US8059582B2 - Pico cell system access using cellular communications network - Google Patents
Pico cell system access using cellular communications network Download PDFInfo
- Publication number
- US8059582B2 US8059582B2 US11/714,727 US71472707A US8059582B2 US 8059582 B2 US8059582 B2 US 8059582B2 US 71472707 A US71472707 A US 71472707A US 8059582 B2 US8059582 B2 US 8059582B2
- Authority
- US
- United States
- Prior art keywords
- cell
- information
- cell layer
- layer
- technology
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related, expires
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W48/00—Access restriction; Network selection; Access point selection
- H04W48/08—Access restriction or access information delivery, e.g. discovery data delivery
- H04W48/14—Access restriction or access information delivery, e.g. discovery data delivery using user query or user detection
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W4/00—Services specially adapted for wireless communication networks; Facilities therefor
- H04W4/02—Services making use of location information
- H04W4/029—Location-based management or tracking services
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W4/00—Services specially adapted for wireless communication networks; Facilities therefor
- H04W4/02—Services making use of location information
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W48/00—Access restriction; Network selection; Access point selection
- H04W48/08—Access restriction or access information delivery, e.g. discovery data delivery
- H04W48/12—Access restriction or access information delivery, e.g. discovery data delivery using downlink control channel
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W48/00—Access restriction; Network selection; Access point selection
- H04W48/18—Selecting a network or a communication service
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W84/00—Network topologies
- H04W84/02—Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
- H04W84/04—Large scale networks; Deep hierarchical networks
- H04W84/042—Public Land Mobile systems, e.g. cellular systems
- H04W84/045—Public Land Mobile systems, e.g. cellular systems using private Base Stations, e.g. femto Base Stations, home Node B
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W88/00—Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
- H04W88/02—Terminal devices
- H04W88/06—Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals
Definitions
- the present invention relates to accessing a pico cell system such as UMA (Unlicensed Mobile Access), WLAN (Wireless Local Area Network) and BlueTooth® cell system, the access being based on information available from a cellular communications system such as GSM (Global System for Mobile communications) having much larger cells than the pico cell system.
- a pico cell system such as UMA (Unlicensed Mobile Access), WLAN (Wireless Local Area Network) and BlueTooth® cell system
- GSM Global System for Mobile communications
- GPRS General Packet Radio Service
- GPRS aims at providing high-quality services for present GSM subscribers by efficiently utilizing the current network infrastructure and protocols.
- GPRS has evolved from GSM with the introduction of two new network elements: SGSN (Serving GPRS Support Node) and GGSN (Gateway GPRS Support Node). These elements will also provide packet-based services in the upcoming UMTS (Universal Mobile Telecommunication System) networks.
- multimode radio technology is also becoming more and more common in user devices. Having his or her mobile terminal equipped with a multimode radio technology, the user can choose the most suitable network type in each case, i.e. the user can choose whether the services are accessed through GPRS, UMA, WLAN or BlueTooth®, for example. For instance, the user may sometimes prefer the higher data rate offered by the WLAN networks.
- UMA is an industry collaboration to extend GSM and GPRS services into customer sites by utilizing unlicensed radio technologies such as Wi-Fi (Wireless Fidelity) and Bluetooth®. This is achieved by tunneling GSM and GPRS protocols through a broadband IP (Internet Protocol) network towards an Access Point situated in the customer site and across the unlicensed radio link to a mobile device.
- Wi-Fi Wireless Fidelity
- Bluetooth® Bluetooth®
- UMA/WLAN access can be erratic and time consuming as the mobile can easily be outside the range of the indicated UMA/WLAN cell.
- the process of searching the UMA/WLAN cell also increases the power consumption of the mobile device, since it may be necessary to activate a second radio transceiver in the device.
- a network device sends information on at least one cell of second cell layer of a second technology access network, the at least one cell of second cell layer being located in an area of a cell of first cell layer of a first technology access network, wherein the information comprises location information of the at least one cell of second cell layer.
- a mobile device receives this information and performs calculations based on this information serving to aid in a process of entering into a wanted cell of the second cell layer.
- the number of pico cells that the mobile device will try to search and access can be limited.
- the invention enables turning on UMA/WLAN radio only close to a desired UMA/WLAN cell.
- network load can be reduced and mobile device resources can be saved.
- FIG. 1 shows a schematic block diagram illustrating a telecommunications system according to an embodiment of the invention.
