US5010879A - Device for correcting spinal deformities - Google Patents

Device for correcting spinal deformities Download PDF

Info

Publication number
US5010879A
US5010879A US07/422,562 US42256289A US5010879A US 5010879 A US5010879 A US 5010879A US 42256289 A US42256289 A US 42256289A US 5010879 A US5010879 A US 5010879A
Authority
US
United States
Prior art keywords
elongated rod
hook
spinal deformities
rod
correcting spinal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US07/422,562
Inventor
Hideshige Moriya
Hiroshi Kitahara
Shohei Minami
Keijiro Isobe
Yoshinori Nakata
Chiaki Tanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Medical Instrument Manufacturing Co
Original Assignee
Tanaka Medical Instrument Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Medical Instrument Manufacturing Co filed Critical Tanaka Medical Instrument Manufacturing Co
Assigned to TANAKA MEDICAL INSTRUMENT MANUFACTURING CO. reassignment TANAKA MEDICAL INSTRUMENT MANUFACTURING CO. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: ISOBE, KEIJIRO, KITAHARA, HIROSHI, MINAMI, SHOHEI, MORIYA, HIDESHIGE, NAKATA, YOSHINORI, TANAKA, CHIAKI
Application granted granted Critical
Publication of US5010879A publication Critical patent/US5010879A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/70Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
    • A61B17/7001Screws or hooks combined with longitudinal elements which do not contact vertebrae
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/70Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
    • A61B17/7074Tools specially adapted for spinal fixation operations other than for bone removal or filler handling
    • A61B17/7091Tools specially adapted for spinal fixation operations other than for bone removal or filler handling for applying, tightening or removing longitudinal element-to-bone anchor locking elements, e.g. caps, set screws, nuts or wedges
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/70Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
    • A61B17/7001Screws or hooks combined with longitudinal elements which do not contact vertebrae
    • A61B17/7002Longitudinal elements, e.g. rods

Definitions

  • This invention relates to a device suitable for correcting spinal deformities and for use in treatments for correcting various spinal deformities of congenital or acquired type.
  • a device of the kind shown in FIG. 7 is generally used in procedures to correct congenital or acquired spinal deformities due to scoliosis, kyphosis, spinal caries, spondylolisthesis and injury of the spine.
  • the device 31 per FIG. 7 comprises a distraction rod 37, having a length sufficient to correct the curved or deformed spine to a predetermined shape, and hook members 32 which are attached on the distraction rod 37 to be engaged with the transversal projection or vertebral arch of a patient.
  • the distraction rod 37 is formed of metal in a substantially linear form, and is knurled on the outer surface to give an irregularly textured portion 38 thereto.
  • Each hook member 32 includes a main body 32a in a substantially rectangular form with a hook 33 on one side thereof, a retaining groove (or retaining hole) 34 for inserting and retaining the distraction rod 37 within the main body 32a on the side opposite to the hook 33, and a lock bolt 36 for fixing the rod 37 when it is inserted in the hole 34 at a predetermined position.
  • the device 31 is fixed to a patient by engaging at least two hook members 32, 32 with transversal projections or portions of the vertebral arch of the spine which are exposed by surgery for gradually pulling or stretching the deformed spine to a predetermined shape, and inserting the distraction rod 37 through the holes or grooves 34 of the hooks 32, 32 for maintaining the spine in a corrected state.
  • Fixing bolts 36, 36 are then tightened to support the pulled or stretched spine, and the muscular tunics, the fascia, and the skin of the patient are sutured so that the fixed state of the device may be maintained for a given period.
  • Through-hole 35 is provided to secure insertion and engagement of the hook member 32 at a predetermined location on the spine with hookholders.
  • the prior art device mentioned above is an improvement made on a spinal deformity correction device which was developed by Paul R. Harrington in Houston Texas, USA in 1962, and has been widely used.
  • the known spinal deformity correction device with the above-mentioned structure has a knurled surface on the outer periphery of the distraction rod so as to enable secure engagement of the hook member when fixing bolts are inserted.
  • the knurled rod may have an adverse effect on the human body and may lower the rigidity of the whole rod.
  • the knurled surface moreover, prevents hook members from smoothly sliding on the rod due to high frictional resistance.
  • the prior art device is inconvenient to use in that the knurled surface increases resistance, causes extra difficulties, and prolongs the recovery time.
  • the spinal deformity correction device comprises an elongated rod with a smooth peripheral surface, hook members each having a hook engagement member on one side thereof and a retaining groove through which said elongated rod may be inserted with a predetermined play, and a wedge member in the form of a cylinder having a slit and a flange on one end thereof, the device being structured so that the elongated rod is inserted through said hook members in the retaining grooves with said play, and the wedge members mounted on said elongated rod are forcibly fit within the play to thereby fix said hook members to the elongated rod at selected locations.
  • the elongated rod is preferably made of a rust-proof steel material such as stainless steel or the like. So far as the surface thereof is smooth, there are no specific restrictions on its diameter or its length, but it should preferably have a diameter sufficient to endure a load of 60 kg or higher in a deflection test.
  • each hook member be formed by molding of a material similar to that of the elongated rod. So far as each hook member has a retaining means comprising a groove through which the elongated rod is loosely inserted and a hook engagement member on one side thereof for engaging with the spine, there is no other specific limitation on the shape or form of the rest of the device.
  • the wedge member preferably is formed as a cylinder with a slit and a flange on one end thereof, and is preferably molded from material similar to that of the elongated rod and hook member.
  • the slit may be on a side wall of the cylindrical member and need not necessarily extend to or through the flange.
  • the engagement between the wedge member and the hook member may be made more secure simply by knurling the peripheral surface of the cylindrical member.
  • the spinal deformity correction device comprises an elongated rod of an appropriate length and diameter and having a smooth peripheral surface, hook members each having a retaining member which allows the elongated rod to be inserted therethrough with a predetermined play and a hook-like engagement member on one side thereof, and wedge members in the form of cylinders each having a flange on one end thereof and a slit.
  • plural hook members are hooked at predetermined positions on the transversal projections, spinal joints, or spinal arch of the deformed spine, and a separate outrigger member is used to correct the deformity between these hook members. Then, the elongated rod is securely affixed between these hook members for fixing and the outrigger device is removed, but the corrected state is maintained.
  • the use of the elongated rod which has a smooth peripheral surface instead of a knurled surface is advantageous in that it enhances safety for the patients and facilitates sliding between the rod and the hook members for easier handling.
  • the device does not use bolts or nuts for fixing the rod with the hook members, and as it uses cylindrical wedge members each having a flange on one end and a slit thereon, the device enables the insertion of the rod through the hook members easily and firmly so as to completely avoid deviation of the hook members as might otherwise occur during use.
  • FIGS. 1 through 3 are perspective views of component parts of the spinal deformity correction device according to a preferred embodiment of this invention and, specifically, FIG. 1 shows a hook member, FIG. 2 a wedge member and FIG. 3 an elongated rod;
  • FIG. 4 is a perspective view to show the assembled state of the device
  • FIG. 5 is a partial frontal view to show the device in use
  • FIG. 6 is a perspective view to show another embodiment of the wedge member.
  • FIG. 7. is a perspective view of the assembled state of a prior art spinal deformity correction device.
  • the device 1 comprises a hook member 2 shown in FIG. 1, a wedge member 6a shown in FIG. 2 and an elongated rod 11 shown in FIG. 3.
  • the hook member 2 comprises a cubic main body 2a from one side surface of which projects a hook-like engagement member 3 with a curved tip end.
  • the main body 2a is formed to have a retaining groove 4 on a lower surface thereof under the member 3 through which an elongated rod 11 is forcibly inserted in the longitudinal direction.
  • the groove 4 comprises an opening 4a, through which the elongated rod 11 may be inserted along the axial direction of the grove 4 and a retaining member 4b extending from said opening 4a for holding the rod 11 with play.
  • the retaining member 4b may alternatively be a hole which is bored through the main body 2ato hold the elongated rod 11 with play.
  • Attachment holes 5 are bored on side walls of the groove 4 respectively for attachment of jigs.
  • the wedge-like member 6a is a short cylindrical member provided with a flange 7a on one end and with tapered portion 8a on the other end.
  • a slit 9a is cut axially through the side wall of the cylindrical body and partially on the flange 7a, and no cylindrical body is knurled on its peripheral surface except for the tapered portion 8a, the flange 7a and a portion near the flange 7a.
  • the wedge-like member 6a has an outer diameter sufficient to allow forcible insertion of the retaining member 4b of the groove 4 of said hook member 2 and an internal diameter which allows the wedge member to be mounted from outside and made freely slidable thereon.
  • the elongated rod 11 preferably comprises a rod member having a perfectly circular cross-section of which the peripheral surface is not knurled but is formed smoothly.
  • the rod may have a length and thickness appropriate for the intended correctional procedures. There is no specific condition about the dimension, but the diameter thereof is preferably approximately 7 mm and the length may vary from 6 to 40 cm.
  • the spinal deformity correction device 1 comprising above-mentioned hook members 2, wedge members 6a and an elongated rod 11 is preferably made of a metal having a strength suitable for a surgical device, e.g., stainless steel or an alloy of molybdenum-nickel-chromium and steel.
  • the spine of the patient is exposed by a surgical operation, and two hook members 2, 2 of the device 1 are fixed at a predetermined interval with the patient's transversal projections, the spinal joints or arch of the deformed spine.
  • the engagement is secured with the hook engagement members 3 of the hook members 2. More particularly, the hook members 3 are hooked on the horizontal projections, spinal joints or arches of the spine of the patient at positions suitable for pulling and correcting the curved or deformed spine in a manner such that the curved openings of the members 3 face outward in opposite directions.
  • An outrigger device is then attached via a hook cover between engaged hooked members 2, 2 and the spine is gradually pulled or stretched within safe limits while the degree of pulling is adjusted and monitored by means of a torque wrench for the fixation.
  • the hook cover, the outrigger device and the torque wrench are not part of the claimed invention and are of any known type, hence they are not shown.
  • the elongated rod 11 is attached between the hook members 2, 2 by passage respectively through the grooves 4, 4.
  • Two wedge members 6a, 6a are mounted in advance on the rod 11 with their tapered portions 8a, 8a opposing each other on opposite sides of a hook member 2.
  • the member 2 is positioned between the tapered portions 8a, 8a of the wedge members 6a, 6a and the opening 4a of the member 2 is held on the side of the rod 11 and forced into it toward the member 4b so as to facilitate insertion thereof.
  • the elongated rod 11 is positioned with a predetermined play within the hole or groove 4 of the member 2, and the hook member 2 is positioned between the wedge members 6a, 6a.
  • the flanges 7a, 7a of the wedge members 6a, 6a are pressingly moved toward the hook member 2 so as to be forcibly inserted from the tapered portions 8a, 8a into the groove inside the member 2.
  • the wedge members can be reduced in diameter during their insertion due to the slit 9a formed axially therein, so as to be easily forced into the hole or groove 4 and, at the same time, the knurled surface on the outer peripheral surface 10a tightly contacts the inner periphery of the member 4b of the hole or groove 4 to prevent detachment therefrom so that the rod 11 can be firmly fixed with the hook members 2.
  • the selected spacing between the hook members 2, 2 is thereafter maintained by the rod 11, to thereby sustain the pulled out state of the spine A.
  • the outrigger device is then removed, and openings on the patient's muscular tunics, the fascia, and the skin are sutured. By retaining the device fixed to the patient's spine for a certain period, an excellent correctional effect can be achieved.
  • wedge member 6b is a short cylindrical body provided with an engagement flange 7b in a manner similar to the wedge member 6a on one end and a tapered portion 8b on the other end, and is formed with another slit perpendicularly to the axial slit to form a crenellated slit 9b in the side wall and a part of the flange 7b extending therefrom.
  • the peripheral surface except for the tapered member 8b and the flange 7b is knurled to form a roughened surface 10b.
  • the spinal deformity correction device comprises an elongated rod with a smooth peripheral surface, hook members each having a retaining portion through which said rod is inserted with play and a hook engagement portion on one side thereof and cylindrical wedges with slits each having a flange on one end thereof.
  • Plural hook members are hooked on the deformed spine and the spine is pulled. Under such a state, a rod is loosely inserted into the hook members and wedge members which have been mounted on said rod in advance are forcibly inserted into the interstices formed between loosely fitting hook members and the rod to thereby securely fix them.
  • the rod can be attached with the hook members simply and securely, and this greatly contributes to the reduction of operation time, enhancement of safety, and facilitation of the corrective procedure.

