US6708460B1 - Stud wall system and method using a combined bridging and spacing device - Google Patents
Stud wall system and method using a combined bridging and spacing device Download PDFInfo
- Publication number
- US6708460B1 US6708460B1 US09/959,036 US95903602A US6708460B1 US 6708460 B1 US6708460 B1 US 6708460B1 US 95903602 A US95903602 A US 95903602A US 6708460 B1 US6708460 B1 US 6708460B1
- Authority
- US
- United States
- Prior art keywords
- stud
- studs
- notches
- bridging
- spacing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims description 14
- 239000002184 metal Substances 0.000 claims abstract description 76
- 230000003014 reinforcing effect Effects 0.000 claims description 5
- 230000001154 acute effect Effects 0.000 claims 2
- 238000009434 installation Methods 0.000 description 8
- 238000009428 plumbing Methods 0.000 description 3
- 238000011900 installation process Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 229910001335 Galvanized steel Inorganic materials 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000011449 brick Substances 0.000 description 1
- 210000005252 bulbus oculi Anatomy 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000009432 framing Methods 0.000 description 1
- 239000008397 galvanized steel Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000010079 rubber tapping Methods 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B2/00—Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls
- E04B2/74—Removable non-load-bearing partitions; Partitions with a free upper edge
- E04B2/7407—Removable non-load-bearing partitions; Partitions with a free upper edge assembled using frames with infill panels or coverings only; made-up of panels and a support structure incorporating posts
- E04B2/7453—Removable non-load-bearing partitions; Partitions with a free upper edge assembled using frames with infill panels or coverings only; made-up of panels and a support structure incorporating posts with panels and support posts, extending from floor to ceiling
- E04B2/7457—Removable non-load-bearing partitions; Partitions with a free upper edge assembled using frames with infill panels or coverings only; made-up of panels and a support structure incorporating posts with panels and support posts, extending from floor to ceiling with wallboards attached to the outer faces of the posts, parallel to the partition
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12229—Intermediate article [e.g., blank, etc.]
- Y10T428/12264—Intermediate article [e.g., blank, etc.] having outward flange, gripping means or interlocking feature
Definitions
- the invention herein described relates generally to stud wall systems and more particularly to a device for spacing and bridging studs in a stud wall.
- Metal studs are used to form walls in building structures today, including load bearing walls such as exterior walls and curtain walls.
- the metal studs are secured by screws at their lower ends to a bottom track secured to a floor, and extend at their upper ends into a top track secured to overhead joists which may form the framework for an upper floor.
- the upper ends of the studs generally also are secured to the top track.
- Exterior wall materials and/or wall boards or other panels are applied to the sides of the studs to form a closed wall structure.
- the load bearing walls are subject to axial loads (compressive loads on the studs) applied to the studs through the overhead joists, and also may be subject to transverse loads (for example, exterior walls may be subject to transverse loads from wind effects) and lateral loads acting in the plane of the wall. These loads may cause flexing (including bowing, twisting or other deformation of the stud) or turning of the metal studs which may cause the walls to crack or otherwise be flawed or damaged. In load bearing walls, this problem is structural as well as aesthetic.
- Bridging systems heretofore have been used to reinforce the metal stud walls by adding structural support between adjacent studs.
- Three known bridging systems include braced channel, welded channel, and block-and-strap bridging systems.
- a U-shape channel spans two or more metal studs, extending through a conduit hole in the web of each stud.
- An angled brace is fastened to both the channel and the web of the stud, generally with screws or rivets.
- the welded channel bridging system also uses a U-shape channel which spans two or more metal studs and extends through conduit holes in the webs of the studs. The channel is then welded to the studs on one or both sides of the channel.
- sheet metal “blocks” are fastened between adjacent studs through bent tabs at their distal ends. Then a strap is fastened to one or both sides of two or more metal studs as well as to the respective side or sides of the blocks.
- the studs are interconnected by the blocks between the studs as well as the straps along the sides of the studs, and the blocks and straps also are connected to each other.
- metal stud wall systems including the reinforcing bridging systems, heretofore has been a time consuming process.
- the attachment positions of the studs are marked off along the top track.
- each stud is fastened to each flange of the top track by screws.
- a ladder or a scaffold may be required if the top track is too high for the installer to reach. If a ladder is used, the installer climbs the ladder and fastens as many studs as he can reach to the near flange of the top track.
- the metal studs must then be fastened at their lower ends to a bottom track or channel. Each stud must be carefully aligned and squared before being fastened to the bottom track.
- the bridging members described above also must be installed to interconnect the metal studs at one or more points between the top and bottom tracks. Because of the time consuming nature of the installation process, fasteners can be missed or forgotten. In the welded channel bridging systems, welders and their equipment are relatively expensive, and welds also can be missed, or can be improperly formed. Defects in welds can be particularly difficult to detect.
- the present invention provides a stud bridging/spacing member for the quick and easy spacing of a plurality of studs without measuring, while at the same time providing bridging between the studs.
- the bridging function of the stud bridging/spacing member reinforces the studs to resist bending under axial loads and to resist rotation under transverse loads, providing a “shear” connection between the bridging/spacing member and the studs.
- the stud bridging/spacing member enables a substantial reduction in the amount of time needed to install a metal stud wall and, in particular, a load bearing wall, while at the same time functioning effectively to lock each stud against bowing, twisting or turning when subject to axial, transverse and/or lateral loads, thereby providing improved strength and rigidity to the metal stud wall.
- the invention also provides a metal stud wall including the stud bridging/spacing member and a method of assembling a metal stud wall using the stud bridging/spacing member.
- the angled slots coact with the webs of the studs to inhibit twisting, turning or bowing of the studs when subjected to axial and/or lateral and/or transverse loads. Moreover, as the loads increase, the angled slots more tightly lock with the stud webs by providing the “shear” connecting between the bridging/spacing member and the webs of the studs.
- a stud bridging/spacing member includes an elongate member having at least three longitudinally spaced apart notches for receiving and engaging therein a web of a metal stud.
- the notches extend at an incline to the longitudinal axis of the elongate member to accommodate different gauges of metal studs while maintaining on-center spacing of studs when assembled in a stud wall.
- the notches extend inwardly at an angle of about two to about fifteen degrees relative to a perpendicular to the longitudinal axis, and more preferably about five and a half degrees to about eight degrees, and most preferably about seven degrees.
- the notches have a width of about 0.050 inch (about 0.13 cm) to about 0.1 inch (about 0.2 cm), more preferably about 0.065 inch (about 0.16 cm) to about 0.080 inch (about 0.20 cm), and most preferably about 0.080 inch (about 0.20 cm).
- the elongate member is formed of fourteen, sixteen or eighteen gauge metal (more preferably steel and most preferably galvanized steel).
- the at least three notches generally extend laterally inwardly from laterally outer edges of the elongate member.
- the elongate member may include a fourth notch equally spaced between at least two of the at least three notches.
- Each of the at least three notches in one portion of the elongate member may be laterally aligned with a corresponding notch in another portion of the elongate member, and/or the laterally aligned notches may incline in the same direction.
- the sides of the notches generally are parallel, and straight.
- the elongate member has a V-shape lateral cross-section formed by longitudinally extending planar first and second portions joined at respective longitudinal edges to form the sides and vertex of the V-shape.
- the elongate member further may include a pair of wing portions extending laterally outwardly from respective distal ends of the V-shape elongate member.
- the wing portions may extend in opposite directions from the V-shape elongate member, and each wing portion may extend a distance which is approximately one-third the width of the widest part of the V-shape elongate member.
- the angle of the V is at least about 90°, more preferably at least about 120° and most preferably about 130°. A shallow angle increases the transverse stiffness of the elongate member, although other means may be used for this purpose.
- a metal stud wall includes at least three metal studs each having at least two flanges interconnected by a web.
- the web of each stud has an opening, and the studs are arranged in a row with the openings in the webs thereof aligned with one another.
- An elongate member as described above extends through the openings of the at least three studs, and the at least three longitudinally spaced apart notches engage the webs of the studs.
- the notches generally are equally longitudinally spaced apart at a predetermined web to web spacing of the studs.
- the web to web spacing may be sixteen inches (about 40.6 cm) or twenty-four inches (about 61.0 cm).
- the metal stud wall typically will include one or more additional elongate members with adjacent ends overlapping and engaged with respect to a common stud.
- each stud is fastened at a lower end to a base track.
- a stud bridging/spacing member is inserted through aligned openings in at least three metal studs, and longitudinally spaced apart notches in the stud bridging/spacing member are engaged with respective webs of the metal studs, thereby establishing and maintaining a fixed spacing between the metal studs and reinforcing the studs against deflection and turning under loading.