- FIG. 2 shows a schematic block diagram illustrating cell C 1 of the telecommunications system shown in FIG. 1 in greater detail.
- FIG. 3 shows a schematic block diagram illustrating a telecommunications system according to an embodiment of the invention in which cell C 1 is sector-shaped (drawn as oval).
- FIG. 4 shows a signaling diagram illustrating processes and communications according to an embodiment of the invention.
- FIG. 5 shows a schematic block diagram illustrating an OMC 200 , a BTS 300 and an MS 400 according to an embodiment of the invention.
- FIG. 1 shows a simplified version of a GSM/UMTS (first technology) and WLAN/UMA (second technology) access network architecture.
- a general mobile communication system and a WLAN/UMA system also comprise other functions and structures, which do not have to be described in more detail herein.
- a telecommunications system 100 comprises a mobile communications network PLMN 30 and an external access network 40 such as WLAN, UMA or BlueTooth®.
- the mobile network PLMN 30 comprises cells C 1 , C 2 , C 3 , the area of each cell being defined by the coverage area of respective base transceiver stations BTS 1 , BTS 2 , BTS 3 .
- a situation is shown where a user terminal MS is located in cell C 1 .
- the user terminal may be in the active mode or in the idle mode.
- the idle mode refers to a standby state of the user terminal MS when it is not actively processing a call.
- the user terminal MS keeps receiving signals from base transceiver station BTS 1 of the current cell C 1 and from base transceiver stations BTS 2 , BTS 3 of the other nearby cells C 2 , C 3 as well.
- the signals of C 2 and C 3 comprise neighbor cell information, by means of which the user terminal MS is able to find out about the neighbor cells C 2 , C 3 , and perform signal measurements e.g. on their signal strength and signal quality at the current location of the user terminal MS.
- the external access network 40 which is an external network to the mobile communications network PLMN 30 , comprises the cumulative coverage area of the respective cells P 1 , P 2 , P 3 . In FIG. 1 , the access network 40 is overlapping with cell C 1 of the mobile network 30 .
- the telecommunications system 100 comprises a device 20 such as an OMC (Operations and Maintenance Centre), which may calculate timing advance values or store and provide geographic location (coordinates) for the cells P 1 to P 3 which will be described below.
- OMC Operations and Maintenance Centre
- FIG. 2 shows cell C 1 in greater detail.
- BTS 1 of cell C 1 comprises an omnidirectional antenna, so the area of C 1 is essentially circular.
- the cells P 1 to P 3 there are also cells P 4 to P 6 belonging to an external access network 41 which is different from the PLMN 30 .
- the MS is located nearby cell P 2 of the access network 40 .
- the invention deals with measuring, detecting and accessing the cells P 1 to P 3 and P 4 to P 6 where this process is based on information available from GSM system information (P) SI ((Packet) System Information) provided by the PLMN 30 .
- P GSM system information
- SI Packet System Information
- the number of pico cells that the mobile terminal will try to search and access can be limited. This limitation is based on an estimated location of the mobile terminal inside the GSM cell.
- determining the location of the mobile terminal comprising location determination based on received power level, timing advance value (TA) or real measured position using any positioning system e.g. GPS (Global Positioning System) equipment.
- TA timing advance value
- GPS Global Positioning System
- power level is not reliable and GPS is not always available.
- a current value of GSM timing advance is used for location determination.
- the distance 50 indicates the TA value indicating an estimated distance from BTS 1 to MS.
- a system information message e.g. a Non-GSM system information message, describes for each pico cell ARFCN (Absolute Radio Frequency Channel Number) also the TA range for that pico cell.
- ARFCN Absolute Radio Frequency Channel Number
- the pico cells P 1 to P 3 are located close to the TA range of the MS to the BTS 1 , whereas the cells P 4 to P 6 are located away from this TA range.
- the pico cells P 1 to P 3 of access network 40 can be listed to be available, whereas the cells P 4 to P 6 are ruled out.
- the pico cell coordinates are sent in system information additionally. If the MS has a GPS receiver or other positioning means for determining its location, it may decide to access the closest pico cells.
- FIG. 3 shows a schematic block diagram illustrating a telecommunications system according to an embodiment of the invention in which the BTS 1 has a directional antenna. Therefore the cell C 1 is sector-shaped, although drawn as oval in FIG. 3 .
- FIG. 3 shows one sector of BTS 1 .
