order or sequence of any process or method steps may be varied or re-sequenced according to exemplary embodiments. Other substitutions, modifications, changes and omissions may be made in the design, operating conditions and arrangement of the various exemplary embodiments without departing from the scope of the present invention.
Landscapes
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Electrochemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Sustainable Energy (AREA)
- Mechanical Engineering (AREA)
- Transportation (AREA)
- Power Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Connection Of Batteries Or Terminals (AREA)
- Battery Mounting, Suspending (AREA)
Abstract
Description
Claims (21)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/368,938 US8568915B2 (en) | 2006-08-11 | 2009-02-10 | Battery with integrally formed terminal |
US14/065,172 US20140050967A1 (en) | 2006-08-11 | 2013-10-28 | System for arranging and coupling battery cells in a battery module |
US16/844,506 US11660971B2 (en) | 2006-11-07 | 2020-04-09 | System for arranging and coupling battery cells in a battery module |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US83734506P | 2006-08-11 | 2006-08-11 | |
PCT/US2007/017785 WO2008021230A2 (en) | 2006-08-11 | 2007-08-10 | Battery with integrally formed terminal |
US10198508P | 2008-10-01 | 2008-10-01 | |
US14699409P | 2009-01-23 | 2009-01-23 | |
US12/368,938 US8568915B2 (en) | 2006-08-11 | 2009-02-10 | Battery with integrally formed terminal |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2007/017785 Continuation-In-Part WO2008021230A2 (en) | 2006-08-11 | 2007-08-10 | Battery with integrally formed terminal |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/065,172 Continuation-In-Part US20140050967A1 (en) | 2006-08-11 | 2013-10-28 | System for arranging and coupling battery cells in a battery module |
Publications (2)
Publication Number | Publication Date |
---|---|
US20090208836A1 US20090208836A1 (en) | 2009-08-20 |
US8568915B2 true US8568915B2 (en) | 2013-10-29 |
Family
ID=40955419
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/368,938 Active 2030-02-12 US8568915B2 (en) | 2006-08-11 | 2009-02-10 | Battery with integrally formed terminal |
US14/065,172 Abandoned US20140050967A1 (en) | 2006-08-11 | 2013-10-28 | System for arranging and coupling battery cells in a battery module |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/065,172 Abandoned US20140050967A1 (en) | 2006-08-11 | 2013-10-28 | System for arranging and coupling battery cells in a battery module |
Country Status (1)
Country | Link |
---|---|
US (2) | US8568915B2 (en) |
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130143110A1 (en) * | 2011-12-01 | 2013-06-06 | Roger Neil Bull | System and method for enclosing an energy storage cell |
US20150155529A1 (en) * | 2012-09-04 | 2015-06-04 | Panasonic Intellectual Property Management Co., Lt | Battery block and manufacturing method therefor |
US9312522B2 (en) | 2012-10-18 | 2016-04-12 | Ambri Inc. | Electrochemical energy storage devices |
US9502737B2 (en) | 2013-05-23 | 2016-11-22 | Ambri Inc. | Voltage-enhanced energy storage devices |
US9520618B2 (en) | 2013-02-12 | 2016-12-13 | Ambri Inc. | Electrochemical energy storage devices |
US9633799B2 (en) | 2011-08-29 | 2017-04-25 | Blue Solutions | Long-term energy storage assembly comprising an intermediate connection part |
US9735450B2 (en) | 2012-10-18 | 2017-08-15 | Ambri Inc. | Electrochemical energy storage devices |
US9748047B2 (en) * | 2011-08-29 | 2017-08-29 | Blue Solutions | Connector arranged between two cylindrical energy storage assemblies |
US9893385B1 (en) | 2015-04-23 | 2018-02-13 | Ambri Inc. | Battery management systems for energy storage devices |
US10170974B1 (en) | 2017-07-28 | 2019-01-01 | Apple Inc. | Variable frequency and burst mode operation of primary resonant flyback converters |
US10181800B1 (en) | 2015-03-02 | 2019-01-15 | Ambri Inc. | Power conversion systems for energy storage devices |
US10270139B1 (en) | 2013-03-14 | 2019-04-23 | Ambri Inc. | Systems and methods for recycling electrochemical energy storage devices |
US10541451B2 (en) | 2012-10-18 | 2020-01-21 | Ambri Inc. | Electrochemical energy storage devices |
US10608212B2 (en) | 2012-10-16 | 2020-03-31 | Ambri Inc. | Electrochemical energy storage devices and housings |
US10637015B2 (en) | 2015-03-05 | 2020-04-28 | Ambri Inc. | Ceramic materials and seals for high temperature reactive material devices |
US10707699B2 (en) | 2017-09-28 | 2020-07-07 | Apple Inc. | Interphase transformer based rectifier for wireless power transfer |
US11211641B2 (en) | 2012-10-18 | 2021-12-28 | Ambri Inc. | Electrochemical energy storage devices |
US11309597B2 (en) | 2018-01-11 | 2022-04-19 | Carrier Corporation | Battery temperature control |
US11387497B2 (en) | 2012-10-18 | 2022-07-12 | Ambri Inc. | Electrochemical energy storage devices |
US11411254B2 (en) | 2017-04-07 | 2022-08-09 | Ambri Inc. | Molten salt battery with solid metal cathode |
US11660971B2 (en) | 2006-11-07 | 2023-05-30 | Clarios Advanced Solutions Llc | System for arranging and coupling battery cells in a battery module |
US11721841B2 (en) | 2012-10-18 | 2023-08-08 | Ambri Inc. | Electrochemical energy storage devices |
US11909004B2 (en) | 2013-10-16 | 2024-02-20 | Ambri Inc. | Electrochemical energy storage devices |
US11929466B2 (en) | 2016-09-07 | 2024-03-12 | Ambri Inc. | Electrochemical energy storage devices |
US12142735B1 (en) | 2023-04-28 | 2024-11-12 | Ambri, Inc. | Thermal management of liquid metal batteries |