Landscapes

  • Health & Medical Sciences (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Neurology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Surgical Instruments (AREA)
  • Prostheses (AREA)
  • Orthopedics, Nursing, And Contraception (AREA)

Abstract

A device for correcting spinal deformities by attachment to portions of the spine of a patient has an elongated rod with a smooth outer peripheral surface, hook members each of which is formed with a hook-like engagement member on one end and a retaining portion through which the elongated rod is loosely inserted, and wedge-like members each in the form of a cylinder with a slit which is provided with a flange on one end. After the elongated rod is loosely inserted into the retaining portions of said hook members with a predetermined play, the wedge-like members mounted on the elongated rod are forcibly inserted into interstices formed between the loosely fitted rod and hook members, to thereby firmly fix the hook members with the elongated rod.

Description

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to a device suitable for correcting spinal deformities and for use in treatments for correcting various spinal deformities of congenital or acquired type.
2. Background of the Prior Art
A device of the kind shown in FIG. 7 is generally used in procedures to correct congenital or acquired spinal deformities due to scoliosis, kyphosis, spinal caries, spondylolisthesis and injury of the spine.
The device 31 per FIG. 7 comprises a distraction rod 37, having a length sufficient to correct the curved or deformed spine to a predetermined shape, and hook members 32 which are attached on the distraction rod 37 to be engaged with the transversal projection or vertebral arch of a patient.
The distraction rod 37 is formed of metal in a substantially linear form, and is knurled on the outer surface to give an irregularly textured portion 38 thereto.
Each hook member 32 includes a main body 32a in a substantially rectangular form with a hook 33 on one side thereof, a retaining groove (or retaining hole) 34 for inserting and retaining the distraction rod 37 within the main body 32a on the side opposite to the hook 33, and a lock bolt 36 for fixing the rod 37 when it is inserted in the hole 34 at a predetermined position.
The device 31 is fixed to a patient by engaging at least two hook members 32, 32 with transversal projections or portions of the vertebral arch of the spine which are exposed by surgery for gradually pulling or stretching the deformed spine to a predetermined shape, and inserting the distraction rod 37 through the holes or grooves 34 of the hooks 32, 32 for maintaining the spine in a corrected state. Fixing bolts 36, 36 are then tightened to support the pulled or stretched spine, and the muscular tunics, the fascia, and the skin of the patient are sutured so that the fixed state of the device may be maintained for a given period. Through-hole 35 is provided to secure insertion and engagement of the hook member 32 at a predetermined location on the spine with hookholders.
The prior art device mentioned above is an improvement made on a spinal deformity correction device which was developed by Paul R. Harrington in Houston Texas, USA in 1962, and has been widely used.
The known spinal deformity correction device with the above-mentioned structure has a knurled surface on the outer periphery of the distraction rod so as to enable secure engagement of the hook member when fixing bolts are inserted. The knurled rod, on the other hand, may have an adverse effect on the human body and may lower the rigidity of the whole rod. The knurled surface moreover, prevents hook members from smoothly sliding on the rod due to high frictional resistance.
As this device has the hook members fixed on the rod by tightening bolts, the operation of tightening/loosening the bolts is quite cumbersome.
The prior art device is inconvenient to use in that the knurled surface increases resistance, causes extra difficulties, and prolongs the recovery time.
There is, therefore, a need for a more effective and advantageous spinal deformity correction device.
SUMMARY OF THE INVENTION
It is a principal object of this invention to eliminate problems encountered in known spinal deformity correction devices and to provide a device for correcting spinal deformities which is extremely easy to handle, either does not or hardly harms the patient's body, and minimizes the treatment time.
In order to achieve these and other related objects, the spinal deformity correction device according to a preferred embodiment of this invention comprises an elongated rod with a smooth peripheral surface, hook members each having a hook engagement member on one side thereof and a retaining groove through which said elongated rod may be inserted with a predetermined play, and a wedge member in the form of a cylinder having a slit and a flange on one end thereof, the device being structured so that the elongated rod is inserted through said hook members in the retaining grooves with said play, and the wedge members mounted on said elongated rod are forcibly fit within the play to thereby fix said hook members to the elongated rod at selected locations.
The elongated rod is preferably made of a rust-proof steel material such as stainless steel or the like. So far as the surface thereof is smooth, there are no specific restrictions on its diameter or its length, but it should preferably have a diameter sufficient to endure a load of 60 kg or higher in a deflection test.
It is desirable that the hook member be formed by molding of a material similar to that of the elongated rod. So far as each hook member has a retaining means comprising a groove through which the elongated rod is loosely inserted and a hook engagement member on one side thereof for engaging with the spine, there is no other specific limitation on the shape or form of the rest of the device.
The wedge member preferably is formed as a cylinder with a slit and a flange on one end thereof, and is preferably molded from material similar to that of the elongated rod and hook member.
The slit may be on a side wall of the cylindrical member and need not necessarily extend to or through the flange. The engagement between the wedge member and the hook member may be made more secure simply by knurling the peripheral surface of the cylindrical member.
When an end of the cylindrical member is tapered, it facilitates insertion of the wedge member into the hook member.
The spinal deformity correction device according to a preferred embodiment of this invention comprises an elongated rod of an appropriate length and diameter and having a smooth peripheral surface, hook members each having a retaining member which allows the elongated rod to be inserted therethrough with a predetermined play and a hook-like engagement member on one side thereof, and wedge members in the form of cylinders each having a flange on one end thereof and a slit.
These three types of component members of the device are sequentially used and assembled during the treatment for correcting spinal deformities.
More particularly, plural hook members are hooked at predetermined positions on the transversal projections, spinal joints, or spinal arch of the deformed spine, and a separate outrigger member is used to correct the deformity between these hook members. Then, the elongated rod is securely affixed between these hook members for fixing and the outrigger device is removed, but the corrected state is maintained.
The use of the elongated rod which has a smooth peripheral surface instead of a knurled surface is advantageous in that it enhances safety for the patients and facilitates sliding between the rod and the hook members for easier handling.
As this device does not use bolts or nuts for fixing the rod with the hook members, and as it uses cylindrical wedge members each having a flange on one end and a slit thereon, the device enables the insertion of the rod through the hook members easily and firmly so as to completely avoid deviation of the hook members as might otherwise occur during use.
As the wedge members can be easily removed after correction, in practice this is done simply by fitting a separate dedicated device with the flanges of the cylindrical ends to pull out the wedge members which have been forcibly inserted through the retaining holes or grooves, thus allowing easy separation of the hook members from the rod.
BRIEF DESCRIPTION OF THE DRAWINGS
FIGS. 1 through 3 are perspective views of component parts of the spinal deformity correction device according to a preferred embodiment of this invention and, specifically, FIG. 1 shows a hook member, FIG. 2 a wedge member and FIG. 3 an elongated rod;
FIG. 4 is a perspective view to show the assembled state of the device;
FIG. 5 is a partial frontal view to show the device in use;
FIG. 6 is a perspective view to show another embodiment of the wedge member; and
FIG. 7. is a perspective view of the assembled state of a prior art spinal deformity correction device.
DESCRIPTION OF PREFERRED EMBODIMENT 10 An embodiment of the spinal deformity correction device according to this invention will now be described in further detail, referring to the attached drawings.
In a preferred embodiment, the device 1 comprises a hook member 2 shown in FIG. 1, a wedge member 6a shown in FIG. 2 and an elongated rod 11 shown in FIG. 3.
As shown in FIG. 1, the hook member 2 comprises a cubic main body 2a from one side surface of which projects a hook-like engagement member 3 with a curved tip end. The main body 2a is formed to have a retaining groove 4 on a lower surface thereof under the member 3 through which an elongated rod 11 is forcibly inserted in the longitudinal direction.
The groove 4 comprises an opening 4a, through which the elongated rod 11 may be inserted along the axial direction of the grove 4 and a retaining member 4b extending from said opening 4a for holding the rod 11 with play.
The retaining member 4b may alternatively be a hole which is bored through the main body 2ato hold the elongated rod 11 with play.
Attachment holes 5 are bored on side walls of the groove 4 respectively for attachment of jigs.
The wedge-like member 6a is a short cylindrical member provided with a flange 7a on one end and with tapered portion 8a on the other end. A slit 9a is cut axially through the side wall of the cylindrical body and partially on the flange 7a, and no cylindrical body is knurled on its peripheral surface except for the tapered portion 8a, the flange 7a and a portion near the flange 7a.
The wedge-like member 6a has an outer diameter sufficient to allow forcible insertion of the retaining member 4b of the groove 4 of said hook member 2 and an internal diameter which allows the wedge member to be mounted from outside and made freely slidable thereon.
The elongated rod 11 preferably comprises a rod member having a perfectly circular cross-section of which the peripheral surface is not knurled but is formed smoothly. The rod may have a length and thickness appropriate for the intended correctional procedures. There is no specific condition about the dimension, but the diameter thereof is preferably approximately 7 mm and the length may vary from 6 to 40 cm.
The spinal deformity correction device 1 comprising above-mentioned hook members 2, wedge members 6a and an elongated rod 11 is preferably made of a metal having a strength suitable for a surgical device, e.g., stainless steel or an alloy of molybdenum-nickel-chromium and steel.
The procedure for using the spinal deformity correction device 1 will now be described.
The spine of the patient is exposed by a surgical operation, and two hook members 2, 2 of the device 1 are fixed at a predetermined interval with the patient's transversal projections, the spinal joints or arch of the deformed spine.
The engagement is secured with the hook engagement members 3 of the hook members 2. More particularly, the hook members 3 are hooked on the horizontal projections, spinal joints or arches of the spine of the patient at positions suitable for pulling and correcting the curved or deformed spine in a manner such that the curved openings of the members 3 face outward in opposite directions.
An outrigger device is then attached via a hook cover between engaged hooked members 2, 2 and the spine is gradually pulled or stretched within safe limits while the degree of pulling is adjusted and monitored by means of a torque wrench for the fixation. (The hook cover, the outrigger device and the torque wrench are not part of the claimed invention and are of any known type, hence they are not shown.)
Then, after the spine is pulled and corrected to a desired position by the outrigger device, the elongated rod 11 is attached between the hook members 2, 2 by passage respectively through the grooves 4, 4.
Two wedge members 6a, 6a are mounted in advance on the rod 11 with their tapered portions 8a, 8a opposing each other on opposite sides of a hook member 2. When the rod 11 is to be attached to the hook member 2, the member 2 is positioned between the tapered portions 8a, 8a of the wedge members 6a, 6a and the opening 4a of the member 2 is held on the side of the rod 11 and forced into it toward the member 4b so as to facilitate insertion thereof.
In this state, the elongated rod 11 is positioned with a predetermined play within the hole or groove 4 of the member 2, and the hook member 2 is positioned between the wedge members 6a, 6a. By using a tool B, shown in FIG. 5, the flanges 7a, 7a of the wedge members 6a, 6a are pressingly moved toward the hook member 2 so as to be forcibly inserted from the tapered portions 8a, 8a into the groove inside the member 2.
Due to the tapered portions formed on ends of the wedges 6a, 6a they are easily inserted into the interstices formed by the loose engagement provided by the predetermined play between the hook member 2 and the rod 11 passed therethrough.
The wedge members can be reduced in diameter during their insertion due to the slit 9a formed axially therein, so as to be easily forced into the hole or groove 4 and, at the same time, the knurled surface on the outer peripheral surface 10a tightly contacts the inner periphery of the member 4b of the hole or groove 4 to prevent detachment therefrom so that the rod 11 can be firmly fixed with the hook members 2.
The selected spacing between the hook members 2, 2 is thereafter maintained by the rod 11, to thereby sustain the pulled out state of the spine A.
The outrigger device is then removed, and openings on the patient's muscular tunics, the fascia, and the skin are sutured. By retaining the device fixed to the patient's spine for a certain period, an excellent correctional effect can be achieved.
The wedge member according to another preferred embodiment has a structure similar to that shown in FIG. 6. More particularly, wedge member 6b is a short cylindrical body provided with an engagement flange 7b in a manner similar to the wedge member 6a on one end and a tapered portion 8b on the other end, and is formed with another slit perpendicularly to the axial slit to form a crenellated slit 9b in the side wall and a part of the flange 7b extending therefrom. The peripheral surface except for the tapered member 8b and the flange 7b is knurled to form a roughened surface 10b.
The spinal deformity correction device according to this invention comprises an elongated rod with a smooth peripheral surface, hook members each having a retaining portion through which said rod is inserted with play and a hook engagement portion on one side thereof and cylindrical wedges with slits each having a flange on one end thereof. Plural hook members are hooked on the deformed spine and the spine is pulled. Under such a state, a rod is loosely inserted into the hook members and wedge members which have been mounted on said rod in advance are forcibly inserted into the interstices formed between loosely fitting hook members and the rod to thereby securely fix them.
As device having the above-mentioned structure does not have a knurled surface on the rod, it does not adversely affect the patient's body of on whom it is being used for spinal correction. Due to the use of the wedge members, the rod can be attached with the hook members simply and securely, and this greatly contributes to the reduction of operation time, enhancement of safety, and facilitation of the corrective procedure.
In this disclosure, there are shown and described only the preferred embodiments of the invention, but, as aforementioned, it is to be understood that the invention is capable of use in various other combinations and environments and is capable of changes or modifications within the scope of the inventive concept as expressed herein.

