US7368014B2 - Variable temperature deposition methods - Google Patents

Variable temperature deposition methods Download PDF

Info

Publication number
US7368014B2
US7368014B2 US09/927,230 US92723001A US7368014B2 US 7368014 B2 US7368014 B2 US 7368014B2 US 92723001 A US92723001 A US 92723001A US 7368014 B2 US7368014 B2 US 7368014B2
Authority
US
United States
Prior art keywords
temperature
deposition method
specie
substrate
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related, expires
Application number
US09/927,230
Other versions
US20030031787A1 (en
Inventor
Trung Tri Doan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Micron Technology Inc
Original Assignee
Micron Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Micron Technology Inc filed Critical Micron Technology Inc
Priority to US09/927,230 priority Critical patent/US7368014B2/en
Assigned to MICRON TECHNOLOGY, INC. reassignment MICRON TECHNOLOGY, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DOAN, TRUNG TRI
Priority to JP2002232604A priority patent/JP2003105542A/en
Publication of US20030031787A1 publication Critical patent/US20030031787A1/en
Priority to US11/497,872 priority patent/US20060266282A1/en
Application granted granted Critical
Publication of US7368014B2 publication Critical patent/US7368014B2/en
Adjusted expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • C23C16/345Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/46Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/0217Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon nitride not containing oxygen, e.g. SixNy or SixByNz
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/318Inorganic layers composed of nitrides
    • H01L21/3185Inorganic layers composed of nitrides of siliconnitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/0228Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • variable temperature deposition methods including atomic layer deposition and other deposition methods, and integrated circuits formed thereby.
  • Atomic layer deposition is recognized as a deposition technique that forms high quality materials with minimal defects and tight statistical process control. Even so, it is equally recognized that ALD can have limited application. In some circumstances, the theoretically expected quality of an ALD layer is not achieved.
  • a deposition method includes at a first temperature, contacting a substrate with a first precursor and chemisorbing a first layer at least one monolayer thick over the substrate. At a second temperature different from the first temperature, the first layer may be contacted with a second precursor, chemisorbing a second layer at least one monolayer thick on the first layer.
  • the method can further include heating the first layer and the second layer to a third temperature higher than the second temperature.
  • the method can include altering temperature by adding or removing heat with a thermoelectric heat pump to establish the second temperature.
  • the thermoelectric heat pump may thermally connect to the substrate.
  • the first temperature may be at least about 5° C. different than the second temperature.
  • Another aspect of the invention provides a deposition method including atomic layer depositing a first specie over a substrate approximately at an optimum temperature for the first specie deposition.
  • a second specie may be atomic layer deposited on the first specie approximately at an optimum temperature for the second specie deposition different from the first specie optimum temperature.
  • a chemisorption product of the first and second species may consist essentially of a monolayer of a deposition material.
  • a deposition method includes chemisorbing a first layer of a first compound over a substrate while maintaining the substrate at a first temperature with a heater thermally linked to the substrate. Heat may be added or removed with a device different from the heater exhibiting a thermoelectric effect. This may establish the substrate at a second temperature at least about 1° C. different from the first temperature. A monolayer of a second compound may be chemisorbed on the first monolayer of the first compound at the second substrate temperature. Heat may be added or removed with the device to establish the substrate at approximately the first temperature. A second monolayer of the first compound may be chemisorbed on the monolayer of the second compound.
  • heat can be added with the device to establish the substrate at a third temperature higher than the second temperature and the chemisorbed second compound reacted with the chemisorbed first compound. Heat can be added or removed with the device to establish the substrate at approximately the first temperature. A second monolayer of the first compound can be chemisorbed on the reacted layer of first and second compounds.
  • FIGS. 1-3 are line charts respectively showing the timing for contacting a substrate in an atomic layer deposition process with precursor 1 , precursor 2 , and purge gas.
  • FIG. 4 is a line chart showing the timing for altering temperature during the contacting described in FIGS. 1-3 .
  • FIG. 5 is a line chart showing an alternative timing for altering temperature during the contacting described in FIGS. 1-3 .
  • FIGS. 6-8 are line charts respectively showing an alternative timing for contacting a substrate in an atomic layer deposition process with precursor 1 , precursor 2 , and purge gas.
  • FIG. 9 is a line chart showing the timing for altering temperature during the contacting described in FIGS. 6-8 .
  • Atomic layer deposition involves formation of successive atomic layers on a substrate. Such layers may comprise an epitaxial, polycrystalline, amorphous, etc. material. ALD may also be referred to as atomic layer epitaxy, atomic layer processing, etc. Further, the invention may encompass other deposition methods not traditionally referred to as ALD, for example, chemical vapor deposition (CVD), but nevertheless including the method steps described herein. The deposition methods herein may be described in the context of formation on a semiconductor wafer. However, the invention encompasses deposition on a variety of substrates besides semiconductor substrates.
  • semiconductor substrate or “semiconductive substrate” is defined to mean any construction comprising semiconductive material, including, but not limited to, bulk semiconductive materials such as a semiconductive wafer (either alone or in assemblies comprising other materials thereon), and semiconductive material layers (either alone or in assemblies comprising other materials).
  • substrate refers to any supporting structure, including, but not limited to, the semiconductive substrates described above.
  • ALD includes exposing an initial substrate to a first chemical specie to accomplish chemisorption of the specie onto the substrate.
  • the chemisorption forms a monolayer that is uniformly one atom or molecule thick on the entire exposed initial substrate.
  • a saturated monolayer Practically, as further described below, chemisorption might not occur on all portions of the substrate. Nevertheless, such an imperfect monolayer is still a monolayer in the context of this document. In many applications, merely a substantially saturated monolayer may be suitable.
  • a substantially saturated monolayer is one that will still yield a deposited layer exhibiting the quality and/or properties desired for such layer.
  • the first specie is purged from over the substrate and a second chemical specie is provided to chemisorb onto the first monolayer of the first specie.
  • the second specie is then purged and the steps are repeated with exposure of the second specie monolayer to the first specie.
  • the two monolayers may be of the same specie.
  • a third specie or more may be successively chemisorbed and purged just as described for the first and second species.
  • Purging may involve a variety of techniques including, but not limited to, contacting the substrate and/or monolayer with a carrier gas and/or lowering pressure to below the deposition pressure to reduce the concentration of a specie contacting the substrate and/or chemisorbed specie.
  • carrier gases include N 2 , Ar, He, etc.
  • Purging may instead include contacting the substrate and/or monolayer with any substance that allows chemisorption byproducts to desorb and reduces the concentration of a contacting specie preparatory to introducing another specie.
  • the contacting specie may be reduced to some suitable concentration or partial pressure known to those skilled in the art based on the specifications for the product of a particular deposition process.
  • ALD is often described as a self-limiting process, in that a finite number of sites exist on a substrate to which the first specie may form chemical bonds. The second specie might only bond to the first specie and thus may also be self-limiting. Once all of the finite number of sites on a substrate are bonded with a first specie, the first specie will often not bond to other of the first specie already bonded with the substrate.
  • process conditions can be varied in ALD to promote such bonding and render ALD not self-limiting. Accordingly, ALD may also encompass a specie forming other than one monolayer at a time by stacking of a specie, forming a layer more than one atom or molecule thick.
  • the various aspects of the present invention described herein are applicable to any circumstance where ALD may be desired.
  • a few examples of materials that may be deposited by ALD include silicon nitride, zirconium oxide, tantalum oxide, aluminum oxide, and others.
  • ALD atomic layer deposition
  • CVD chemical vapor deposition
  • plasma enhanced CVD plasma enhanced CVD
  • CVD is commonly used to form non-selectively a complete, deposited material on a substrate.
  • One characteristic of CVD is the simultaneous presence of multiple species in the deposition chamber that react to form the deposited material. Such condition is contrasted with the purging criteria for traditional ALD wherein a substrate is contacted with a single deposition specie that chemisorbs to a substrate or previously deposited specie.
  • An ALD process regime may provide a simultaneously contacted plurality of species of a type or under conditions such that ALD chemisorption, rather than CVD reaction occurs.
  • the species may chemisorb to a substrate or previously deposited specie, providing a surface onto which subsequent species may next chemisorb to form a complete layer of desired material.
  • deposition occurs largely independent of the composition or surface properties of an underlying substrate.
  • chemisorption rate in ALD might be influenced by the composition, crystalline structure, and other properties of a substrate or chemisorbed specie.
  • Other process conditions for example, pressure and temperature, may also influence chemisorption rate.
  • ALD can be susceptible to temperature variation such that a change of about 1 to 11° C. to about 50° C. may significantly affect chemisorption rate, and potentially stop appreciable chemisorption. Further observation indicates that one deposition specie may chemisorb optimally at a first temperature while a second deposition specie may chemisorb at a different optimum temperature. If the two species are to be used as complimentary species of a deposition pair, then it is not likely that chemisorption will be performed optimally for both species of the pair.
  • a deposition method includes, at a first temperature, contacting a substrate with a first precursor and chemisorbing a first layer at least one monolayer thick over the substrate. At a second temperature different from the first temperature, the first layer may be contacted with a second precursor. A second layer at least one monolayer thick may be chemisorbed on the first layer.
  • the substrate is a bulk semiconductor wafer.
  • the first precursor is different from the second precursor. Such a difference may be sufficient to produce an optimum chemisorption temperature for the first precursor that is different from an optimum chemisorption temperature for the second precursor.
  • the first and second layers each consist essentially of a monolayer.