- the assembly method may also include securing a top end of each of the studs to a ceiling track.
- FIG. 1 is a perspective view of a metal stud wall including a stud bridging/spacing member according to the present invention.
- FIG. 2 is an elevational end view of a stud showing the stud bridging/spacing member disposed in an opening in a metal stud of the wall.
- FIG. 3 is a perspective view of the stud bridging/spacing member, showing the notch in the bridging/spacing member.
- FIG. 4 is an elevational end view of a stud showing the stud bridging/spacing member disposed in another type of opening in a metal stud.
- FIG. 5 is a top view of the stud bridging/spacing member.
- FIG. 6 is a top view of the stud and the stud bridging/spacing member as seen along 6 — 6 of FIG. 2 .
- FIG. 7 is a side view of the stud bridging/spacing member showing one spacing of the notches.
- FIG. 8 is a perspective view of a metal stud wall including another stud bridging/spacing member according to the present invention.
- FIG. 9 is an elevational view of a stud showing the stud bridging/spacing member of FIG. 8 disposed in an opening in a metal stud of the wall.
- FIG. 10 is an elevational view of a stud showing the bridging/spacing member of FIG. 4 disposed in the opening with a bar guard.
- FIG. 1 illustrates the skeleton of a metal stud wall 10 according to the present invention.
- the metal stud wall 10 generally comprises a base track 12 , a plurality of metal studs 14 disposed in a row, at least one bridging/spacing member 16 , and wall panels (not shown).
- the wall panels such as wall board, may be secured in a well known manner to one or both sides of the metal studs to close the wall and to form the exterior surface or surfaces of the wall.
- one or both sides of the metal studs may be faced with masonry, such as a brick wall facing on an exterior side of a curtain wall.
- the studs 14 are generally C-shape, as is conventional.
- the studs 14 have a web 18 and a pair of L-shape flanges 20 perpendicular to the web 18 .
- the openings 22 heretofore have been provided in metal studs to permit bridging members, electrical conduit and/or plumbing to be run within the stud wall. Since the openings 22 are located in the same position in the individual studs forming the wall as is conventional, the openings 22 are horizontally aligned with each other as shown in FIG. 1 . Note that the particular opening 22 shown in FIGS. 1 and 2 are generally found in nonload-bearing walls.
- the stud bridging/spacing member 16 engages the webs 18 of the studs 14 adjacent the base of the upper rectangular portion of the opening 22
- the stud bridging/spacing member 16 may be dimensioned to engage the webs of the studs adjacent the base of the lower rectangular portion of the opening 22 .
- the larger stud bridging/spacing member may provide more resistance to loading on the studs, however, it also may restrict the ability to run electrical conduit and/or plumbing through the opening 22 .
- the smaller stud/bridging member may be used.
- the stud bridging/spacing member 16 may be used in load bearing stud walls, wherein the studs generally have a different type of opening, as hereinbelow is further explained.
- the metal studs 14 are secured at their lower ends to the base track 12 by fastening means 24 , such as screws, rivets, etc.
- the base track 12 is a U-shape channel having a central planar strip with upstanding legs at lateral sides thereof.
- the studs forming the wall are secured by the fastening means 24 to the upstanding legs of the base track 12 that normally will be anchored to the floor.
- the metal studs extend into a ceiling track (not shown) which is similar to the base track 12 , except that it is secured to (or has secured thereto) overhead joists which may form the framework for an upper floor.
- the stud bridging/spacing member 16 is inserted through the openings 22 , and a plurality of notches 26 in the stud bridging/spacing member 16 are aligned with the webs 18 of respective studs 14 , or vice versa, the notches 26 being designed to engage and to retain the webs 18 of the studs 14 therein.
- the stud bridging/spacing member 16 is turned and is moved downwardly, as by tapping, to move the webs 18 of the metal studs 14 into engagement with the notches 26 . In this manner the stud bridging/spacing member 16 sets the spacing of the studs 14 , thus making it unnecessary to manually mark off the stud spacing.
- each of the studs In an exterior load bearing wall, generally each of the studs also is secured at its upper end to the ceiling track.
- the stud bridging/spacing member 16 also functions to rigidly maintain the metal studs 14 at the prescribed spacing, for example, during application of the wall panels (not shown) to the studs. Although the wall panels once applied also will help maintain the spacing of the metal studs, the stud bridging/spacing member 16 resists relative movement of the metal studs in the plane of the wall and resists flexing of the studs. In fact, additional bridging/spacing members 16 may be provided at different heights to further strengthen the metal stud wall 10 . Openings 22 in the webs of the studs are usually vertically spaced apart approximately four feet on center in load bearing studs, and thus different sets of bridging/spacing members 16 are similarly vertically spaced.
- each stud bridging/spacing member 16 spans at least three metal studs 14 , although longer bridging/spacing members may be used, if desired, to span four, five or more studs, or even shorter bridging/spacing members spanning only two studs.
- a plurality of stud bridging/spacing members 16 are used in an end-to-end relationship with relatively adjacent ends overlapped and secured to at least one common stud 14 so as to maintain the continuity of the stud bridging/spacing members 16 over the length of the stud wall 10 .
- stud bridging/spacing member 16 can be seen to include a bar-like elongate member 30 which is generally V-shape in cross-section along its length.
- the V-shape functions to rigidity the elongate member 30 against lateral flexure, i.e., flexure perpendicular to the longitudinal axis of the bridging/spacing member.
- the overall length of the stud bridging/spacing member 16 is about fifty inches (127 cm).
- the bridging/spacing member 16 is sufficiently narrow in at least one dimension to fit within the dimensions of the openings 22 in the webs 18 .
- the type of conduit opening 22 shown in FIG. 2 is typically about one inch (about 2.5 cm) wide in its lower region.
- the width of the bridging/spacing member 16 is approximately two and one quarter inches (about 5.7 cm) when oriented as shown in FIG. 2 (i.e., from outer edge to outer edge), and the vertex of the V is about half an inch (about 1.3 cm) from a plane which contains the distal ends of the legs of the V.
- the bridging/spacing member 16 generally has an included angle greater than 90° and less than 180°, and more preferably has an included angle of about 132°. It has been found that generally a shallower angle (wider space between the distal ends of the legs) provides more resistance to deflection under lateral loads, whereas a deeper angle (narrower space between the distal ends of the legs) may provide more resistance to deflection under compression loads (axial loads on the studs 14 , see FIG. 1 ). However, since the bridging/spacing member 16 is more likely to be subject to lateral loads since the studs 14 (FIG. 1) support the vertical loads axially, a shallower included angle may be used.
- the metal which forms the stud bridging/spacing member 16 has a thickness ranging, for example, from about twenty gauge (about 0.034 inch (about 0.086 cm)) to about fourteen gauge (about 0.071 inch (about 0.18 cm)).
- the stud bridging/spacing member 16 is constructed from about sixteen gauge metal, which has a thickness of about 0.058 inch (about 0.15 cm). Eighteen gauge metal has a thickness of about 0.045 inch (about 0.11 cm).
- the elongate member 30 need not necessarily have a V-shape as shown in FIG. 3 .
- the elongate member 30 alternatively could be generally planar with one or more bosses running (and overlapping if plural bosses are provided) the length of the elongate member 30 .
- the boss or bosses (deflected out of the planar portions of the elongate member) would serve to rigidity the elongate member 30 .
- other means may be provided to rigidity the elongate member 30 against lateral flexure, such as the use of stiffening ribs, a thicker stock, etc.
- the stud bridging/spacing member 16 may be used with studs 14 having openings 122 as shown in FIG. 4 .
- each planar side portion of the V-shape elongate member 30 is provided with the plurality of notches 26 which open to the longitudinal or laterally outer edge 32 of the respective side portion.
- the notches 26 are formed to a depth from the edge of about three-eighths of an inch (about 0.95 cm). Although the notches 26 are shown disposed along the outer edge 32 of each side portion, the notches 26 could be formed elsewhere, although less desirably, such as along the vertex (crease) 40 of the V-shape elongate member 30 .
- the notches 26 of one side portion are laterally aligned with corresponding notches of the other side portion.
- the pairs of laterally aligned notches 26 provide two areas of contact with the web 18 of a stud 14 (see FIGS. 1 and 2 ).
- the two areas of contact enhance the grip of the bridging/spacing member 16 on the webs 18 of the studs 14 and aid in preventing the studs 14 from pivoting or twisting, thus adding greater stability to the wall 10 (see FIG. 1 ).
- each notch 26 is formed by a slot 38 inclined relative to the longitudinal axis of the stud bridging/spacing member 16 , wherein the angle and the width of the slot 38 cooperate to bind the webs 18 of the studs 14 in the notches 26 (see FIG. 1 ).