Claims (9)

What is claimed is:
1. A device for correcting spinal deformities by attachment to a patient's spine for a predetermined period for correctively fixing the same, comprising:
an elongated rod, having a smooth peripheral surface;
a hook member, formed with a hook-like engagement member at one end and comprising a retaining portion through which said elongated rod is loosely inserted; and
a wedge-like fixing member in the form of a hollow cylinder formed with a lengthwise slit, said cylinder having a flange at a first end and a taper at a second end,
whereby said elongated rod is loosely inserted into said retaining portion of said hook member with a predetermined play and the fixing member mounted on the elongated rod is forcibly inserted at said tapered end thereof into an interstice formed between the loosely fitted rod and hook members to thereby firmly fix the hook member to the elongated rod.
2. A device for correcting spinal deformities as claimed in claim 1, wherein:
said elongated rod is made of a rust-proof steel material.
3. A device for correcting spinal deformities as claimed in claim 1, wherein:
said elongated rod has a diameter sufficient to endure a minimum compressive load of 60 kg in a deflection test.
4. A device for correcting spinal deformities as claimed in claim 1, wherein:
said hook member is formed by molding a material similar to that of the elongated rod.
5. A device for correcting spinal deformities as claimed in claim 1, wherein:
said fixing member is molded from a material similar to that of said elongated rod and hook member.
6. A device for correcting spinal deformities as claimed in claim 1 wherein:
said cylinder of the wedge has a knurled peripheral surface.
7. A device for correcting spinal deformities and fixing the same as claimed in claim 1, wherein:
said fixing member is formed to further comprise a tapered portion at said first end thereof.
8. A device for correcting spinal deformities as claimed in claim 1, wherein:
said slit in said fixing member comprises an axially oriented portion and another portion oriented perpendicular thereto to form a crenellated slit in the side wall of the fixing member and in a part of said flange thereof.
9. A device for correcting spinal deformities as claim in claim 7, wherein:
said slit in said fixing member comprises an axially oriented portion and another portion oriented perpendicular thereto to form a crenellated slit in the side wall of the fixing member and in a part of said flange thereof.
US07/422,562 1989-03-31 1989-10-17 Device for correcting spinal deformities Expired - Lifetime US5010879A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP1082019A JPH0620466B2 (en) 1989-03-31 1989-03-31 Spinal column correction device
JP1-82019 1989-03-31

Publications (1)

Publication Number Publication Date
US5010879A true US5010879A (en) 1991-04-30

Family

ID=13762813

Family Applications (1)

Application Number Title Priority Date Filing Date
US07/422,562 Expired - Lifetime US5010879A (en) 1989-03-31 1989-10-17 Device for correcting spinal deformities

Country Status (2)

Country Link
US (1) US5010879A (en)
JP (1) JPH0620466B2 (en)

