US7770392B2 - Apparatus for controlling an internal combustion engine having an exhaust gas turbocharger and an exhaust gas recirculation apparatus - Google Patents
Apparatus for controlling an internal combustion engine having an exhaust gas turbocharger and an exhaust gas recirculation apparatus Download PDFInfo
- Publication number
- US7770392B2 US7770392B2 US11/814,233 US81423306A US7770392B2 US 7770392 B2 US7770392 B2 US 7770392B2 US 81423306 A US81423306 A US 81423306A US 7770392 B2 US7770392 B2 US 7770392B2
- Authority
- US
- United States
- Prior art keywords
- exhaust gas
- decoupling
- mass flow
- gas recirculation
- back pressure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related, expires
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/0025—Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
- F02D41/0047—Controlling exhaust gas recirculation [EGR]
- F02D41/0065—Specific aspects of external EGR control
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B37/00—Engines characterised by provision of pumps driven at least for part of the time by exhaust
- F02B37/12—Control of the pumps
- F02B37/18—Control of the pumps by bypassing exhaust from the inlet to the outlet of turbine or to the atmosphere
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B37/00—Engines characterised by provision of pumps driven at least for part of the time by exhaust
- F02B37/12—Control of the pumps
- F02B37/24—Control of the pumps by using pumps or turbines with adjustable guide vanes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D23/00—Controlling engines characterised by their being supercharged
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/0002—Controlling intake air
- F02D41/0007—Controlling intake air for control of turbo-charged or super-charged engines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/0025—Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
- F02D41/0047—Controlling exhaust gas recirculation [EGR]
- F02D41/005—Controlling exhaust gas recirculation [EGR] according to engine operating conditions
- F02D41/0052—Feedback control of engine parameters, e.g. for control of air/fuel ratio or intake air amount
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B29/00—Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
- F02B29/04—Cooling of air intake supply
- F02B29/0406—Layout of the intake air cooling or coolant circuit
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1401—Introducing closed-loop corrections characterised by the control or regulation method
- F02D2041/1413—Controller structures or design
- F02D2041/1418—Several control loops, either as alternatives or simultaneous
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1401—Introducing closed-loop corrections characterised by the control or regulation method
- F02D2041/1413—Controller structures or design
- F02D2041/1427—Decoupling, i.e. using a feedback such that one output is controlled by only one input
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1401—Introducing closed-loop corrections characterised by the control or regulation method
- F02D2041/1413—Controller structures or design
- F02D2041/1432—Controller structures or design the system including a filter, e.g. a low pass or high pass filter
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M26/00—Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
- F02M26/02—EGR systems specially adapted for supercharged engines
- F02M26/04—EGR systems specially adapted for supercharged engines with a single turbocharger
- F02M26/05—High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M26/00—Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
- F02M26/02—EGR systems specially adapted for supercharged engines
- F02M26/09—Constructional details, e.g. structural combinations of EGR systems and supercharger systems; Arrangement of the EGR and supercharger systems with respect to the engine
- F02M26/10—Constructional details, e.g. structural combinations of EGR systems and supercharger systems; Arrangement of the EGR and supercharger systems with respect to the engine having means to increase the pressure difference between the exhaust and intake system, e.g. venturis, variable geometry turbines, check valves using pressure pulsations or throttles in the air intake or exhaust system
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M26/00—Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
- F02M26/13—Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
- F02M26/22—Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
- F02M26/23—Layout, e.g. schematics
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M26/00—Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
- F02M26/45—Sensors specially adapted for EGR systems
- F02M26/48—EGR valve position sensors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/40—Engine management systems
Definitions
- the invention relates to a device for controlling an internal combustion engine.
- Actuators are provided in each case for setting the compressor power output and also the exhaust gas mass that is to be recirculated.
- An intervention into the respective actuator of the external exhaust gas recirculation system or the exhaust gas turbocharger also has an effect in each case on the behavior of the respective other system, i.e. of the exhaust gas turbocharger or of the exhaust gas recirculation system.
- a model-based predictive controller for simultaneously regulating the boost pressure and the EGR rate in a diesel engine is known on the one hand from the article titled “Simultane Regelung von Ladetik und AGR-Verhalten opposition PKW-Diesel-Motor” (“Simultaneous control of boost pressure and EGR behavior in automobile diesel engines”), Motortechnische Zeitschrift (MTZ) 11/2001, pages 956 ff.; also known, on the other hand, is a feedback control structure having controllers for the exhaust gas recirculation system and the exhaust gas turbocharger.
- the actuating variable of the controller assigned to the exhaust gas turbocharger is a variable turbine geometry setting.
- the output variable of the exhaust gas recirculation controller is a setting of an exhaust gas recirculation valve.
- a device for controlling an internal combustion engine may enable low-emission operation of the internal combustion engine by a device for controlling an internal combustion engine having at least one exhaust gas turbocharger with at least one exhaust gas turbocharger actuator, an exhaust gas recirculation device with an exhaust gas recirculation valve, wherein the device comprises an exhaust gas turbocharger controller which determines a feedback control actuating variable exhaust gas back pressure as a function of a setpoint boost pressure and an actual boost pressure; an exhaust gas recirculation controller which determines a feedback control exhaust gas recirculation actuating variable, as a function of a setpoint mass air flow and an actual mass air flow; a first decoupling unit which determines a decoupling mass flow in an exhaust gas tract downstream of a branch-off of the exhaust gas recirculation device and is dependent on the feedback control exhaust gas recirculation actuating variable, and a first conversion unit which determines an actuating signal for the exhaust gas turbocharger actuator as a function of the feedback control actuating variable exhaust gas back pressure and the de
- FIG. 1 shows an internal combustion engine having a control device
- FIG. 2 is a block diagram of the control device
- FIG. 3 is a more detailed representation of individual blocks of the block diagram according to FIG. 2 .
- FIG. 4 shows a modified internal combustion engine
- a device for controlling an internal combustion engine has an exhaust gas turbocharger which comprises an exhaust gas turbocharger actuator, and an exhaust gas recirculation device which comprises an exhaust gas recirculation valve.
- the control device may comprise an exhaust gas turbocharger pilot control which determines a pilot control actuating variable exhaust gas back pressure as a function of at least one operating variable of the internal combustion engine.