- the slot 38 has a width of about 0.065 inch (about 0.16 cm) to about 0.080 inch (about 0.20 cm), and is angled about five and a half degrees to about eight degrees relative to a perpendicular 60 to the longitudinal axis of the bridging/spacing member 16 . More preferably, the slot 38 is angled about seven degrees and has a width of about 0.080 inch (about 0.20 cm).
- the slot 38 generally has parallel sides that are straight. However, other configurations are contemplated. For example, the slot 38 may have curved parallel sides.
- the stud bridging/spacing member 16 is made of eighteen to fourteen gauge metal.
- the width and angle provide notches 26 which have been found to fit twenty gauge studs 14 (FIG. 1 ), to fit eighteen gauge studs 14 with a slight bind, and to fit sixteen gauge studs 14 tightly, which may cause the webs 18 (FIG. 1) of the studs 14 to bend slightly with the notch 26 .
- the notches 26 have also been found to fit fourteen gauge studs 14 , with a tight fit. The tighter fit with heavier gauge studs is desired as usually they are used to bear higher loads.
- the sides of the angled notch 26 form angled shoulders in adjacent portions of the elongate member 30 , one of which forms an abutment 42 against which the web 18 of the stud 14 is urged, and the other of which forms a barb 44 which can bite into the web 18 of the stud 14 and about which the web 18 of the stud 14 may deform as the web 18 is inserted into the notch 26 .
- the angle and the width of the slot 38 cooperate to bind the web 18 of the stud 14 in the slot, at least when subjected to loads that would tend to cause the elongate member to become dislodged. The bind forces a portion of the web 18 to bend with the angle of the slot 38 .
- generally neither the barb 44 nor the abutment 42 move out of the plane of the planar portion of the elongate member 30 .
- Installation of the bridging/spacing member 16 causes the webs 18 of the studs 14 to be urged against the abutments 42 to place the studs “on center” against the opposing wall of the slot, i.e., the barb 44 urges the web 18 against the abutment 42 .
- the distance between the cuts that form the abutments 42 can be controlled within tight tolerances and this translates to accurate spacing of the studs in a row thereof forming a wall.
- stud walls are generally constructed with studs spaced on sixteen or twenty-four inch (about 40.6 cm to 61.0 cm) centers. Therefore, a cut in the elongate member 30 will be made at sixteen or twenty-four inch (about 40.6 cm to 61.0 cm) intervals, thus ensuring that the web to web spacing of the studs 14 will be sixteen or twenty-four inches (about 40.6 cm to 61.0 cm).
- the stud bridging/spacing member 16 includes four notches 26 a - 26 d spaced at sixteen (about 40.6 cm) intervals, and one notch 26 e equally spaced between the two central notches 26 b and 26 c .
- This particular arrangement of notches 26 creates a stud bridging/spacing member 16 which can be used in metal stud walls 10 (FIG. 1) which have a stud spacing of either sixteen or twenty-four inches (about 40.6 cm to 61.0 cm). If the wall 10 is to have a stud spacing of sixteen inches (about 40.6 cm), notches 26 a - 26 d engage the webs 18 of the studs 14 (see FIG. 1 ).
- notches 26 a , 26 d , and 26 e engage the webs 18 of the studs 14 . Since the overall length of the stud bridging/spacing member 16 is about fifty inches (about 127 cm), this leaves about one inch (about 2.5 cm) outside the outermost notches.
- bridging/spacing member 16 having the slanted notch 26 described above has been found to provide improved strength to the metal stud wall 10 (FIG. 1) under loads far in excess of those required by most building codes for load bearing walls.
- the present invention provides a bridging/spacing member that rigidly connects the studs in a stud wall, unlike some prior spacing members which allow the framing system to flex in length to accommodate the attachment of wall panels wrapped in a heavy wall covering.
- installation of the stud bridging/spacing member having the slanted notches does not require fasteners and yet resists deformation and turning of the studs under load.
- the bridging/spacing member of the present invention has been found to fail only by shearing through the webs of the studs at forces far higher than those at which other bridging systems failed by breaking their fasteners. Accordingly, the bridging/spacing member 16 can be quickly and easily installed, simultaneously spacing and reinforcing the metal studs in a stud wall.
- FIGS. 8 and 9 An alternative stud bridging/spacing member 70 is shown in FIGS. 8 and 9.
- the stud bridging/spacing member 70 has a central portion 72 similar to the V-shape of the stud bridging/spacing member 16 described above (see FIG. 2 ), with a pair of laterally extending wing portions 74 extending outwardly from distal ends of the V-shape central portion 72 .
- the wing portions 74 extend a distance equal to about one-third of the width of the central portion 72 .
- the wing portions 74 extend in opposite directions in a common plane, however, the wing portions 74 may extend in different planes.
- the stud bridging/spacing member 70 has at least three longitudinally spaced pairs of transversely aligned notches 76 of the type described above.
- the notches may extend only through the wing portions 74 or may also extend into the V-shape central portion 72 .
- the stud bridging/spacing member 70 can be installed in a stud wall 100 in the same way as the stud bridging/spacing member 16 is installed in the stud wall 10 in FIG. 1 .
- the stud wall 100 includes a plurality of studs 114 , each stud 114 having a web 118 and a pair of L-shape flanges 120 perpendicular to the web 118 , with at least one opening 122 in the web 118 .
- the opening 122 has a uniform width central portion and rounded end portions. This type of opening 122 is more common in load bearing studs. Another type of opening (not shown) is similar but has pointed ends.
- the stud bridging/spacing member 70 is not limited to any form of opening, however.
- the studs 114 are secured at their lower ends to the base track 112 by fastening means 124 in the same manner as described above with reference to FIG. 1 .
- the stud bridging/spacing member is inserted through the openings 122 and the notches 76 are aligned with the webs 118 of the studs 114 .
- the bridging spacing member 70 may be rotated and is then moved down over the webs 118 of the studs 114 to engage the lower end of the central portion of the opening 122 as shown in FIG. 9 . Additional bridging/spacing members 70 overlap adjacent ends of preceding bridging/spacing members 70 as needed to provide continuous bridging between all of the studs 114 in the wall 100 .
- the upper ends of the studs 114 may then be connected to a ceiling track (not shown) as required.
- wing portions 74 facilitates installation by making it easier to “eyeball” the stud bridging/spacing member 70 to make sure it is level and thus firmly seated in each opening 122 in the webs 118 of the studs 114 . This feature helps to improve the speed and quality of the installation process.
- the wing portions 74 further rigidity the stud bridging/spacing member 70 against transverse loads on the wall 100 , which may be particularly advantageous, for example, in external walls in building locations subject to high wind loads.
- the Applicant has found that the bridging system and method described herein performs approximately as well as or better than several more labor-intensive (and therefore generally more expensive) bridging systems under different types of loads. As a result, the system and method of the present invention provide approximately the same structural strength, while the spacing function of the bridging/spacing member helps to greatly reduce installation time, thereby providing substantial cost savings.
- the system and method of the present invention may also include a bar guard to minimize or prevent other building tradespeople from removing the bridging/spacing member 132 from the conduit opening 134 in the stud 136 .
- the bar guard may include a screw driven through the web 138 of the stud to prevent the bridging/spacing member from being lifted out, or a metal plate, such as the illustrated plate 140 , attached to the web of the stud above the bridging/spacing member.
- the illustrated bar guard 140 has a notch at a lower end to closely engage the top of the bridging/spacing member and a pair of holes 142 near an upper edge for fastening the bar guard to the web of the stud with screws, although other methods of attaching the bar guard to the stud could be used. Since the bridging/spacing member spans at least three studs, the bar guard does not have to be attached to every stud. Thus installation of the bridging/spacing member with the bar guard does remains much quicker than conventional methods.