Families Citing this family (53)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102008009970A1 (en) * | 2008-02-20 | 2009-08-27 | Li-Tec Vermögensverwaltungs GmbH | Battery Management System |
DE102009046385A1 (en) * | 2009-11-04 | 2011-05-05 | SB LiMotive Company Ltd., Suwon | Battery with degassing system and method for discharging spills |
DE102009053344A1 (en) * | 2009-11-17 | 2011-05-19 | Auto-Kabel Managementgesellschaft Mbh | Battery cells connector |
DE102009047490A1 (en) * | 2009-12-04 | 2011-06-09 | Robert Bosch Gmbh | Process for the preparation of an electrically conductive compound |
DE102010000842A1 (en) * | 2010-01-13 | 2011-07-14 | Robert Bosch GmbH, 70469 | Battery, battery system and method for connecting a plurality of batteries |
DE102010029011A1 (en) * | 2010-05-17 | 2011-11-17 | Sb Limotive Company Ltd. | Lithium-ion battery cell and method for producing an electrically conductive contacting of terminals of battery cells |
US8394525B2 (en) * | 2010-06-22 | 2013-03-12 | Ford Global Technologies, Llc | Support assembly for an array of battery cells |
US8647766B2 (en) * | 2010-06-22 | 2014-02-11 | Ford Global Technologies, Llc | Voltage detection in a battery |
KR20120023263A (en) * | 2010-09-01 | 2012-03-13 | 에스케이이노베이션 주식회사 | Battery having cell tab connecting structure with resistance welding |
US8771382B2 (en) * | 2011-02-25 | 2014-07-08 | GM Global Technology Operations LLC | Heat shrink joining of battery cell components |
US9520585B2 (en) * | 2011-03-10 | 2016-12-13 | Sanyo Electric Co., Ltd. | Assembled battery and cell connection method |
US9118069B2 (en) * | 2011-05-10 | 2015-08-25 | GM Global Technology Operations LLC | Battery cell with integrated busbar |
US9472797B2 (en) * | 2011-05-25 | 2016-10-18 | Samsung Sdi Co., Ltd. | Battery pack |
KR101361113B1 (en) * | 2011-07-13 | 2014-02-13 | 주식회사 엘지화학 | Battery Module of Improved Connection Reliability and Battery Pack Employed with the Same |
US8945763B2 (en) | 2012-01-31 | 2015-02-03 | Johnson Controls Technology Company | Systems and methods for manufacturing battery cells |
DE102012202324A1 (en) * | 2012-02-16 | 2013-08-22 | Robert Bosch Gmbh | Method for producing an electrochemical cell and the electrochemical cell produced therewith |
US9755211B2 (en) * | 2012-06-06 | 2017-09-05 | Johnson Controls Technology Company | Accumulator arrangement, busbar element therefor and method for producing an accumulator arrangement |
DE102012020799A1 (en) * | 2012-10-23 | 2014-04-24 | Li-Tec Battery Gmbh | Energy storage device, battery with two of these energy storage devices, and method for interconnecting these energy storage devices |
WO2014064888A1 (en) * | 2012-10-26 | 2014-05-01 | 三洋電機株式会社 | Power source device, electric vehicle comprising power source device, accumulator device, and method for fabrication of power source device |
KR20140094898A (en) * | 2013-01-23 | 2014-07-31 | 삼성에스디아이 주식회사 | Case for packing battery |
WO2015066078A1 (en) * | 2013-10-28 | 2015-05-07 | Johnson Controls Advanced Power Solutions LLC | System for arranging and coupling battery cells in a battery module |
JP6127957B2 (en) * | 2013-12-13 | 2017-05-17 | ソニー株式会社 | Battery and battery pack |
JP6171980B2 (en) * | 2014-03-04 | 2017-08-02 | ソニー株式会社 | Batteries and electronics |
CN113381129B (en) * | 2015-01-05 | 2024-03-29 | Cps科技控股有限公司 | Battery module busbar carrier with guide extension system and method |
US20160315305A1 (en) * | 2015-04-21 | 2016-10-27 | Atieva, Inc. | Preconditioned Bus Bar Interconnect System |
US20160336578A1 (en) * | 2015-05-11 | 2016-11-17 | Johnson Controls Technology Company | Features for preventing short circuit in a battery module |
DE102015210671A1 (en) * | 2015-06-11 | 2016-12-15 | Robert Bosch Gmbh | Battery cell with a disposed within a second terminal first terminal |
WO2017220514A1 (en) * | 2016-06-20 | 2017-12-28 | Michael Schnakenberg | Rechargeable battery module having optimized heat dissipation |
FR3053533B1 (en) * | 2016-07-04 | 2018-07-13 | Saft | BATTERY MODULE |
US10700335B2 (en) * | 2016-09-07 | 2020-06-30 | Thunder Power New Energy Vehicle Development Company Limited | Battery system housing with internal busbar |
US10396410B2 (en) | 2016-09-07 | 2019-08-27 | Thunder Power New Energy Vehicle Development Company Limited | Battery system housing with internal busbar |
JP6460158B2 (en) * | 2017-06-13 | 2019-01-30 | 株式会社村田製作所 | Batteries and electronics |
CN110754007A (en) * | 2017-06-16 | 2020-02-04 | 株式会社杰士汤浅国际 | Electricity storage device |
HUE067470T2 (en) * | 2017-07-19 | 2024-10-28 | Lg Energy Solution Ltd | Battery pack fixing apparatus |
US20200176735A1 (en) * | 2017-09-20 | 2020-06-04 | Panasonic Intellectual Property Management Co., Ltd. | Battery module |
DE102018109889A1 (en) | 2018-04-24 | 2019-10-24 | Webasto SE | Traction battery for a motor vehicle |
KR102258177B1 (en) * | 2018-09-20 | 2021-05-28 | 주식회사 엘지에너지솔루션 | Battery module, battery pack comprising the battery module and vehicle comprising the battery pack |
CN209045657U (en) * | 2018-12-26 | 2019-06-28 | 宁德时代新能源科技股份有限公司 | Battery modules |
CN209730034U (en) * | 2019-01-18 | 2019-12-03 | 宁德时代新能源科技股份有限公司 | A kind of battery module |
KR20210067647A (en) * | 2019-11-29 | 2021-06-08 | 삼성에스디아이 주식회사 | Battery pack |
KR102572650B1 (en) | 2019-11-29 | 2023-08-31 | 삼성에스디아이 주식회사 | Battery pack |
KR102561801B1 (en) | 2019-11-29 | 2023-07-31 | 삼성에스디아이 주식회사 | Battery pack |
KR102574517B1 (en) | 2019-11-29 | 2023-09-04 | 삼성에스디아이 주식회사 | Battery pack |
KR102501080B1 (en) | 2019-11-29 | 2023-02-17 | 삼성에스디아이 주식회사 | Battery pack |
US12132227B2 (en) | 2021-01-19 | 2024-10-29 | Lg Energy Solution, Ltd. | Battery, and battery pack and vehicle comprising the same |