- Operating variables include both measured variables and any variables derived therefrom.
- an exhaust gas turbocharger controller is provided which determines a feedback control actuating variable exhaust gas back pressure as a function of a setpoint boost pressure and an actual boost pressure.
- an exhaust gas recirculation pilot control which determines a pilot control actuating variable exhaust gas recirculation mass flow as a function of at least one operating variable of the internal combustion engine.
- An exhaust gas recirculation controller is provided which determines a feedback control actuating variable exhaust gas recirculation mass flow as a function of a setpoint mass air flow and an actual mass air flow.
- the device also comprises a first decoupling unit which determines a decoupling mass flow in an exhaust gas tract downstream of an exhaust gas recirculation branch-off of the exhaust gas recirculation device, and specifically as a function of the pilot control actuating variable exhaust gas recirculation mass flow and the feedback control actuating variable exhaust gas recirculation mass flow.
- the device also comprises a second decoupling unit which determines a decoupling exhaust gas back pressure, and specifically as a function of the pilot control actuating variable exhaust gas back pressure and the feedback control actuating variable exhaust gas back pressure.
- a first conversion unit determines an actuating signal for the exhaust gas turbocharger actuator as a function of the pilot control actuating variable exhaust gas back pressure, the feedback control actuating variable exhaust gas back pressure and the decoupling mass flow. Also provided is a second conversion unit which determines an actuating signal for the exhaust gas recirculation valve as a function of the pilot control actuating variable exhaust gas recirculation mass flow, the feedback control actuating variable exhaust gas recirculation mass flow and the decoupling exhaust gas back pressure.
- a particularly reliable and precise decoupling of the exhaust gas turbocharger and the exhaust gas recirculation device is easily possible in practice through the choice of the input and output variables of the decoupling units.
- both the boost pressure and the mass air flow or the exhaust gas recirculation mass flow can easily be set very precisely even during simultaneous operation of the exhaust gas turbocharger and the exhaust gas recirculation device.
- a precise setting of a desired torque which is to be output by the internal combustion engine can also be achieved in this way.
- an estimated variable unit which includes a physical model of the internal combustion engine, which physical model is embodied for determining an estimated value of the mass flow in the exhaust gas tract downstream of the exhaust gas recirculation branch-off, and specifically as a function of at least one operating variable of the internal combustion engine, and which is further embodied for determining an estimated value of the exhaust gas back pressure as a function of at least one operating variable of the internal combustion engine, the first decoupling unit being embodied for determining the decoupling mass flow as a function of the estimated value of the mass flow in the exhaust gas tract downstream of the exhaust gas recirculation branch-off and/or the second decoupling unit being embodied for determining the decoupling exhaust gas back pressure as a function of the estimated value of the exhaust gas back pressure.
- the decoupling mass flow and/or the decoupling exhaust gas back pressure can be determined even more precisely and consequently then the setpoint boost pressure and the setpoint mass air flow can also be actually set even more precisely.
- the first decoupling unit comprises a high-pass filter by means of which the sum of the pilot control actuating variable exhaust gas recirculation mass flow and the feedback control actuating variable exhaust gas recirculation mass flow is filtered.
- the first decoupling unit is embodied for determining the decoupling mass flow as a function of the filtered summation signal of the actuating variable exhaust gas recirculation mass flow.
- the first decoupling unit is embodied for determining the decoupling mass flow as a function of the filtered summation signal of the actuating variable exhaust gas recirculation mass flow, weighted with a predefined weighting factor. In this way an even more precise setting of the setpoint boost pressure can be ensured by suitable selection of the weighting factor.
- the second decoupling unit comprises a high-pass filter by means of which the sum of the pilot control actuating variable exhaust gas back pressure and the feedback control actuating variable exhaust gas back pressure is filtered, and the second decoupling unit is embodied for determining the decoupling exhaust gas back pressure as a function of the filtered summation signal of the actuating variable exhaust gas back pressure.
- the second decoupling unit is embodied for determining the decoupling exhaust gas back pressure as a function of the filtered summation signal of the actuating variable exhaust gas back pressure, weighted with a predefined weighting factor. In this way an even more precise setting of the setpoint mass air flow can be ensured by suitable selection of the weighting factor.
- the exhaust gas turbocharger comprises a turbine having variable turbine geometry, a turbine geometry actuator and a waste gate valve.
- the first conversion unit is embodied for generating an actuating signal for the turbine geometry actuator with the aim of varying the free flow cross-section of the turbine and for generating an actuating signal for the waste gate valve.
- the summation signal actuating variable exhaust gas back pressure is converted up to a threshold value by variation of the free flow cross-section with the waste gate valve closed. From the threshold value the summation signal actuating variable exhaust gas back pressure is converted by varying a degree of opening of the waste gate valve and moreover while maintaining the free flow cross-section of the turbine. In this way a very good response behavior of the exhaust gas turbocharger and a very precise setting of the setpoint boost pressure can be ensured.
- the supercharging comprises a first and second turbine arranged in series, to each of which a waste gate valve or a variable turbine geometry is assigned as actuator.
- the conversion unit is embodied for generating a first actuating signal for the actuator of the first turbine and for generating a second actuating signal for the actuator of the second turbine.
- the summation signal actuating variable exhaust gas back pressure is converted up to a threshold value by varying the first actuator while the position of the second actuator remains fixed. From the first threshold value the summation signal actuating variable exhaust gas back pressure is converted by varying the second actuator while the position of the first actuator remains fixed. In this way, too, a very precise setting of the setpoint exhaust gas back pressure is possible by means of the exhaust gas turbocharger.
- An internal combustion engine ( FIG. 1 ) comprises an intake tract 1 , an engine block 2 , a cylinder head and an exhaust gas tract 4 .
- the intake tract 1 can communicate with the ambient air via an air filter 5 .
- the intake tract 1 also comprises a compressor 7 of an exhaust gas turbocharger, also a charge air intercooler 9 , a throttle valve 11 , a manifold 13 and intake pipes 15 which extend from the manifold 13 as far as the cylinders in the engine block 2 .
- the engine block comprises a crankshaft which is coupled to the piston of the respective cylinder via a connecting rod.
- the cylinder head comprises a valve actuating mechanism with gas inlet and gas outlet valves.