  • Altering the temperature may be accomplished by a variety of means and in a variety of ways.
  • the method may further include altering the temperature by adding or removing heat with a thermoelectric heat pump (THP).
  • THP operates on the well known principles of the thermoelectric effect based on one or more of the Peltier effect, Seebeck effect, Thomson effect, and other effects. THPs may provide both thermoelectric cooling and thermoelectric heating. In thermoelectric cooling, heat is absorbed when an electric current is applied through a “cold” junction of two dissimilar conductors and transferred to a “hot” junction of the conductors where it may be dissipated, for example, by a heat sink.
  • THPs may be fabricated from dissimilar metal conductors, but often are semiconductor based, using p- and n-type semiconductors instead. As the term is used herein a THP may include any heating and/or cooling device operating by a thermoelectric effect.
  • a THP may be used to selectively heat or cool the substrate such that the first precursor is chemisorbed at approximately an optimum chemisorption temperature and the second precursor is also chemisorbed at approximately an optimum chemisorption temperature. Accordingly, it may be desirable that the THP thermally connect to the substrate.
  • the substrate For example, in the case of a bulk semiconductor wafer, such wafer may be positioned in a wafer chuck in a deposition chamber. A thermal interface between the THP and the wafer chuck may be sufficient to thermally connect the wafer to the THP to accomplish altering the temperature of at least a portion of the substrate.
  • a source of background heat is provided, for example in deposition chambers.
  • Such background heat may originate from a variety of sources, such as reactant gas and/or carrier gas heaters, a heat lamp array associated with the chamber, and/or a wafer chuck heater separate from the THP. Accordingly, background heat may be provided at a fourth temperature different from or the same as one of the first and second temperature.
  • sources such as reactant gas and/or carrier gas heaters, a heat lamp array associated with the chamber, and/or a wafer chuck heater separate from the THP.
  • background heat may be provided at a fourth temperature different from or the same as one of the first and second temperature.
  • a variety of heating and cooling process regimes are conceivable.
  • the THP can be particularly useful when processing a single wafer through a series of steps, such as those described herein. However, the various aspects of the invention described herein also apply to processing without a THP.
  • the coolant gas can consist of material inert to reaction with the first compound.
  • the coolant gas can be an inert gas commonly used as a carrier gas in processing.
  • the first and second temperatures are those of at least a portion of the substrate.
  • the first and second temperatures may be those of an outermost surface of the substrate, the precursors, deposition chamber temperature, precursor gas temperature, etc. Since the first and second temperatures need not be the substrate temperature, altering the substrate temperature need not, but may, occur from the first to the second temperature.
  • the first temperature may be at least about 1° C. different from the second temperature.
  • the first temperature may preferably be at least about 5° C. different and more preferably at least about 10° C. different.
  • the second temperature may be at least about 50° C. different from the second temperature.
  • a deposition pressure can vary depending on the particular specie and can be atmospheric or at some degree of vacuum.
  • Another consideration in setting up a process regime is that after chemisorption of a first layer, altering a temperature of at least a portion of the substrate for chemisorption of a second layer can impact the already chemisorbed first layer. If a first layer is formed at a lower temperature followed by second layer formation at a higher temperature, then the temperature increase might desorb some of the first layer. Accordingly, preferably the first temperature is greater than the second temperature. In this manner, the first layer may be formed at a higher temperature followed by second layer formation at a lower temperature, decreasing the risk of desorption.
  • chemisorption of the second precursor on the first precursor is not necessarily equivalent to reacting the first and second precursors.
  • an optimum temperature for reaction of the first and second precursor can be different from the optimum chemisorption temperatures of the first and second precursors.
  • the physical properties and/or composition of chemisorbed first and second layers can differ from the desired properties and/or composition that could result from reaction of the chemisorbed materials of the first and second layers.
  • a deposition method can further include heating the first layer and the second layer to a third temperature higher than the second temperature at which the second layer was chemisorbed.
  • the method can further include reacting the second layer with the first layer.
  • One example of reacting the first and second layers includes the heating to the third temperature described above. Other ways to react the first and second layers are also conceivable.
  • the second temperature may be established before the contacting of the first layer to chemisorb a second precursor thereon.
  • the second temperature might not be established until during the contacting of the first layer to chemisorb the second precursor.
  • the third temperature might be established after completing chemisorption of a second precursor on the first layer.
  • the third temperature might be established during the chemisorption of the second precursor. Establishing the third temperature during chemisorption of the second precursor allows already chemisorbed second precursor to react with the first layer and enhances reaction of the second precursor with any portions of the first layer whereon the second precursor has not yet chemisorbed.
  • the selection of a particular process regime will preferably establish the most efficient chemisorption process practicable. That is, both chemisorption rate achieved at a given temperature as well as the necessary time to accomplish alteration of temperature to achieve such a rate may be considered along with other factors. Accordingly, the THP described herein may be particularly advantageous given the quick changes in substrate temperature achievable.
  • a deposition method includes atomic layer depositing a first specie over a substrate approximately at an optimum temperature for the first specie deposition.
  • a second specie may be atomic layer deposited on the first specie approximately at an optimum temperature for the second specie deposition different from the first specie optimum temperature.
  • a chemisorption product of the first and second specie may consist essentially of a monolayer of a deposition material.
  • the first specie may be different from the second specie.
  • a deposition method as described may be desirable.
  • Atomic layer deposition of an initial specie to form the first layer of a chemisorption product sometimes may preferably occur at a different temperature from any subsequent layer. For example, a higher temperature may be warranted to achieve a substantially saturated monolayer on a substrate after which chemisorption to the first and subsequent deposition specie layers occurs at a lower temperature. In this manner, potential difficulties with initiating formation of an ALD material may be reduced.
  • a deposition method may include chemisorbing a first monolayer of a first compound over a substrate while maintaining the substrate at a first temperature with a heater thermally linked to the substrate. Heat may be added or removed with a device different from the heater. The device may exhibit a thermoelectric effect. The device may also establish the substrate at a second temperature at least about 5° C. different from the first temperature.
  • the method may further include chemisorbing a monolayer of a second compound on the first monolayer of the first compound at the second substrate temperature. Heat may be added or removed with the device to establish the substrate temperature at approximately the first temperature. A second monolayer of the first compound may be chemisorbed on the monolayer of the second compound.
  • FIGS. 1-4 a process regime is described for ALD that is within the scope of the present invention.
  • FIGS. 1-3 show the cyclic contacting and purging of a substrate with Precursor 1 (P 1 ) and Precursor 2 (P 2 ).
  • a substrate is first contacted with P 1 from Time 0 (T 0 ) to Time 1 (T 1 ).
  • P 1 that is not chemisorbed is purged from T 1 to T 2 and the chemisorbed P 1 is then contacted with P 2 from T 2 to T 3 .
  • the cycle begins again by contacting chemisorbed P 2 with P 1 from T 4 to T 5 .
  • the cycle from T 0 to T 3 thus may form at least a monolayer of a chemisorption product of P 1 and P 2 .
  • the purge from T 3 to T 4 prepares the chemisorption product of P 1 and P 2 to begin a new cycle at T 4 .
  • the time intervals from T 0 to T 1 to T 2 , etc. are shown as equal merely for graphical convenience. In practice, such times may be individually determined according to the knowledge of those skilled in the art considering the aspects and advantages of the inventions described herein.
  • FIG. 4 shows altering the temperature, preferably substrate temperature, as part of the described method.
  • Temperature 2 (Temp 2 ) is maintained from T 0 to T 1 during contacting of P 1 . Thereafter, temperature is reduced to Temp 1 during purging from T 1 to T 2 and maintained at Temp 1 during contacting of P 2 from T 2 to T 3 . Temperature is increased to Temp 2 during purging from T 3 to T 4 in preparation for starting a new cycle at T 4 .
  • Temp 2 is maintained from T 0 to T 1 during contacting of P 1 . Thereafter, temperature is reduced to Temp 1 during purging from T 1 to T 2 and maintained at Temp 1 during contacting of P 2 from T 2 to T 3 . Temperature is increased to Temperature 3 (Temp 3 ) during purging from T 3 to T 4 and then reduced to Temp 2 in preparation for starting a new cycle at T 4 and for enhancing reaction of P 2 with P 1 .
  • FIGS. 6-9 show the cyclic contacting and purging of a substrate with P 1 and P 2 .
  • a substrate is first contacted with P 1 from T 0 to T 1 .
  • P 1 that is not chemisorbed is purged from T 1 to T 2 and the chemisorbed P 1 is then contacted with P 2 from T 2 to T 4 .
  • the cycle begins again by contacting chemisorbed P 2 with P 1 from T 5 to T 6 .
  • FIG. 9 shows altering the temperature as part of the described method.
  • Temp 2 is maintained from T 0 to T 1 during contacting of P 1 . Thereafter, temperature is reduced to Temp 1 during purging from T 1 to T 2 and maintained at Temp 1 during at least a portion of contacting P 2 from T 2 to T 3 . Temperature is increased to Temp 3 during at least a portion of contacting of P 2 from T 3 to T 4 . Temperature is decreased to Temp 2 during purging from T 4 to T 5 in preparation for starting a new cycle at T 5 .
  • materials may be deposited at increased rates and/or have increased quality as a result of achieving optimum deposition temperatures.
  • devices formed using such methods may possess structures formed of materials having increased quality and/or decreased dimensions given the increased quality. That is, the thickness of a material, such as a barrier material, dielectric material, etc., might be beneficially reduced if the high quality associated with ALD and the deposition methods described herein may be achieved.
  • Si 3 N 4 can be formed.
  • Dichlorosilane (DCS) can be chemisorbed at a first temperature followed by chemisorption of ammonia at a second temperature lower than the first temperature.
  • Si 3 N 4 can be formed from the chemisorbed components by reacting the DCS and ammonia at a third temperature higher than the second temperature and the first temperature.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