Landscapes
- Engineering & Computer Science (AREA)
- Architecture (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Joining Of Building Structures In Genera (AREA)
- Load-Bearing And Curtain Walls (AREA)
Abstract
Description
Claims (37)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/959,036 US6708460B1 (en) | 1999-05-03 | 2000-03-05 | Stud wall system and method using a combined bridging and spacing device |
US10/641,062 US7159369B2 (en) | 1999-05-03 | 2003-08-14 | Stud wall system and method using combined bridging and spacing device |
US10/867,803 US20040237451A1 (en) | 1999-05-03 | 2004-06-15 | Stud wall system and method using combined bridging and spacing device |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13229399P | 1999-05-03 | 1999-05-03 | |
US14064099P | 1999-06-23 | 1999-06-23 | |
US09/959,036 US6708460B1 (en) | 1999-05-03 | 2000-03-05 | Stud wall system and method using a combined bridging and spacing device |
PCT/US2000/011991 WO2000066844A2 (en) | 1999-05-03 | 2000-05-03 | Stud wall system and method using combined bridging and spacing device |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2000/011991 A-371-Of-International WO2000066844A2 (en) | 1999-05-03 | 2000-05-03 | Stud wall system and method using combined bridging and spacing device |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/641,062 Continuation US7159369B2 (en) | 1999-05-03 | 2003-08-14 | Stud wall system and method using combined bridging and spacing device |
Publications (1)
Publication Number | Publication Date |
---|---|
US6708460B1 true US6708460B1 (en) | 2004-03-23 |
Family
ID=31721380
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/959,036 Expired - Lifetime US6708460B1 (en) | 1999-05-03 | 2000-03-05 | Stud wall system and method using a combined bridging and spacing device |
US10/641,062 Expired - Lifetime US7159369B2 (en) | 1999-05-03 | 2003-08-14 | Stud wall system and method using combined bridging and spacing device |
US10/867,803 Abandoned US20040237451A1 (en) | 1999-05-03 | 2004-06-15 | Stud wall system and method using combined bridging and spacing device |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/641,062 Expired - Lifetime US7159369B2 (en) | 1999-05-03 | 2003-08-14 | Stud wall system and method using combined bridging and spacing device |
US10/867,803 Abandoned US20040237451A1 (en) | 1999-05-03 | 2004-06-15 | Stud wall system and method using combined bridging and spacing device |
Country Status (1)
Country | Link |
---|---|
US (3) | US6708460B1 (en) |
Cited By (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020059773A1 (en) * | 2000-08-31 | 2002-05-23 | Elderson William L. | Bridging system for off-module studs |
US20030167722A1 (en) * | 2002-03-08 | 2003-09-11 | Klein James A. | Versa-track wall/floor joist assembly and method |
US20040031224A1 (en) * | 1999-05-03 | 2004-02-19 | Elderson William L. | Stud wall system and method using combined bridging and spacing device |
US20040050000A1 (en) * | 2000-09-22 | 2004-03-18 | Arkadiusz Muszynski | Building module |
US20040172912A1 (en) * | 2003-03-06 | 2004-09-09 | Brunt James Wilson | Spacer bar retainers and methods for retaining spacer bars in metal wall studs |
US20060191232A1 (en) * | 2005-02-25 | 2006-08-31 | Nova Chemicals, Inc. | Composite pre-formed building panels |
US20060201090A1 (en) * | 2005-02-25 | 2006-09-14 | Tricia Guevara | Lightweight compositions and articles containing such |
US20060251851A1 (en) * | 2005-02-25 | 2006-11-09 | Jay Bowman | Composite pre-formed construction articles |
US20070011971A1 (en) * | 2005-07-14 | 2007-01-18 | Sitkiewicz Christopher P | Wall framing assembly and method of securing a stud to a header or footer |
US20080184651A1 (en) * | 2007-02-02 | 2008-08-07 | Bowman Jay J | Roof truss system |
US20080236068A1 (en) * | 2007-03-29 | 2008-10-02 | Jahn Peter G | Drywall channel with pre-punched locating tabs |
US20090151273A1 (en) * | 2007-12-12 | 2009-06-18 | Erich Jason Axsom | High-strength shear wall sheathing with pre-formed fastener holes |
US7699929B2 (en) | 2005-03-22 | 2010-04-20 | Nova Chemicals Inc. | Lightweight concrete compositions |
US20110225911A1 (en) * | 2010-03-22 | 2011-09-22 | Battisti Peter L | Self-bailing interior frame |
US8048219B2 (en) | 2007-09-20 | 2011-11-01 | Nova Chemicals Inc. | Method of placing concrete |
USD692746S1 (en) | 2013-03-13 | 2013-11-05 | Clarkwestern Dietrich Building Systems Llc | Bridging clip |
US8590255B2 (en) | 2011-10-26 | 2013-11-26 | Larry Randall Daudet | Bridging connector |
US20130318904A1 (en) * | 2012-06-04 | 2013-12-05 | United States Gypsum Company | Conventional fire-rated one-sided construction |
US9016024B1 (en) | 2013-11-27 | 2015-04-28 | Simpson Strong-Tie Company | Steel framing clip |
USD730545S1 (en) | 2013-12-30 | 2015-05-26 | Simpson Strong-Tie Company | Joist and rafter connector |
USD732708S1 (en) | 2013-12-30 | 2015-06-23 | Simpson Strong-Tie Company | Flared joist and rafter connector |
US9091056B2 (en) | 2013-12-31 | 2015-07-28 | Simpson Strong-Tie Company, Inc. | Multipurpose concrete anchor clip |
US9109361B2 (en) | 2011-10-26 | 2015-08-18 | Simpson Strong-Tie Company, Inc. | Bracing bridging member |
US9200446B1 (en) | 2006-02-21 | 2015-12-01 | The Steel Network, Inc. | Bridging member |
US9732520B2 (en) | 2013-03-17 | 2017-08-15 | Simpson Strong-Tie Company, Inc. | Inverted bridging connector |
US9849497B2 (en) | 2013-03-13 | 2017-12-26 | Simpson Strong-Tie Company Inc. | Teardrop and offset notch bridging connector |
USD821851S1 (en) | 2017-02-24 | 2018-07-03 | Clarkwestern Dietrich Building Systems Llc | Bridging clip |
USD822455S1 (en) | 2017-02-24 | 2018-07-10 | Clarkwestern Dietrich Building Systems Llc | Bridging clip with a rib |
USD823095S1 (en) | 2017-02-24 | 2018-07-17 | Clarkwestern Dietrich Building Systems Llc | Bridging clip with ribs |
US20180202144A1 (en) * | 2017-01-16 | 2018-07-19 | Allen Innovations, Llc | Bridging Termination Clip |
US10309107B2 (en) | 2018-03-16 | 2019-06-04 | Telling Industries, LLC | Cold rolled channel without clip |
US20200040577A1 (en) * | 2017-05-09 | 2020-02-06 | Dennis LeBlang | Interlocking connectors with protrusion notched holes |
US10590647B2 (en) | 2018-03-16 | 2020-03-17 | Telling Industries, LLC | Cold rolled channel without clip |
US11008753B2 (en) | 2013-03-13 | 2021-05-18 | Simpson Strong-Tie Company, Inc. | Corrugated bridging member |
US11060281B2 (en) | 2016-04-04 | 2021-07-13 | Dennis LeBlang | Spacer braces in tandem for walls, joists and trusses |
US20230093777A9 (en) * | 2009-06-22 | 2023-03-23 | Dennis LeBlang | Metal framing self-locking connectors |
US11614117B2 (en) | 2019-07-10 | 2023-03-28 | Quantumparable, Inc | Removable fastener for structural elements and a method of its use |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL1033867C2 (en) * | 2007-05-18 | 2008-11-20 | Bruinekool Yacht Support & Ind | Floor construction and method. |
US10683665B2 (en) * | 2008-09-08 | 2020-06-16 | Dennis LeBlang | Metal framing components for wall panels |
US20230082777A1 (en) * | 2019-10-18 | 2023-03-16 | Dennis LeBlang | Interlocking spacer braces |
US8297016B2 (en) * | 2010-03-17 | 2012-10-30 | Sukup Manufacturing Company | Support for a grain bin floor and method of making the same |
US8950231B2 (en) | 2010-03-17 | 2015-02-10 | Sukup Manfucaturing Co. | Support for a grain bin floor and method of making the same |