- Reference sign 50 indicates the estimate of a distance from MS to BTS 1 , measured by TA.
- pico cells P 1 to P 3 of access network 40 can be determined to be located near the MS (and not only near the TA range of the MS). Thus, in a sector-shaped cell are, TA alone leads to more exact location determination.
- information on pico neighbour cells P 1 to P 3 i.e. various access information and TA range, are included in a Non-GSM system information message sent from the base transceiver station BTS 1 to the mobile station MS.
- a first step location of pico cells located in the area of the PLMN 30 is indicated to the OMC 20 shown in FIG. 1 . Only location of pico cells which e.g. provide a special service may be indicated.
- the OMC 20 calculates under which PLMN cell C 1 to C 3 the pico cell P 1 to P 6 is located, and calculates a corresponding Timing Advance value indicating a distance from the pico cell to the BTS of the cell (process 1 in FIG. 4 ).
- the coordinates of each pico cell are provided to the OMC either by operating personnel or automatically.
- the coordinates may be determined for example by GPS or Galileo satellite positioning system or some other means.
- the OMC (or server 60 in FIG. 4 ) stores this information and provides it to BSCs.
- the OMC 20 returns the calculated information to appropriate BSCs (Base Station Controllers) (not shown in FIG. 1 ) of the base transceiver stations BTS 1 to BTS 3 (communication 2 in FIG. 4 ).
- the BSC performs processing with respect to pico cell information provided by the OMC 20 (process 3 in FIG. 4 ), and then may forward this information (e.g. information with respect to neighbor pico cells) to the MS via a corresponding BTS using suitable system information messages, such as SI 18 on ext BCCH, or Non-GSM system information on BCCH (communication 4 in FIG. 4 ).
- the information contains identity of the pico cell, the TA for this pico cell and possibly even coordinates for this pico cell for MS with GPS capability.
- the BSC or BTS may send the TA values using BCCH (or BCCH-ext). However, if the number of pico cells is large, the BSC or BTS may just indicate that ‘cells exist’ e.g. by indicating some of them and a ‘more’ bit on the BCCH (or BCCH-ext). Then the MS may request more information e.g. by setting up a packet call session to a server 60 that stores the information for the rest of the pico cells (communication 5 in FIG. 4 ), and the server 60 may return the requested information in a communication 6 in FIG. 4 .
- a cell e.g. cell C 1
- the MS may activate GPRS and ask for details.
- this procedure may comprise setting up a packet call session to the server 60 that stores the information about the pico cells.
- the details may include TA values of the pico cells P 1 to P 3 transmitted via BCCH or ext BCCH as described above.
- the details may also include geographical coordinates for the pico cells P 1 to P 3 .
- the details are communicated to MS (communication 6 in FIG. 4 ).
- the BTS may have all information available and provide it to the MS already in communication 4 .
- the MS may then compare the geographical coordinates of the candidate pico cells with the coordinates of the MS location provided by the GPS receiver of the MS and decide which pico cell is close to the MS for successful access. If one or more of them are probably available, it may turn the UMA/WLAN access radio transceiver on and try to connect one of them (communication 8 in FIG. 4 , in which the MS starts access procedures with pico cell Pn).
- the location of the MS may be calculated in the PLMN 30 by SMLC (Serving Mobile Location Centre) server which may be located in the BSC, using e.g. TA, and only pico cells (e.g. cells P 1 to P 3 ) that are close to the MS may be indicated to the MS (process 3 in FIG. 4 ).
- the indication may also be just a bit with meaning ‘pico cell (allowed access) close by, pico cell system radio may be started’.
- the MS is DTM (Dual Transfer Mode) capable same procedure as described above for the idle state is possible during active state e.g. during an active speech call. If the MS in not DTM capable, it has to rely on receiving information on pico cells via SACCH (Slow Associated Control CHannel). For this purpose, one of messages sent via SACCH to the mobile is enhanced to carry the needed information. Alternatively, a new message is defined for carrying this information.
- SACCH Small Associated Control CHannel
- FIG. 5 shows a schematic block diagram illustrating an OMC 200 , a BSC/BTS 300 and an MS 400 according to an embodiment of the invention.
- the OMC 200 comprises a determination unit 201 configured to determine for a cell of first cell layer of a first technology access network at least one cell of second cell layer of a second technology access network, the at least one cell of second cell layer being located in the area of the cell of first cell layer, and a calculation unit 202 configured to calculate location information of the at least one cell of second cell layer.