A deposition method may include, at a first temperature, contacting a substrate with a first precursor and chemisorbing a first layer at least one monolayer thick over the substrate. At a second temperature different from the first temperature, the first layer may be contacted with a second precursor, chemisorbing a second layer at least one monolayer thick on the first layer. Temperature may be altered by adding or removing heat with a thermoelectric heat pump. The altering the substrate temperature may occur from the first to the second temperature. The second layer may be reacted with the first layer by heating to a third temperature higher than the second temperature. A deposition method may also include atomic layer depositing a first specie of a substrate approximately at an optimum temperature for the first specie deposition. A second specie may be atomic layer deposited on the first specie approximately at an optimum temperature for the second specie deposition different from the first specie optimum temperature.

Description

TECHNICAL FIELD
The aspects of the invention relate to variable temperature deposition methods, including atomic layer deposition and other deposition methods, and integrated circuits formed thereby.
BACKGROUND OF THE INVENTION
Atomic layer deposition (ALD) is recognized as a deposition technique that forms high quality materials with minimal defects and tight statistical process control. Even so, it is equally recognized that ALD can have limited application. In some circumstances, the theoretically expected quality of an ALD layer is not achieved.
It can be seen that a need exists for an ALD method that forms a layer without introducing intolerable defects into the material.
SUMMARY OF THE INVENTION
As one aspect of the invention, a deposition method includes at a first temperature, contacting a substrate with a first precursor and chemisorbing a first layer at least one monolayer thick over the substrate. At a second temperature different from the first temperature, the first layer may be contacted with a second precursor, chemisorbing a second layer at least one monolayer thick on the first layer. As an example, the method can further include heating the first layer and the second layer to a third temperature higher than the second temperature. The method can include altering temperature by adding or removing heat with a thermoelectric heat pump to establish the second temperature. The thermoelectric heat pump may thermally connect to the substrate. The first temperature may be at least about 5° C. different than the second temperature.
Another aspect of the invention provides a deposition method including atomic layer depositing a first specie over a substrate approximately at an optimum temperature for the first specie deposition. A second specie may be atomic layer deposited on the first specie approximately at an optimum temperature for the second specie deposition different from the first specie optimum temperature. As an example, a chemisorption product of the first and second species may consist essentially of a monolayer of a deposition material.
In another aspect of the invention, a deposition method includes chemisorbing a first layer of a first compound over a substrate while maintaining the substrate at a first temperature with a heater thermally linked to the substrate. Heat may be added or removed with a device different from the heater exhibiting a thermoelectric effect. This may establish the substrate at a second temperature at least about 1° C. different from the first temperature. A monolayer of a second compound may be chemisorbed on the first monolayer of the first compound at the second substrate temperature. Heat may be added or removed with the device to establish the substrate at approximately the first temperature. A second monolayer of the first compound may be chemisorbed on the monolayer of the second compound.
As an alternative to the method described immediately above, heat can be added with the device to establish the substrate at a third temperature higher than the second temperature and the chemisorbed second compound reacted with the chemisorbed first compound. Heat can be added or removed with the device to establish the substrate at approximately the first temperature. A second monolayer of the first compound can be chemisorbed on the reacted layer of first and second compounds.
BRIEF DESCRIPTION OF THE DRAWINGS
Preferred embodiments of the invention are described below with reference to the following accompanying drawings.
FIGS. 1-3 are line charts respectively showing the timing for contacting a substrate in an atomic layer deposition process with precursor 1, precursor 2, and purge gas.
FIG. 4 is a line chart showing the timing for altering temperature during the contacting described in FIGS. 1-3.
FIG. 5 is a line chart showing an alternative timing for altering temperature during the contacting described in FIGS. 1-3.
FIGS. 6-8 are line charts respectively showing an alternative timing for contacting a substrate in an atomic layer deposition process with precursor 1, precursor 2, and purge gas.
FIG. 9 is a line chart showing the timing for altering temperature during the contacting described in FIGS. 6-8.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
This disclosure of the invention is submitted in furtherance of the constitutional purposes of the U.S. Patent Laws “to promote the progress of science and useful arts” (Article 1, Section 8).
Atomic layer deposition (ALD) involves formation of successive atomic layers on a substrate. Such layers may comprise an epitaxial, polycrystalline, amorphous, etc. material. ALD may also be referred to as atomic layer epitaxy, atomic layer processing, etc. Further, the invention may encompass other deposition methods not traditionally referred to as ALD, for example, chemical vapor deposition (CVD), but nevertheless including the method steps described herein. The deposition methods herein may be described in the context of formation on a semiconductor wafer. However, the invention encompasses deposition on a variety of substrates besides semiconductor substrates.
In the context of this document, the term “semiconductor substrate” or “semiconductive substrate” is defined to mean any construction comprising semiconductive material, including, but not limited to, bulk semiconductive materials such as a semiconductive wafer (either alone or in assemblies comprising other materials thereon), and semiconductive material layers (either alone or in assemblies comprising other materials). The term “substrate” refers to any supporting structure, including, but not limited to, the semiconductive substrates described above.
Described in summary, ALD includes exposing an initial substrate to a first chemical specie to accomplish chemisorption of the specie onto the substrate. Theoretically, the chemisorption forms a monolayer that is uniformly one atom or molecule thick on the entire exposed initial substrate. In other words, a saturated monolayer. Practically, as further described below, chemisorption might not occur on all portions of the substrate. Nevertheless, such an imperfect monolayer is still a monolayer in the context of this document. In many applications, merely a substantially saturated monolayer may be suitable. A substantially saturated monolayer is one that will still yield a deposited layer exhibiting the quality and/or properties desired for such layer.
The first specie is purged from over the substrate and a second chemical specie is provided to chemisorb onto the first monolayer of the first specie. The second specie is then purged and the steps are repeated with exposure of the second specie monolayer to the first specie. In some cases, the two monolayers may be of the same specie. Also, a third specie or more may be successively chemisorbed and purged just as described for the first and second species.
Purging may involve a variety of techniques including, but not limited to, contacting the substrate and/or monolayer with a carrier gas and/or lowering pressure to below the deposition pressure to reduce the concentration of a specie contacting the substrate and/or chemisorbed specie. Examples of carrier gases include N2, Ar, He, etc. Purging may instead include contacting the substrate and/or monolayer with any substance that allows chemisorption byproducts to desorb and reduces the concentration of a contacting specie preparatory to introducing another specie. The contacting specie may be reduced to some suitable concentration or partial pressure known to those skilled in the art based on the specifications for the product of a particular deposition process.
ALD is often described as a self-limiting process, in that a finite number of sites exist on a substrate to which the first specie may form chemical bonds. The second specie might only bond to the first specie and thus may also be self-limiting. Once all of the finite number of sites on a substrate are bonded with a first specie, the first specie will often not bond to other of the first specie already bonded with the substrate. However, process conditions can be varied in ALD to promote such bonding and render ALD not self-limiting. Accordingly, ALD may also encompass a specie forming other than one monolayer at a time by stacking of a specie, forming a layer more than one atom or molecule thick. The various aspects of the present invention described herein are applicable to any circumstance where ALD may be desired. A few examples of materials that may be deposited by ALD include silicon nitride, zirconium oxide, tantalum oxide, aluminum oxide, and others.
Often, traditional ALD occurs within an often-used range of temperature and pressure and according to established purging criteria to achieve the desired formation of an overall ALD layer one monolayer at a time. Even so, ALD conditions can vary greatly depending on the particular precursors, layer composition, deposition equipment, and other factors according to criteria known by those skilled in the art. Maintaining the traditional conditions of temperature, pressure, and purging minimizes unwanted reactions that may impact monolayer formation and quality of the resulting overall ALD layer. Accordingly, operating outside the traditional temperature and pressure ranges may risk formation of defective monolayers.
The general technology of chemical vapor deposition (CVD) includes a variety of more specific processes, including, but not limited to, plasma enhanced CVD and others. CVD is commonly used to form non-selectively a complete, deposited material on a substrate. One characteristic of CVD is the simultaneous presence of multiple species in the deposition chamber that react to form the deposited material. Such condition is contrasted with the purging criteria for traditional ALD wherein a substrate is contacted with a single deposition specie that chemisorbs to a substrate or previously deposited specie. An ALD process regime may provide a simultaneously contacted plurality of species of a type or under conditions such that ALD chemisorption, rather than CVD reaction occurs. Instead of reacting together, the species may chemisorb to a substrate or previously deposited specie, providing a surface onto which subsequent species may next chemisorb to form a complete layer of desired material. Under most CVD conditions, deposition occurs largely independent of the composition or surface properties of an underlying substrate. By contrast, chemisorption rate in ALD might be influenced by the composition, crystalline structure, and other properties of a substrate or chemisorbed specie. Other process conditions, for example, pressure and temperature, may also influence chemisorption rate.
Observation indicates that ALD can be susceptible to temperature variation such that a change of about 1 to 11° C. to about 50° C. may significantly affect chemisorption rate, and potentially stop appreciable chemisorption. Further observation indicates that one deposition specie may chemisorb optimally at a first temperature while a second deposition specie may chemisorb at a different optimum temperature. If the two species are to be used as complimentary species of a deposition pair, then it is not likely that chemisorption will be performed optimally for both species of the pair.
Accordingly, in one aspect of the invention, a deposition method includes, at a first temperature, contacting a substrate with a first precursor and chemisorbing a first layer at least one monolayer thick over the substrate. At a second temperature different from the first temperature, the first layer may be contacted with a second precursor. A second layer at least one monolayer thick may be chemisorbed on the first layer. Such a method may be implemented in a variety of ways and applied to a variety of circumstances. However, preferably the substrate is a bulk semiconductor wafer. Also, while a variety of precursors and precursor pairs may be selected, preferably the first precursor is different from the second precursor. Such a difference may be sufficient to produce an optimum chemisorption temperature for the first precursor that is different from an optimum chemisorption temperature for the second precursor. Also, preferably the first and second layers each consist essentially of a monolayer.