Cited By (138)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5112332A (en) * 1988-12-21 1992-05-12 Zimmer, Inc. Method of performing spinal surgery
US5116334A (en) * 1988-12-21 1992-05-26 Zimmer, Inc. Posterior spinal system and method
US5147359A (en) * 1988-12-21 1992-09-15 Zimmer, Inc. Spinal hook body
US5154718A (en) * 1988-12-21 1992-10-13 Zimmer, Inc. Spinal coupler assembly
US5201734A (en) * 1988-12-21 1993-04-13 Zimmer, Inc. Spinal locking sleeve assembly
US5257993A (en) * 1991-10-04 1993-11-02 Acromed Corporation Top-entry rod retainer
EP0577219A1 (en) * 1992-06-30 1994-01-05 Bristol-Myers Squibb Company Spinal implant system
US5281223A (en) * 1992-09-21 1994-01-25 Ray R Charles Tool and method for derotating scoliotic spine
AU648797B2 (en) * 1990-06-13 1994-05-05 Stryker Trauma Gmbh A device for applying a tensional force between vertebrae of the human vertebral column
US5312405A (en) * 1992-07-06 1994-05-17 Zimmer, Inc. Spinal rod coupler
DE4303770C1 (en) * 1993-02-09 1994-05-26 Plus Endoprothetik Ag Rotkreuz Stiffening and correction system for spinal vertebrae - comprises screw-ended holders with connecting rod supporting clamped distance pieces.
US5423818A (en) * 1993-02-17 1995-06-13 Danek Medical, Inc. Clamp for attaching a vertebral fixation element to a spinal rod
US5437671A (en) * 1992-03-10 1995-08-01 Zimmer, Inc. Perpendicular rod connector for spinal fixation device
WO1995026687A1 (en) * 1994-03-31 1995-10-12 Biomet Inc Spine fixation instrumentation
US5540688A (en) * 1991-05-30 1996-07-30 Societe "Psi" Intervertebral stabilization device incorporating dampers
US5658284A (en) * 1994-06-30 1997-08-19 Allo Pro Ag Connection member for the connection of a resilient rod with a bone screw which can be anchored in a vertebra
US5928232A (en) * 1994-11-16 1999-07-27 Advanced Spine Fixation Systems, Incorporated Spinal fixation system
US5989251A (en) * 1998-06-17 1999-11-23 Surgical Dynamics, Inc. Apparatus for spinal stabilization
US6090111A (en) * 1998-06-17 2000-07-18 Surgical Dynamics, Inc. Device for securing spinal rods
US6234705B1 (en) 1999-04-06 2001-05-22 Synthes (Usa) Transconnector for coupling spinal rods
US6283967B1 (en) 1999-12-17 2001-09-04 Synthes (U.S.A.) Transconnector for coupling spinal rods
FR2806615A1 (en) * 2000-03-21 2001-09-28 Cremascolli Ortho S A Vertebral fracture reducing apparatus has fixings shaped to receive cylindrical components holding linking rods
US6302882B1 (en) 1997-05-15 2001-10-16 Surgical Dynamics, Inc. Transverse rod connector clip
US6375656B1 (en) * 1997-10-13 2002-04-23 Dimso (Distribution Medicale Du Sud-Ouest) Device for fixing a rod to a thin bone wall
US20020052603A1 (en) * 1999-03-30 2002-05-02 Surgical Dynamics, Inc. Apparatus for spinal stabilization
US6413257B1 (en) * 1997-05-15 2002-07-02 Surgical Dynamics, Inc. Clamping connector for spinal fixation systems
US6432108B1 (en) * 2000-01-24 2002-08-13 Depuy Orthopaedics, Inc. Transverse connector
US20020116000A1 (en) * 1998-10-20 2002-08-22 Zucherman James F. Supplemental spine fixation device and method
US20020120272A1 (en) * 1998-06-17 2002-08-29 Hansen Yuan Device for securing spinal rods
US20030114853A1 (en) * 2001-10-12 2003-06-19 Ian Burgess Polyaxial cross connector
US20040049188A1 (en) * 2002-09-09 2004-03-11 Depuy Acromed, Inc. Snap-on spinal rod connector
US20040092934A1 (en) * 2002-04-24 2004-05-13 Howland Robert S. Multi selective axis spinal fixation system
US6749361B2 (en) 1997-10-06 2004-06-15 Werner Hermann Shackle element for clamping a fixation rod, a method for making a shackle element, a hook with a shackle element and a rode connector with a shackle element
US6770075B2 (en) 2001-05-17 2004-08-03 Robert S. Howland Spinal fixation apparatus with enhanced axial support and methods for use
US20040243128A1 (en) * 2001-05-17 2004-12-02 Howland Robert S. Selective axis posterior lumbar spinal plating fixation apparatus and methods for use
US20050065517A1 (en) * 2003-09-24 2005-03-24 Chin Kingsley Richard Methods and devices for improving percutaneous access in minimally invasive surgeries
US20050080416A1 (en) * 2003-10-09 2005-04-14 Ryan Christopher J. Linking transconnector for coupling spinal rods
US20050080414A1 (en) * 2003-10-14 2005-04-14 Keyer Thomas R. Spinal fixation hooks and method of spinal fixation
US20050228377A1 (en) * 2004-04-07 2005-10-13 Depuy Spine, Inc. Spinal cross-connectors
US20050228326A1 (en) * 2004-03-31 2005-10-13 Depuy Spine, Inc. Head-to-head connector spinal fixation system
US20050277927A1 (en) * 2004-06-14 2005-12-15 Guenther Kevin V Fastening system for spinal stabilization system
US20060009766A1 (en) * 2004-07-08 2006-01-12 Andrew Lee Transverse fixation device for spinal fixation systems
US20060009767A1 (en) * 2004-07-02 2006-01-12 Kiester P D Expandable rod system to treat scoliosis and method of using the same
US20060038946A1 (en) * 2003-03-31 2006-02-23 Sharp Kabushiki Kaisha Liquid crystal display device and method of manufacturing the same
US20060058789A1 (en) * 2004-08-27 2006-03-16 Depuy Spine, Inc. Dual rod cross connectors and inserter tools
US20060064092A1 (en) * 2001-05-17 2006-03-23 Howland Robert S Selective axis serrated rod low profile spinal fixation system
US20060064091A1 (en) * 2004-03-31 2006-03-23 Depuy Spine, Inc. Rod attachment for head to head cross connector
US20060089654A1 (en) * 2004-10-25 2006-04-27 Lins Robert E Interspinous distraction devices and associated methods of insertion
US20060106397A1 (en) * 2004-10-25 2006-05-18 Lins Robert E Interspinous distraction devices and associated methods of insertion
US20060235387A1 (en) * 2005-04-15 2006-10-19 Sdgi Holdings, Inc. Transverse process/laminar spacer
US20060241614A1 (en) * 2005-04-12 2006-10-26 Sdgi Holdings, Inc. Implants and methods for posterior dynamic stabilization of a spinal motion segment
US20060241613A1 (en) * 2005-04-12 2006-10-26 Sdgi Holdings, Inc. Implants and methods for inter-transverse process dynamic stabilization of a spinal motion segment
US20070073289A1 (en) * 2005-09-27 2007-03-29 Depuy Spine, Inc. Posterior dynamic stabilization systems and methods
US20070083199A1 (en) * 2003-09-04 2007-04-12 Abbott Spine Spinal implant
US20070100340A1 (en) * 2005-10-27 2007-05-03 Sdgi Holdings, Inc. Intervertebral prosthetic device for spinal stabilization and method of implanting same
US20070123870A1 (en) * 2005-07-18 2007-05-31 Jeon Dong M Bi-polar screw assembly
US20070191842A1 (en) * 2006-01-30 2007-08-16 Sdgi Holdings, Inc. Spinal fixation devices and methods of use
US20070233079A1 (en) * 2006-02-06 2007-10-04 Stryker Spine Rod contouring apparatus and method for percutaneous pedicle screw extension
US20080086115A1 (en) * 2006-09-07 2008-04-10 Warsaw Orthopedic, Inc. Intercostal spacer device and method for use in correcting a spinal deformity
US20080125789A1 (en) * 2006-09-25 2008-05-29 Stryker Spine Percutaneous compression and distraction system
US20080140124A1 (en) * 2006-12-07 2008-06-12 Dong Myung Jeon Spinal rod transverse connector system
US20080183223A1 (en) * 2005-09-26 2008-07-31 Jeon Dong M Hybrid jointed bone screw system
US20090043339A1 (en) * 2007-05-22 2009-02-12 K2M, Inc. Universal transverse connector device
US20090112207A1 (en) * 2007-10-30 2009-04-30 Blair Walker Skeletal manipulation method
US20090143823A1 (en) * 2008-11-13 2009-06-04 Jeon Dong M Transverse connector system for spinal rods
US20090171395A1 (en) * 2007-12-28 2009-07-02 Jeon Dong M Dynamic spinal rod system
US20090187217A1 (en) * 2008-01-18 2009-07-23 Mark Weiman Transverse Connector
US20090192548A1 (en) * 2008-01-25 2009-07-30 Jeon Dong M Pedicle-laminar dynamic spinal stabilization device
US20090194206A1 (en) * 2008-01-31 2009-08-06 Jeon Dong M Systems and methods for wrought nickel/titanium alloy flexible spinal rods
US20090248076A1 (en) * 2008-03-26 2009-10-01 Reynolds Martin A Interspinous Process Spacer Having Tight Access Offset Hooks
US20090248079A1 (en) * 2008-03-26 2009-10-01 Kwak Seungkyu Daniel S-Shaped Interspinous Process Spacer Having Tight Access Offset Hooks
US20090318967A1 (en) * 2007-01-23 2009-12-24 Dong Myung Jeon Spacer for use in a surgical operation for spinous process of spine
US20100049256A1 (en) * 2007-01-30 2010-02-25 Dong Myung Jeon Anterior cerivcal plating system
US20100094302A1 (en) * 2008-10-13 2010-04-15 Scott Pool Spinal distraction system
US20100121323A1 (en) * 2008-11-10 2010-05-13 Ellipse Technologies, Inc. External adjustment device for distraction device
US20100185247A1 (en) * 2008-09-09 2010-07-22 Richelsoph Marc E Polyaxial screw assembly
US20100217271A1 (en) * 2009-02-23 2010-08-26 Ellipse Technologies, Inc. Spinal distraction system
US7896902B2 (en) 2006-04-05 2011-03-01 Dong Myung Jeon Multi-axial double locking bone screw assembly
US7918876B2 (en) 2003-03-24 2011-04-05 Theken Spine, Llc Spinal implant adjustment device
US7981025B2 (en) 2006-10-20 2011-07-19 Ellipse Technologies, Inc. Adjustable implant and method of use
US8002798B2 (en) 2003-09-24 2011-08-23 Stryker Spine System and method for spinal implant placement
US8114136B2 (en) 2008-03-18 2012-02-14 Warsaw Orthopedic, Inc. Implants and methods for inter-spinous process dynamic stabilization of a spinal motion segment
WO2012072413A1 (en) * 2010-12-03 2012-06-07 Zimmer Spine Rod holding device
US20120165877A1 (en) * 2004-06-23 2012-06-28 Rachiotek Llc Method For Stabilizing A Spine
US8241330B2 (en) 2007-01-11 2012-08-14 Lanx, Inc. Spinous process implants and associated methods
US8277489B2 (en) 2006-09-26 2012-10-02 Synthes Usa, Llc Transconnector
US8361117B2 (en) 2006-11-08 2013-01-29 Depuy Spine, Inc. Spinal cross connectors
US20130197583A1 (en) * 2006-12-28 2013-08-01 Depuy Spine, Inc. Spinal Anchoring Screw
US20140005724A1 (en) * 2012-07-02 2014-01-02 James C. Robinson Bone screw coupling assembly
US8777996B2 (en) 2010-07-12 2014-07-15 Globus Medical, Inc. Interspinous ligament transverse connector
US9248043B2 (en) 2010-06-30 2016-02-02 Ellipse Technologies, Inc. External adjustment device for distraction device
US9408716B1 (en) 2013-12-06 2016-08-09 Stryker European Holdings I, Llc Percutaneous posterior spinal fusion implant construction and method
US9456851B2 (en) 2007-10-23 2016-10-04 Intelligent Implant Systems, Llc Spinal implant
US9468470B2 (en) 2012-07-09 2016-10-18 Zimmer Spine Anchor for attachment to a bony structure
US9510875B2 (en) 2013-03-14 2016-12-06 Stryker European Holdings I, Llc Systems and methods for percutaneous spinal fusion
US9510863B2 (en) 2012-07-02 2016-12-06 Spectrum Spine Ip Holdings, Llc Bone screw coupling assembly
US9526531B2 (en) 2013-10-07 2016-12-27 Intelligent Implant Systems, Llc Polyaxial plate rod system and surgical procedure
US9561057B2 (en) 2009-09-21 2017-02-07 Globus Medical, Inc. Transverse connector
US9622795B2 (en) 2013-12-13 2017-04-18 Stryker European Holdings I, Llc Tissue retraction and vertebral displacement devices, systems, and methods for posterior spinal fusion
US9724136B2 (en) 2007-01-11 2017-08-08 Zimmer Biomet Spine, Inc. Spinous process implants and associated methods
US9743960B2 (en) 2007-01-11 2017-08-29 Zimmer Biomet Spine, Inc. Interspinous implants and methods
US9744050B1 (en) 2013-12-06 2017-08-29 Stryker European Holdings I, Llc Compression and distraction system for percutaneous posterior spinal fusion
US9770271B2 (en) 2005-10-25 2017-09-26 Zimmer Biomet Spine, Inc. Spinal implants and methods
US9827020B2 (en) 2013-03-14 2017-11-28 Stryker European Holdings I, Llc Percutaneous spinal cross link system and method
US10016220B2 (en) 2011-11-01 2018-07-10 Nuvasive Specialized Orthopedics, Inc. Adjustable magnetic devices and methods of using same
US10034693B2 (en) 2016-07-07 2018-07-31 Mark S. Stern Spinous laminar clamp assembly
US10034690B2 (en) 2014-12-09 2018-07-31 John A. Heflin Spine alignment system
US10159579B1 (en) 2013-12-06 2018-12-25 Stryker European Holdings I, Llc Tubular instruments for percutaneous posterior spinal fusion systems and methods
US10238427B2 (en) 2015-02-19 2019-03-26 Nuvasive Specialized Orthopedics, Inc. Systems and methods for vertebral adjustment
US10271885B2 (en) 2014-12-26 2019-04-30 Nuvasive Specialized Orthopedics, Inc. Systems and methods for distraction
US10405891B2 (en) 2010-08-09 2019-09-10 Nuvasive Specialized Orthopedics, Inc. Maintenance feature in magnetic implant
US10478232B2 (en) 2009-04-29 2019-11-19 Nuvasive Specialized Orthopedics, Inc. Interspinous process device and method
US10575876B2 (en) 2016-04-20 2020-03-03 K2M, Inc. Spinal stabilization assemblies with bone hooks
US10617453B2 (en) 2015-10-16 2020-04-14 Nuvasive Specialized Orthopedics, Inc. Adjustable devices for treating arthritis of the knee
US10646262B2 (en) 2011-02-14 2020-05-12 Nuvasive Specialized Orthopedics, Inc. System and method for altering rotational alignment of bone sections
US10743794B2 (en) 2011-10-04 2020-08-18 Nuvasive Specialized Orthopedics, Inc. Devices and methods for non-invasive implant length sensing
US10751094B2 (en) 2013-10-10 2020-08-25 Nuvasive Specialized Orthopedics, Inc. Adjustable spinal implant
USRE48250E1 (en) 2012-01-16 2020-10-13 K2M, Inc. Rod reducer, compressor, distractor system
US10835290B2 (en) 2015-12-10 2020-11-17 Nuvasive Specialized Orthopedics, Inc. External adjustment device for distraction device
US10918425B2 (en) 2016-01-28 2021-02-16 Nuvasive Specialized Orthopedics, Inc. System and methods for bone transport
US11191579B2 (en) 2012-10-29 2021-12-07 Nuvasive Specialized Orthopedics, Inc. Adjustable devices for treating arthritis of the knee
US11202707B2 (en) 2008-03-25 2021-12-21 Nuvasive Specialized Orthopedics, Inc. Adjustable implant system
US11207110B2 (en) 2009-09-04 2021-12-28 Nuvasive Specialized Orthopedics, Inc. Bone growth device and method
US11241257B2 (en) 2008-10-13 2022-02-08 Nuvasive Specialized Orthopedics, Inc. Spinal distraction system
US11246694B2 (en) 2014-04-28 2022-02-15 Nuvasive Specialized Orthopedics, Inc. System for informational magnetic feedback in adjustable implants
USRE49061E1 (en) 2012-10-18 2022-05-10 Nuvasive Specialized Orthopedics, Inc. Intramedullary implants for replacing lost bone
US11357547B2 (en) 2014-10-23 2022-06-14 Nuvasive Specialized Orthopedics Inc. Remotely adjustable interactive bone reshaping implant
US11577097B2 (en) 2019-02-07 2023-02-14 Nuvasive Specialized Orthopedics, Inc. Ultrasonic communication in medical devices
US11589901B2 (en) 2019-02-08 2023-02-28 Nuvasive Specialized Orthopedics, Inc. External adjustment device
US11696836B2 (en) 2013-08-09 2023-07-11 Nuvasive, Inc. Lordotic expandable interbody implant
US11737787B1 (en) 2021-05-27 2023-08-29 Nuvasive, Inc. Bone elongating devices and methods of use
US11766252B2 (en) 2013-07-31 2023-09-26 Nuvasive Specialized Orthopedics, Inc. Noninvasively adjustable suture anchors
US11801187B2 (en) 2016-02-10 2023-10-31 Nuvasive Specialized Orthopedics, Inc. Systems and methods for controlling multiple surgical variables
US11806054B2 (en) 2021-02-23 2023-11-07 Nuvasive Specialized Orthopedics, Inc. Adjustable implant, system and methods
US11812923B2 (en) 2011-10-07 2023-11-14 Alan Villavicencio Spinal fixation device
US11839410B2 (en) 2012-06-15 2023-12-12 Nuvasive Inc. Magnetic implants with improved anatomical compatibility
US11857226B2 (en) 2013-03-08 2024-01-02 Nuvasive Specialized Orthopedics Systems and methods for ultrasonic detection of device distraction
US12023073B2 (en) 2021-08-03 2024-07-02 Nuvasive Specialized Orthopedics, Inc. Adjustable implant