DE202022002775U1 (en) * | 2021-01-19 | 2023-05-16 | Lg Energy Solution, Ltd. | Battery with pantograph, battery pack and vehicle with such a battery |
US20220271345A1 (en) | 2021-02-19 | 2022-08-25 | Lg Energy Solution, Ltd. | Electrode assembly, battery, and battery pack and vehicle including the same |
US11670826B2 (en) | 2021-07-23 | 2023-06-06 | Lyten, Inc. | Length-wise welded electrodes incorporated in cylindrical cell format lithium-sulfur batteries |
US11600876B2 (en) | 2021-07-23 | 2023-03-07 | Lyten, Inc. | Wound cylindrical lithium-sulfur battery including electrically-conductive carbonaceous materials |
US12009470B2 (en) | 2021-07-23 | 2024-06-11 | Lyten, Inc. | Cylindrical lithium-sulfur batteries |
US20230113945A1 (en) * | 2021-10-12 | 2023-04-13 | Lg Energy Solution, Ltd. | Battery pack and vehicle including the same |
DE102022000886A1 (en) | 2022-03-14 | 2023-09-14 | Mercedes-Benz Group AG | Single battery cell with a housing and battery module |
US20230327462A1 (en) * | 2022-04-11 | 2023-10-12 | GM Global Technology Operations LLC | Battery pack with parallel conductor routing |
Citations (88)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2042806A (en) | 1934-12-15 | 1936-06-02 | Burgess Battery Co | Battery |
US2416079A (en) | 1943-06-30 | 1947-02-18 | Ray O Vac Co | Dry battery wrapper |
US3338452A (en) | 1964-11-23 | 1967-08-29 | Michael J Oakley | Case for storage battery cell |
FR2058740A5 (en) | 1969-09-23 | 1971-05-28 | Accumulateurs Fixes | |
US4189473A (en) | 1974-03-28 | 1980-02-19 | Beecham Group Limited | Antibiotic MM 13902 |
GB2136629A (en) | 1983-03-16 | 1984-09-19 | South African Inventions | Power storage battery |
US4554221A (en) | 1985-01-23 | 1985-11-19 | Dsl Dynamic Sciences Limited | Rechargeable battery pack |
FR2585185A1 (en) | 1985-07-16 | 1987-01-23 | Accumulateurs Fixes | Metal shroud for electric batteries and electric batteries applying same |
US4957829A (en) | 1989-06-26 | 1990-09-18 | At&T Bell Laboratories | Modular battery plant system assembly comprising multiple unit cell modules |
US5336570A (en) | 1992-08-21 | 1994-08-09 | Dodge Jr Cleveland E | Hydrogen powered electricity generating planar member |
EP0607675B1 (en) | 1992-12-22 | 1996-09-25 | Honda Giken Kogyo Kabushiki Kaisha | Battery with rust preventive structure |
US5606238A (en) | 1994-07-21 | 1997-02-25 | Rayovac Corporation | Discriminating battery charging system |
US5866276A (en) | 1995-09-27 | 1999-02-02 | Nissan Motor Co., Ltd. | Battery structure for electric vehicle |
US5879833A (en) | 1996-06-12 | 1999-03-09 | Matsushita Electric Industrial Co., Ltd. | Power supply unit and heat radiation method therefor |
US6001501A (en) | 1998-02-03 | 1999-12-14 | Siemens Westinghouse Power Corporation | Connections for solid oxide fuel cells |
US6106972A (en) | 1997-07-02 | 2000-08-22 | Denso Corporation | Battery cooling system |
EP1109237A1 (en) | 1999-12-13 | 2001-06-20 | Alcatel | Module configuration |
US6265091B1 (en) | 1997-06-06 | 2001-07-24 | Johnson Controls Technology Company | Modular electric storage battery |
US20010046624A1 (en) | 2000-05-19 | 2001-11-29 | Shin-Kobe Electric Machinery Co.,Ltd. | Battery structure for electric vehicle and battery module |
US6379837B1 (en) | 1999-02-15 | 2002-04-30 | Sony Corporation | Battery device loaded on moving body |
US6379831B1 (en) | 2000-08-02 | 2002-04-30 | Siemens Westinghouse Power Corporation | Expanded nickel screen electrical connection supports for solid oxide fuel cells |
EP1213784A2 (en) | 2000-11-30 | 2002-06-12 | Ford Global Technologies, Inc. | A method and arrangement for providing a compact battery with autonomous cooling |
US6410184B1 (en) | 1999-01-28 | 2002-06-25 | Sanyo Electric Co., Ltd. | Power source containing rechargeable batteries |
US6410185B1 (en) | 1999-02-15 | 2002-06-25 | Sony Corporation | Battery device for loading on moving body |
US6461757B1 (en) | 1997-03-19 | 2002-10-08 | Asahi Kasei Kogyo Kabushiki Kaisha | Non-aqueous battery of a thin configuration |
US6465123B1 (en) | 1999-07-01 | 2002-10-15 | Daimlerchrysler Ag | Battery container and motor vehicle |
US6472098B1 (en) | 1998-11-30 | 2002-10-29 | Sony Corporation | Battery device for loading on a mobile system |
US20030059676A1 (en) | 2001-07-31 | 2003-03-27 | S.E. Acumulador Tudor, S.A. | Electrical accumulator batteries |
US6541154B2 (en) | 2000-03-15 | 2003-04-01 | Nissan Motor Co., Ltd. | Multi-cell structure battery for electric motor powered vehicle |
US6558835B1 (en) | 1999-08-31 | 2003-05-06 | Toshiba Battery Co., Ltd. | Battery module of parallel electric cell rod bodies |
US6579640B1 (en) | 1999-09-28 | 2003-06-17 | Sanyo Electric Co., Ltd. | Sealed rectangular battery and manufacturing method for the same |
JP2003308823A (en) | 2002-04-17 | 2003-10-31 | Japan Storage Battery Co Ltd | Storage battery |
US6656632B2 (en) | 2000-05-12 | 2003-12-02 | Honda Giken Kogyo Kabushiki Kaisha | Cell module structure |
US20040038123A1 (en) | 2002-08-26 | 2004-02-26 | Nissan Motor Co., Ltd. | Stack type battery and related method |
US6767666B2 (en) | 2001-03-21 | 2004-07-27 | Ngk Insulators, Ltd. | Lithium secondary cell and lithium secondary cell connecting structure |
US20040175612A1 (en) | 2003-03-07 | 2004-09-09 | Allen Conti | Electrochemical cell |
EP1503442A2 (en) | 2003-07-28 | 2005-02-02 | Hewlett-Packard Development Company, L.P. | Fuel cell support structure and method of manufacture |
US6858345B2 (en) | 2002-04-09 | 2005-02-22 | The University Of Chicago | Wound bipolar lithium polymer batteries |