Altering the temperature may be accomplished by a variety of means and in a variety of ways. For example, the method may further include altering the temperature by adding or removing heat with a thermoelectric heat pump (THP). A THP operates on the well known principles of the thermoelectric effect based on one or more of the Peltier effect, Seebeck effect, Thomson effect, and other effects. THPs may provide both thermoelectric cooling and thermoelectric heating. In thermoelectric cooling, heat is absorbed when an electric current is applied through a “cold” junction of two dissimilar conductors and transferred to a “hot” junction of the conductors where it may be dissipated, for example, by a heat sink. For thermoelectric heating, reversing the current direction will reverse the heat flow such that the cold junction temperature increases with heat transferred from the hot junction. THPs may be fabricated from dissimilar metal conductors, but often are semiconductor based, using p- and n-type semiconductors instead. As the term is used herein a THP may include any heating and/or cooling device operating by a thermoelectric effect.
A THP may be used to selectively heat or cool the substrate such that the first precursor is chemisorbed at approximately an optimum chemisorption temperature and the second precursor is also chemisorbed at approximately an optimum chemisorption temperature. Accordingly, it may be desirable that the THP thermally connect to the substrate. For example, in the case of a bulk semiconductor wafer, such wafer may be positioned in a wafer chuck in a deposition chamber. A thermal interface between the THP and the wafer chuck may be sufficient to thermally connect the wafer to the THP to accomplish altering the temperature of at least a portion of the substrate.
Often, a source of background heat is provided, for example in deposition chambers. Such background heat may originate from a variety of sources, such as reactant gas and/or carrier gas heaters, a heat lamp array associated with the chamber, and/or a wafer chuck heater separate from the THP. Accordingly, background heat may be provided at a fourth temperature different from or the same as one of the first and second temperature. A variety of heating and cooling process regimes are conceivable. The THP can be particularly useful when processing a single wafer through a series of steps, such as those described herein. However, the various aspects of the invention described herein also apply to processing without a THP. For example, batch processing of wafers without a THP is also conceivable in keeping with many of the process parameters set forth to achieve the described benefits. Also, providing a flow of coolant gas might be one alternative to cooling with a THP. The coolant gas can consist of material inert to reaction with the first compound. For example, the coolant gas can be an inert gas commonly used as a carrier gas in processing.
Preferably the first and second temperatures are those of at least a portion of the substrate. Alternatively, the first and second temperatures may be those of an outermost surface of the substrate, the precursors, deposition chamber temperature, precursor gas temperature, etc. Since the first and second temperatures need not be the substrate temperature, altering the substrate temperature need not, but may, occur from the first to the second temperature. Depending on a variety of considerations including, but not limited to, precursor specie characteristics, pressure, substrate composition, etc., the first temperature may be at least about 1° C. different from the second temperature. The first temperature may preferably be at least about 5° C. different and more preferably at least about 10° C. different. Further, the second temperature may be at least about 50° C. different from the second temperature. A deposition pressure can vary depending on the particular specie and can be atmospheric or at some degree of vacuum.
Another consideration in setting up a process regime is that after chemisorption of a first layer, altering a temperature of at least a portion of the substrate for chemisorption of a second layer can impact the already chemisorbed first layer. If a first layer is formed at a lower temperature followed by second layer formation at a higher temperature, then the temperature increase might desorb some of the first layer. Accordingly, preferably the first temperature is greater than the second temperature. In this manner, the first layer may be formed at a higher temperature followed by second layer formation at a lower temperature, decreasing the risk of desorption.
As a further consideration, chemisorption of the second precursor on the first precursor is not necessarily equivalent to reacting the first and second precursors. Also, an optimum temperature for reaction of the first and second precursor can be different from the optimum chemisorption temperatures of the first and second precursors. Accordingly, in some circumstances the physical properties and/or composition of chemisorbed first and second layers can differ from the desired properties and/or composition that could result from reaction of the chemisorbed materials of the first and second layers. According to one aspect of the invention, a deposition method can further include heating the first layer and the second layer to a third temperature higher than the second temperature at which the second layer was chemisorbed. Also, the method can further include reacting the second layer with the first layer. One example of reacting the first and second layers includes the heating to the third temperature described above. Other ways to react the first and second layers are also conceivable.
Yet another consideration in establishing a process regime is the timing of temperature alterations. For example, the second temperature may be established before the contacting of the first layer to chemisorb a second precursor thereon. Alternatively, the second temperature might not be established until during the contacting of the first layer to chemisorb the second precursor. Also for example, the third temperature might be established after completing chemisorption of a second precursor on the first layer. Alternatively, the third temperature might be established during the chemisorption of the second precursor. Establishing the third temperature during chemisorption of the second precursor allows already chemisorbed second precursor to react with the first layer and enhances reaction of the second precursor with any portions of the first layer whereon the second precursor has not yet chemisorbed. The selection of a particular process regime will preferably establish the most efficient chemisorption process practicable. That is, both chemisorption rate achieved at a given temperature as well as the necessary time to accomplish alteration of temperature to achieve such a rate may be considered along with other factors. Accordingly, the THP described herein may be particularly advantageous given the quick changes in substrate temperature achievable.
In another aspect of the invention, a deposition method includes atomic layer depositing a first specie over a substrate approximately at an optimum temperature for the first specie deposition. Next, a second specie may be atomic layer deposited on the first specie approximately at an optimum temperature for the second specie deposition different from the first specie optimum temperature. A chemisorption product of the first and second specie may consist essentially of a monolayer of a deposition material. As indicated above, the first specie may be different from the second specie. However, even if the first specie is the same as the second specie, a deposition method as described may be desirable. Atomic layer deposition of an initial specie to form the first layer of a chemisorption product sometimes may preferably occur at a different temperature from any subsequent layer. For example, a higher temperature may be warranted to achieve a substantially saturated monolayer on a substrate after which chemisorption to the first and subsequent deposition specie layers occurs at a lower temperature. In this manner, potential difficulties with initiating formation of an ALD material may be reduced.
As yet another aspect of the invention, a deposition method may include chemisorbing a first monolayer of a first compound over a substrate while maintaining the substrate at a first temperature with a heater thermally linked to the substrate. Heat may be added or removed with a device different from the heater. The device may exhibit a thermoelectric effect. The device may also establish the substrate at a second temperature at least about 5° C. different from the first temperature.
The method may further include chemisorbing a monolayer of a second compound on the first monolayer of the first compound at the second substrate temperature. Heat may be added or removed with the device to establish the substrate temperature at approximately the first temperature. A second monolayer of the first compound may be chemisorbed on the monolayer of the second compound.
Turning to FIGS. 1-4, a process regime is described for ALD that is within the scope of the present invention. FIGS. 1-3 show the cyclic contacting and purging of a substrate with Precursor 1 (P1) and Precursor 2 (P2). A substrate is first contacted with P1 from Time 0 (T0) to Time 1 (T1). P1 that is not chemisorbed is purged from T1 to T2 and the chemisorbed P1 is then contacted with P2 from T2 to T3. After purging excess P2 from T3 to T4, the cycle begins again by contacting chemisorbed P2 with P1 from T4 to T5. The cycle from T0 to T3 thus may form at least a monolayer of a chemisorption product of P1 and P2. The purge from T3 to T4 prepares the chemisorption product of P1 and P2 to begin a new cycle at T4. Notably, the time intervals from T0 to T1 to T2, etc. are shown as equal merely for graphical convenience. In practice, such times may be individually determined according to the knowledge of those skilled in the art considering the aspects and advantages of the inventions described herein.
FIG. 4 shows altering the temperature, preferably substrate temperature, as part of the described method. Temperature 2 (Temp2) is maintained from T0 to T1 during contacting of P1. Thereafter, temperature is reduced to Temp1 during purging from T1 to T2 and maintained at Temp1 during contacting of P2 from T2 to T3. Temperature is increased to Temp2 during purging from T3 to T4 in preparation for starting a new cycle at T4. In keeping with the various aspects of the invention, other scenarios of contacting precursors and altering temperature are also conceivable, some of which are expressly described herein.
One alternative is shown in FIG. 5. Temp2 is maintained from T0 to T1 during contacting of P1. Thereafter, temperature is reduced to Temp1 during purging from T1 to T2 and maintained at Temp1 during contacting of P2 from T2 to T3. Temperature is increased to Temperature 3 (Temp3) during purging from T3 to T4 and then reduced to Temp2 in preparation for starting a new cycle at T4 and for enhancing reaction of P2 with P1.
Turning to FIGS. 6-9 an alternative process regime is described for ALD that is within the scope of the present invention. FIGS. 6-8 show the cyclic contacting and purging of a substrate with P1 and P2. A substrate is first contacted with P1 from T0 to T1. P1 that is not chemisorbed is purged from T1 to T2 and the chemisorbed P1 is then contacted with P2 from T2 to T4. After purging excess P2 from T4 to T5, the cycle begins again by contacting chemisorbed P2 with P1 from T5 to T6.
FIG. 9 shows altering the temperature as part of the described method. Temp2 is maintained from T0 to T1 during contacting of P1. Thereafter, temperature is reduced to Temp1 during purging from T1 to T2 and maintained at Temp1 during at least a portion of contacting P2 from T2 to T3. Temperature is increased to Temp3 during at least a portion of contacting of P2 from T3 to T4. Temperature is decreased to Temp2 during purging from T4 to T5 in preparation for starting a new cycle at T5.
In keeping with the advantages of the various aspects of the invention described herein, materials may be deposited at increased rates and/or have increased quality as a result of achieving optimum deposition temperatures. Thus, devices formed using such methods may possess structures formed of materials having increased quality and/or decreased dimensions given the increased quality. That is, the thickness of a material, such as a barrier material, dielectric material, etc., might be beneficially reduced if the high quality associated with ALD and the deposition methods described herein may be achieved.
As one example of the method described herein, Si3N4 can be formed. Dichlorosilane (DCS) can be chemisorbed at a first temperature followed by chemisorption of ammonia at a second temperature lower than the first temperature. Si3N4 can be formed from the chemisorbed components by reacting the DCS and ammonia at a third temperature higher than the second temperature and the first temperature.
In compliance with the statute, the invention has been described in language more or less specific as to structural and methodical features. It is to be understood, however, that the invention is not limited to the specific features shown and described, since the means herein disclosed comprise preferred forms of putting the invention into effect. The invention is, therefore, claimed in any of its forms or modifications within the proper scope of the appended claims appropriately interpreted in accordance with the doctrine of equivalents.