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10660722B2 (en) * 2016-12-14 2020-05-26 Ethicon Llc Ultrasonic surgical instrument with integral shaft assembly torque wrench
CN109758284A (en) * 2019-02-02 2019-05-17 佛山市中峪智能增材制造加速器有限公司 A kind of spine correcting brace

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2487669A1 (en) * 1980-07-30 1982-02-05 Wyzsza Szkola Inzynierska SURGICAL SPACER FOR TREATING THE VERTEBRAL COLUMN
DE3032237A1 (en) * 1980-08-27 1982-03-04 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V., 8000 München Bar implant for surgical scoliosis treatment - has hook secured to bar by friction and engaging vertebrae
US4404967A (en) * 1982-01-18 1983-09-20 Wyzsza Szkola Inzynierska Im. Jurija Gagarina Surgical strut for treatment of the back-bone
US4422451A (en) * 1982-03-22 1983-12-27 Ali Kalamchi Spinal compression and distraction instrumentation
US4433676A (en) * 1981-04-06 1984-02-28 Bobechko Kevin A Self-adjusting spinal scoliosis fusion hook
US4641636A (en) * 1983-05-04 1987-02-10 Cotrel Yves P C A Device for supporting the rachis
US4773402A (en) * 1985-09-13 1988-09-27 Isola Implants, Inc. Dorsal transacral surgical implant

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2487669A1 (en) * 1980-07-30 1982-02-05 Wyzsza Szkola Inzynierska SURGICAL SPACER FOR TREATING THE VERTEBRAL COLUMN
DE3032237A1 (en) * 1980-08-27 1982-03-04 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V., 8000 München Bar implant for surgical scoliosis treatment - has hook secured to bar by friction and engaging vertebrae
US4433676A (en) * 1981-04-06 1984-02-28 Bobechko Kevin A Self-adjusting spinal scoliosis fusion hook
US4404967A (en) * 1982-01-18 1983-09-20 Wyzsza Szkola Inzynierska Im. Jurija Gagarina Surgical strut for treatment of the back-bone
US4422451A (en) * 1982-03-22 1983-12-27 Ali Kalamchi Spinal compression and distraction instrumentation
US4641636A (en) * 1983-05-04 1987-02-10 Cotrel Yves P C A Device for supporting the rachis
US4773402A (en) * 1985-09-13 1988-09-27 Isola Implants, Inc. Dorsal transacral surgical implant