US20050048365A1 (en) | 2003-08-28 | 2005-03-03 | Matsushita Electric Industrial Co., Ltd. | Battery and manufacturing method thereof |
US20050079408A1 (en) | 2001-11-27 | 2005-04-14 | Fujio Hirano | Battery connection structure, battery module, and battery pack |
US20050100783A1 (en) | 2003-10-14 | 2005-05-12 | Ro Jong Y. | Cartridge-type lithium ion polymer battery pack |
US6896995B2 (en) | 2000-05-25 | 2005-05-24 | Yazaki Corporation | Battery cover |
US6923837B2 (en) | 2002-02-26 | 2005-08-02 | Lithium Power Technologies, Inc. | Consecutively wound or stacked battery cells |
US20050170239A1 (en) | 2002-06-11 | 2005-08-04 | Matsushita Electric Industrial Co | Battery pack |
US20050170240A1 (en) | 2004-02-04 | 2005-08-04 | Daimlerchrysler Ag | Electrochemical energy store |
US20050174092A1 (en) * | 2003-10-28 | 2005-08-11 | Johnson Controls Technology Company | Battery system |
US6932651B2 (en) | 2003-09-16 | 2005-08-23 | Honda Motor Co., Ltd. | Connecting structure for electric cells |
US6953638B2 (en) | 2000-03-31 | 2005-10-11 | Matsushita Electric Industrial Co., Ltd. | Fluid-cooled battery pack system |
US20050287427A1 (en) | 2004-06-23 | 2005-12-29 | Jae-Kyung Kim | Battery module |
US20060026822A1 (en) | 2003-10-14 | 2006-02-09 | Seman Andrew E Jr | Apparatus for interconnecting battery cells in a battery pack and method thereof |
US20060040173A1 (en) | 2003-10-14 | 2006-02-23 | Nissan Motor Co., Ltd. | Battery module and combination battery |
US7014949B2 (en) | 2001-12-28 | 2006-03-21 | Kabushiki Kaisha Toshiba | Battery pack and rechargeable vacuum cleaner |
US20060063067A1 (en) | 2004-09-21 | 2006-03-23 | Yong-Sam Kim | Secondary battery and secondary battery module with the same |
US20060073378A1 (en) | 2004-10-01 | 2006-04-06 | Valeo Systemes Thermiques S.A. S. | Device for cooling batteries of an electronically and/or hybrid powered vehicle |
US20060073379A1 (en) | 2004-10-05 | 2006-04-06 | Kim Sung-Min | Electric energy storage device and method of manufacturing the same |
US20060078789A1 (en) | 2002-05-29 | 2006-04-13 | Daimlerchrysler Ag | Battery comprising at least one electrochemical storage cell and a cooling device |
EP1250720B1 (en) | 1999-06-21 | 2006-05-24 | The Board Of Trustees Of The University Of Illinois | Battery having a housing for electronic circuitry |
US20060127754A1 (en) * | 2004-12-14 | 2006-06-15 | Toyota Jidosha Kabushiki Kaisha. | Battery pack |
US20060162149A1 (en) | 2004-12-24 | 2006-07-27 | Ha Jin W | Process for preparation of secondary battery module |
US20060177734A1 (en) | 2005-02-04 | 2006-08-10 | Li-Ho Yao | Battery assembly |
US20060204840A1 (en) | 2005-03-11 | 2006-09-14 | Yoon-Cheol Jeon | Battery module |
US20060216583A1 (en) | 2005-03-25 | 2006-09-28 | Gun-Goo Lee | Battery module |
US20060216582A1 (en) | 2005-03-25 | 2006-09-28 | Gun-Goo Lee | Secondary battery module |
US20060234119A1 (en) | 2005-04-14 | 2006-10-19 | Kruger Duane D | Apparatus and method for securing battery cell packs |
US7129001B2 (en) | 2001-12-18 | 2006-10-31 | Gs Yuasa Corporation | Cell comprising a power-generating element fastened by sheets |
US20060246350A1 (en) | 2005-04-07 | 2006-11-02 | Nissan Motor Co., Ltd. | Assembled battery |
US7147963B2 (en) | 1998-11-27 | 2006-12-12 | Matsushita Electric Industrial Co., Ltd. | Battery pack with thermal distribution configuration |
US7160643B2 (en) | 2002-01-28 | 2007-01-09 | Sanyo Electric Co., Ltd. | Battery pack |
US20070015050A1 (en) | 2005-06-15 | 2007-01-18 | Jung Do Y | Battery module for medium or large size battery pack |
JP2007012487A (en) | 2005-06-30 | 2007-01-18 | Sanyo Electric Co Ltd | Power supply device |
US20070026306A1 (en) | 2005-07-29 | 2007-02-01 | Gun-Goo Lee | Battery module |
US20070026305A1 (en) | 2005-07-29 | 2007-02-01 | Yoon-Cheol Jeon | Battery module |
US20070026303A1 (en) | 2005-07-29 | 2007-02-01 | Yoon-Cheol Jeon | Battery module |
US20070026739A1 (en) | 2005-07-29 | 2007-02-01 | Kim Tae-Yong | Modular battery with connector interconnecting terminals of adjacent unit cells |
US20070037051A1 (en) | 2005-08-10 | 2007-02-15 | Kim Tae-Yong | Battery module with improved cell barrier between unit cells |
US7189474B2 (en) | 2002-09-20 | 2007-03-13 | Matsushita Electric Industrial Co., Ltd. | Battery pack |
EP1786051A1 (en) | 2004-07-14 | 2007-05-16 | Matsushita Electric Industrial Co., Ltd. | Recyclable battery pack |
JP2007280831A (en) | 2006-04-10 | 2007-10-25 | Matsushita Electric Ind Co Ltd | Power supply device |
WO2007134198A1 (en) | 2006-05-11 | 2007-11-22 | Johnson Controls- Saft Advanced Power Solutions Llc | Modular battery system |
WO2008021230A2 (en) | 2006-08-11 | 2008-02-21 | Johnson Controls Technology Company | Battery with integrally formed terminal |
WO2008027343A1 (en) | 2006-08-29 | 2008-03-06 | Johnson Controls- Saft Advanced Power Solutions Llc | Battery module |
WO2008074034A1 (en) | 2006-12-14 | 2008-06-19 | Johnson Controls - Saft Advanced Power Solutions Llc | Battery module |
US20080160395A1 (en) | 2006-12-28 | 2008-07-03 | Wataru Okada | Battery pack |
WO2008086417A2 (en) | 2007-01-09 | 2008-07-17 | Johnson-Controls--Saft Advanced Power Solutions Llc | Battery cell |
WO2008098193A2 (en) | 2007-02-09 | 2008-08-14 | Johnson Controls--Saft Advanced Power Solutions Llc | Buss bar for batteries |
WO2009016476A2 (en) | 2007-07-30 | 2009-02-05 | Johnson Controls - Saft Advanced Power Solutions Llc | Storage battery arrangement |
WO2010019764A2 (en) | 2008-08-14 | 2010-02-18 | Johnson Controls - Saft Advanced Power Solutions Llc | Battery module with sealed vent chamber |