Claims (44)

1. A deposition method comprising:
at a first temperature, contacting a substrate with a first precursor containing dichlorosilane and chemisorbirig a first layer at least one monolayer thick over the substrate;
altering the first temperature by removing heat by applying an electric currant through a cold junction of two dissimilar conductors or doped semiconductors of a thermoelectric heat pump thermally connected-to the substrate, transferring the current to a hot junction of the conductors or semiconductors, and dissipating heat from the hot junction to establish a second temperature;
at the second temperature lower than the first temperature, contacting the first layer with a second precursor containing ammonia and chemisorbing a second layer at least one monolayer thick on the first layer; and
reacting the second layer with the first layer and forming a Si3N4 layer.
2. The deposition method of claim 1 wherein the reacting comprises heating the first layer and the second layer to a third temperature higher than the second temperature and first temperature.
3. The deposition method of claim 2 wherein heating the first layer and the second layer to a third temperature comprises adding heat with the thermoelectric heat pump.
4. The deposition method of claim 1 wherein the second temperature is the optimum chemisorption temperature for the second precursor.
5. The deposition method of claim 4 wherein the first temperature is the optimum chemisorption temperature for the first precursor.
6. The deposition method of claim 1 wherein the second temperature is established before the contacting the first layer by Initiating a flow of the second precursor.
7. The deposition method of claim 1 wherein the second temperature is not established until during the contacting the first layer by providing a flow of the second precursor.
8. The deposition method of claim 1 wherein the first temperature is at least about 5° C. different than the second temperature.
9. The deposition method of claim 1 wherein the first temperature is at least about 50° C. different than the second temperature.
10. The deposition method of claim 1 wherein the first end second temperatures are those of at least a portion of the substrate.
11. The deposition method of claim 1 wherein the first and second temperatures are those of an outermost surface of the substrate.
12. The deposition method of claim 1 wherein the first and second temperatures are those of the, precursors.
13. The deposition method of claim 1 further comprising providing background heat.
14. The deposition method of claim 13 wherein the background heat is provided at a fourth temperature between the firstand second temperature.
15. The deposition method of claim 13 wherein the background heat originates primarily from a heat source comprising a heat lamp array or a wafer chuck heater.
16. The deposition method of claim 1 wherein the substrate comprises a bulk semiconductor wafer.
17. The deposition method of claim 1 wherein the first precursor consists of dichiorosilane and the second precursor consists of ammonia.
18. The deposition method of claim 1 wherein the first and second layers each consist essentially of a monolayer.
19. The deposition method of claim 1 wherein at least one of the first precursor and the second precursor comprise a plurality of different precursor species.
20. The deposition method of claim 1 wherein the first and second precursors each consists essentially of a single precursor specie.
21. The deposition method of claim 20 wherein the single precursor specie exhibits only one chemical structure.
22. The deposition method of claim 1 further comprising purging the first precursor before contacting the first layer with the second precursor.
23. A deposition method comprising:
atomic layer depositing a first specie over a substrate approximately at an optimum temperature for the first specie deposition;
removing heat by applying an electric current through a cold junction of two dissimilar conductors or doped semiconductors of a thermoelectric heat pump thermally connected to the substrate, transferring the current to a hot junction of the conductors or semiconductors, dissipating heat from the hot junction, and atomic layer depositing a second specie on the first specie approximately at an optimum temperature for the second specie deposition lower than the first specie optimum temperature; and
reacting the second specie with the first specie at an optimum temperature for the reaction greater than the second specie optimum temperature and first specie optimum temperature.
24. The deposition method of claim 23 further comprising purging the first specie before depositing the second specie on the first specie.
25. The deposition method of claim 23 wherein the first specie is deposited from dichlorosilane, the second specie is deposited from ammonia, and the reacting produces Si3N4.
26. The deposition method of claim 23 wherein a chemisorption product of the first and second species consists essentially of a monolayer of a deposition material.
27. The deposition method of claim 23 wherein the first specie is different from the second specie.
28. The deposition method of claim 23 further comprising atomic layer depositing at least one additional specie along with deposition of the first specie andlor deposition of the second specie.
29. The deposition method of claim 23 wherein the first specie is an initial specie and is the same as the second specie.
30. The deposition method of claim 23 further comprising adding heat with the thermoelectric heat pump to obtain the optimum tern perature for the reaction.
31. The deposition method of claim 23 wherein the first and second specie optimum temperatures are those of at least a portion of the substrate.
32. The deposition method of claim 23 further comprising purging the first specie before depositing the second specie on the first specie.
33. A deposition method comprising:
chemisorbing a first monolayer of a first compound over a substrate while maintaining the substrate at a first temperature with a heater:
removing heat by applying an electric current through a cold junction of two dissimilar conductors or doped semiconductors of a device different from the heater, transferring the current to a hot junction of the conductors or semiconductors, and dissipating heat from the hot junction and establishing the substrate at a second temperature at least about 1° C. lower than the first temperature, the device exhibiting a thermoelectric effect;
chemisorbing a monolayer of a second compound on the first monolayer of the first compound at the second substrate temperature;
adding heat with the device exhibiting a thermoelectric effect by reversing direction of the electric current through the cold junction, transferring the current to the hot junction, and collecting heat from the hot junction to establish the substrate at approximately the first temperature; and
chemisorbing a second monolayer of the first compound on the monolayer of the second compound.
34. The deposition method of claim 33 wherein the second substrate temperature Is the optimum chemisorptlon temperature for the second compound.
35. The deposition method of claim 33 wherein the second temperature is established before the chemisorbing the monolayer of the second compound.
36. The deposition method of claim 33 wherein the second temperature is not established until during the chemisorbing the monolayer of the second compound.
37. The deposition method of claim 33 wherein the first monolayer is chemisorbed from dichlorosilane and the second monolayer is chemisorbed from ammonia.
38. The deposition method of claim 33 further comprising purging any first compound not chemisorbed before chemisorbing the second compound.
39. The deposition method of claim 33 wherein at least one of the first compound end the second compound is formed from a plurality of different precursor species.
40. A deposition method comprising:
chemisorbing a first monolayer of a first compound over a substrate while maintaining the substrate at a first temperature with a heater;
adding or removing heat by applying an electric current through a cold junction of two dissimilar conductors or doped semiconductors of a device different from the heater, transferring the current to a hot junction of the conductors or semiconductors; and, respectively, collecting or dissipating heat from the hot junction, establishing the substrate at a second temperature at least about 50° C. different from the first temperature, the device exhibiting a thermoelectric effect;
after purging any first compound not chemisorbed. chemisorbing a monolayer of a second compound on the first monolayer of the first compound at the second substrate temperature;
adding heat to establish the substrate at a third temperature at least about 50° C. higher than the second temperature and reacting the chemisorbed second compound with the chemisorbed first compound;
adding or removing heat by applying the electric current through the cold junction, transferring the current to the hot junction, and. resoectively. collecting or dissipating heat from the hot junction to establish the substrate at approximately the first temperature; and
chemlsorbing a second monolayer of the first compound on the reacted layer of first and second compounds.
41. The deposition method of claim 40 wherein the third temperature is established after completing the chemisorbing the monolayer of the second compound.
42. The deposition method of claim 40 wherein the third temperature is established during the chemisorbing the monolayer of the second compound.
43. The deposition method of claim 40 wherein the first temperature Is greater than the second temperature.
44. The deposition method of claim 40 wherein at least one of the first compound and the second compound is formed from a plurality of different precursor species.
US09/927,230 2001-08-09 2001-08-09 Variable temperature deposition methods Expired - Fee Related US7368014B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US09/927,230 US7368014B2 (en) 2001-08-09 2001-08-09 Variable temperature deposition methods
JP2002232604A JP2003105542A (en) 2001-08-09 2002-08-09 Variable temperature deposition method
US11/497,872 US20060266282A1 (en) 2001-08-09 2006-07-31 Variable temperature deposition methods

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US09/927,230 US7368014B2 (en) 2001-08-09 2001-08-09 Variable temperature deposition methods

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/497,872 Continuation US20060266282A1 (en) 2001-08-09 2006-07-31 Variable temperature deposition methods

Publications (2)

Publication Number Publication Date
US20030031787A1 US20030031787A1 (en) 2003-02-13
US7368014B2 true US7368014B2 (en) 2008-05-06

Family

ID=25454431

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/927,230 Expired - Fee Related US7368014B2 (en) 2001-08-09 2001-08-09 Variable temperature deposition methods
US11/497,872 Abandoned US20060266282A1 (en) 2001-08-09 2006-07-31 Variable temperature deposition methods

Family Applications After (1)

Application Number Title Priority Date Filing Date
US11/497,872 Abandoned US20060266282A1 (en) 2001-08-09 2006-07-31 Variable temperature deposition methods

Country Status (2)

Country Link
US (2) US7368014B2 (en)
JP (1) JP2003105542A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090147819A1 (en) * 2007-12-07 2009-06-11 Asm America, Inc. Calibration of temperature control system for semiconductor processing chamber
US20110223320A1 (en) * 2010-03-09 2011-09-15 Zhe Song Methods Of Forming Material Over A Substrate And Methods Of Forming Capacitors
US20220310776A1 (en) * 2021-03-23 2022-09-29 Applied Materials, Inc. Integrated platform for tin pvd and high-k ald for beol mim capacitor