Cited By (325)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5112332A (en) * 1988-12-21 1992-05-12 Zimmer, Inc. Method of performing spinal surgery
US5116334A (en) * 1988-12-21 1992-05-26 Zimmer, Inc. Posterior spinal system and method
US5147359A (en) * 1988-12-21 1992-09-15 Zimmer, Inc. Spinal hook body
US5154718A (en) * 1988-12-21 1992-10-13 Zimmer, Inc. Spinal coupler assembly
US5201734A (en) * 1988-12-21 1993-04-13 Zimmer, Inc. Spinal locking sleeve assembly
US5330472A (en) * 1990-06-13 1994-07-19 Howmedica Gmbh Device for applying a tensional force between vertebrae of the human vertebral column
AU648797B2 (en) * 1990-06-13 1994-05-05 Stryker Trauma Gmbh A device for applying a tensional force between vertebrae of the human vertebral column
US5540688A (en) * 1991-05-30 1996-07-30 Societe "Psi" Intervertebral stabilization device incorporating dampers
US5257993A (en) * 1991-10-04 1993-11-02 Acromed Corporation Top-entry rod retainer
US5437671A (en) * 1992-03-10 1995-08-01 Zimmer, Inc. Perpendicular rod connector for spinal fixation device
US5281222A (en) * 1992-06-30 1994-01-25 Zimmer, Inc. Spinal implant system
EP0577219A1 (en) * 1992-06-30 1994-01-05 Bristol-Myers Squibb Company Spinal implant system
AU663177B2 (en) * 1992-06-30 1995-09-28 Bristol-Myers Squibb Company Spinal implant system
US5476462A (en) * 1992-06-30 1995-12-19 Zimmer, Inc. Spinal implant system
US5312405A (en) * 1992-07-06 1994-05-17 Zimmer, Inc. Spinal rod coupler
US5281223A (en) * 1992-09-21 1994-01-25 Ray R Charles Tool and method for derotating scoliotic spine
US5385565A (en) * 1992-09-21 1995-01-31 Danek Medical, Inc. Tool and method for derotating scoliotic spine
DE4303770C1 (en) * 1993-02-09 1994-05-26 Plus Endoprothetik Ag Rotkreuz Stiffening and correction system for spinal vertebrae - comprises screw-ended holders with connecting rod supporting clamped distance pieces.
US5562660A (en) * 1993-02-09 1996-10-08 Plus Endoprothetik Ag Apparatus for stiffening and/or correcting the vertebral column
US5423818A (en) * 1993-02-17 1995-06-13 Danek Medical, Inc. Clamp for attaching a vertebral fixation element to a spinal rod
WO1995026687A1 (en) * 1994-03-31 1995-10-12 Biomet Inc Spine fixation instrumentation
US5658284A (en) * 1994-06-30 1997-08-19 Allo Pro Ag Connection member for the connection of a resilient rod with a bone screw which can be anchored in a vertebra
US5928232A (en) * 1994-11-16 1999-07-27 Advanced Spine Fixation Systems, Incorporated Spinal fixation system
US6783526B1 (en) 1997-05-15 2004-08-31 Howmedica Osteonics Corp. Transverse rod connector clip
US6752807B2 (en) 1997-05-15 2004-06-22 Howmedica Osteonics Corp. Transverse rod connector clip
US6706045B2 (en) 1997-05-15 2004-03-16 Howmedica Osteonics Corp. Clamping connector for spinal fixation systems
US6302882B1 (en) 1997-05-15 2001-10-16 Surgical Dynamics, Inc. Transverse rod connector clip
US6413257B1 (en) * 1997-05-15 2002-07-02 Surgical Dynamics, Inc. Clamping connector for spinal fixation systems
US6749361B2 (en) 1997-10-06 2004-06-15 Werner Hermann Shackle element for clamping a fixation rod, a method for making a shackle element, a hook with a shackle element and a rode connector with a shackle element
US6375656B1 (en) * 1997-10-13 2002-04-23 Dimso (Distribution Medicale Du Sud-Ouest) Device for fixing a rod to a thin bone wall
US8313510B2 (en) 1998-06-17 2012-11-20 Howmedica Osteonics Corp. Device for securing spinal rods
US7909856B2 (en) 1998-06-17 2011-03-22 Howmedica Osteonics Corp. Methods for securing spinal rods
US8808327B2 (en) 1998-06-17 2014-08-19 Howmedica Osteonics Corp. Device for securing spinal rods
US7608095B2 (en) 1998-06-17 2009-10-27 Howmedica Osteonics Corp. Device for securing spinal rods
US8038702B2 (en) 1998-06-17 2011-10-18 Howmedica Osteonics Corp. Device for securing spinal rods
US20020120272A1 (en) * 1998-06-17 2002-08-29 Hansen Yuan Device for securing spinal rods
US20090318974A1 (en) * 1998-06-17 2009-12-24 Stryker Spine Device For Securing Spinal Rods
US20030125742A1 (en) * 1998-06-17 2003-07-03 Howmedica Osteonics Corp. Device for securing spinal rods
US5989251A (en) * 1998-06-17 1999-11-23 Surgical Dynamics, Inc. Apparatus for spinal stabilization
US7780703B2 (en) 1998-06-17 2010-08-24 Howmedica Osteonics Corp. Device for securing spinal rods
US6090111A (en) * 1998-06-17 2000-07-18 Surgical Dynamics, Inc. Device for securing spinal rods
US20100268280A1 (en) * 1998-06-17 2010-10-21 Howmedica Osteonics Corp. Device for securing spinal rods
US7819901B2 (en) 1998-06-17 2010-10-26 Howmedica Osteonics Corp. Device for securing spinal rods
US6652527B2 (en) * 1998-10-20 2003-11-25 St. Francis Medical Technologies, Inc. Supplemental spine fixation device and method
US20020116000A1 (en) * 1998-10-20 2002-08-22 Zucherman James F. Supplemental spine fixation device and method
US8025679B2 (en) * 1999-03-30 2011-09-27 Howmedica Osteonics Corp. Method for spinal stabilization using a rod connector
US6875211B2 (en) 1999-03-30 2005-04-05 Howmedica Osteonics Corp. Apparatus for spinal stabilization
US20050192569A1 (en) * 1999-03-30 2005-09-01 Howmedica Osteonics Corp. Apparatus for spinal stabilization
US20020052603A1 (en) * 1999-03-30 2002-05-02 Surgical Dynamics, Inc. Apparatus for spinal stabilization
US6234705B1 (en) 1999-04-06 2001-05-22 Synthes (Usa) Transconnector for coupling spinal rods
US6306137B2 (en) 1999-04-06 2001-10-23 Synthes (U.S.A.) Transconnector for coupling spinal rods
US6736817B2 (en) 1999-12-17 2004-05-18 Thomas N. Troxell Transconnector for coupling spinal rods
US20040176765A1 (en) * 1999-12-17 2004-09-09 Synthes (U.S.A.) Transconnector for coupling spinal rods
US7137986B2 (en) 1999-12-17 2006-11-21 Synthes (U.S.A.) Transconnector for coupling spinal rods
US6283967B1 (en) 1999-12-17 2001-09-04 Synthes (U.S.A.) Transconnector for coupling spinal rods
US6761721B2 (en) 2000-01-24 2004-07-13 Depuy Acromed, Inc. Transverse connector
US6432108B1 (en) * 2000-01-24 2002-08-13 Depuy Orthopaedics, Inc. Transverse connector
FR2806615A1 (en) * 2000-03-21 2001-09-28 Cremascolli Ortho S A Vertebral fracture reducing apparatus has fixings shaped to receive cylindrical components holding linking rods
US20050216005A1 (en) * 2001-05-17 2005-09-29 Howland Robert S Selective axis anchor screw posterior lumbar plating system
US6770075B2 (en) 2001-05-17 2004-08-03 Robert S. Howland Spinal fixation apparatus with enhanced axial support and methods for use
US20040243128A1 (en) * 2001-05-17 2004-12-02 Howland Robert S. Selective axis posterior lumbar spinal plating fixation apparatus and methods for use
US20060064092A1 (en) * 2001-05-17 2006-03-23 Howland Robert S Selective axis serrated rod low profile spinal fixation system
US20030114853A1 (en) * 2001-10-12 2003-06-19 Ian Burgess Polyaxial cross connector
US7314467B2 (en) 2002-04-24 2008-01-01 Medical Device Advisory Development Group, Llc. Multi selective axis spinal fixation system
US20040092934A1 (en) * 2002-04-24 2004-05-13 Howland Robert S. Multi selective axis spinal fixation system
US7066938B2 (en) 2002-09-09 2006-06-27 Depuy Spine, Inc. Snap-on spinal rod connector
US20040049188A1 (en) * 2002-09-09 2004-03-11 Depuy Acromed, Inc. Snap-on spinal rod connector
US7918876B2 (en) 2003-03-24 2011-04-05 Theken Spine, Llc Spinal implant adjustment device
US20060038946A1 (en) * 2003-03-31 2006-02-23 Sharp Kabushiki Kaisha Liquid crystal display device and method of manufacturing the same
US10182846B2 (en) 2003-09-04 2019-01-22 Zimmer Spine S.A.S. Spinal implant
US20110152950A1 (en) * 2003-09-04 2011-06-23 Christian Baccelli Spinal implant
US20070083199A1 (en) * 2003-09-04 2007-04-12 Abbott Spine Spinal implant
US8882808B2 (en) 2003-09-04 2014-11-11 Zimmer Spine S.A.S. Spinal implant
US7901436B2 (en) 2003-09-04 2011-03-08 Zimmer Spine S.A.S. Spinal implant
US20110238120A1 (en) * 2003-09-24 2011-09-29 Stryker Spine Methods and devices for improving percutaneous access in minimally invasive surgeries
US20050065517A1 (en) * 2003-09-24 2005-03-24 Chin Kingsley Richard Methods and devices for improving percutaneous access in minimally invasive surgeries
US7955355B2 (en) 2003-09-24 2011-06-07 Stryker Spine Methods and devices for improving percutaneous access in minimally invasive surgeries
US8002798B2 (en) 2003-09-24 2011-08-23 Stryker Spine System and method for spinal implant placement
USRE45676E1 (en) 2003-09-24 2015-09-29 Stryker Spine System and method for spinal implant placement
US9700357B2 (en) 2003-09-24 2017-07-11 Stryker European Holdings I, Llc Methods and devices for improving percutaneous access in minimally invasive surgeries