WO2010085636A2 (en) | 2009-01-23 | 2010-07-29 | Johnson Controls - Saft Advanced Power Solutions Llc | Battery module having electrochemical cells with integrally formed terminals |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3742607A1 (en) * | 1987-12-16 | 1989-06-29 | Asea Brown Boveri | HIGH TEMPERATURE BATTERY |
JP3777748B2 (en) * | 1997-09-30 | 2006-05-24 | 株式会社ジーエス・ユアサコーポレーション | Assembled battery |
TW490521B (en) * | 2000-06-02 | 2002-06-11 | Shima Seiki Mfg | Method of knitting neck portion of knit wear by flat knitting machine and the knit wear |
ES2179734B1 (en) * | 2000-06-13 | 2004-04-01 | SOCIEDAD ESPAñOLA DEL ACUMULADOR TUDOR, S.A. | BATTERIES OF ELECTRIC ACCUMULATORS. |
EP2862214A1 (en) * | 2012-06-15 | 2015-04-22 | Boston-Power, Inc. | Secondary lithium ion battery with mixed nickelate cathodes |
-
2009
- 2009-02-10 US US12/368,938 patent/US8568915B2/en active Active
-
2013
- 2013-10-28 US US14/065,172 patent/US20140050967A1/en not_active Abandoned
Patent Citations (93)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2042806A (en) | 1934-12-15 | 1936-06-02 | Burgess Battery Co | Battery |
US2416079A (en) | 1943-06-30 | 1947-02-18 | Ray O Vac Co | Dry battery wrapper |
US3338452A (en) | 1964-11-23 | 1967-08-29 | Michael J Oakley | Case for storage battery cell |
FR2058740A5 (en) | 1969-09-23 | 1971-05-28 | Accumulateurs Fixes | |
US4189473A (en) | 1974-03-28 | 1980-02-19 | Beecham Group Limited | Antibiotic MM 13902 |
GB2136629A (en) | 1983-03-16 | 1984-09-19 | South African Inventions | Power storage battery |
US4554221A (en) | 1985-01-23 | 1985-11-19 | Dsl Dynamic Sciences Limited | Rechargeable battery pack |
FR2585185A1 (en) | 1985-07-16 | 1987-01-23 | Accumulateurs Fixes | Metal shroud for electric batteries and electric batteries applying same |
US4957829A (en) | 1989-06-26 | 1990-09-18 | At&T Bell Laboratories | Modular battery plant system assembly comprising multiple unit cell modules |
US5336570A (en) | 1992-08-21 | 1994-08-09 | Dodge Jr Cleveland E | Hydrogen powered electricity generating planar member |
EP0607675B1 (en) | 1992-12-22 | 1996-09-25 | Honda Giken Kogyo Kabushiki Kaisha | Battery with rust preventive structure |
US5606238A (en) | 1994-07-21 | 1997-02-25 | Rayovac Corporation | Discriminating battery charging system |
US5866276A (en) | 1995-09-27 | 1999-02-02 | Nissan Motor Co., Ltd. | Battery structure for electric vehicle |
US5879833A (en) | 1996-06-12 | 1999-03-09 | Matsushita Electric Industrial Co., Ltd. | Power supply unit and heat radiation method therefor |
US6461757B1 (en) | 1997-03-19 | 2002-10-08 | Asahi Kasei Kogyo Kabushiki Kaisha | Non-aqueous battery of a thin configuration |
US6265091B1 (en) | 1997-06-06 | 2001-07-24 | Johnson Controls Technology Company | Modular electric storage battery |
US6106972A (en) | 1997-07-02 | 2000-08-22 | Denso Corporation | Battery cooling system |
US6001501A (en) | 1998-02-03 | 1999-12-14 | Siemens Westinghouse Power Corporation | Connections for solid oxide fuel cells |
US7147963B2 (en) | 1998-11-27 | 2006-12-12 | Matsushita Electric Industrial Co., Ltd. | Battery pack with thermal distribution configuration |
US6472098B1 (en) | 1998-11-30 | 2002-10-29 | Sony Corporation | Battery device for loading on a mobile system |
US6410184B1 (en) | 1999-01-28 | 2002-06-25 | Sanyo Electric Co., Ltd. | Power source containing rechargeable batteries |
US6379837B1 (en) | 1999-02-15 | 2002-04-30 | Sony Corporation | Battery device loaded on moving body |
US6410185B1 (en) | 1999-02-15 | 2002-06-25 | Sony Corporation | Battery device for loading on moving body |
EP1250720B1 (en) | 1999-06-21 | 2006-05-24 | The Board Of Trustees Of The University Of Illinois | Battery having a housing for electronic circuitry |
US6465123B1 (en) | 1999-07-01 | 2002-10-15 | Daimlerchrysler Ag | Battery container and motor vehicle |
US6558835B1 (en) | 1999-08-31 | 2003-05-06 | Toshiba Battery Co., Ltd. | Battery module of parallel electric cell rod bodies |
US6579640B1 (en) | 1999-09-28 | 2003-06-17 | Sanyo Electric Co., Ltd. | Sealed rectangular battery and manufacturing method for the same |
EP1109237A1 (en) | 1999-12-13 | 2001-06-20 | Alcatel | Module configuration |
US6541154B2 (en) | 2000-03-15 | 2003-04-01 | Nissan Motor Co., Ltd. | Multi-cell structure battery for electric motor powered vehicle |
US6953638B2 (en) | 2000-03-31 | 2005-10-11 | Matsushita Electric Industrial Co., Ltd. | Fluid-cooled battery pack system |
US6656632B2 (en) | 2000-05-12 | 2003-12-02 | Honda Giken Kogyo Kabushiki Kaisha | Cell module structure |
US20010046624A1 (en) | 2000-05-19 | 2001-11-29 | Shin-Kobe Electric Machinery Co.,Ltd. | Battery structure for electric vehicle and battery module |
US6896995B2 (en) | 2000-05-25 | 2005-05-24 | Yazaki Corporation | Battery cover |
US6379831B1 (en) | 2000-08-02 | 2002-04-30 | Siemens Westinghouse Power Corporation | Expanded nickel screen electrical connection supports for solid oxide fuel cells |
EP1213784A2 (en) | 2000-11-30 | 2002-06-12 | Ford Global Technologies, Inc. | A method and arrangement for providing a compact battery with autonomous cooling |
US6767666B2 (en) | 2001-03-21 | 2004-07-27 | Ngk Insulators, Ltd. | Lithium secondary cell and lithium secondary cell connecting structure |
US7094496B2 (en) | 2001-07-31 | 2006-08-22 | S.E.Acumulador Tudor, S.A. | Electrical accumulator batteries |
US20030059676A1 (en) | 2001-07-31 | 2003-03-27 | S.E. Acumulador Tudor, S.A. | Electrical accumulator batteries |
US20050079408A1 (en) | 2001-11-27 | 2005-04-14 | Fujio Hirano | Battery connection structure, battery module, and battery pack |
US7129001B2 (en) | 2001-12-18 | 2006-10-31 | Gs Yuasa Corporation | Cell comprising a power-generating element fastened by sheets |