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6458416B1 (en) * 2000-07-19 2002-10-01 Micron Technology, Inc. Deposition methods
US7192888B1 (en) * 2000-08-21 2007-03-20 Micron Technology, Inc. Low selectivity deposition methods
US7094690B1 (en) * 2000-08-31 2006-08-22 Micron Technology, Inc. Deposition methods and apparatuses providing surface activation
WO2002045871A1 (en) * 2000-12-06 2002-06-13 Angstron Systems, Inc. System and method for modulated ion-induced atomic layer deposition (mii-ald)
US6878402B2 (en) * 2000-12-06 2005-04-12 Novellus Systems, Inc. Method and apparatus for improved temperature control in atomic layer deposition
JP2006024668A (en) * 2004-07-07 2006-01-26 Fujitsu Ltd Process for fabricating semiconductor device
JP4699092B2 (en) * 2005-06-01 2011-06-08 日本パイオニクス株式会社 Method for forming zinc oxide film
US20070067826A1 (en) * 2005-09-19 2007-03-22 Texas Instruments Incorporated Method and system for preventing unsecure memory accesses
KR100773749B1 (en) * 2006-05-09 2007-11-09 주식회사 아이피에스 Thin film deposition method
KR100773751B1 (en) * 2006-05-09 2007-11-09 주식회사 아이피에스 Thin film deposition method
US20080274615A1 (en) * 2007-05-02 2008-11-06 Vaartstra Brian A Atomic Layer Deposition Methods, Methods of Forming Dielectric Materials, Methods of Forming Capacitors, And Methods of Forming DRAM Unit Cells
KR100977529B1 (en) 2008-03-20 2010-08-23 엘지이노텍 주식회사 The method of manufacturing CIGS thin film by using three-step heat treatment and CIGS solar cell
KR101701237B1 (en) * 2013-05-21 2017-02-03 한양대학교 산학협력단 Lare-size Single-crystal Monolayer Graphene and Manufacturing Method Thereof
CN104714672B (en) * 2013-12-11 2019-04-09 昆山工研院新型平板显示技术中心有限公司 Pressure sensitive display screen touch control unit, touch screen and its manufacturing method
US10319586B1 (en) * 2018-01-02 2019-06-11 Micron Technology, Inc. Methods comprising an atomic layer deposition sequence

Citations (73)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3785853A (en) 1972-05-24 1974-01-15 Unicorp Inc Continuous deposition reactor
US4058430A (en) 1974-11-29 1977-11-15 Tuomo Suntola Method for producing compound thin films
US4369105A (en) 1981-03-25 1983-01-18 The Dow Chemical Company Substituted cobalt oxide spinels
US4789648A (en) 1985-10-28 1988-12-06 International Business Machines Corporation Method for producing coplanar multi-level metal/insulator films on a substrate and for forming patterned conductive lines simultaneously with stud vias
US4831003A (en) 1987-09-14 1989-05-16 Exxon Research And Engineering Company Catalyst composition and process of making
US4913090A (en) 1987-10-02 1990-04-03 Mitsubishi Denki Kabushiki Kaisha Chemical vapor deposition apparatus having cooling heads adjacent to gas dispersing heads in a single chamber
JPH02151023A (en) 1988-12-01 1990-06-11 Mitsubishi Electric Corp Device for manufacturing semiconductor crystal
US5116640A (en) 1989-10-24 1992-05-26 Sharp Kabushiki Kaisha Process for preparing an electroluminescent device
US5124278A (en) 1990-09-21 1992-06-23 Air Products And Chemicals, Inc. Amino replacements for arsine, antimony and phosphine
JPH05251339A (en) 1991-08-14 1993-09-28 Fujitsu Ltd Semiconductor substrate and its manufacture
JPH05326412A (en) 1992-05-25 1993-12-10 Rikagaku Kenkyusho Method for forming compound thin film
US5270247A (en) 1991-07-12 1993-12-14 Fujitsu Limited Atomic layer epitaxy of compound semiconductor
US5273930A (en) 1992-09-03 1993-12-28 Motorola, Inc. Method of forming a non-selective silicon-germanium epitaxial film
US5281274A (en) 1990-06-22 1994-01-25 The United States Of America As Represented By The Secretary Of The Navy Atomic layer epitaxy (ALE) apparatus for growing thin films of elemental semiconductors
JPH06283493A (en) 1993-03-29 1994-10-07 Dainippon Screen Mfg Co Ltd Substrate cooling device
JPH06283427A (en) 1993-03-30 1994-10-07 Toshiba Corp Cvd system
US5366953A (en) 1991-03-19 1994-11-22 Conductus, Inc. Method of forming grain boundary junctions in high temperature superconductor films
US5366555A (en) 1990-06-11 1994-11-22 Kelly Michael A Chemical vapor deposition under a single reactor vessel divided into separate reaction regions with its own depositing and exhausting means
US5413671A (en) 1993-08-09 1995-05-09 Advanced Micro Devices, Inc. Apparatus and method for removing deposits from an APCVD system
JPH07254545A (en) 1994-03-15 1995-10-03 Oki Electric Ind Co Ltd Heat treatment method for semiconductor substrate and device therefor
US5462603A (en) 1993-06-24 1995-10-31 Tokyo Electron Limited Semiconductor processing apparatus
US5480818A (en) 1992-02-10 1996-01-02 Fujitsu Limited Method for forming a film and method for manufacturing a thin film transistor
US5597609A (en) 1994-03-09 1997-01-28 Leybold Aktiengesellschaft Process and apparatus for the continuous or semi-continuous coating of eyeglass lenses
US5597756A (en) 1995-06-21 1997-01-28 Micron Technology, Inc. Process for fabricating a cup-shaped DRAM capacitor using a multi-layer partly-sacrificial stack
US5616208A (en) 1993-09-17 1997-04-01 Tokyo Electron Limited Vacuum processing apparatus, vacuum processing method, and method for cleaning the vacuum processing apparatus
EP0794568A2 (en) 1996-03-05 1997-09-10 Applied Materials, Inc. Blanket-selective deposition of cvd aluminum and reflectivity improvement using a self-aligning ultra-thin layer
US5747113A (en) 1996-07-29 1998-05-05 Tsai; Charles Su-Chang Method of chemical vapor deposition for producing layer variation by planetary susceptor rotation
US5879459A (en) 1997-08-29 1999-03-09 Genus, Inc. Vertically-stacked process reactor and cluster tool system for atomic layer deposition
US5916365A (en) 1996-08-16 1999-06-29 Sherman; Arthur Sequential chemical vapor deposition
US5929526A (en) 1997-06-05 1999-07-27 Micron Technology, Inc. Removal of metal cusp for improved contact fill
US5937300A (en) 1994-10-12 1999-08-10 Nec Corporation Semiconductor apparatus and fabrication method thereof
US5985770A (en) 1997-08-21 1999-11-16 Micron Technology, Inc. Method of depositing silicon oxides
US5997588A (en) 1995-10-13 1999-12-07 Advanced Semiconductor Materials America, Inc. Semiconductor processing system with gas curtain
US6042652A (en) 1999-05-01 2000-03-28 P.K. Ltd Atomic layer deposition apparatus for depositing atomic layer on multiple substrates
US6060383A (en) 1998-08-10 2000-05-09 Nogami; Takeshi Method for making multilayered coaxial interconnect structure
US6066358A (en) 1995-11-21 2000-05-23 Applied Materials, Inc. Blanket-selective chemical vapor deposition using an ultra-thin nucleation layer
US6083832A (en) 1997-10-21 2000-07-04 Nec Corporation Method of manufacturing semiconductor device
US6114099A (en) 1996-11-21 2000-09-05 Virginia Tech Intellectual Properties, Inc. Patterned molecular self-assembly
US6139695A (en) 1995-08-07 2000-10-31 Akashic Memories Corporation Modular deposition system having batch processing and serial thin film deposition
US6143659A (en) * 1997-11-18 2000-11-07 Samsung Electronics, Co., Ltd. Method for manufacturing aluminum metal interconnection layer by atomic layer deposition method
US6165916A (en) 1997-09-12 2000-12-26 Kabushiki Kaisha Toshiba Film-forming method and film-forming apparatus
US6174377B1 (en) 1997-03-03 2001-01-16 Genus, Inc. Processing chamber for atomic layer deposition processes
US6203619B1 (en) 1998-10-26 2001-03-20 Symetrix Corporation Multiple station apparatus for liquid source fabrication of thin films
US6203613B1 (en) 1999-10-19 2001-03-20 International Business Machines Corporation Atomic layer deposition with nitrate containing precursors
US6235571B1 (en) 1999-03-31 2001-05-22 Micron Technology, Inc. Uniform dielectric layer and method to form same
US6258690B1 (en) 1996-03-29 2001-07-10 Nec Corporation Method of manufacturing semiconductor device
US6270572B1 (en) 1998-08-07 2001-08-07 Samsung Electronics Co., Ltd. Method for manufacturing thin film using atomic layer deposition
US6287965B1 (en) 1997-07-28 2001-09-11 Samsung Electronics Co, Ltd. Method of forming metal layer using atomic layer deposition and semiconductor device having the metal layer as barrier metal layer or upper or lower electrode of capacitor
US6290824B1 (en) 1992-10-28 2001-09-18 Hitachi, Ltd. Magnetic film forming system
US6307184B1 (en) 1999-07-12 2001-10-23 Fsi International, Inc. Thermal processing chamber for heating and cooling wafer-like objects
US6306216B1 (en) 1999-07-15 2001-10-23 Moohan Co., Ltd. Apparatus for deposition of thin films on wafers through atomic layer epitaxial process
US6335561B2 (en) 1998-01-20 2002-01-01 Rohm Co., Ltd. Semiconductor device having a passivation film
US6338874B1 (en) 1993-01-28 2002-01-15 Applied Materials, Inc. Method for multilayer CVD processing in a single chamber
US6355561B1 (en) 2000-11-21 2002-03-12 Micron Technology, Inc. ALD method to improve surface coverage
US6358377B1 (en) 2000-10-11 2002-03-19 Guardian Industries Corp. Apparatus for sputter-coating glass and corresponding method
US6368954B1 (en) 2000-07-28 2002-04-09 Advanced Micro Devices, Inc. Method of copper interconnect formation using atomic layer copper deposition
US6399921B1 (en) 1996-06-17 2002-06-04 Mattson Technology, Inc. System and method for thermal processing of a semiconductor substrate
US20020066411A1 (en) * 2000-12-06 2002-06-06 Chiang Tony P. Method and apparatus for improved temperature control in atomic layer deposition
US6420230B1 (en) * 2000-08-31 2002-07-16 Micron Technology, Inc. Capacitor fabrication methods and capacitor constructions
US6447908B2 (en) * 1996-12-21 2002-09-10 Electronics And Telecommunications Research Institute Method for manufacturing phosphor-coated particles and method for forming cathodoluminescent screen using the same for field emission display
US20020125516A1 (en) 2000-08-30 2002-09-12 Marsh Eugene P. RuSixOy-containing adhesion layers and process for fabricating the same
US6458416B1 (en) 2000-07-19 2002-10-01 Micron Technology, Inc. Deposition methods
US6479902B1 (en) 2000-06-29 2002-11-12 Advanced Micro Devices, Inc. Semiconductor catalytic layer and atomic layer deposition thereof
US20030129826A1 (en) * 2000-03-07 2003-07-10 Werkhoven Christiaan J. Graded thin films
US6620723B1 (en) 2000-06-27 2003-09-16 Applied Materials, Inc. Formation of boride barrier layers using chemisorption techniques
US6627503B2 (en) 2000-02-11 2003-09-30 Sharp Laboratories Of America, Inc. Method of forming a multilayer dielectric stack
US6630201B2 (en) * 2001-04-05 2003-10-07 Angstron Systems, Inc. Adsorption process for atomic layer deposition
US6727169B1 (en) 1999-10-15 2004-04-27 Asm International, N.V. Method of making conformal lining layers for damascene metallization
US20050101119A1 (en) 2003-11-06 2005-05-12 Taiwan Semiconductor Manufacturing Co., Ltd. Insulating layer having graded densification
US20050124171A1 (en) 2003-07-07 2005-06-09 Vaartstra Brian A. Method of forming trench isolation in the fabrication of integrated circuitry
US20050124158A1 (en) 2003-10-15 2005-06-09 Lopatin Sergey D. Silver under-layers for electroless cobalt alloys
US20050124153A1 (en) 1999-10-02 2005-06-09 Uri Cohen Advanced seed layery for metallic interconnects
US6987073B2 (en) * 2000-08-21 2006-01-17 Micron Technology, Inc. Low selectivity deposition methods