USD811626S1 (en) * | 2013-10-25 | 2018-02-27 | Swf Industrial, Inc. | Expanding wall channel |
CA2884904C (en) | 2013-11-20 | 2023-03-21 | Geoff W. Gosling | Modular wraparound wall |
AU2015370506A1 (en) * | 2014-12-24 | 2016-07-28 | Zero Bills Home Limited | Building construction |
WO2020107024A1 (en) * | 2018-11-22 | 2020-05-28 | Dennis Leblang | Connections between metal framing members |
CA3156123A1 (en) * | 2021-07-12 | 2023-01-12 | Falkbuilt Ltd. | Hybrid wall system |
Citations (60)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US894711A (en) | 1908-01-06 | 1908-07-28 | Bromwell Brush And Wire Goods Company | Clamp-rib for ironwork. |
US992941A (en) | 1911-03-09 | 1911-05-23 | Gustave F Danielson | Harrow-tooth clip. |
US1101745A (en) | 1911-01-23 | 1914-06-30 | Levi P Hazen | Metal window-sash. |
US1346426A (en) | 1919-05-27 | 1920-07-13 | Paul H E Scherbner | Grating |
US1603678A (en) | 1924-12-11 | 1926-10-19 | Frederick M Furey | Grating |
US1656741A (en) | 1927-02-08 | 1928-01-17 | Lane George | Joist brace |
US1791197A (en) | 1928-08-07 | 1931-02-03 | Dickson Alexander | Skeleton frame for wall constructions |
US2245908A (en) | 1937-10-25 | 1941-06-17 | Barber Colman Co | Grille core |
GB593443A (en) | 1945-05-07 | 1947-10-16 | Charles Frederick Elliott | Improvements in or relating to framed buildings |
US2430654A (en) | 1946-02-01 | 1947-11-11 | Clayton B Voege | Wall structure |
US2918995A (en) | 1956-07-26 | 1959-12-29 | Smithcraft Corp | Joints and method of making joints |
US3010162A (en) | 1957-05-20 | 1961-11-28 | Lewis D Klein | Strip brace |
US3201874A (en) | 1962-06-22 | 1965-08-24 | Donald F Christy | Self-positioning stud spacing gauge |
US3305981A (en) | 1964-04-21 | 1967-02-28 | Angeles Metal Trim Co | Metal internal-wall structure for shelf supporting brackets and wallboard |
US3322447A (en) | 1964-04-07 | 1967-05-30 | Angeles Metal Trim Co | Stiffening-bar mounting for metal wall studs |
US3374591A (en) | 1966-01-20 | 1968-03-26 | Kaiser Gypsum Company Inc | Resilient partition structure |
US3482369A (en) | 1967-10-03 | 1969-12-09 | Nat Gypsum Co | Metal stud |
US3562970A (en) | 1969-05-21 | 1971-02-16 | Paul Schwartz | Metal studding and adjustable shelf carrier |
US3653172A (en) | 1970-01-30 | 1972-04-04 | Paul Schwartz | Metal studding wall structures |
US4018020A (en) | 1973-11-01 | 1977-04-19 | Roblin Industries, Inc. | Modular wall construction |
US4031594A (en) | 1976-04-26 | 1977-06-28 | Signode Corporation | Sealless strap connection means |
US4036307A (en) | 1976-04-14 | 1977-07-19 | Sarel Johannes Marais | Plough share with reinforcement plate covering tongue holes therein |
US4043689A (en) | 1972-01-27 | 1977-08-23 | Trend Ceilings Systems Co. | Modular ceiling system |
US4075810A (en) | 1976-05-06 | 1978-02-28 | Dominion Foundries And Steel, Limited | Metal wall construction for buildings |
US4208851A (en) | 1977-02-25 | 1980-06-24 | Roblin Industries, Inc. | Suspended ceiling system |
US4225265A (en) | 1978-04-27 | 1980-09-30 | Hickory Springs Manufacturing Company | Interlocking bed frame members |
US4235054A (en) | 1977-11-14 | 1980-11-25 | Angeles Metal Trim Co. | Building wall structure |
US4246736A (en) | 1979-04-02 | 1981-01-27 | Kovar Paul J | Joist bridging member |
GB2103264A (en) | 1981-07-29 | 1983-02-16 | Vivion James Glynn | Beam spacer |
US4426822A (en) | 1982-11-01 | 1984-01-24 | Alcan Aluminum Corporation | Vertical ceiling assembly and stringer therefor |
US4448004A (en) | 1981-07-22 | 1984-05-15 | Robert S. Agar Inc. | Channel and cut-out structure for removeable partition wall |
US4522009A (en) | 1983-01-14 | 1985-06-11 | Fingerson Conrad F | Lock rod system for flooring grating and method for assembling same |
US4604845A (en) | 1984-06-22 | 1986-08-12 | Brinker Sheridan F | Continuous pivoted spacing tie |
US4693047A (en) | 1986-06-30 | 1987-09-15 | National Gypsum Company | Bendable channel retainer |
US4727704A (en) | 1987-05-07 | 1988-03-01 | Fibergrate Corporation | Grating structure and method for assembly |
US4791766A (en) | 1987-09-10 | 1988-12-20 | Egri Ii John D | Metallic framing fire-stop |
US4809476A (en) | 1985-01-17 | 1989-03-07 | Onteam Limited | Metal framed wall structure |
US4840005A (en) | 1988-06-01 | 1989-06-20 | Australian Building Industries Pty. Ltd. | Purlin bridging |
US4850169A (en) | 1986-04-07 | 1989-07-25 | Lowell E. Burkstrand | Ceiling runner |
US4858407A (en) | 1987-05-01 | 1989-08-22 | Smolik Robert A | Lateral stabilizer for wall |
US4860791A (en) | 1988-12-05 | 1989-08-29 | Speed Queen Company | Strain relief clamp for washing machine drain hose |
US4914878A (en) | 1987-03-14 | 1990-04-10 | Kokuyo Co., Ltd. | Movable partition wall |
US5127760A (en) | 1990-07-26 | 1992-07-07 | Brady Todd A | Vertically slotted header |
US5155962A (en) | 1986-04-07 | 1992-10-20 | Lowell E. Burkstrand | Ceiling runner |
US5197247A (en) | 1988-12-06 | 1993-03-30 | Elderson William L | Combination bead/mold for suspended ceilings and the like |
WO1993024712A1 (en) | 1992-06-04 | 1993-12-09 | Hi-Tech Steel Systems International Pty. Limited | Building frame |
US5274973A (en) | 1991-11-27 | 1994-01-04 | Liang Steve S T | Stud spacer and mounting system |
US5287664A (en) | 1992-10-28 | 1994-02-22 | Schiller Reuben W | Metal stud interlocking conduit strap |
US5488198A (en) | 1994-09-01 | 1996-01-30 | Kramer; Hy | Protection device for apertures in metal studs or panels |
WO1996023945A1 (en) | 1995-02-02 | 1996-08-08 | Haddock Robert M M | Frame for a building structure and method of assembling the same |
US5720138A (en) | 1992-11-12 | 1998-02-24 | Johnson; David L. | Metallic wall framing, method and apparatus for producing same |
US5784850A (en) | 1994-11-10 | 1998-07-28 | Elderson; William L. | Stud wall system and method using spacer member |
US5822942A (en) | 1994-08-15 | 1998-10-20 | Lucia, Jr.; Nicholas J. | Auxiliary surface-forming member for construction elements |
US5870874A (en) | 1997-08-07 | 1999-02-16 | Brothers; Jack | Means for spacing and fastening structural members in juxtaposition |
US5904023A (en) | 1998-01-16 | 1999-05-18 | The Steel Network, Inc. | Steel stud stabilizing clip |
US5964071A (en) | 1997-02-14 | 1999-10-12 | Sato Katako Seisakusho Co., Ltd. | Frame material for wall |
US6241199B1 (en) | 1999-03-02 | 2001-06-05 | Sioux Chief Manufacturing Company, Inc. | Protective insulating sleeve for plumbing installations |
US6301854B1 (en) | 1998-11-25 | 2001-10-16 | Dietrich Industries, Inc. | Floor joist and support system therefor |
US20020059773A1 (en) | 2000-08-31 | 2002-05-23 | Elderson William L. | Bridging system for off-module studs |
US20030037494A1 (en) | 2001-08-27 | 2003-02-27 | Collins John J. | Wall stud spacer system with spacer retainers |
Family Cites Families (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US89053A (en) * | 1869-04-20 | Robert o | ||
US37494A (en) * | 1863-01-27 | Improved composition for water-pipes | ||
US557355A (en) * | 1896-03-31 | Galvanic battery | ||
US59773A (en) * | 1866-11-20 | Improved apparatus for separating metals from ores | ||
US839723A (en) * | 1906-07-07 | 1906-12-25 | Thomas J Bury | Fence-post. |
US1475387A (en) * | 1921-06-14 | 1923-11-27 | Allan T Holmes | Sheet-metal construction |
US1561976A (en) | 1923-12-19 | 1925-11-17 | Jr Mike J Donahoe | All-metal fencepost |