US7014949B2 (en) | 2001-12-28 | 2006-03-21 | Kabushiki Kaisha Toshiba | Battery pack and rechargeable vacuum cleaner |
US7160643B2 (en) | 2002-01-28 | 2007-01-09 | Sanyo Electric Co., Ltd. | Battery pack |
US6923837B2 (en) | 2002-02-26 | 2005-08-02 | Lithium Power Technologies, Inc. | Consecutively wound or stacked battery cells |
US6858345B2 (en) | 2002-04-09 | 2005-02-22 | The University Of Chicago | Wound bipolar lithium polymer batteries |
JP2003308823A (en) | 2002-04-17 | 2003-10-31 | Japan Storage Battery Co Ltd | Storage battery |
US20060078789A1 (en) | 2002-05-29 | 2006-04-13 | Daimlerchrysler Ag | Battery comprising at least one electrochemical storage cell and a cooling device |
US20050170239A1 (en) | 2002-06-11 | 2005-08-04 | Matsushita Electric Industrial Co | Battery pack |
US7351493B2 (en) | 2002-06-11 | 2008-04-01 | Matsushita Electric Industrial Co., Ltd. | Battery pack |
US20040038123A1 (en) | 2002-08-26 | 2004-02-26 | Nissan Motor Co., Ltd. | Stack type battery and related method |
US7189474B2 (en) | 2002-09-20 | 2007-03-13 | Matsushita Electric Industrial Co., Ltd. | Battery pack |
US20040175612A1 (en) | 2003-03-07 | 2004-09-09 | Allen Conti | Electrochemical cell |
EP1503442A2 (en) | 2003-07-28 | 2005-02-02 | Hewlett-Packard Development Company, L.P. | Fuel cell support structure and method of manufacture |
US20050048365A1 (en) | 2003-08-28 | 2005-03-03 | Matsushita Electric Industrial Co., Ltd. | Battery and manufacturing method thereof |
US6932651B2 (en) | 2003-09-16 | 2005-08-23 | Honda Motor Co., Ltd. | Connecting structure for electric cells |
US20060026822A1 (en) | 2003-10-14 | 2006-02-09 | Seman Andrew E Jr | Apparatus for interconnecting battery cells in a battery pack and method thereof |
US20060040173A1 (en) | 2003-10-14 | 2006-02-23 | Nissan Motor Co., Ltd. | Battery module and combination battery |
US20050100783A1 (en) | 2003-10-14 | 2005-05-12 | Ro Jong Y. | Cartridge-type lithium ion polymer battery pack |
US20050174092A1 (en) * | 2003-10-28 | 2005-08-11 | Johnson Controls Technology Company | Battery system |
US20050170240A1 (en) | 2004-02-04 | 2005-08-04 | Daimlerchrysler Ag | Electrochemical energy store |
US20050287427A1 (en) | 2004-06-23 | 2005-12-29 | Jae-Kyung Kim | Battery module |
EP1786051A1 (en) | 2004-07-14 | 2007-05-16 | Matsushita Electric Industrial Co., Ltd. | Recyclable battery pack |
US20060063067A1 (en) | 2004-09-21 | 2006-03-23 | Yong-Sam Kim | Secondary battery and secondary battery module with the same |
US20060073378A1 (en) | 2004-10-01 | 2006-04-06 | Valeo Systemes Thermiques S.A. S. | Device for cooling batteries of an electronically and/or hybrid powered vehicle |
US20060073379A1 (en) | 2004-10-05 | 2006-04-06 | Kim Sung-Min | Electric energy storage device and method of manufacturing the same |
US20060127754A1 (en) * | 2004-12-14 | 2006-06-15 | Toyota Jidosha Kabushiki Kaisha. | Battery pack |
US20060162149A1 (en) | 2004-12-24 | 2006-07-27 | Ha Jin W | Process for preparation of secondary battery module |
US20060177734A1 (en) | 2005-02-04 | 2006-08-10 | Li-Ho Yao | Battery assembly |
US20060204840A1 (en) | 2005-03-11 | 2006-09-14 | Yoon-Cheol Jeon | Battery module |
US20060216583A1 (en) | 2005-03-25 | 2006-09-28 | Gun-Goo Lee | Battery module |
US20060216582A1 (en) | 2005-03-25 | 2006-09-28 | Gun-Goo Lee | Secondary battery module |
US20060246350A1 (en) | 2005-04-07 | 2006-11-02 | Nissan Motor Co., Ltd. | Assembled battery |
US20060234119A1 (en) | 2005-04-14 | 2006-10-19 | Kruger Duane D | Apparatus and method for securing battery cell packs |
US20070015050A1 (en) | 2005-06-15 | 2007-01-18 | Jung Do Y | Battery module for medium or large size battery pack |
JP2007012487A (en) | 2005-06-30 | 2007-01-18 | Sanyo Electric Co Ltd | Power supply device |
US20070026305A1 (en) | 2005-07-29 | 2007-02-01 | Yoon-Cheol Jeon | Battery module |
US20070026306A1 (en) | 2005-07-29 | 2007-02-01 | Gun-Goo Lee | Battery module |
US20070026739A1 (en) | 2005-07-29 | 2007-02-01 | Kim Tae-Yong | Modular battery with connector interconnecting terminals of adjacent unit cells |
US20070026303A1 (en) | 2005-07-29 | 2007-02-01 | Yoon-Cheol Jeon | Battery module |
US7270576B2 (en) | 2005-07-29 | 2007-09-18 | Samsung Sdi Co., Ltd. | Modular battery with connector interconnecting terminals of adjacent unit cells |
US20070037051A1 (en) | 2005-08-10 | 2007-02-15 | Kim Tae-Yong | Battery module with improved cell barrier between unit cells |
JP2007280831A (en) | 2006-04-10 | 2007-10-25 | Matsushita Electric Ind Co Ltd | Power supply device |
WO2007134198A1 (en) | 2006-05-11 | 2007-11-22 | Johnson Controls- Saft Advanced Power Solutions Llc | Modular battery system |
US20090111015A1 (en) | 2006-05-11 | 2009-04-30 | Johnson Controls - Saft Advanced Power Solutions Llc | Modular battery system |
WO2008021230A2 (en) | 2006-08-11 | 2008-02-21 | Johnson Controls Technology Company | Battery with integrally formed terminal |
WO2008027343A1 (en) | 2006-08-29 | 2008-03-06 | Johnson Controls- Saft Advanced Power Solutions Llc | Battery module |
WO2008074034A1 (en) | 2006-12-14 | 2008-06-19 | Johnson Controls - Saft Advanced Power Solutions Llc | Battery module |
US20080160395A1 (en) | 2006-12-28 | 2008-07-03 | Wataru Okada | Battery pack |
WO2008086417A2 (en) | 2007-01-09 | 2008-07-17 | Johnson-Controls--Saft Advanced Power Solutions Llc | Battery cell |
WO2008098193A2 (en) | 2007-02-09 | 2008-08-14 | Johnson Controls--Saft Advanced Power Solutions Llc | Buss bar for batteries |
WO2009016476A2 (en) | 2007-07-30 | 2009-02-05 | Johnson Controls - Saft Advanced Power Solutions Llc | Storage battery arrangement |