- the cylinder head further comprises injection valves 18 which are assigned to the respective cylinders.
- the exhaust gas tract 4 comprises a turbine which is part of the exhaust gas turbocharger.
- the turbine 20 is assigned an exhaust gas turbocharger actuator 22 .
- the exhaust gas turbocharger actuator 22 can also be assigned directly to the compressor 7 .
- the exhaust gas turbocharger actuator can be a turbine geometry actuator if the turbine 20 has a variable turbine geometry. It can, however, also be a waste gate valve which is disposed in a bypass to the turbine 20 . Moreover it can also be disposed in a bypass to the compressor 11 .
- the exhaust gas tract 4 further comprises an exhaust gas catalyzer 24 and/or a particle filter. In addition it preferably comprises a muffler 26 .
- Embodied upstream in the direction of flow of the exhaust gas with regard to the turbine 20 is a branch-off 28 of an exhaust gas recirculation line 30 in the exhaust gas tract 4 .
- the exhaust gas recirculation line 30 in combination with a cooler device 32 and an exhaust gas recirculation valve 33 forms an exhaust gas recirculation device.
- the exhaust gas recirculation device is embodied for recirculating exhaust gases which are discharged into the exhaust gas tract 4 from the respective cylinder of the internal combustion engine after the respective combustion process back into the manifold 13 .
- control device 34 to which are assigned sensors which record various measured variables and determine the value of the measured variable in each case. As a function of at least one of the measured variables the control device 34 determines actuating variables which are then converted into one or more actuating signals for controlling the actuators of the internal combustion engine by means of corresponding actuating drives.
- the control device 34 can also be referred to as a device for controlling the internal combustion engine.
- the sensors are a pedal position sensor 36 , which records an accelerator pedal position of an accelerator pedal 38 , a mass air flow sensor 40 , which records a mass air flow in the intake tract 1 , a first temperature sensor 44 , which records an intake air temperature, a boost pressure sensor 46 , which records a boost pressure, a crankshaft angle sensor 48 , which records a crankshaft angle to which a rotational speed is then assigned. Also provided is a second temperature sensor 50 which records a coolant temperature of the internal combustion engine. Additionally provided is an exhaust gas turbocharger sensor 52 which records, for example, a position of the variable turbine geometry or a position or a degree of opening of the waste gate valve. Also provided is an exhaust gas recirculation valve sensor 54 which records a position or a degree of opening of the exhaust gas recirculation valve.
- any subset of the aforesaid sensors may be present or additional sensors may also be present.
- the actuators are embodied for example as the throttle valve 11 , the charge air intercooler 9 , the exhaust gas turbocharger actuator 22 , the exhaust gas recirculation valve 33 , the cooler device 32 or the injection valve 18 .
- control device 34 With reference to the block diagram of FIG. 2 , the functions of the control device 34 that are relevant to the embodiments are shown. However, the control device 34 preferably also comprises further functions in connection with the control of the internal combustion engine.
- a block B 1 comprises an exhaust gas turbocharger pilot control.
- the exhaust gas turbocharger pilot control is embodied for determining a pilot control actuating variable exhaust gas back pressure PRE_SG_PEXH as a function of at least one operating variable BG of the internal combustion engine.
- operating variables also include variables derived from these.
- the pilot control can comprise, for example, one or more engine characteristic maps.
- a block B 3 comprises an exhaust gas turbocharger controller which is preferably a P, PI or even a PID controller and to which a difference of a setpoint boost pressure BP_SP and an actual boost pressure BP_AV is supplied as a control deviation.
- the output variable of the block B 3 is a feedback control actuating variable exhaust gas back pressure FB_SG_PEXH.
- a block B 5 comprises an exhaust gas recirculation controller which is embodied for determining a pilot control actuating variable exhaust gas recirculation mass flow PRE_SG_EGR as a function of at least one operating variable BG.
- the block B 5 preferably comprises at least one engine characteristic map.
- a block B 7 comprises an exhaust gas recirculation controller which is embodied, for example, as a P, PI or PID controller whose control deviation is a difference of a setpoint mass air flow in the intake tract and an actual mass air flow MAF_AV.
- the output variable of the block B 7 is a feedback control actuating variable exhaust gas recirculation mass flow FB_SG_EGR.
- a block B 9 which comprises a first decoupling unit.
- the first decoupling unit is embodied for determining a decoupling mass flow MF_DEC in the exhaust gas tract 4 downstream of the branch-off 28 of the exhaust gas recirculation line 30 , and specifically as a function of the pilot control actuating variable exhaust gas recirculation mass flow PRE_SG_GR and the feedback control actuating variable exhaust gas recirculation mass flow FB_SG_GR.
- the first decoupling unit can comprise a predefined correcting value which is multiplicatively linked to the sum of the pilot control actuating variable exhaust gas recirculation mass flow PRE_SG_EGR and the feedback control actuating variable exhaust gas recirculation mass flow FB_SG_EGR.
- the correcting value is preferably predefined as a result of suitable experiments in such a way that a corresponding decoupling takes place.
- a block B 11 which comprises a second decoupling unit.
- the second decoupling unit is embodied for determining a decoupling exhaust gas back pressure PEXH_DEC, and specifically as a function of the pilot control actuating variable exhaust gas back pressure PRE_SG_PEXH and the feedback control actuating variable exhaust gas back pressure FB_SG_PEXH.
- said second decoupling unit also comprises a correcting value which is preferably multiplicatively linked to the sum of the pilot control actuating variable exhaust gas back pressure PRE_SG_PEXH and the feedback control actuating variable exhaust gas back pressure FB_SG_PEXH.
- the correcting value is suitably chosen and determined for example by means of simulations or experiments, and moreover in such a way that a decoupling of the exhaust gas recirculation device from the exhaust gas turbocharger takes place.
- a block B 13 comprises a first conversion unit which is embodied for determining at least one exhaust gas turbocharger actuating signal ATL_S_SIG.
- Said first conversion unit preferably comprises a block B 15 with an inverse physical model of the part of the supercharging on the exhaust gas side.
- the model is embodied such that an input signal for a block B 17 is determined by means of the sum of the pilot control actuating variable exhaust gas back pressure PRE_SG_PEXH and the feedback control actuating variable exhaust gas back pressure FB_SG_PEXH, the decoupling mass flow MF_DEC and preferably at least one further operating variable BG of the internal combustion engine.