US8685063B2 (en) 2003-09-24 2014-04-01 Stryker Spine Methods and devices for improving percutaneous access in minimally invasive surgeries
USRE45338E1 (en) 2003-09-24 2015-01-13 Stryker Spine System and method for spinal implant placement
USRE46432E1 (en) 2003-09-24 2017-06-13 Stryker European Holdings I, Llc System and method for spinal implant placement
JP4907352B2 (en) * 2003-10-09 2012-03-28 ジンテス ゲゼルシャフト ミット ベシュレンクテル ハフツング Connecting transformer connector for connecting spinal rods
JP2007508062A (en) * 2003-10-09 2007-04-05 ジンテス ゲゼルシャフト ミット ベシュレンクテル ハフツング Connecting transformer connector for connecting spinal rods
CN100444809C (en) * 2003-10-09 2008-12-24 新特斯有限责任公司 Linking transconnector for coupling spinal rods
US7481827B2 (en) * 2003-10-09 2009-01-27 Synthes (U.S.A.) Linking transconnector for coupling spinal rods
US20050080416A1 (en) * 2003-10-09 2005-04-14 Ryan Christopher J. Linking transconnector for coupling spinal rods
WO2005034779A1 (en) * 2003-10-09 2005-04-21 Hfsc Company Linking transconnector for coupling spinal rods
KR101154204B1 (en) 2003-10-09 2012-06-18 신세스 게엠바하 Linking transconnector for coupling spinal rods
US20050080414A1 (en) * 2003-10-14 2005-04-14 Keyer Thomas R. Spinal fixation hooks and method of spinal fixation
USRE48376E1 (en) 2003-11-08 2021-01-05 Stryker European Operations Holdings Llc System and method for spinal implant placement
US10143502B2 (en) 2003-11-08 2018-12-04 Stryker European Holdings I, Llc Methods and devices for improving percutaneous access in minimally invasive surgeries
USRE49432E1 (en) 2003-11-08 2023-02-28 Stryker European Operations Holdings Llc System and method for spinal implant placement
USRE47348E1 (en) 2003-11-08 2019-04-16 Stryker European Holdings I, Llc System and method for spinal implant placement
US10993747B2 (en) 2003-11-08 2021-05-04 Stryker European Operations Holdings Llc Methods and devices for improving percutaneous access in minimally invasive surgeries
US8920469B2 (en) 2004-03-31 2014-12-30 Depuy Synthes Products Llc Rod attachment for head to head cross connector
US7645294B2 (en) 2004-03-31 2010-01-12 Depuy Spine, Inc. Head-to-head connector spinal fixation system
US20050228326A1 (en) * 2004-03-31 2005-10-13 Depuy Spine, Inc. Head-to-head connector spinal fixation system
US8591550B2 (en) 2004-03-31 2013-11-26 Depuy Spine, Inc. Rod attachement for head to head connector
US8556937B2 (en) 2004-03-31 2013-10-15 DePuy Synthes Products, LLC Rod attachment for head to head cross connector
US20100191289A1 (en) * 2004-03-31 2010-07-29 Depuy Spine, Inc. Rod attachment for head to head cross connector
US9629663B2 (en) 2004-03-31 2017-04-25 DePuy Synthes Products, Inc. Rod attachment for head to head cross connector
US9486247B2 (en) 2004-03-31 2016-11-08 DePuy Synthes Products, Inc. Rod attachment for head to head cross connector
US8192471B2 (en) 2004-03-31 2012-06-05 Depuy Spine, Inc. Rod attachment for head to head cross connector
US8920470B2 (en) 2004-03-31 2014-12-30 Depuy Synthes Products Llc Rod attachment for head to head cross connector
US20060064091A1 (en) * 2004-03-31 2006-03-23 Depuy Spine, Inc. Rod attachment for head to head cross connector
US7717939B2 (en) 2004-03-31 2010-05-18 Depuy Spine, Inc. Rod attachment for head to head cross connector
US7967845B2 (en) 2004-03-31 2011-06-28 Depuy Spine, Inc. Head-to-head connector spinal fixation system
US9387014B2 (en) 2004-03-31 2016-07-12 DePuy Synthes Products, Inc. Systems and methods for decompressing a spinal canal
US20050228377A1 (en) * 2004-04-07 2005-10-13 Depuy Spine, Inc. Spinal cross-connectors
US7731736B2 (en) 2004-06-14 2010-06-08 Zimmer Spine, Inc. Fastening system for spinal stabilization system
US20050277927A1 (en) * 2004-06-14 2005-12-15 Guenther Kevin V Fastening system for spinal stabilization system
US9681893B2 (en) 2004-06-23 2017-06-20 Yale University Method for stabilizing a spine
US9005252B2 (en) * 2004-06-23 2015-04-14 Yale University Method for stabilizing a spine
US20120165877A1 (en) * 2004-06-23 2012-06-28 Rachiotek Llc Method For Stabilizing A Spine
US8343192B2 (en) 2004-07-02 2013-01-01 Ellipse Technologies, Inc. Expandable rod system to treat scoliosis and method of using the same
US20090204154A1 (en) * 2004-07-02 2009-08-13 Ellipse Technologies, Inc. expandable rod system to treat scoliosis and method of using the same
US8852236B2 (en) 2004-07-02 2014-10-07 Ellipse Technologies, Inc. Expandable rod system to treat scoliosis and method of using the same
US7955357B2 (en) 2004-07-02 2011-06-07 Ellipse Technologies, Inc. Expandable rod system to treat scoliosis and method of using the same
US20060009767A1 (en) * 2004-07-02 2006-01-12 Kiester P D Expandable rod system to treat scoliosis and method of using the same
US11357549B2 (en) 2004-07-02 2022-06-14 Nuvasive Specialized Orthopedics, Inc. Expandable rod system to treat scoliosis and method of using the same
US11712268B2 (en) 2004-07-02 2023-08-01 Nuvasive Specialized Orthopedics, Inc. Expandable rod system to treat scoliosis and method of using the same
US10016221B2 (en) * 2004-07-02 2018-07-10 Nuvasive Specialized Orthopedics, Inc. Expandable rod system to treat scoliosis and method of using the same
US9011499B1 (en) 2004-07-02 2015-04-21 Ellipse Technologies, Inc Expandable rod system to treat scoliosis and method of using the same
US20170049480A1 (en) * 2004-07-02 2017-02-23 Nuvasive Specialized Orthopedics, Inc. Expandable rod system to treat scoliosis and method of using the same
US9398925B2 (en) 2004-07-02 2016-07-26 Nuvasive Specialized Orthopedics, Inc. Expandable rod system to treat scoliosis and method of using the same
US8034082B2 (en) 2004-07-08 2011-10-11 Globus Medical, Inc. Transverse fixation device for spinal fixation systems
WO2006014488A3 (en) * 2004-07-08 2006-04-06 Globus Medical Inc Transverse fixation device for spinal fixation systems
US8979908B2 (en) 2004-07-08 2015-03-17 Globus Medical, Inc. Transverse fixation device for spinal fixation systems
US9119675B2 (en) 2004-07-08 2015-09-01 Globus Medical, Inc. Transverse fixation device for spinal fixation systems
US20060009766A1 (en) * 2004-07-08 2006-01-12 Andrew Lee Transverse fixation device for spinal fixation systems
US8372119B2 (en) 2004-08-27 2013-02-12 Depuy Spine, Inc. Dual rod cross connectors and inserter tools
US7717938B2 (en) 2004-08-27 2010-05-18 Depuy Spine, Inc. Dual rod cross connectors and inserter tools
US20060058789A1 (en) * 2004-08-27 2006-03-16 Depuy Spine, Inc. Dual rod cross connectors and inserter tools
US8961572B2 (en) 2004-08-27 2015-02-24 Depuy Synthes Products Llc Dual rod cross connectors and inserter tools
US20060106397A1 (en) * 2004-10-25 2006-05-18 Lins Robert E Interspinous distraction devices and associated methods of insertion
US8007517B2 (en) 2004-10-25 2011-08-30 Lanx, Inc. Interspinous distraction devices and associated methods of insertion
US20060089654A1 (en) * 2004-10-25 2006-04-27 Lins Robert E Interspinous distraction devices and associated methods of insertion
US7918875B2 (en) 2004-10-25 2011-04-05 Lanx, Inc. Interspinous distraction devices and associated methods of insertion
US20060241613A1 (en) * 2005-04-12 2006-10-26 Sdgi Holdings, Inc. Implants and methods for inter-transverse process dynamic stabilization of a spinal motion segment
US8034079B2 (en) 2005-04-12 2011-10-11 Warsaw Orthopedic, Inc. Implants and methods for posterior dynamic stabilization of a spinal motion segment
US7780709B2 (en) * 2005-04-12 2010-08-24 Warsaw Orthopedic, Inc. Implants and methods for inter-transverse process dynamic stabilization of a spinal motion segment
US20060241614A1 (en) * 2005-04-12 2006-10-26 Sdgi Holdings, Inc. Implants and methods for posterior dynamic stabilization of a spinal motion segment
US20060235387A1 (en) * 2005-04-15 2006-10-19 Sdgi Holdings, Inc. Transverse process/laminar spacer
US7789898B2 (en) * 2005-04-15 2010-09-07 Warsaw Orthopedic, Inc. Transverse process/laminar spacer
US20070123870A1 (en) * 2005-07-18 2007-05-31 Jeon Dong M Bi-polar screw assembly
US20080183223A1 (en) * 2005-09-26 2008-07-31 Jeon Dong M Hybrid jointed bone screw system
US7879074B2 (en) 2005-09-27 2011-02-01 Depuy Spine, Inc. Posterior dynamic stabilization systems and methods
US20070073289A1 (en) * 2005-09-27 2007-03-29 Depuy Spine, Inc. Posterior dynamic stabilization systems and methods
US9770271B2 (en) 2005-10-25 2017-09-26 Zimmer Biomet Spine, Inc. Spinal implants and methods
US8357181B2 (en) * 2005-10-27 2013-01-22 Warsaw Orthopedic, Inc. Intervertebral prosthetic device for spinal stabilization and method of implanting same
US20070100340A1 (en) * 2005-10-27 2007-05-03 Sdgi Holdings, Inc. Intervertebral prosthetic device for spinal stabilization and method of implanting same