US20100183904A1 (en) | 2007-07-30 | 2010-07-22 | Johnson Controls - Saft Advanced Power Solutions Llc | Storage battery arrangement |
WO2010019764A2 (en) | 2008-08-14 | 2010-02-18 | Johnson Controls - Saft Advanced Power Solutions Llc | Battery module with sealed vent chamber |
WO2010085636A2 (en) | 2009-01-23 | 2010-07-29 | Johnson Controls - Saft Advanced Power Solutions Llc | Battery module having electrochemical cells with integrally formed terminals |
Non-Patent Citations (27)
Title |
---|
Communication under Rule 71(3) EPC for European Application No. 07783619.5, dated Jan. 31, 2011, 61 pages. |
European Search Report for European Application No. 09012377.9, dated Dec. 22, 2009, 10 pages. |
International Preliminary Report on Patentability for International Application No. PCT/IB2008/001984, dated Feb. 2, 2010, 6 pages. |
International Preliminary Report on Patentability, Written Opinion of the International Searching Authority and International Search Report for International Application No. PCT/US2007/017785; date of mailing Mar. 3, 2008; 15 pagees. |
International Search Report and Written Opinion for International Application No. PCT/US2007/017785; mailing date Mar. 3, 2008; 13 pages. |
International Search Report and Written Opinion for International Application No. PCT/US2009/053697, dated Mar. 23, 2010, 6 pages. |
International Search Report for International Application No. PCT/IB2008/001984, dated Feb. 4, 2009, 2 pages. |
International Search Report for International Application No. PCT/US2007/068716, dated Oct. 17, 2007, 5 pages. |
International Search Report for International Application No. PCT/US2010/021791; dated Aug. 13, 2010; 3 pages. |
Notice of deficiencies of International Application No. 07 836 697.8-2119, dated Aug. 31, 2009, (2 pages). |
Office Action for Chinese Application No. 200780025271.0 with English translation, dated Sep. 8, 2010, 4 pages. |
Office Action for European Application No. 07783619.5, dated Jul. 29, 2009, 4 pages. |
Office Action for European Application No. 07836697.8, dated Feb. 17, 2010, 3 pages. |
Office Action for European Application No. 07836697.8, mail date Mar. 7, 2011, 11 pages. |
Office Action for European Application No. 09012377.9, dated Jun. 1, 2010, 1 page. |
Office Action for European Application No. 09012377.9, dated Oct. 7, 2010, 3 pages. |
Office Action for U.S. Appl. No. 12/263,123, dated Jun. 6, 2012, 10 pages. |
Office Action for U.S. Appl. No. 13/186,314, dated Jan. 19, 2012, 15 pages. |
Office Action of Chinese Patent Application No. 200780029735.5 with English translation, dated Jul. 25, 2010, 10 pages. |
Office Action of Chinese Patent Application No. 200780029735.5 with English translation, dated Jun. 25, 2010, 10 pages. |
Response to European Office Action for European Application No. 07836697.8, dated Jun. 25, 2010, 9 pages. |
Response to Office Action for European Application No. 07783619.5, dated Feb. 5, 2010, 9 pages. |
Response to Office Action for European Application No. 07836697.8, dated Jan. 6, 2010, 6 pages. |
Response to Office Action for European Application No. 09012377.9, dated Feb. 10, 2011, 5 pages. |
Response to Office Action for European Application No. 09012377.9, dated Sep. 28, 2010, 14 pages. |
Response to Office Action for European Patent Application No. 07836697.8 including claim sets; Jul. 8, 2011; 11 pages. |
Written Opinion of International Application No. PCT/US2007/068716, dated Oct. 17, 2007, 6 pages. |
Cited By (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11660971B2 (en) | 2006-11-07 | 2023-05-30 | Clarios Advanced Solutions Llc | System for arranging and coupling battery cells in a battery module |
US9748047B2 (en) * | 2011-08-29 | 2017-08-29 | Blue Solutions | Connector arranged between two cylindrical energy storage assemblies |
US9831046B2 (en) | 2011-08-29 | 2017-11-28 | Blue Solutions | Cover for connecting energy storage assemblies |
US9633799B2 (en) | 2011-08-29 | 2017-04-25 | Blue Solutions | Long-term energy storage assembly comprising an intermediate connection part |
US20130143110A1 (en) * | 2011-12-01 | 2013-06-06 | Roger Neil Bull | System and method for enclosing an energy storage cell |
US20150155529A1 (en) * | 2012-09-04 | 2015-06-04 | Panasonic Intellectual Property Management Co., Lt | Battery block and manufacturing method therefor |
US9257684B2 (en) * | 2012-09-04 | 2016-02-09 | Panasonic Intellectual Property Management Co., Ltd. | Battery block and manufacturing method therefor |
US10608212B2 (en) | 2012-10-16 | 2020-03-31 | Ambri Inc. | Electrochemical energy storage devices and housings |
US11211641B2 (en) | 2012-10-18 | 2021-12-28 | Ambri Inc. | Electrochemical energy storage devices |
US9735450B2 (en) | 2012-10-18 | 2017-08-15 | Ambri Inc. | Electrochemical energy storage devices |
US9825265B2 (en) | 2012-10-18 | 2017-11-21 | Ambri Inc. | Electrochemical energy storage devices |
US11611112B2 (en) | 2012-10-18 | 2023-03-21 | Ambri Inc. | Electrochemical energy storage devices |
US11387497B2 (en) | 2012-10-18 | 2022-07-12 | Ambri Inc. | Electrochemical energy storage devices |
US11721841B2 (en) | 2012-10-18 | 2023-08-08 | Ambri Inc. | Electrochemical energy storage devices |
US11196091B2 (en) | 2012-10-18 | 2021-12-07 | Ambri Inc. | Electrochemical energy storage devices |
US9312522B2 (en) | 2012-10-18 | 2016-04-12 | Ambri Inc. | Electrochemical energy storage devices |
US10541451B2 (en) | 2012-10-18 | 2020-01-21 | Ambri Inc. | Electrochemical energy storage devices |
US9728814B2 (en) | 2013-02-12 | 2017-08-08 | Ambri Inc. | Electrochemical energy storage devices |