- the inverse physical model comprises at least one engine characteristic map, preferably also a plurality thereof, by means of which, for example, a setpoint position or setting of the exhaust gas turbocharger actuator 22 can be determined.
- the at least one operating variable can be, for example, a pressure ratio after and before the turbine 20 and/or the pressure before the turbine 20 and/or an exhaust gas temperature and/or a rotational speed of the turbine.
- the block B 17 comprises a position closed loop for the exhaust gas turbocharger actuator which is embodied for determining the exhaust gas turbocharger actuating signal ATL_S_SIG as a function of the setpoint position, predefined by the block B 15 , of the exhaust gas turbocharger actuator 22 and preferably as a function of the actual setting or position of the exhaust gas turbocharger actuator 22 recorded by the exhaust gas turbocharger sensor 52 .
- the position of the exhaust gas turbocharger actuator it is possible, for example, to set a free flow cross-section of the turbine 20 or also a degree of opening of the waste gate valve.
- a block B 19 comprises a second conversion unit which is embodied for determining an exhaust gas recirculation valve actuating signal S_SIG_EGR as a function of the pilot control actuating variable exhaust gas recirculation mass flow PRE_SG_EGR, the feedback control actuating variable exhaust gas recirculation mass flow FB_SG_EGR, the decoupling exhaust gas back pressure PEXH_DEC and preferably at least one operating variable BG of the internal combustion engine.
- the block B 19 preferably comprises a block B 21 which includes an inverse physical model of the exhaust gas recirculation device.
- a block B 21 which includes an inverse physical model of the exhaust gas recirculation device.
- the model preferably comprises at least one engine characteristic map and is dependent on the pilot control actuating variable exhaust gas recirculation mass flow PRE_SG_EGR, the feedback control actuating variable exhaust gas recirculation mass flow FB_SB_EGR, the decoupling exhaust gas back pressure PEXH_DEC and preferably at least one operating variable which is, for example, a pressure ratio of the pressure downstream and upstream of the exhaust gas recirculation valve 33 and/or the temperature of the gas upstream of the exhaust gas recirculation valve 33 .
- the second conversion unit B 19 also comprises a block B 23 which includes a position control loop for the exhaust gas recirculation valve 33 , the controller of the block B 23 being supplied with the difference of the degree of opening, predefined, for example, by the block B 21 , of the exhaust gas recirculation valve and the degree of opening recorded by the exhaust gas recirculation valve sensor 54 .
- the output variable of the block B 23 is then the exhaust gas recirculation actuating signal S_SIG_EGR.
- a throttle valve actuating signal S_SIG_THR for setting a degree of opening of the throttle valve 11 can also be adapted as a function of the output signal of the block B 1 . Corresponding blocks are then provided for that purpose.
- a block B 25 which includes an estimated variable unit.
- the estimated variable unit includes a physical model of the internal combustion engine. It is embodied for determining different operating variables of the internal combustion engine and also, inter alia, estimated values MF_EST of the mass flow in the exhaust gas tract 4 downstream of the branch-off 28 of the exhaust gas recirculation line 30 and estimated values PEXH_EST of the exhaust gas back pressure. It preferably comprises a dynamic physical model of the intake tract, the gas exchange cycle in the cylinders and the combustion process and/or the exhaust gas tract 4 and/or the exhaust gas recirculation device 30 .
- the first decoupling unit of the block B 9 is then embodied for determining the decoupling mass flow MF_DEC as a function of the pilot control actuating variable exhaust gas recirculation mass flow PRE_SG_EGR, the feedback control actuating variable exhaust gas recirculation mass flow FB_SG_EGR and the estimated value MF_EST of the mass flow in the exhaust gas tract 4 downstream of the branch-off 28 .
- the first decoupling unit preferably comprises a first high-pass filter 58 which high-pass filters the sum of the pilot control actuating variable exhaust gas recirculation mass flow PRE_SG_EGR and the feedback control actuating variable exhaust gas recirculation mass flow FB_SG_EGR, and specifically preferably the negative sum, and hence determines a filtered summation signal SUM_FIL_SG_EGR of the actuating variable exhaust gas recirculation mass flow.
- the cut-off frequency of the high-pass filter is preferably suitably predefined. In this case the cut-off frequency is preferably dependent, inter alia, on the response time of the exhaust gas recirculation valve 33 and hence on the exhaust gas recirculation device. It can be particularly advantageous if the high-pass filter also filters out very high frequencies which represent merely parasitic frequencies of the signal. In this case it is embodied as a band-pass filter and also suitably parameterized.
- the filtered summation signal SUM_FIL_SG_EGR of the actuating variable exhaust gas recirculation mass flow is preferably weighted by means of a weighting factor WF and then additively linked to the estimated value MF_EST of the mass flow in the exhaust gas tract 4 downstream of the branch-off 28 to the decoupling mass flow MF_DEC.
- the weighting factor can also be suitably predefined, thus, for example, by means of experiments or simulations.
- the parameters of the high-pass filter 58 or, as the case may be, of the band-pass filters can also be additionally dependent on at least one operating variable BG.
- the second decoupling unit is furthermore also embodied such that it determines the decoupling exhaust gas back pressure PEXH_DEC in addition as a function of the estimated value PEXH_EST of the exhaust gas back pressure.
- it preferably also comprises a further high-pass filter 59 which is embodied for filtering the pilot control actuating variable exhaust gas back pressure PRE_SG_PEXH and the feedback control actuating variable exhaust gas back pressure FB_SG_PEXH, and specifically preferably their sum, and which thus determines a filtered summation signal SUM_FIL_SG_PEXH of the actuating variable exhaust gas back pressure.
- the cut-off frequency of the high-pass filter is also suitably predefined here, and moreover preferably by means of appropriate experiments or simulations.
- the filtered summation signal SUM_FIL_SG_PEXH of the actuating variable exhaust gas back pressure is then preferably weighted with the weighting factor WF.
- the weighting factor can also differ in its value from that of the block B 9 .