- the location information may comprise a timing advance value.
- the determination unit 201 may be configured to determine if the at least one cell of second cell layer is a specific cell offering a specific service and to cause the calculation unit 202 to calculate the location information of the at least one cell of second cell layer only in case the at least one cell of second cell layer is the specific cell.
- the BSC/BTS 300 comprises a sender unit 301 configured to send information on at least one cell of second cell layer of a second technology access network, the at least one cell of second cell layer being located in an area of a cell of first cell layer of a first technology access network, wherein the information comprises location information of the at least one cell of second cell layer.
- the sender unit 301 may be configured to send an indication that at least one cell of second cell layer is present in the area of the cell of first cell layer instead of sending the information on the at least one cell of second cell layer.
- the BSC/BTS 300 may further comprise a receiver unit 302 configured to receive a message requesting the information on the at least one cell of second cell layer, wherein the sender unit 301 may be further configured to send the information on the at least one cell of second cell layer in response to the message.
- the information on the at least one cell of second cell layer may further comprise geographical coordinates of the at least one cell of second cell layer.
- the BSC/BTS may further comprise an estimating unit 303 configured to estimate a location of a mobile device, and a determination unit 304 configured to determine if the at least one cell of second cell layer is close to the location of the mobile device and to cause the sender unit 301 to send the information on the at least one cell of second cell layer only in case the at least one cell of second cell layer is close to the location of the mobile device.
- the determination unit 304 may be configured to determine if the at least one cell of second cell layer is a specific cell offering a specific service and to cause the sender unit 301 to send the information on the at least one cell of second cell layer only in case the at least one cell of second cell layer is the specific cell.
- the cell of first cell layer may be a GSM cell and the at least one cell of second cell layer may be a UMA cell and the sender unit 301 may be configured to send the information on the at least one cell of second cell layer in a non GSM system information message via a broadcast control channel, via a slow associated control channel or via an extended broadcast control channel.
- the MS 400 comprises a receiver unit 401 configured to receive information on at least one cell of second cell layer of a second technology access network, the at least one cell of second cell layer being located in an area of a cell of first cell layer of a first technology access network in which the mobile device is located, wherein the information comprises location information of the at least one cell of second cell layer.
- the receiver unit 401 may be configured to receive an indication that at least one cell of second cell layer is present in the area of the cell of first cell layer instead of receiving the information on the at least one cell of second cell layer.
- the MS 400 may further comprise a determination unit 402 configured to initiate access to the at least one cell of second cell layer based on the indication.
- the determination unit 402 may be configured to determine if the at least one cell of second cell layer is a specific cell offering a specific service and to initiate access to the at least one cell of second cell layer only in case the at least one cell of second cell layer is the specific cell.
- the MS 400 may further comprise a sender unit 403 .
- the determination unit 402 may be configured to cause the sender unit 403 to send a message requesting the information on the at least one cell of second cell layer based on the indication.
- the determination unit 402 may be configured to cause the sender unit 403 to send a message requesting the information on the at least one cell of second cell layer only in case the at least one cell of second cell layer is the specific cell.
- the MS 400 may further comprise a GPS receiver 404 or other positioning device configured to calculate coordinate values of a location of the MS 400 , and a calculation unit 405 configured to compare the coordinate values with the geographical coordinates of the at least one cell of second cell layer and decide that the at least one cell of second cell layer is close to the location of the MS 400 based on a comparison result.
- a GPS receiver 404 or other positioning device configured to calculate coordinate values of a location of the MS 400
- a calculation unit 405 configured to compare the coordinate values with the geographical coordinates of the at least one cell of second cell layer and decide that the at least one cell of second cell layer is close to the location of the MS 400 based on a comparison result.
- the determination unit 402 may be configured to initiate access to the at least one cell of second cell layer based on a decision that the at least one cell of second cell layer is close to the location of the mobile device.
- the cell of first cell layer may be a GSM cell and the at least one cell of second cell layer may be a UMA cell and the receiver unit 401 may be configured to receive the information on the at least one cell of second cell layer in a non GSM system information message via a broadcast control channel.
- the cell of first cell layer may be a GSM cell and the at least one cell of second cell layer may be a UMA cell and the receiver unit 401 may be configured to receive the information on the at least one cell of second cell layer via a slow associated control channel.