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5116840A (en) * 1985-06-13 1992-05-26 Schering Corporation Polycyclic quinoline, naphthyridine and pyrazinopyridine derivatives
US5112881A (en) * 1990-08-24 1992-05-12 University Of Lowell Photocrosslinked second order nonlinear optical polymers
US6235871B1 (en) * 1997-12-03 2001-05-22 Massachusetts Institute Of Technology Synthesis of oligoarylamines, and uses and reagents related thereto
JP3554219B2 (en) * 1998-03-31 2004-08-18 キヤノン株式会社 Exhaust device and exhaust method, deposited film forming device and deposited film forming method

Patent Citations (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3785853A (en) 1972-05-24 1974-01-15 Unicorp Inc Continuous deposition reactor
US4058430A (en) 1974-11-29 1977-11-15 Tuomo Suntola Method for producing compound thin films
US4369105A (en) 1981-03-25 1983-01-18 The Dow Chemical Company Substituted cobalt oxide spinels
US4789648A (en) 1985-10-28 1988-12-06 International Business Machines Corporation Method for producing coplanar multi-level metal/insulator films on a substrate and for forming patterned conductive lines simultaneously with stud vias
US4831003A (en) 1987-09-14 1989-05-16 Exxon Research And Engineering Company Catalyst composition and process of making
US4913090A (en) 1987-10-02 1990-04-03 Mitsubishi Denki Kabushiki Kaisha Chemical vapor deposition apparatus having cooling heads adjacent to gas dispersing heads in a single chamber
JPH02151023A (en) 1988-12-01 1990-06-11 Mitsubishi Electric Corp Device for manufacturing semiconductor crystal
US5116640A (en) 1989-10-24 1992-05-26 Sharp Kabushiki Kaisha Process for preparing an electroluminescent device
US5366555A (en) 1990-06-11 1994-11-22 Kelly Michael A Chemical vapor deposition under a single reactor vessel divided into separate reaction regions with its own depositing and exhausting means
US5281274A (en) 1990-06-22 1994-01-25 The United States Of America As Represented By The Secretary Of The Navy Atomic layer epitaxy (ALE) apparatus for growing thin films of elemental semiconductors
US5124278A (en) 1990-09-21 1992-06-23 Air Products And Chemicals, Inc. Amino replacements for arsine, antimony and phosphine
US5366953A (en) 1991-03-19 1994-11-22 Conductus, Inc. Method of forming grain boundary junctions in high temperature superconductor films
US5270247A (en) 1991-07-12 1993-12-14 Fujitsu Limited Atomic layer epitaxy of compound semiconductor
JPH05251339A (en) 1991-08-14 1993-09-28 Fujitsu Ltd Semiconductor substrate and its manufacture
US5480818A (en) 1992-02-10 1996-01-02 Fujitsu Limited Method for forming a film and method for manufacturing a thin film transistor
JPH05326412A (en) 1992-05-25 1993-12-10 Rikagaku Kenkyusho Method for forming compound thin film
US5273930A (en) 1992-09-03 1993-12-28 Motorola, Inc. Method of forming a non-selective silicon-germanium epitaxial film
US6290824B1 (en) 1992-10-28 2001-09-18 Hitachi, Ltd. Magnetic film forming system
US6338874B1 (en) 1993-01-28 2002-01-15 Applied Materials, Inc. Method for multilayer CVD processing in a single chamber
JPH06283493A (en) 1993-03-29 1994-10-07 Dainippon Screen Mfg Co Ltd Substrate cooling device
JPH06283427A (en) 1993-03-30 1994-10-07 Toshiba Corp Cvd system
US5462603A (en) 1993-06-24 1995-10-31 Tokyo Electron Limited Semiconductor processing apparatus
US5413671A (en) 1993-08-09 1995-05-09 Advanced Micro Devices, Inc. Apparatus and method for removing deposits from an APCVD system
US5616208A (en) 1993-09-17 1997-04-01 Tokyo Electron Limited Vacuum processing apparatus, vacuum processing method, and method for cleaning the vacuum processing apparatus
US5597609A (en) 1994-03-09 1997-01-28 Leybold Aktiengesellschaft Process and apparatus for the continuous or semi-continuous coating of eyeglass lenses
JPH07254545A (en) 1994-03-15 1995-10-03 Oki Electric Ind Co Ltd Heat treatment method for semiconductor substrate and device therefor
US5937300A (en) 1994-10-12 1999-08-10 Nec Corporation Semiconductor apparatus and fabrication method thereof
US5597756A (en) 1995-06-21 1997-01-28 Micron Technology, Inc. Process for fabricating a cup-shaped DRAM capacitor using a multi-layer partly-sacrificial stack
US6139695A (en) 1995-08-07 2000-10-31 Akashic Memories Corporation Modular deposition system having batch processing and serial thin film deposition
US5997588A (en) 1995-10-13 1999-12-07 Advanced Semiconductor Materials America, Inc. Semiconductor processing system with gas curtain
US6066358A (en) 1995-11-21 2000-05-23 Applied Materials, Inc. Blanket-selective chemical vapor deposition using an ultra-thin nucleation layer
EP0794568A2 (en) 1996-03-05 1997-09-10 Applied Materials, Inc. Blanket-selective deposition of cvd aluminum and reflectivity improvement using a self-aligning ultra-thin layer
US6258690B1 (en) 1996-03-29 2001-07-10 Nec Corporation Method of manufacturing semiconductor device
US6399921B1 (en) 1996-06-17 2002-06-04 Mattson Technology, Inc. System and method for thermal processing of a semiconductor substrate
US5747113A (en) 1996-07-29 1998-05-05 Tsai; Charles Su-Chang Method of chemical vapor deposition for producing layer variation by planetary susceptor rotation
US5916365A (en) 1996-08-16 1999-06-29 Sherman; Arthur Sequential chemical vapor deposition
US6114099A (en) 1996-11-21 2000-09-05 Virginia Tech Intellectual Properties, Inc. Patterned molecular self-assembly
US6447908B2 (en) * 1996-12-21 2002-09-10 Electronics And Telecommunications Research Institute Method for manufacturing phosphor-coated particles and method for forming cathodoluminescent screen using the same for field emission display
US6174377B1 (en) 1997-03-03 2001-01-16 Genus, Inc. Processing chamber for atomic layer deposition processes
US5929526A (en) 1997-06-05 1999-07-27 Micron Technology, Inc. Removal of metal cusp for improved contact fill
US6287965B1 (en) 1997-07-28 2001-09-11 Samsung Electronics Co, Ltd. Method of forming metal layer using atomic layer deposition and semiconductor device having the metal layer as barrier metal layer or upper or lower electrode of capacitor
US5985770A (en) 1997-08-21 1999-11-16 Micron Technology, Inc. Method of depositing silicon oxides
US5879459A (en) 1997-08-29 1999-03-09 Genus, Inc. Vertically-stacked process reactor and cluster tool system for atomic layer deposition
US6165916A (en) 1997-09-12 2000-12-26 Kabushiki Kaisha Toshiba Film-forming method and film-forming apparatus
US6083832A (en) 1997-10-21 2000-07-04 Nec Corporation Method of manufacturing semiconductor device
US6143659A (en) * 1997-11-18 2000-11-07 Samsung Electronics, Co., Ltd. Method for manufacturing aluminum metal interconnection layer by atomic layer deposition method
US6335561B2 (en) 1998-01-20 2002-01-01 Rohm Co., Ltd. Semiconductor device having a passivation film
US6270572B1 (en) 1998-08-07 2001-08-07 Samsung Electronics Co., Ltd. Method for manufacturing thin film using atomic layer deposition
US6060383A (en) 1998-08-10 2000-05-09 Nogami; Takeshi Method for making multilayered coaxial interconnect structure
US6203619B1 (en) 1998-10-26 2001-03-20 Symetrix Corporation Multiple station apparatus for liquid source fabrication of thin films
US6235571B1 (en) 1999-03-31 2001-05-22 Micron Technology, Inc. Uniform dielectric layer and method to form same
US6042652A (en) 1999-05-01 2000-03-28 P.K. Ltd Atomic layer deposition apparatus for depositing atomic layer on multiple substrates
US6307184B1 (en) 1999-07-12 2001-10-23 Fsi International, Inc. Thermal processing chamber for heating and cooling wafer-like objects
US6306216B1 (en) 1999-07-15 2001-10-23 Moohan Co., Ltd. Apparatus for deposition of thin films on wafers through atomic layer epitaxial process
US20050124153A1 (en) 1999-10-02 2005-06-09 Uri Cohen Advanced seed layery for metallic interconnects
US6727169B1 (en) 1999-10-15 2004-04-27 Asm International, N.V. Method of making conformal lining layers for damascene metallization
US6203613B1 (en) 1999-10-19 2001-03-20 International Business Machines Corporation Atomic layer deposition with nitrate containing precursors
US6627503B2 (en) 2000-02-11 2003-09-30 Sharp Laboratories Of America, Inc. Method of forming a multilayer dielectric stack
US20030129826A1 (en) * 2000-03-07 2003-07-10 Werkhoven Christiaan J. Graded thin films
US6620723B1 (en) 2000-06-27 2003-09-16 Applied Materials, Inc. Formation of boride barrier layers using chemisorption techniques
US6479902B1 (en) 2000-06-29 2002-11-12 Advanced Micro Devices, Inc. Semiconductor catalytic layer and atomic layer deposition thereof
US6627260B2 (en) 2000-07-19 2003-09-30 Micron Technology, Inc. Deposition methods
US6458416B1 (en) 2000-07-19 2002-10-01 Micron Technology, Inc. Deposition methods
US6368954B1 (en) 2000-07-28 2002-04-09 Advanced Micro Devices, Inc. Method of copper interconnect formation using atomic layer copper deposition
US6987073B2 (en) * 2000-08-21 2006-01-17 Micron Technology, Inc. Low selectivity deposition methods
US20020125516A1 (en) 2000-08-30 2002-09-12 Marsh Eugene P. RuSixOy-containing adhesion layers and process for fabricating the same
US6420230B1 (en) * 2000-08-31 2002-07-16 Micron Technology, Inc. Capacitor fabrication methods and capacitor constructions
US6358377B1 (en) 2000-10-11 2002-03-19 Guardian Industries Corp. Apparatus for sputter-coating glass and corresponding method
US6596636B2 (en) 2000-11-21 2003-07-22 Micron Technology, Inc. ALD method to improve surface coverage
US6355561B1 (en) 2000-11-21 2002-03-12 Micron Technology, Inc. ALD method to improve surface coverage
US20020066411A1 (en) * 2000-12-06 2002-06-06 Chiang Tony P. Method and apparatus for improved temperature control in atomic layer deposition
US6630201B2 (en) * 2001-04-05 2003-10-07 Angstron Systems, Inc. Adsorption process for atomic layer deposition
US20050124171A1 (en) 2003-07-07 2005-06-09 Vaartstra Brian A. Method of forming trench isolation in the fabrication of integrated circuitry
US20050124158A1 (en) 2003-10-15 2005-06-09 Lopatin Sergey D. Silver under-layers for electroless cobalt alloys
US20050101119A1 (en) 2003-11-06 2005-05-12 Taiwan Semiconductor Manufacturing Co., Ltd. Insulating layer having graded densification