- the thus weighted filtered summation signal SUM_FIL_SG_PEXH of the exhaust gas back pressure is then additively linked to the estimated value PEXH_EST of the exhaust gas back pressure and hence the decoupling exhaust gas back pressure P_EXH_DEC is determined.
- the estimated value of the exhaust gas back pressure PEXH_EST can easily be replaced.
- a pressure sensor can also be provided for recording the exhaust gas back pressure.
- the recorded exhaust gas back pressure can then be the input variable of the second decoupling unit as an alternative to the estimated value PEXH_EST of the exhaust gas back pressure.
- the exhaust gas turbocharger is assigned, for example, two exhaust gas turbocharger actuators 22 which can be, for example, the turbine geometry actuator and the waste gate valve, it is preferably ensured initially in the block B 15 that in order for the decoupling mass flow MF_DEC to exceed a predefined mass flow threshold value THD, only the actuating signal of the turbine geometry actuator is varied initially with the aim of varying the free flow cross-section of the turbine 20 and an actuating signal for the waste gate valve with the aim of varying a degree of opening of the waste gate valve is generated only when a threshold value THD is exceeded and moreover while maintaining the free flow cross-section of the turbine 20 present when the threshold value is exceeded, which flow cross-section is dependent on the position of the turbine geometry.
- THD mass flow threshold value
- the internal combustion engine can also comprise with regard to the exhaust gas turbocharger a step switching of two turbines 60 , 62 with assigned first actuator and second actuator, e.g. waste gate valves 64 , 66 , as shown in FIG. 4 .
- first actuator and second actuator e.g. waste gate valves 64 , 66
- FIG. 4 there is then preferably provided a block B 27 which is embodied according to the block B 17 and which is embodied for generating an actuating signal S_SIG_WG 2 for e.g. the second waste gate valve 66 .
- the block B 17 is then embodied for generating an actuating signal S_SIG_WG 1 for e.g. the first waste gate valve 64 .
- the actuating signal S_SIG_WGL for controlling the first waste gate valve 64 is preferably varied until a threshold value THD is exceeded and the actuating signal S_SIG_WG 2 for controlling the second waste gate valve 66 is varied only after the threshold value THD is exceeded while maintaining the degree of opening of the first waste gate valve 64 .
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Supercharger (AREA)
- Exhaust-Gas Circulating Devices (AREA)
- Output Control And Ontrol Of Special Type Engine (AREA)
Abstract
Description
Claims (17)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102005015609.6 | 2005-04-05 | ||
DE102005015609A DE102005015609B4 (en) | 2005-04-05 | 2005-04-05 | Device for controlling an internal combustion engine |
PCT/EP2006/061107 WO2006106058A1 (en) | 2005-04-05 | 2006-03-28 | Apparatus for controlling an internal combustion engine having an exhaust-gas turbocharger and an exhaust-gas recirculation apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
US20080104957A1 US20080104957A1 (en) | 2008-05-08 |
US7770392B2 true US7770392B2 (en) | 2010-08-10 |
Family
ID=36593192
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/814,233 Expired - Fee Related US7770392B2 (en) | 2005-04-05 | 2006-03-28 | Apparatus for controlling an internal combustion engine having an exhaust gas turbocharger and an exhaust gas recirculation apparatus |
Country Status (5)
Country | Link |
---|---|
US (1) | US7770392B2 (en) |
EP (1) | EP1815117A1 (en) |
CN (1) | CN101107435B (en) |
DE (1) | DE102005015609B4 (en) |
WO (1) | WO2006106058A1 (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090259385A1 (en) * | 2008-04-09 | 2009-10-15 | Axel Loeffler | Method and engine control unit for controlling an internal combustion engine |
US20110023848A1 (en) * | 2008-04-03 | 2011-02-03 | Anselm Schwarte | Device for controlling the exhaust-gas turbocharging of an internal combustion engine, and internal combustion engine |
US20110079008A1 (en) * | 2006-10-02 | 2011-04-07 | De Ojeda William | Strategy For Control Of Recirculated Exhaust Gas To Null Turbocharger Boost Error |
US20110155108A1 (en) * | 2010-03-25 | 2011-06-30 | Ford Global Technologies. Llc | Turbocharged engine with naturally aspirated operating mode |
US20120138026A1 (en) * | 2010-12-07 | 2012-06-07 | Detroit Diesel Corporation | Method of diagnosing a low boost in a diesel engine |
US20130327039A1 (en) * | 2012-06-07 | 2013-12-12 | Boise State University | Multi-stage turbo with continuous feedback control |
CN104179601A (en) * | 2013-05-23 | 2014-12-03 | 罗伯特·博世有限公司 | Method and control unit for determining a mass flow in a high-pressure exhaust gas recirculation system of an internal combustion engine |
US20160090928A1 (en) * | 2014-09-25 | 2016-03-31 | Mazda Motor Corporation | Exhaust control apparatus for engine |
US20170051684A1 (en) * | 2015-08-21 | 2017-02-23 | Deere & Company | Feed forward exhaust throttle and wastegate control for an engine |
US10634073B2 (en) | 2014-11-12 | 2020-04-28 | Deere & Company | Variable geometry turbocharger feed forward control system and method |
US10830164B2 (en) | 2014-11-12 | 2020-11-10 | Deere & Company | Fresh air flow and exhaust gas recirculation control system and method |
US10947892B2 (en) | 2016-10-06 | 2021-03-16 | Cummins Inc. | System, method, and apparatus for throttled engine control using turbocharger wastegate |
US11813464B2 (en) | 2020-07-31 | 2023-11-14 | Medtronic, Inc. | Cardiac conduction system evaluation |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10145038A1 (en) * | 2001-09-13 | 2003-04-03 | Bosch Gmbh Robert | Method and device for operating at least one supercharger of an internal combustion engine |