US1750039A (en) | 1928-06-04 | 1930-03-11 | Feltes Peter Emil | Grating |
US2102936A (en) | 1937-03-09 | 1937-12-21 | David C Bailey | Window glass guide |
US2686959A (en) | 1951-04-02 | 1954-08-24 | Wayne C Robinson | Spacing tool |
GB764052A (en) | 1954-02-18 | 1956-12-19 | Frederick Henry Ferris | An improved fence batten or post |
US2873828A (en) | 1955-01-27 | 1959-02-17 | Joseph H Zitomer | Illuminated electric ceiling fixture construction |
US2856646A (en) | 1957-02-05 | 1958-10-21 | Edward W Latimer | Building brace |
US2918895A (en) * | 1957-03-14 | 1959-12-29 | Roy D Buell | Fluid powered horn |
US2964807A (en) | 1957-07-05 | 1960-12-20 | Robert E Kennedy | Joist spacer and support |
US2963127A (en) | 1957-12-24 | 1960-12-06 | Manville George Dewey | Variable length brace |
US3044586A (en) * | 1960-05-27 | 1962-07-17 | Cassels Charles Wellman | Floor-like structure construction |
US3861108A (en) * | 1971-08-27 | 1975-01-21 | Us Industries Inc | Slatted floor assembly |
US3755988A (en) * | 1971-11-08 | 1973-09-04 | Hunter Douglas International | Panel assembly |
US4021967A (en) * | 1975-11-10 | 1977-05-10 | Odl, Incorporated | Door light fastener |
US4407100A (en) * | 1980-10-14 | 1983-10-04 | Com-Dor Supply Limited | Window frame assembly with frame shaped locking member |
US4843726A (en) | 1988-01-19 | 1989-07-04 | Ward James E | Stud alignment and positioning tool |
US5040347A (en) * | 1990-01-05 | 1991-08-20 | Constantinos Valvis | Standardized profiles for window or door frame partitions and method of assembly |
DE9003667U1 (en) | 1990-03-29 | 1990-05-31 | Bloch, Wolfgang, 6407 Schlitz | Pile fitting |
US5133168A (en) * | 1990-09-14 | 1992-07-28 | Odl, Incorporated | Window frame connector |
US5363622A (en) | 1992-12-24 | 1994-11-15 | Armstrong World Industries, Inc. | Fire-rated drywall suspension system |
FR2727712A1 (en) * | 1994-12-01 | 1996-06-07 | Metal Deploye Sa | SUPPORTING ELEMENT FOR MESH STRUCTURES |
US5551200A (en) * | 1995-01-24 | 1996-09-03 | Krug; Eugene E. | Elongated integral truss brace |
US5606837A (en) * | 1995-02-06 | 1997-03-04 | Holizlander; Mark A. | Brace system for use with a truss system |
US5600926A (en) | 1995-10-31 | 1997-02-11 | Furniture Source International Inc. | Panel connecting arrangements |
US5682935A (en) | 1995-11-13 | 1997-11-04 | Bustamante; James M. | Apparatus for forming an interlocking joint |
JPH10258463A (en) | 1997-03-19 | 1998-09-29 | Fuji Heavy Ind Ltd | Rib of composite material and forming method thereof |
US6161849A (en) * | 1998-09-29 | 2000-12-19 | Schweninger; Q. David | Turn wheel locking device |
US6332299B1 (en) * | 1999-02-05 | 2001-12-25 | Stewart, Iii Kenneth G. | Connector for multiple member frame systems |
BR0010706A (en) | 1999-05-03 | 2002-02-05 | Dietrich Ind Inc | Ear wall system and method using combined shoring and spacing device |
US6708460B1 (en) * | 1999-05-03 | 2004-03-23 | Dietrich Industries, Inc. | Stud wall system and method using a combined bridging and spacing device |
USD463575S1 (en) * | 2000-05-18 | 2002-09-24 | Dietrich Industries, Inc. | Spacer bar |
US6418695B1 (en) * | 2000-05-18 | 2002-07-16 | Aegis Metal Framing Llc | Building component spacer brace |
US6553735B1 (en) * | 2001-11-06 | 2003-04-29 | Nan Ya Plastics Corporation | Joint structure as reinforcing rib to injected frame of door leaf with glass |
US6701689B2 (en) * | 2001-12-07 | 2004-03-09 | The Steel Network, Inc. | Stud spacer |
-
2000
- 2000-03-05 US US09/959,036 patent/US6708460B1/en not_active Expired - Lifetime
-
2003
- 2003-08-14 US US10/641,062 patent/US7159369B2/en not_active Expired - Lifetime
-
2004
- 2004-06-15 US US10/867,803 patent/US20040237451A1/en not_active Abandoned
Patent Citations (62)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US894711A (en) | 1908-01-06 | 1908-07-28 | Bromwell Brush And Wire Goods Company | Clamp-rib for ironwork. |
US1101745A (en) | 1911-01-23 | 1914-06-30 | Levi P Hazen | Metal window-sash. |
US992941A (en) | 1911-03-09 | 1911-05-23 | Gustave F Danielson | Harrow-tooth clip. |
US1346426A (en) | 1919-05-27 | 1920-07-13 | Paul H E Scherbner | Grating |
US1603678A (en) | 1924-12-11 | 1926-10-19 | Frederick M Furey | Grating |
US1656741A (en) | 1927-02-08 | 1928-01-17 | Lane George | Joist brace |
US1791197A (en) | 1928-08-07 | 1931-02-03 | Dickson Alexander | Skeleton frame for wall constructions |
US2245908A (en) | 1937-10-25 | 1941-06-17 | Barber Colman Co | Grille core |
GB593443A (en) | 1945-05-07 | 1947-10-16 | Charles Frederick Elliott | Improvements in or relating to framed buildings |
US2430654A (en) | 1946-02-01 | 1947-11-11 | Clayton B Voege | Wall structure |
US2918995A (en) | 1956-07-26 | 1959-12-29 | Smithcraft Corp | Joints and method of making joints |
US3010162A (en) | 1957-05-20 | 1961-11-28 | Lewis D Klein | Strip brace |
US3201874A (en) | 1962-06-22 | 1965-08-24 | Donald F Christy | Self-positioning stud spacing gauge |
US3322447A (en) | 1964-04-07 | 1967-05-30 | Angeles Metal Trim Co | Stiffening-bar mounting for metal wall studs |
US3305981A (en) | 1964-04-21 | 1967-02-28 | Angeles Metal Trim Co | Metal internal-wall structure for shelf supporting brackets and wallboard |
US3374591A (en) | 1966-01-20 | 1968-03-26 | Kaiser Gypsum Company Inc | Resilient partition structure |
US3482369A (en) | 1967-10-03 | 1969-12-09 | Nat Gypsum Co | Metal stud |
US3562970A (en) | 1969-05-21 | 1971-02-16 | Paul Schwartz | Metal studding and adjustable shelf carrier |
US3653172A (en) | 1970-01-30 | 1972-04-04 | Paul Schwartz | Metal studding wall structures |
US4043689A (en) | 1972-01-27 | 1977-08-23 | Trend Ceilings Systems Co. | Modular ceiling system |
US4018020A (en) | 1973-11-01 | 1977-04-19 | Roblin Industries, Inc. | Modular wall construction |
US4036307A (en) | 1976-04-14 | 1977-07-19 | Sarel Johannes Marais | Plough share with reinforcement plate covering tongue holes therein |
US4031594A (en) | 1976-04-26 | 1977-06-28 | Signode Corporation | Sealless strap connection means |
US4075810A (en) | 1976-05-06 | 1978-02-28 | Dominion Foundries And Steel, Limited | Metal wall construction for buildings |
US4208851A (en) | 1977-02-25 | 1980-06-24 | Roblin Industries, Inc. | Suspended ceiling system |
US4235054A (en) | 1977-11-14 | 1980-11-25 | Angeles Metal Trim Co. | Building wall structure |
US4225265A (en) | 1978-04-27 | 1980-09-30 | Hickory Springs Manufacturing Company | Interlocking bed frame members |
US4246736A (en) | 1979-04-02 | 1981-01-27 | Kovar Paul J | Joist bridging member |
US4448004A (en) | 1981-07-22 | 1984-05-15 | Robert S. Agar Inc. | Channel and cut-out structure for removeable partition wall |
GB2103264A (en) | 1981-07-29 | 1983-02-16 | Vivion James Glynn | Beam spacer |
US4426822A (en) | 1982-11-01 | 1984-01-24 | Alcan Aluminum Corporation | Vertical ceiling assembly and stringer therefor |
US4522009A (en) | 1983-01-14 | 1985-06-11 | Fingerson Conrad F | Lock rod system for flooring grating and method for assembling same |
US4604845A (en) | 1984-06-22 | 1986-08-12 | Brinker Sheridan F | Continuous pivoted spacing tie |
US4809476A (en) | 1985-01-17 | 1989-03-07 | Onteam Limited | Metal framed wall structure |
US4850169A (en) | 1986-04-07 | 1989-07-25 | Lowell E. Burkstrand | Ceiling runner |
US5155962A (en) | 1986-04-07 | 1992-10-20 | Lowell E. Burkstrand | Ceiling runner |