Non-Patent Citations (16)

* Cited by examiner, † Cited by third party
Title
Aarik et al, "Effect of Growth Conditions on Formation of TiO2-II Thin Films in Atomic Layer Deposition Process", Journal of Crystal Growth, vol. 181, Aug. 1997, pp. 259-264.
Aarik, et al, "Control of Thin Film Structure by Reactant Pressure in Atomic Layer Deposition of TiO<SUB>2</SUB>.", Journal of Crystal Growth, 169 (1996) pp. 496-502.
George, et al., "Surface Chemistry for Atomic Layer Growth", Journal of Physical Chemistry, vol. 100, No. 31, pp. 13121-13131, Aug. 1, 1996.
Kiyoko et al., Patent Abstract Application No. 04-024917 (JP 9224917, Sep. 1993), "Semiconductor Substrate and Its Manufacture.".
Noah Precision, Inc., Internet website: http://www.noahprecision.com/cvd.htm; "CVD" 1998, pp. 1-2.
Noah Precision, Inc., Internet website: http://www.noahprecision.com/tec.htm; "Thermoelectric Temperature Control" 1998, pp. 1-2.
Ritala, et al., "Atomic Layer Epitaxy-A Valuable Tool for Nanotechnology?" Nanotechnology, vol. 10, No. 1, pp. 19-24, Mar. 1999.
Skarp, "ALE-Reactor for Large Area Depositions", Applied Surface Science, vol. 112, Mar. 1997, pp. 251-254.
Suntola, "Atomic Layer Epitaxy", Handbook of Crystal Growth, vol. 3, Chapter 14, pp. 602-663, 1994.
Suntola, "Surface Chemistry of Materials Deposition at Atomic Layer Level", Applied Surface Science, vol. 100/101, Mar. 1996, pp. 391-398.
U.S. Appl. No. 09/619,449, filed Jul. 19, 2000, Derderian.
U.S. Appl. No. 09/643,004, (As amended Sep. 26, 2002 & Mar. 20, 2003).
U.S. Appl. No. 09/643,004, filed Aug. 21, 2000, Mercaldi.
U.S. Appl. No. 09/652,533, (As amended Feb. 22, 2002, Jan. 6, 2003, Jun. 23, 2003, & Nov. 14, 2003).
U.S. Appl. No. 09/652,533, filed Aug. 31, 2000, Derderian.
Vernon, S.M., "Low-cost, high-efficiency solar cells utilizing GaAs-on-Si technology." Dialog Abstract of Report No. NREL/TP-451-5353; Apr. 1993.

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090147819A1 (en) * 2007-12-07 2009-06-11 Asm America, Inc. Calibration of temperature control system for semiconductor processing chamber
US8047706B2 (en) * 2007-12-07 2011-11-01 Asm America, Inc. Calibration of temperature control system for semiconductor processing chamber
US20110223320A1 (en) * 2010-03-09 2011-09-15 Zhe Song Methods Of Forming Material Over A Substrate And Methods Of Forming Capacitors
US8501268B2 (en) 2010-03-09 2013-08-06 Micron Technology, Inc. Methods of forming material over a substrate and methods of forming capacitors
US9499907B2 (en) 2010-03-09 2016-11-22 Micron Technology, Inc. Methods of forming material over a substrate and methods of forming capacitors
US20220310776A1 (en) * 2021-03-23 2022-09-29 Applied Materials, Inc. Integrated platform for tin pvd and high-k ald for beol mim capacitor

Also Published As

Publication number Publication date
US20030031787A1 (en) 2003-02-13
US20060266282A1 (en) 2006-11-30
JP2003105542A (en) 2003-04-09

Similar Documents

Publication Publication Date Title
US20060266282A1 (en) Variable temperature deposition methods
US11286558B2 (en) Methods for depositing a molybdenum nitride film on a surface of a substrate by a cyclical deposition process and related semiconductor device structures including a molybdenum nitride film
TWI765973B (en) Methods for selectively forming a silicon nitride film on a substrate and related semiconductor device structures
US7473655B2 (en) Method for silicon based dielectric chemical vapor deposition
US7183208B2 (en) Methods for treating pluralities of discrete semiconductor substrates
US6468924B2 (en) Methods of forming thin films by atomic layer deposition
US10615050B2 (en) Methods for gapfill in high aspect ratio structures
US7358188B2 (en) Method of forming conductive metal silicides by reaction of metal with silicon
KR20170104936A (en) Selective formation of metal silicides
JP2023516858A (en) Deposition of metal films
US6969677B2 (en) Methods of forming conductive metal silicides by reaction of metal with silicon
US10854511B2 (en) Methods of lowering wordline resistance
KR20210106003A (en) Selective Deposition of Silicon Nitride
US8980742B2 (en) Method of manufacturing multi-level metal thin film and apparatus for manufacturing the same
US20230142966A1 (en) Molybdenum precursor compounds
US20240035151A1 (en) Methods of selective deposition of molybdenum
US20220356563A1 (en) Deposition process for molybdenum or tungsten materials
US20230160057A1 (en) Metal-on-metal deposition methods for filling a gap feature on a substrate surface
TW202344707A (en) Process for preparing silicon-rich silicon nitride films
JP2024513402A (en) low temperature deposition process

Legal Events

Date Code Title Description
AS Assignment

Owner name: MICRON TECHNOLOGY, INC., IDAHO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:DOAN, TRUNG TRI;REEL/FRAME:012072/0531

Effective date: 20010717

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

CC Certificate of correction
FPAY Fee payment

Year of fee payment: 4

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20160506