DE102006022148B4 (en) | 2006-05-12 | 2019-05-09 | Bayerische Motoren Werke Aktiengesellschaft | Method for controlling the total air mass to be supplied to an internal combustion engine |
US7748218B2 (en) * | 2006-06-26 | 2010-07-06 | International Engine Intellectual Property Company, Llc | System and method for achieving engine back-pressure set-point by selectively bypassing a stage of a two-stage turbocharger |
US7735320B2 (en) * | 2006-08-29 | 2010-06-15 | Gm Global Technology Operations, Inc. | Dual stage turbocharger control system |
US7707831B2 (en) * | 2007-07-17 | 2010-05-04 | Audi, Ag | Method for controlling boost pressure in an internal combustion engine for motor vehicles |
JP5067614B2 (en) | 2007-08-21 | 2012-11-07 | 株式会社デンソー | Exhaust gas purification device for internal combustion engine |
EP2093403B1 (en) * | 2008-02-19 | 2016-09-28 | C.R.F. Società Consortile per Azioni | EGR control system |
DE102008018193B3 (en) * | 2008-04-10 | 2009-09-17 | Iav Gmbh Ingenieurgesellschaft Auto Und Verkehr | Method for regulating air mass or exhaust gas mass flow of internal combustion engine, involves carrying regulation of exhaust gas recirculation mass flow by adjustment of opening geometry of exhaust gas recirculation valve |
FR2949140B1 (en) * | 2009-08-13 | 2011-10-14 | Renault Sa | METHOD FOR CONTROLLING A SUPER-POWER SYSTEM OF AN INTERNAL COMBUSTION ENGINE |
BR112012006691B1 (en) | 2009-09-25 | 2020-12-01 | Cummins Inc | method, apparatus and control system of an internal combustion engine with a variable geometry turbocharger |
JP5333120B2 (en) * | 2009-09-25 | 2013-11-06 | 富士通株式会社 | Engine control program, method and apparatus |
US8468821B2 (en) | 2009-11-19 | 2013-06-25 | GM Global Technology Operations LLC | Dual-loop control systems and methods for a sequential turbocharger |
US8364379B2 (en) * | 2010-05-07 | 2013-01-29 | GM Global Technology Operations LLC | Control system and method for controlling engine exhaust back pressure |
FI20115705A0 (en) * | 2011-07-01 | 2011-07-01 | Waertsilae Finland Oy | Internal combustion engine and internal combustion engine duct arrangement |
DE102011081949B4 (en) * | 2011-09-01 | 2021-06-10 | Robert Bosch Gmbh | Method and device for implementing a control, in particular for use in a motor vehicle |
DE102012207124B4 (en) * | 2012-04-27 | 2018-02-08 | Mtu Friedrichshafen Gmbh | Method for operating an internal combustion engine, device for controlling and / or regulating an internal combustion engine, internal combustion engine and use of the device for operating an internal combustion engine |
US9784198B2 (en) * | 2015-02-12 | 2017-10-10 | GM Global Technology Operations LLC | Model predictive control systems and methods for increasing computational efficiency |
JP6234198B2 (en) * | 2013-12-04 | 2017-11-22 | 三菱重工業株式会社 | Turbocharger device |
DE102018211538A1 (en) * | 2018-07-11 | 2020-01-16 | Volkswagen Aktiengesellschaft | Method for controlling a charging system |
FR3101677B1 (en) * | 2019-10-07 | 2021-09-03 | Renault Sas | CONTROL PROCESS OF A SUPERCHARGED CONTROL IGNITION WITH PARTIAL LOW PRESSURE RECIRCULATION OF THE EXHAUST GASES AT THE INTAKE, AND ASSOCIATED MOTORIZATION DEVICE |
DE102022134030A1 (en) | 2022-12-20 | 2024-06-20 | Innio Jenbacher Gmbh & Co Og | Method for adjusting an exhaust gas recirculation mass flow of an internal combustion engine and internal combustion engine |
Citations (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5123246A (en) * | 1991-01-25 | 1992-06-23 | Mack Trucks, Inc. | Continuously proportional variable geometry turbocharger system and method of control |
US5228292A (en) * | 1990-08-16 | 1993-07-20 | Mercedes-Benz Ag | Arrangement for controlling the boost pressure in an internal-combustion engine supercharged by an exhaust-gas turbocharger of adjustable turbine geometry |
US6035639A (en) * | 1999-01-26 | 2000-03-14 | Ford Global Technologies, Inc. | Method of estimating mass airflow in turbocharged engines having exhaust gas recirculation |
US6035640A (en) * | 1999-01-26 | 2000-03-14 | Ford Global Technologies, Inc. | Control method for turbocharged diesel engines having exhaust gas recirculation |
US6067800A (en) * | 1999-01-26 | 2000-05-30 | Ford Global Technologies, Inc. | Control method for a variable geometry turbocharger in a diesel engine having exhaust gas recirculation |
US6076353A (en) * | 1999-01-26 | 2000-06-20 | Ford Global Technologies, Inc. | Coordinated control method for turbocharged diesel engines having exhaust gas recirculation |
EP1024261A2 (en) | 1999-01-26 | 2000-08-02 | Ford Global Technologies, Inc. | Method of reducing turbo lag in diesel engines having exhaust gas recirculation |
US6128902A (en) * | 1999-01-26 | 2000-10-10 | Ford Global Technologies, Inc. | Control method and apparatus for turbocharged diesel engines having exhaust gas recirculation |
WO2001075292A1 (en) | 2000-03-31 | 2001-10-11 | Detroit Diesel Corporation | Method of controlling an engine with an egr system |
US6401700B2 (en) * | 1999-12-09 | 2002-06-11 | International Engine Intellectual Property Company, L.L.C. | Closed loop diesel engine EGR control including event monitoring |
US6460522B1 (en) | 2000-12-15 | 2002-10-08 | Detroit Diesel Corporation | Method and apparatus for controlling engine exhaust gas recirculation |
EP1302646A2 (en) | 2001-10-15 | 2003-04-16 | Nissan Motor Company, Limited | Control of compression ignition engines having egr and multiple superchargers |
US6681573B2 (en) * | 2002-02-05 | 2004-01-27 | Honeywell International Inc | Methods and systems for variable geometry turbocharger control |
WO2004027235A1 (en) | 2002-09-19 | 2004-04-01 | Detroit Diesel Corporation | Method for controlling an engine with vgt and egr systems |