- the cell of first cell layer may be a GSM cell and the at least one cell of second cell layer may be a UMA cell and the receiver unit 401 may be configured to receive the indication via an extended broadcast control channel.
- the network devices and the mobile device shown in FIG. 5 may have further functionality for working e.g. as OMA, BSC/BTS and MS devices.
- the functions of the network devices and the mobile device relevant for understanding the principles of the invention are described using functional blocks as shown in FIG. 5 .
- the arrangement of the functional blocks of the network devices is not construed to limit the invention, and the functions may be performed by one block or further split into sub-blocks.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Computer Security & Cryptography (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
Description
-
- method steps likely to be implemented as software code portions and being run using a processor at one of the server/client entities are software code independent and can be specified using any known or future developed programming language;
- method steps and/or devices likely to be implemented as hardware components at one of the server/client entities are hardware independent and can be implemented using any known or future developed hardware technology or any hybrids of these, such as MOS, CMOS, BiCMOS, ECL, TTL, etc, using for example ASIC components or DSP components, as an example;
- generally, any method step is suitable to be implemented as software or by hardware without changing the idea of the present invention;
- devices can be implemented as individual devices, but this does not exclude that they are implemented in a distributed fashion throughout the system, as long as the functionality of the device is preserved.
Claims (18)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP06127341 | 2006-12-29 | ||
EP06127341.3 | 2006-12-29 |
Publications (2)
Publication Number | Publication Date |
---|---|
US20080161013A1 US20080161013A1 (en) | 2008-07-03 |
US8059582B2 true US8059582B2 (en) | 2011-11-15 |
Family
ID=39584745
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/714,727 Expired - Fee Related US8059582B2 (en) | 2006-12-29 | 2007-03-07 | Pico cell system access using cellular communications network |
Country Status (1)
Country | Link |
---|---|
US (1) | US8059582B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9253713B2 (en) | 2011-09-26 | 2016-02-02 | Blackberry Limited | Method and system for small cell discovery in heterogeneous cellular networks |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8265551B2 (en) * | 2007-07-19 | 2012-09-11 | Panasonic Corporation | Relay station, mobile station, and relay transmission method in mobile communication system |
US8688117B2 (en) * | 2008-06-13 | 2014-04-01 | Fujitsu Limited | Seamless handover and load balance between macro base stations and publicly accessible femto base stations |
US8428016B2 (en) * | 2008-07-11 | 2013-04-23 | Qualcomm Incorporated | Method and apparatus for communicating in a dominant interference scenario |
US20100016022A1 (en) * | 2008-07-15 | 2010-01-21 | Sony Ericsson Mobile Communications Ab | Methods and Apparatus for Providing Services Information with a Femtocell Wireless Base Station |
EP2224771A1 (en) * | 2009-02-27 | 2010-09-01 | BRITISH TELECOMMUNICATIONS public limited company | Access point information server |
US8914041B2 (en) * | 2010-09-20 | 2014-12-16 | Alcatel Lucent | Methods of locating data spots and networks and user equipment for using the same |
US9642147B2 (en) * | 2011-02-14 | 2017-05-02 | Qualcomm Incorporated | Methods and apparatus for evaluating number of protected active users based on QoS requirements, throughput and traffic |
JP5902817B2 (en) * | 2011-09-30 | 2016-04-13 | 京セラ株式会社 | System and method for mitigating uplink interference of small cells |
EP3554141A1 (en) | 2012-10-30 | 2019-10-16 | Sony Corporation | System information update notification |
WO2014110722A1 (en) * | 2013-01-15 | 2014-07-24 | Nokia Siemens Networks Oy | Methods and apparatus |
US9668197B2 (en) * | 2013-04-10 | 2017-05-30 | Huawei Technologies Co., Ltd. | System and method for wireless network access MAP and applications |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040023669A1 (en) * | 2002-07-31 | 2004-02-05 | Interdigital Technology Corporation | Handover between a cellular system and a wireless local area network |