US4693047A (en) | 1986-06-30 | 1987-09-15 | National Gypsum Company | Bendable channel retainer |
US4914878A (en) | 1987-03-14 | 1990-04-10 | Kokuyo Co., Ltd. | Movable partition wall |
US4858407A (en) | 1987-05-01 | 1989-08-22 | Smolik Robert A | Lateral stabilizer for wall |
US4727704A (en) | 1987-05-07 | 1988-03-01 | Fibergrate Corporation | Grating structure and method for assembly |
US4791766A (en) | 1987-09-10 | 1988-12-20 | Egri Ii John D | Metallic framing fire-stop |
US4840005A (en) | 1988-06-01 | 1989-06-20 | Australian Building Industries Pty. Ltd. | Purlin bridging |
US4860791A (en) | 1988-12-05 | 1989-08-29 | Speed Queen Company | Strain relief clamp for washing machine drain hose |
US5197247A (en) | 1988-12-06 | 1993-03-30 | Elderson William L | Combination bead/mold for suspended ceilings and the like |
US5127760A (en) | 1990-07-26 | 1992-07-07 | Brady Todd A | Vertically slotted header |
US5274973A (en) | 1991-11-27 | 1994-01-04 | Liang Steve S T | Stud spacer and mounting system |
WO1993024712A1 (en) | 1992-06-04 | 1993-12-09 | Hi-Tech Steel Systems International Pty. Limited | Building frame |
US5287664A (en) | 1992-10-28 | 1994-02-22 | Schiller Reuben W | Metal stud interlocking conduit strap |
US5720138A (en) | 1992-11-12 | 1998-02-24 | Johnson; David L. | Metallic wall framing, method and apparatus for producing same |
US5822942A (en) | 1994-08-15 | 1998-10-20 | Lucia, Jr.; Nicholas J. | Auxiliary surface-forming member for construction elements |
US5488198A (en) | 1994-09-01 | 1996-01-30 | Kramer; Hy | Protection device for apertures in metal studs or panels |
US6021618A (en) | 1994-11-10 | 2000-02-08 | Elderson; William L. | Stud wall system and method using spacer member |
US5784850A (en) | 1994-11-10 | 1998-07-28 | Elderson; William L. | Stud wall system and method using spacer member |
WO1996023945A1 (en) | 1995-02-02 | 1996-08-08 | Haddock Robert M M | Frame for a building structure and method of assembling the same |
US5964071A (en) | 1997-02-14 | 1999-10-12 | Sato Katako Seisakusho Co., Ltd. | Frame material for wall |
US5870874A (en) | 1997-08-07 | 1999-02-16 | Brothers; Jack | Means for spacing and fastening structural members in juxtaposition |
US5904023A (en) | 1998-01-16 | 1999-05-18 | The Steel Network, Inc. | Steel stud stabilizing clip |
US6301854B1 (en) | 1998-11-25 | 2001-10-16 | Dietrich Industries, Inc. | Floor joist and support system therefor |
US6241199B1 (en) | 1999-03-02 | 2001-06-05 | Sioux Chief Manufacturing Company, Inc. | Protective insulating sleeve for plumbing installations |
US20020059773A1 (en) | 2000-08-31 | 2002-05-23 | Elderson William L. | Bridging system for off-module studs |
US20030089053A1 (en) | 2000-08-31 | 2003-05-15 | Elderson William L. | Support apparatuses and jambs for windows and doors and methods of constructing same |
US20030037494A1 (en) | 2001-08-27 | 2003-02-27 | Collins John J. | Wall stud spacer system with spacer retainers |
Non-Patent Citations (13)
Title |
---|
Appendix to Plaintiff, Dietrich Industries, Inc.'s Claim Construction Submission, Dietrich Industries, Inc. v. The Steel Network, Inc., (WD. PA.), Civil Action No. 02-0354. |
Brochure-Trus Wall Systems, Don't Just Space It, Brace It, Arlington, Texas, Publication date unknown. |
Brochure—Trus Wall Systems, Don't Just Space It, Brace It, Arlington, Texas, Publication date unknown. |
Defendant, The Steel Network, Inc.'s Reply Brief Regarding Claim Construction, Dietrich Industries, Inc. v. The Steel Network, Inc., (WD. PA.), Civil Action No. 02-0354. |
Defendant, The Steel Network, Inc.'s, Appendix of Exhibits in Support of Defendant's Memorandum Re Claim Construction, Dietrich Industries, Inc. v. The Steel Network, Inc., (WD. PA.), Civil Action No. 02-0354. |
Defendant, The Steel Network, Inc.'s, Claim Constriction Reply Brief, Dietrich Industries, Inc. v. The Steel Network, Inc., (WD. PA.), Civil Action No. 02-0354. |
Defendant, The Steel Network, Inc.'s, Memorandum Re Claim Construction, Dietrich Industries, Inc. v. The Steel Network, Inc., (WD. PA.), Civil Action No. 02-0354. |
Plaintiff, Dietrich Industries Inc.'s Claim Construction Submission, Dietrich Industries, Inc. v. The Steel Network, Inc., (WD. PA.), Civil Action No. 02-0354. |
Plaintiff, Dietrich Industries, Inc.'s, Reply to Defendant's Dec. 5, 2002 Claim Construction Submission, Dietrich Industries, Inc. v. The Steel Network, Inc., (WD. PA.), Civil Action No. 02-0354. |
Plaintiff, Dietrich Industries, Inc.'s, Response to Defendant's Claim Construction Submission, Dietrich Industries, Inc. v. The Steel Network, Inc., (WD. PA.), Civil Action No. 02-0354. |
Products That Meet the New A.D.A. Code Flush Mount and Notch Tite and Other Products: Fire Blocking, Bridging,SLP-TRK and Specialty Items, Metal Lite, Inc. Anaheim, CA 1991. |
U.S. application Ser. No. 10/383,047, Brunt, unpublished. |
U.S. application Ser. No. 10/641,062, Elderson, unpublished. |
Cited By (56)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040031224A1 (en) * | 1999-05-03 | 2004-02-19 | Elderson William L. | Stud wall system and method using combined bridging and spacing device |
US7159369B2 (en) * | 1999-05-03 | 2007-01-09 | Dietrich Industries, Inc. | Stud wall system and method using combined bridging and spacing device |
US20040237451A1 (en) * | 1999-05-03 | 2004-12-02 | Elderson William L. | Stud wall system and method using combined bridging and spacing device |
US7168219B2 (en) | 2000-08-31 | 2007-01-30 | Dietrich Industries, Inc. | Support apparatuses and jambs for windows and doors and methods of constructing same |
US20030089053A1 (en) * | 2000-08-31 | 2003-05-15 | Elderson William L. | Support apparatuses and jambs for windows and doors and methods of constructing same |
US6920734B2 (en) | 2000-08-31 | 2005-07-26 | Dietrich Industries, Inc. | Bridging system for off-module studs |
US20020059773A1 (en) * | 2000-08-31 | 2002-05-23 | Elderson William L. | Bridging system for off-module studs |
US20040050000A1 (en) * | 2000-09-22 | 2004-03-18 | Arkadiusz Muszynski | Building module |
US20030167722A1 (en) * | 2002-03-08 | 2003-09-11 | Klein James A. | Versa-track wall/floor joist assembly and method |
US20040172912A1 (en) * | 2003-03-06 | 2004-09-09 | Brunt James Wilson | Spacer bar retainers and methods for retaining spacer bars in metal wall studs |
US7017310B2 (en) | 2003-03-06 | 2006-03-28 | Dietrich Industries, Inc. | Spacer bar retainers and methods for retaining spacer bars in metal wall studs |
US7790302B2 (en) | 2005-02-25 | 2010-09-07 | Nova Chemicals Inc. | Lightweight compositions and articles containing such |
US7964272B2 (en) | 2005-02-25 | 2011-06-21 | Nova Chemicals Inc. | Lightweight compositions and articles containing such |
US20060191232A1 (en) * | 2005-02-25 | 2006-08-31 | Nova Chemicals, Inc. | Composite pre-formed building panels |
US8726594B2 (en) | 2005-02-25 | 2014-05-20 | Syntheon Inc. | Composite pre-formed building panels |
US8752348B2 (en) | 2005-02-25 | 2014-06-17 | Syntheon Inc. | Composite pre-formed construction articles |
US20060251851A1 (en) * | 2005-02-25 | 2006-11-09 | Jay Bowman | Composite pre-formed construction articles |
US7963080B1 (en) | 2005-02-25 | 2011-06-21 | Nova Chemicals Inc. | Composite pre-formed construction articles |
US7666258B2 (en) | 2005-02-25 | 2010-02-23 | Nova Chemicals Inc. | Lightweight compositions and articles containing such |