US7016779B2 (en) * | 2002-01-31 | 2006-03-21 | Cambridge Consultants Limited | Control system |
US7062910B2 (en) * | 2004-01-20 | 2006-06-20 | Denso Corporation | Engine control system |
US7110876B2 (en) * | 2004-02-18 | 2006-09-19 | Denso Corporation | Control device for diesel engine |
US20080078176A1 (en) * | 2006-10-02 | 2008-04-03 | International Engine Intellectual Property Company | Strategy for control of recirculated exhaust gas to null turbocharger boost error |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19960618B4 (en) * | 1999-12-16 | 2005-02-03 | Daimlerchrysler Ag | Internal combustion engine with a device for exhaust gas recirculation and a variable ejector nozzle in the intake |
DE19963358A1 (en) * | 1999-12-28 | 2001-07-12 | Bosch Gmbh Robert | Method and device for controlling an internal combustion engine with an air system |
AU2001243410A1 (en) * | 2000-03-03 | 2001-09-17 | Honeywell International, Inc. | Intelligent electric actuator for control of a turbocharger with an integrated exhaust gas recirculation valve |
DE10158247A1 (en) * | 2001-11-28 | 2003-07-10 | Volkswagen Ag | Determining gas mixture composition in combustion chamber of internal combustion engine with exhaust gas feedback, involves determining state parameters with physically based models |
-
2005
- 2005-04-05 DE DE102005015609A patent/DE102005015609B4/en not_active Expired - Fee Related
-
2006
- 2006-03-28 CN CN2006800028462A patent/CN101107435B/en not_active Expired - Fee Related
- 2006-03-28 US US11/814,233 patent/US7770392B2/en not_active Expired - Fee Related
- 2006-03-28 WO PCT/EP2006/061107 patent/WO2006106058A1/en not_active Application Discontinuation
- 2006-03-28 EP EP06725368A patent/EP1815117A1/en not_active Withdrawn
Patent Citations (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5228292A (en) * | 1990-08-16 | 1993-07-20 | Mercedes-Benz Ag | Arrangement for controlling the boost pressure in an internal-combustion engine supercharged by an exhaust-gas turbocharger of adjustable turbine geometry |
US5123246A (en) * | 1991-01-25 | 1992-06-23 | Mack Trucks, Inc. | Continuously proportional variable geometry turbocharger system and method of control |
US6035639A (en) * | 1999-01-26 | 2000-03-14 | Ford Global Technologies, Inc. | Method of estimating mass airflow in turbocharged engines having exhaust gas recirculation |
US6035640A (en) * | 1999-01-26 | 2000-03-14 | Ford Global Technologies, Inc. | Control method for turbocharged diesel engines having exhaust gas recirculation |
US6067800A (en) * | 1999-01-26 | 2000-05-30 | Ford Global Technologies, Inc. | Control method for a variable geometry turbocharger in a diesel engine having exhaust gas recirculation |
US6076353A (en) * | 1999-01-26 | 2000-06-20 | Ford Global Technologies, Inc. | Coordinated control method for turbocharged diesel engines having exhaust gas recirculation |
EP1024261A2 (en) | 1999-01-26 | 2000-08-02 | Ford Global Technologies, Inc. | Method of reducing turbo lag in diesel engines having exhaust gas recirculation |
US6128902A (en) * | 1999-01-26 | 2000-10-10 | Ford Global Technologies, Inc. | Control method and apparatus for turbocharged diesel engines having exhaust gas recirculation |
US6401700B2 (en) * | 1999-12-09 | 2002-06-11 | International Engine Intellectual Property Company, L.L.C. | Closed loop diesel engine EGR control including event monitoring |
WO2001075292A1 (en) | 2000-03-31 | 2001-10-11 | Detroit Diesel Corporation | Method of controlling an engine with an egr system |
EP1280990A1 (en) | 2000-03-31 | 2003-02-05 | Detroit Diesel Corporation | Method of controlling an engine with an egr system |
US6460522B1 (en) | 2000-12-15 | 2002-10-08 | Detroit Diesel Corporation | Method and apparatus for controlling engine exhaust gas recirculation |
EP1302646A2 (en) | 2001-10-15 | 2003-04-16 | Nissan Motor Company, Limited | Control of compression ignition engines having egr and multiple superchargers |
US7016779B2 (en) * | 2002-01-31 | 2006-03-21 | Cambridge Consultants Limited | Control system |
US6681573B2 (en) * | 2002-02-05 | 2004-01-27 | Honeywell International Inc | Methods and systems for variable geometry turbocharger control |
WO2004027235A1 (en) | 2002-09-19 | 2004-04-01 | Detroit Diesel Corporation | Method for controlling an engine with vgt and egr systems |
US7062910B2 (en) * | 2004-01-20 | 2006-06-20 | Denso Corporation | Engine control system |
US7110876B2 (en) * | 2004-02-18 | 2006-09-19 | Denso Corporation | Control device for diesel engine |
US20080078176A1 (en) * | 2006-10-02 | 2008-04-03 | International Engine Intellectual Property Company | Strategy for control of recirculated exhaust gas to null turbocharger boost error |
Non-Patent Citations (3)
Title |
---|
International Search Report; PCT/EP2006/061107; pp. 6, Jul. 5, 2006. |
Joachim Rückert et al.; "Simultane Regelung von Ladedruck und AGR-Rate"; Motortechnische Zeitschrift (MTZ) ; pp. 956-965, Nov. 2001. |
Von Oliver Hild et al.; " Die Regelstrecke Eines Pkw-Dieselmotors mit Direkteinspritzung im Hinblick auf Ladedruck- und Abgasrückführregelung"; MTZ; pp. 186-192, 1999. |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110079008A1 (en) * | 2006-10-02 | 2011-04-07 | De Ojeda William | Strategy For Control Of Recirculated Exhaust Gas To Null Turbocharger Boost Error |
US20110023848A1 (en) * | 2008-04-03 | 2011-02-03 | Anselm Schwarte | Device for controlling the exhaust-gas turbocharging of an internal combustion engine, and internal combustion engine |
US8459025B2 (en) * | 2008-04-03 | 2013-06-11 | Continental Automotive Gmbh | Device for controlling the exhaust-gas turbocharging of an internal combustion engine, and internal combustion engine |
US8155857B2 (en) * | 2008-04-09 | 2012-04-10 | Robert Bosch Gmbh | Method and engine control unit for controlling an internal combustion engine |