US20040104841A1 (en) * | 2002-12-03 | 2004-06-03 | Nokia Corporation | Generating entries for a database supporting a positioning of a mobile terminal |
US20040137901A1 (en) * | 2003-01-13 | 2004-07-15 | Ryutaro Hamasaki | Vertical handover method by IP multicast |
US6813501B2 (en) * | 2000-02-29 | 2004-11-02 | Nokia Mobile Phones, Ltd. | Location dependent services |
US20050053099A1 (en) * | 2003-09-05 | 2005-03-10 | Spear Stephen L. | Timing advance determinations in wireless communications devices and methods |
US6904029B2 (en) * | 2003-01-23 | 2005-06-07 | Motorola, Inc. | Method and apparatus for a source-initiated handoff from a source cellular wireless network to a target non-cellular wireless network |
US20050239461A1 (en) * | 2002-06-21 | 2005-10-27 | The Regents Of The Unviersity Of California | Registration of a wlan as a umts routing area for wlan-umts interworking |
US20050250496A1 (en) * | 2002-05-23 | 2005-11-10 | Motorola, Inc. | Communications methods and apparatus for use therein |
US20060227745A1 (en) * | 2005-03-11 | 2006-10-12 | Interdigital Technology Corporation | Method and system for station location based neighbor determination and handover probability estimation |
US7146130B2 (en) * | 2003-02-24 | 2006-12-05 | Qualcomm Incorporated | Wireless local access network system detection and selection |
US7266101B2 (en) * | 2003-06-30 | 2007-09-04 | Motorola, Inc. | Fast handover through proactive registration |
US7505433B2 (en) * | 2005-04-01 | 2009-03-17 | Toshiba America Research, Inc. | Autonomous and heterogeneous network discovery and reuse |
US7590708B2 (en) * | 2003-02-24 | 2009-09-15 | Qualcomm, Incorporated | Wireless local access network system detection and selection |
-
2007
- 2007-03-07 US US11/714,727 patent/US8059582B2/en not_active Expired - Fee Related
Patent Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6813501B2 (en) * | 2000-02-29 | 2004-11-02 | Nokia Mobile Phones, Ltd. | Location dependent services |
US20050250496A1 (en) * | 2002-05-23 | 2005-11-10 | Motorola, Inc. | Communications methods and apparatus for use therein |
US20050239461A1 (en) * | 2002-06-21 | 2005-10-27 | The Regents Of The Unviersity Of California | Registration of a wlan as a umts routing area for wlan-umts interworking |
US20040023669A1 (en) * | 2002-07-31 | 2004-02-05 | Interdigital Technology Corporation | Handover between a cellular system and a wireless local area network |
US7089005B2 (en) * | 2002-07-31 | 2006-08-08 | Interdigital Technology Corporation | Handover between a cellular system and a wireless local area network |
US20040104841A1 (en) * | 2002-12-03 | 2004-06-03 | Nokia Corporation | Generating entries for a database supporting a positioning of a mobile terminal |
US20040137901A1 (en) * | 2003-01-13 | 2004-07-15 | Ryutaro Hamasaki | Vertical handover method by IP multicast |
US6904029B2 (en) * | 2003-01-23 | 2005-06-07 | Motorola, Inc. | Method and apparatus for a source-initiated handoff from a source cellular wireless network to a target non-cellular wireless network |
US7146130B2 (en) * | 2003-02-24 | 2006-12-05 | Qualcomm Incorporated | Wireless local access network system detection and selection |
US7590708B2 (en) * | 2003-02-24 | 2009-09-15 | Qualcomm, Incorporated | Wireless local access network system detection and selection |
US7266101B2 (en) * | 2003-06-30 | 2007-09-04 | Motorola, Inc. | Fast handover through proactive registration |
US20050053099A1 (en) * | 2003-09-05 | 2005-03-10 | Spear Stephen L. | Timing advance determinations in wireless communications devices and methods |
US20060227745A1 (en) * | 2005-03-11 | 2006-10-12 | Interdigital Technology Corporation | Method and system for station location based neighbor determination and handover probability estimation |
US7505433B2 (en) * | 2005-04-01 | 2009-03-17 | Toshiba America Research, Inc. | Autonomous and heterogeneous network discovery and reuse |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9253713B2 (en) | 2011-09-26 | 2016-02-02 | Blackberry Limited | Method and system for small cell discovery in heterogeneous cellular networks |
Also Published As
Publication number | Publication date |
---|---|
US20080161013A1 (en) | 2008-07-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8059582B2 (en) | Pico cell system access using cellular communications network | |
US10660109B2 (en) | Systems and methods to support multiple configurations for positioning reference signals in a wireless network | |