US9520618B2 (en) | 2013-02-12 | 2016-12-13 | Ambri Inc. | Electrochemical energy storage devices |
US10270139B1 (en) | 2013-03-14 | 2019-04-23 | Ambri Inc. | Systems and methods for recycling electrochemical energy storage devices |
US10297870B2 (en) | 2013-05-23 | 2019-05-21 | Ambri Inc. | Voltage-enhanced energy storage devices |
US9559386B2 (en) | 2013-05-23 | 2017-01-31 | Ambri Inc. | Voltage-enhanced energy storage devices |
US9502737B2 (en) | 2013-05-23 | 2016-11-22 | Ambri Inc. | Voltage-enhanced energy storage devices |
US11909004B2 (en) | 2013-10-16 | 2024-02-20 | Ambri Inc. | Electrochemical energy storage devices |
US10566662B1 (en) | 2015-03-02 | 2020-02-18 | Ambri Inc. | Power conversion systems for energy storage devices |
US10181800B1 (en) | 2015-03-02 | 2019-01-15 | Ambri Inc. | Power conversion systems for energy storage devices |
US11840487B2 (en) | 2015-03-05 | 2023-12-12 | Ambri, Inc. | Ceramic materials and seals for high temperature reactive material devices |
US11289759B2 (en) | 2015-03-05 | 2022-03-29 | Ambri, Inc. | Ceramic materials and seals for high temperature reactive material devices |
US10637015B2 (en) | 2015-03-05 | 2020-04-28 | Ambri Inc. | Ceramic materials and seals for high temperature reactive material devices |
US9893385B1 (en) | 2015-04-23 | 2018-02-13 | Ambri Inc. | Battery management systems for energy storage devices |
US11929466B2 (en) | 2016-09-07 | 2024-03-12 | Ambri Inc. | Electrochemical energy storage devices |
US11411254B2 (en) | 2017-04-07 | 2022-08-09 | Ambri Inc. | Molten salt battery with solid metal cathode |
US10170974B1 (en) | 2017-07-28 | 2019-01-01 | Apple Inc. | Variable frequency and burst mode operation of primary resonant flyback converters |
US10218256B2 (en) | 2017-07-28 | 2019-02-26 | Apple Inc. | Primary side control of primary resonant flyback converters |
US10707699B2 (en) | 2017-09-28 | 2020-07-07 | Apple Inc. | Interphase transformer based rectifier for wireless power transfer |
US11309597B2 (en) | 2018-01-11 | 2022-04-19 | Carrier Corporation | Battery temperature control |
US12142735B1 (en) | 2023-04-28 | 2024-11-12 | Ambri, Inc. | Thermal management of liquid metal batteries |
Also Published As
Publication number | Publication date |
---|---|
US20140050967A1 (en) | 2014-02-20 |
US20090208836A1 (en) | 2009-08-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8568915B2 (en) | Battery with integrally formed terminal | |
US9331314B2 (en) | Battery module having electrochemical cells with integrally formed terminals | |
EP2172994B1 (en) | Battery module having electrochemical cells with integrally formed terminals | |
EP2050152B1 (en) | Battery with integrally formed terminal | |
US8263246B2 (en) | Current collector for an electrochemical cell | |
EP2316145B1 (en) | Battery module with sealed vent chamber | |
WO2015066078A1 (en) | System for arranging and coupling battery cells in a battery module | |
EP2817837B1 (en) | Electrochemical cell having a fixed cell element | |
US7846572B2 (en) | Battery system including a device configured to route effluent away from battery modules within the battery system | |
US20130216872A1 (en) | Prismatic electrochemical cell | |
US20120077062A1 (en) | Vent for electrochemical cell | |
US10297812B2 (en) | Terminals of an electrochemical cell | |
US9105902B2 (en) | Device for aiding in the fracture of a vent of an electrochemical cell | |
US11660971B2 (en) | System for arranging and coupling battery cells in a battery module | |
CN114041236A (en) | Battery module and bus bar with stress relief feature |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: JOHNSON CONTROLS - SAFT ADVANCED POWER SOLUTIONS L Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:FUHR, JASON D.;WOOD, STEVEN J.;TRESTER, DALE B.;AND OTHERS;REEL/FRAME:022628/0688;SIGNING DATES FROM 20090312 TO 20090401 Owner name: JOHNSON CONTROLS - SAFT ADVANCED POWER SOLUTIONS L Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:FUHR, JASON D.;WOOD, STEVEN J.;TRESTER, DALE B.;AND OTHERS;SIGNING DATES FROM 20090312 TO 20090401;REEL/FRAME:022628/0688 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
AS | Assignment |
Owner name: JONSON CONTROLS ADVANCED POWER SOLUTIONS LLC, DELA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:FUHR, JASON D.;WOOD, STEVEN J.;TRESTER, DALE B.;AND OTHERS;SIGNING DATES FROM 20131025 TO 20131104;REEL/FRAME:032445/0934 |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
AS | Assignment |
Owner name: JOHNSON CONTROLS ADVANCED POWER SOLUTIONS LLC, DEL Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:FUHR, JASON D.;WOOD, STEVEN J.;TRESTER, DALE B.;AND OTHERS;SIGNING DATES FROM 20131025 TO 20131104;REEL/FRAME:045743/0956 |
|
AS | Assignment |
Owner name: JOHNSON CONTROLS ADVANCED POWER SOLUTIONS, LLC, DE Free format text: CHANGE OF NAME;ASSIGNOR:JOHNSON CONTROLS - SAFT ADVANCED POWER SOLUTIONS LLC;REEL/FRAME:050013/0228 Effective date: 20111001 |
|
AS | Assignment |
Owner name: CITIBANK N.A., AS COLLATERAL AGENT, NEW YORK Free format text: ABL PATENT SECURITY AGREEMENT;ASSIGNOR:JOHNSON CONTROLS ADVANCED POWER SOLUTIONS, LLC;REEL/FRAME:050217/0415 Effective date: 20190827 Owner name: CITIBANK N.A., AS COLLATERAL AGENT, DELAWARE Free format text: FIRST LIEN PATENT SECURITY AGREEMENT;ASSIGNOR:JOHNSON CONTROLS ADVANCED POWER SOLUTIONS, LLC;REEL/FRAME:050217/0294 Effective date: 20190827 |
|
AS | Assignment |
Owner name: CLARIOS ADVANCED SOLUTIONS LLC, WISCONSIN Free format text: CHANGE OF NAME;ASSIGNOR:JOHNSON CONTROLS ADVANCED POWER SOLUTIONS, LLC;REEL/FRAME:055775/0336 Effective date: 20191001 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 8 |