US20090259385A1 (en) * | 2008-04-09 | 2009-10-15 | Axel Loeffler | Method and engine control unit for controlling an internal combustion engine |
US9567950B2 (en) * | 2010-03-25 | 2017-02-14 | Ford Global Technologies, Llc | Turbocharged engine with naturally aspirated operating mode |
US20110155108A1 (en) * | 2010-03-25 | 2011-06-30 | Ford Global Technologies. Llc | Turbocharged engine with naturally aspirated operating mode |
US20120138026A1 (en) * | 2010-12-07 | 2012-06-07 | Detroit Diesel Corporation | Method of diagnosing a low boost in a diesel engine |
US20130327039A1 (en) * | 2012-06-07 | 2013-12-12 | Boise State University | Multi-stage turbo with continuous feedback control |
US9574489B2 (en) * | 2012-06-07 | 2017-02-21 | Boise State University | Multi-stage turbo with continuous feedback control |
CN104179601A (en) * | 2013-05-23 | 2014-12-03 | 罗伯特·博世有限公司 | Method and control unit for determining a mass flow in a high-pressure exhaust gas recirculation system of an internal combustion engine |
US20160090928A1 (en) * | 2014-09-25 | 2016-03-31 | Mazda Motor Corporation | Exhaust control apparatus for engine |
US9879595B2 (en) * | 2014-09-25 | 2018-01-30 | Mazda Motor Corporation | Exhaust control apparatus for engine |
US10634073B2 (en) | 2014-11-12 | 2020-04-28 | Deere & Company | Variable geometry turbocharger feed forward control system and method |
US10830164B2 (en) | 2014-11-12 | 2020-11-10 | Deere & Company | Fresh air flow and exhaust gas recirculation control system and method |
US20170051684A1 (en) * | 2015-08-21 | 2017-02-23 | Deere & Company | Feed forward exhaust throttle and wastegate control for an engine |
US9835094B2 (en) * | 2015-08-21 | 2017-12-05 | Deere & Company | Feed forward exhaust throttle and wastegate control for an engine |
US10947892B2 (en) | 2016-10-06 | 2021-03-16 | Cummins Inc. | System, method, and apparatus for throttled engine control using turbocharger wastegate |
US11813464B2 (en) | 2020-07-31 | 2023-11-14 | Medtronic, Inc. | Cardiac conduction system evaluation |
Also Published As
Publication number | Publication date |
---|---|
CN101107435B (en) | 2010-06-02 |
DE102005015609A1 (en) | 2006-10-19 |
US20080104957A1 (en) | 2008-05-08 |
DE102005015609B4 (en) | 2008-01-17 |
EP1815117A1 (en) | 2007-08-08 |
WO2006106058A1 (en) | 2006-10-12 |
CN101107435A (en) | 2008-01-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7770392B2 (en) | Apparatus for controlling an internal combustion engine having an exhaust gas turbocharger and an exhaust gas recirculation apparatus | |
CN101331302B (en) | Controlling exhaust gas recirculation in a turbocharged compression-ignition engine system | |
US7275374B2 (en) | Coordinated multivariable control of fuel and air in engines | |
USRE44452E1 (en) | Pedal position and/or pedal change rate for use in control of an engine | |
US7165399B2 (en) | Method and system for using a measure of fueling rate in the air side control of an engine | |
CN102418608B (en) | Controlling exhaust gas recirculation in a turbocharged compression-ignition engine system | |
EP1831516B1 (en) | Multivariable airside control for an engine | |
US7031824B2 (en) | Multivariable actuator control for an internal combustion engine | |
US20070101977A1 (en) | Method and system for using a measure of fueling rate in the air side control of an engine | |
US8087402B2 (en) | Method and device for the operation of an internal combustion engine comprising an exhaust-gas turbocharger | |
US8596252B2 (en) | Emission control system for an engine having a two-stage turbocharger | |
US20070151243A1 (en) | Control of dual stage turbocharging | |
JP5187123B2 (en) | Control device for internal combustion engine | |
US7320219B2 (en) | Method for controlling an internal combustion engine using model based VGT/EGR control | |
KR102130236B1 (en) | Method and device for adjusting mass flow of exhaust gas recirculation valve | |
US20210003083A1 (en) | Dynamic control of an air handling system for vehicle acceleration performance | |
CN111255576A (en) | Method for regulating the opening state of an exhaust gas valve |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: SIEMENS VDO AUTOMOTIVE AG, GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BIRKNER, CHRISTIAN, DR.;SCHWARTE, ANSELM, DR.;REEL/FRAME:019604/0470;SIGNING DATES FROM 20070626 TO 20070629 Owner name: SIEMENS VDO AUTOMOTIVE AG, GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BIRKNER, CHRISTIAN, DR.;SCHWARTE, ANSELM, DR.;SIGNING DATES FROM 20070626 TO 20070629;REEL/FRAME:019604/0470 |
|
AS | Assignment |
Owner name: VDO AUTOMOTIVE AG, GERMANY Free format text: CHANGE OF NAME;ASSIGNOR:SIEMENS VDO AUTOMOTIVE AG;REEL/FRAME:023324/0738 Effective date: 20071210 Owner name: VDO AUTOMOTIVE AG,GERMANY Free format text: CHANGE OF NAME;ASSIGNOR:SIEMENS VDO AUTOMOTIVE AG;REEL/FRAME:023324/0738 Effective date: 20071210 |
|
AS | Assignment |
Owner name: CONTINENTAL AUTOMOTIVE GMBH, GERMANY Free format text: MERGER;ASSIGNOR:VDO AUTOMOTIVE AG;REEL/FRAME:023338/0565 Effective date: 20080129 Owner name: CONTINENTAL AUTOMOTIVE GMBH,GERMANY Free format text: MERGER;ASSIGNOR:VDO AUTOMOTIVE AG;REEL/FRAME:023338/0565 Effective date: 20080129 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
CC | Certificate of correction | ||
FPAY | Fee payment |
Year of fee payment: 4 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552) Year of fee payment: 8 |
|
AS | Assignment |
Owner name: VITESCO TECHNOLOGIES GMBH, GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CONTINENTAL AUTOMOTIVE GMBH;REEL/FRAME:053383/0507 Effective date: 20200601 |
|
FEPP | Fee payment procedure |
Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
LAPS | Lapse for failure to pay maintenance fees |
Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20220810 |