US11134361B2 (en) | Systems and architectures for support of high-performance location in a Next Generation Radio Access Network | |
US12044782B2 (en) | Methods and apparatuses for acquiring and providing positioning assistant data, and devices | |
US9066308B2 (en) | Method and apparatus for using supported network information for positioning | |
KR101359207B1 (en) | A wireless terminal and method for managing the receipt of position reference signals for use in determining a location | |
US11006384B2 (en) | Methods and systems for using bandwidth parts information during positioning of a mobile device | |
CN113973260B (en) | Uplink signal positioning method, communication base station, measurement base station and UE | |
EP3256872B1 (en) | Assistance data for use in determining a position of a mobile device | |
EP2360959B1 (en) | Method and system for locating a femtocell using measurement reports | |
CN100359961C (en) | Location technology support determinations in wireless communication networks and devices | |
EP2679066B1 (en) | Providing small cell information to user equipments in a heterogeneous network environment | |
US12015965B2 (en) | Apparatus and user equipment positioning method | |
US8068852B2 (en) | Method and system for detecting position of mobile communication terminal by using pilot strength measurement message | |
US20080032712A1 (en) | Determining movement context of a mobile user terminal in a wireless telecommunications network | |
KR100422800B1 (en) | Adaptive Location Service Method in Wireless Communication System | |
CN110858990B (en) | Network reselection method and device | |
CN115243190A (en) | Positioning method, positioning device, terminal, base station, network equipment and storage medium | |
CN114916019B (en) | Information processing method, device and computer readable storage medium | |
KR101419274B1 (en) | Positioning Apparatus for Using WLAN Information and Positioning Method Thereby, and Positioning Server for Using WLAN Information and Driving Method Thereof | |
CN108401499B (en) | Method, device and system for determining position information | |
WO2020038401A1 (en) | Network reselection method and apparatus | |
CN118283650A (en) | Communication method and communication device | |
KR20120030669A (en) | Apparatus and method for positioning mobile terminal, wlan server and driving method thereof | |
CN118556411A (en) | Sidestream positioning method, device, equipment and storage medium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: NOKIA CORPORATION, FINLAND Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:FRIMAN, LEIF;REEL/FRAME:019075/0565 Effective date: 20070226 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FEPP | Fee payment procedure |
Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
AS | Assignment |
Owner name: NOKIA TECHNOLOGIES OY, FINLAND Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NOKIA CORPORATION;REEL/FRAME:035581/0654 Effective date: 20150116 |
|
AS | Assignment |
Owner name: OMEGA CREDIT OPPORTUNITIES MASTER FUND, LP, NEW YORK Free format text: SECURITY INTEREST;ASSIGNOR:WSOU INVESTMENTS, LLC;REEL/FRAME:043966/0574 Effective date: 20170822 Owner name: OMEGA CREDIT OPPORTUNITIES MASTER FUND, LP, NEW YO Free format text: SECURITY INTEREST;ASSIGNOR:WSOU INVESTMENTS, LLC;REEL/FRAME:043966/0574 Effective date: 20170822 |
|
AS | Assignment |
Owner name: WSOU INVESTMENTS, LLC, CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NOKIA TECHNOLOGIES OY;REEL/FRAME:043953/0822 Effective date: 20170722 |
|
AS | Assignment |
Owner name: BP FUNDING TRUST, SERIES SPL-VI, NEW YORK Free format text: SECURITY INTEREST;ASSIGNOR:WSOU INVESTMENTS, LLC;REEL/FRAME:049235/0068 Effective date: 20190516 |
|
AS | Assignment |
Owner name: WSOU INVESTMENTS, LLC, CALIFORNIA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:OCO OPPORTUNITIES MASTER FUND, L.P. (F/K/A OMEGA CREDIT OPPORTUNITIES MASTER FUND LP;REEL/FRAME:049246/0405 Effective date: 20190516 |
|
FEPP | Fee payment procedure |
Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
LAPS | Lapse for failure to pay maintenance fees |
Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20191115 |
|
AS | Assignment |
Owner name: OT WSOU TERRIER HOLDINGS, LLC, CALIFORNIA Free format text: SECURITY INTEREST;ASSIGNOR:WSOU INVESTMENTS, LLC;REEL/FRAME:056990/0081 Effective date: 20210528 |
|
AS | Assignment |
Owner name: WSOU INVESTMENTS, LLC, CALIFORNIA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:TERRIER SSC, LLC;REEL/FRAME:056526/0093 Effective date: 20210528 |