US20060201090A1 (en) * | 2005-02-25 | 2006-09-14 | Tricia Guevara | Lightweight compositions and articles containing such |
US20100088984A1 (en) * | 2005-02-25 | 2010-04-15 | Nova Chemicals Inc. | Lightweight compositions and articles containing such |
US7699929B2 (en) | 2005-03-22 | 2010-04-20 | Nova Chemicals Inc. | Lightweight concrete compositions |
USRE43253E1 (en) | 2005-03-22 | 2012-03-20 | Nova Chemicals Inc. | Lightweight concrete compositions |
US20070011971A1 (en) * | 2005-07-14 | 2007-01-18 | Sitkiewicz Christopher P | Wall framing assembly and method of securing a stud to a header or footer |
US9200446B1 (en) | 2006-02-21 | 2015-12-01 | The Steel Network, Inc. | Bridging member |
US7677009B2 (en) | 2007-02-02 | 2010-03-16 | Nova Chemicals Inc. | Roof truss system |
US20080184651A1 (en) * | 2007-02-02 | 2008-08-07 | Bowman Jay J | Roof truss system |
US20080236068A1 (en) * | 2007-03-29 | 2008-10-02 | Jahn Peter G | Drywall channel with pre-punched locating tabs |
US7975448B2 (en) | 2007-03-29 | 2011-07-12 | Chicago Metallic Corporation | Drywall channel with pre-punched locating tabs |
US8048219B2 (en) | 2007-09-20 | 2011-11-01 | Nova Chemicals Inc. | Method of placing concrete |
US20090151273A1 (en) * | 2007-12-12 | 2009-06-18 | Erich Jason Axsom | High-strength shear wall sheathing with pre-formed fastener holes |
US20230093777A9 (en) * | 2009-06-22 | 2023-03-23 | Dennis LeBlang | Metal framing self-locking connectors |
US20110225911A1 (en) * | 2010-03-22 | 2011-09-22 | Battisti Peter L | Self-bailing interior frame |
US8590255B2 (en) | 2011-10-26 | 2013-11-26 | Larry Randall Daudet | Bridging connector |
US8813456B2 (en) | 2011-10-26 | 2014-08-26 | Simpson Strong-Tie Company, Inc. | Bridging connector |
US9109361B2 (en) | 2011-10-26 | 2015-08-18 | Simpson Strong-Tie Company, Inc. | Bracing bridging member |
US20130318904A1 (en) * | 2012-06-04 | 2013-12-05 | United States Gypsum Company | Conventional fire-rated one-sided construction |
US11008753B2 (en) | 2013-03-13 | 2021-05-18 | Simpson Strong-Tie Company, Inc. | Corrugated bridging member |
USD692746S1 (en) | 2013-03-13 | 2013-11-05 | Clarkwestern Dietrich Building Systems Llc | Bridging clip |
US11065667B2 (en) | 2013-03-13 | 2021-07-20 | Simpson Strong-Tie Company, Inc. | Offset notch bridging connector |
US9849497B2 (en) | 2013-03-13 | 2017-12-26 | Simpson Strong-Tie Company Inc. | Teardrop and offset notch bridging connector |
US9732520B2 (en) | 2013-03-17 | 2017-08-15 | Simpson Strong-Tie Company, Inc. | Inverted bridging connector |
US9016024B1 (en) | 2013-11-27 | 2015-04-28 | Simpson Strong-Tie Company | Steel framing clip |
USD730545S1 (en) | 2013-12-30 | 2015-05-26 | Simpson Strong-Tie Company | Joist and rafter connector |
USD732708S1 (en) | 2013-12-30 | 2015-06-23 | Simpson Strong-Tie Company | Flared joist and rafter connector |
US9091056B2 (en) | 2013-12-31 | 2015-07-28 | Simpson Strong-Tie Company, Inc. | Multipurpose concrete anchor clip |
US11060281B2 (en) | 2016-04-04 | 2021-07-13 | Dennis LeBlang | Spacer braces in tandem for walls, joists and trusses |
US20180202144A1 (en) * | 2017-01-16 | 2018-07-19 | Allen Innovations, Llc | Bridging Termination Clip |
US10851539B2 (en) * | 2017-01-16 | 2020-12-01 | Allen Innovations, Llc | Bridging termination clip |
USD822455S1 (en) | 2017-02-24 | 2018-07-10 | Clarkwestern Dietrich Building Systems Llc | Bridging clip with a rib |
USD823095S1 (en) | 2017-02-24 | 2018-07-17 | Clarkwestern Dietrich Building Systems Llc | Bridging clip with ribs |
USD821851S1 (en) | 2017-02-24 | 2018-07-03 | Clarkwestern Dietrich Building Systems Llc | Bridging clip |
US20200040577A1 (en) * | 2017-05-09 | 2020-02-06 | Dennis LeBlang | Interlocking connectors with protrusion notched holes |
US10309107B2 (en) | 2018-03-16 | 2019-06-04 | Telling Industries, LLC | Cold rolled channel without clip |
US10590647B2 (en) | 2018-03-16 | 2020-03-17 | Telling Industries, LLC | Cold rolled channel without clip |
US11614117B2 (en) | 2019-07-10 | 2023-03-28 | Quantumparable, Inc | Removable fastener for structural elements and a method of its use |
Also Published As
Publication number | Publication date |
---|---|
US7159369B2 (en) | 2007-01-09 |
US20040031224A1 (en) | 2004-02-19 |
US20040237451A1 (en) | 2004-12-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6708460B1 (en) | Stud wall system and method using a combined bridging and spacing device | |
US6920734B2 (en) | Bridging system for off-module studs | |
US6021618A (en) | Stud wall system and method using spacer member | |
US6694695B2 (en) | Wall stud spacer system with spacer retainers | |
US8499512B2 (en) | Exterior wall construction product | |
US6199336B1 (en) | Metal wall framework and clip | |
US10309107B2 (en) | Cold rolled channel without clip | |
US6701689B2 (en) | Stud spacer | |
US7240459B2 (en) | Joist support apparatus | |
AU2001245375A1 (en) | Truss brace and truss structure made therewith | |
WO2001069000A1 (en) | Truss brace and truss structure made therewith | |
MX2012005600A (en) | Structural reinforcement. | |
US10590647B2 (en) | Cold rolled channel without clip | |
CA2370203C (en) | Stud wall system and method using combined bridging and spacing device | |
US9200446B1 (en) | Bridging member | |
EP1508652A2 (en) | Stud wall system and method using combined bridging and spacing device | |
WO1996023945A1 (en) | Frame for a building structure and method of assembling the same | |
US6463712B1 (en) | Floor truss repair bracket and method of fabrication | |
MXPA01011144A (en) | Stud wall system and method using combined bridging and spacing device | |
AU736249B2 (en) | Floor joist system and support member therefor | |
AU1827401A (en) | Apparatus for supporting a joist |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: TER-EL CO., LTD., OHIO Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ELDERSON, WILLIAM L.;REEL/FRAME:012347/0156 Effective date: 20010129 Owner name: DIETRICH INDUSTRIES, INC., PENNSYLVANIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:TER-EL CO., LTD.;REEL/FRAME:012347/0188 Effective date: 20010529 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
CC | Certificate of correction | ||
CC | Certificate of correction | ||
CC | Certificate of correction | ||
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
REMI | Maintenance fee reminder mailed | ||
AS | Assignment |
Owner name: CLARKDIETRICH BUILDING SYSTEMS LLC, OHIO Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:DIETRICH INDUSTRIES, INC.;REEL/FRAME:026333/0453 Effective date: 20110301 |
|
AS | Assignment |
Owner name: CLARKWESTERN DIETRICH BUILDING SYSTEMS LLC, OHIO Free format text: CHANGE OF NAME;ASSIGNOR:CLARKDIETRICH BUILDING SYSTEMS LLC;REEL/FRAME:026348/0166 Effective date: 20110209 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
AS | Assignment |
Owner name: CLARKWESTERN DIETRICH BUILDING SYSTEMS LLC, OHIO Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE 02/09/2011 WAS INCORRECTLY ENTERED AS DATE OF EXECUTION FOR ASSIGNOR. CORRECT DATE OF EXECUTION IS 03/21/2011 PREVIOUSLY RECORDED ON REEL 026348 FRAME 0166. ASSIGNOR(S) HEREBY CONFIRMS THE CHANGE OF NAME;ASSIGNOR:CLARKDIETRICH BUILDING SYSTEMS LLC;REEL/FRAME:027188/0220 Effective date: 20110321 |
|
FEPP | Fee payment procedure |
Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 12 |