US20070191842A1 (en) * 2006-01-30 2007-08-16 Sdgi Holdings, Inc. Spinal fixation devices and methods of use
US20070233079A1 (en) * 2006-02-06 2007-10-04 Stryker Spine Rod contouring apparatus and method for percutaneous pedicle screw extension
US9247977B2 (en) 2006-02-06 2016-02-02 Stryker European Holdings I, Llc Rod contouring apparatus for percutaneous pedicle screw extension
US9119684B2 (en) 2006-02-06 2015-09-01 Stryker Spine Rod contouring method for percutaneous pedicle screw extension
US10070936B2 (en) 2006-02-06 2018-09-11 Stryker European Holdings I, Llc Rod contouring apparatus for percutaneous pedicle screw extension
US10765488B2 (en) 2006-02-06 2020-09-08 Stryker European Holdings I, Llc Rod contouring apparatus for percutaneous pedicle screw extension
US8894655B2 (en) 2006-02-06 2014-11-25 Stryker Spine Rod contouring apparatus and method for percutaneous pedicle screw extension
US8979851B2 (en) 2006-02-06 2015-03-17 Stryker Spine Rod contouring apparatus for percutaneous pedicle screw extension
US9655685B2 (en) 2006-02-06 2017-05-23 Stryker European Holdings I, Llc Rod contouring apparatus for percutaneous pedicle screw extension
US7896902B2 (en) 2006-04-05 2011-03-01 Dong Myung Jeon Multi-axial double locking bone screw assembly
US20080086115A1 (en) * 2006-09-07 2008-04-10 Warsaw Orthopedic, Inc. Intercostal spacer device and method for use in correcting a spinal deformity
US8157809B2 (en) 2006-09-25 2012-04-17 Stryker Spine Percutaneous compression and distraction system
US8506574B2 (en) 2006-09-25 2013-08-13 Stryker Spine Percutaneous compression and distraction system
US20080125789A1 (en) * 2006-09-25 2008-05-29 Stryker Spine Percutaneous compression and distraction system
US10470752B2 (en) 2006-09-25 2019-11-12 Stryker European Holdings I, Llc Percutaneous compression and distraction system
US11523810B2 (en) 2006-09-25 2022-12-13 Stryker European Operations Holdings Llc Percutaneous compression and distraction system
US8915925B2 (en) 2006-09-25 2014-12-23 Stryker Spine Percutaneous compression and distraction system
US9345463B2 (en) 2006-09-25 2016-05-24 Stryker European Holdings I, Llc Percutaneous compression and distraction system
US8277489B2 (en) 2006-09-26 2012-10-02 Synthes Usa, Llc Transconnector
US8784452B2 (en) 2006-09-26 2014-07-22 DePuy Synthes Products, LLC Transconnector
US10039661B2 (en) 2006-10-20 2018-08-07 Nuvasive Specialized Orthopedics, Inc. Adjustable implant and method of use
US11672684B2 (en) 2006-10-20 2023-06-13 Nuvasive Specialized Orthopedics, Inc. Adjustable implant and method of use
US11234849B2 (en) 2006-10-20 2022-02-01 Nuvasive Specialized Orthopedics, Inc. Adjustable implant and method of use
US9526650B2 (en) 2006-10-20 2016-12-27 Nuvasive Specialized Orthopedics, Inc. Adjustable implant and method of use
US8808163B2 (en) 2006-10-20 2014-08-19 Ellipse Technologies, Inc. Adjustable implant and method of use
US7981025B2 (en) 2006-10-20 2011-07-19 Ellipse Technologies, Inc. Adjustable implant and method of use
US20110237861A1 (en) * 2006-10-20 2011-09-29 Ellipse Technologies, Inc. Adjustable implant and method of use
US8715159B2 (en) 2006-10-20 2014-05-06 Ellipse Technologies, Inc. Adjustable implant and method of use
US9271857B2 (en) 2006-10-20 2016-03-01 Ellipse Technologies, Inc. Adjustable implant and method of use
US8870921B2 (en) 2006-11-08 2014-10-28 DePuy Synthes Products, LLC Spinal cross connectors
US8361117B2 (en) 2006-11-08 2013-01-29 Depuy Spine, Inc. Spinal cross connectors
US20080140124A1 (en) * 2006-12-07 2008-06-12 Dong Myung Jeon Spinal rod transverse connector system
US20130197583A1 (en) * 2006-12-28 2013-08-01 Depuy Spine, Inc. Spinal Anchoring Screw
US9629662B2 (en) * 2006-12-28 2017-04-25 DePuy Synthes Products, Inc. Spinal anchoring screw
US9724136B2 (en) 2007-01-11 2017-08-08 Zimmer Biomet Spine, Inc. Spinous process implants and associated methods
US9743960B2 (en) 2007-01-11 2017-08-29 Zimmer Biomet Spine, Inc. Interspinous implants and methods
US9861400B2 (en) 2007-01-11 2018-01-09 Zimmer Biomet Spine, Inc. Spinous process implants and associated methods
US8241330B2 (en) 2007-01-11 2012-08-14 Lanx, Inc. Spinous process implants and associated methods
US20090318967A1 (en) * 2007-01-23 2009-12-24 Dong Myung Jeon Spacer for use in a surgical operation for spinous process of spine
US20100049256A1 (en) * 2007-01-30 2010-02-25 Dong Myung Jeon Anterior cerivcal plating system
US7947066B2 (en) 2007-05-22 2011-05-24 K2M, Inc. Universal transverse connector device
US20090043339A1 (en) * 2007-05-22 2009-02-12 K2M, Inc. Universal transverse connector device
US9456851B2 (en) 2007-10-23 2016-10-04 Intelligent Implant Systems, Llc Spinal implant
US8419734B2 (en) 2007-10-30 2013-04-16 Ellipse Technologies, Inc. Skeletal manipulation method
US11871974B2 (en) 2007-10-30 2024-01-16 Nuvasive Specialized Orthopedics, Inc. Skeletal manipulation method
US9271781B2 (en) 2007-10-30 2016-03-01 Ellipse Technologies, Inc. Skeletal manipulation method
US8057472B2 (en) 2007-10-30 2011-11-15 Ellipse Technologies, Inc. Skeletal manipulation method
US9693813B2 (en) 2007-10-30 2017-07-04 Nuvasive Specialized Orthopedics, Inc. Skeletal manipulation method
US9179960B2 (en) 2007-10-30 2015-11-10 Ellipse Technologies, Inc. Skeletal manipulation method
US20090112207A1 (en) * 2007-10-30 2009-04-30 Blair Walker Skeletal manipulation method
US20090112263A1 (en) * 2007-10-30 2009-04-30 Scott Pool Skeletal manipulation system
US20090112262A1 (en) * 2007-10-30 2009-04-30 Scott Pool Skeletal manipulation system
US10349995B2 (en) 2007-10-30 2019-07-16 Nuvasive Specialized Orthopedics, Inc. Skeletal manipulation method
US11172972B2 (en) 2007-10-30 2021-11-16 Nuvasive Specialized Orthopedics, Inc. Skeletal manipulation method
US20090171395A1 (en) * 2007-12-28 2009-07-02 Jeon Dong M Dynamic spinal rod system
US8864798B2 (en) 2008-01-18 2014-10-21 Globus Medical, Inc. Transverse connector
US20090187217A1 (en) * 2008-01-18 2009-07-23 Mark Weiman Transverse Connector
US20090192548A1 (en) * 2008-01-25 2009-07-30 Jeon Dong M Pedicle-laminar dynamic spinal stabilization device
US20090194206A1 (en) * 2008-01-31 2009-08-06 Jeon Dong M Systems and methods for wrought nickel/titanium alloy flexible spinal rods
US8114136B2 (en) 2008-03-18 2012-02-14 Warsaw Orthopedic, Inc. Implants and methods for inter-spinous process dynamic stabilization of a spinal motion segment
US11202707B2 (en) 2008-03-25 2021-12-21 Nuvasive Specialized Orthopedics, Inc. Adjustable implant system
US12076241B2 (en) 2008-03-25 2024-09-03 Nuvasive Specialized Orthopedics, Inc. Adjustable implant system
US20090248076A1 (en) * 2008-03-26 2009-10-01 Reynolds Martin A Interspinous Process Spacer Having Tight Access Offset Hooks
US20090248079A1 (en) * 2008-03-26 2009-10-01 Kwak Seungkyu Daniel S-Shaped Interspinous Process Spacer Having Tight Access Offset Hooks
US8025678B2 (en) 2008-03-26 2011-09-27 Depuy Spine, Inc. Interspinous process spacer having tight access offset hooks
US8313512B2 (en) 2008-03-26 2012-11-20 Depuy Spine, Inc. S-shaped interspinous process spacer having tight access offset hooks
US20100185247A1 (en) * 2008-09-09 2010-07-22 Richelsoph Marc E Polyaxial screw assembly
US9421041B2 (en) 2008-09-09 2016-08-23 Marc E. Richelsoph Polyaxial screw assembly
US9603629B2 (en) 2008-09-09 2017-03-28 Intelligent Implant Systems Llc Polyaxial screw assembly
US7942907B2 (en) * 2008-09-09 2011-05-17 Richelsoph Marc E Polyaxial screw assembly
US20100312289A1 (en) * 2008-09-09 2010-12-09 Richelsoph Marc E Polyaxial screw assembly
US9433440B2 (en) * 2008-09-09 2016-09-06 Intelligent Implant Systems Llc Polyaxial screw assembly
US20100094302A1 (en) * 2008-10-13 2010-04-15 Scott Pool Spinal distraction system
US20100094305A1 (en) * 2008-10-13 2010-04-15 Arvin Chang Spinal distraction system
US11241257B2 (en) 2008-10-13 2022-02-08 Nuvasive Specialized Orthopedics, Inc. Spinal distraction system
US20100094304A1 (en) * 2008-10-13 2010-04-15 Scott Pool Spinal distraction system
US20100094303A1 (en) * 2008-10-13 2010-04-15 Arvin Chang Spinal distraction system
US20100094306A1 (en) * 2008-10-13 2010-04-15 Arvin Chang Spinal distraction system
US11925389B2 (en) 2008-10-13 2024-03-12 Nuvasive Specialized Orthopedics, Inc. Spinal distraction system
US10729470B2 (en) 2008-11-10 2020-08-04 Nuvasive Specialized Orthopedics, Inc. External adjustment device for distraction device
US20100121323A1 (en) * 2008-11-10 2010-05-13 Ellipse Technologies, Inc. External adjustment device for distraction device
US11974782B2 (en) 2008-11-10 2024-05-07 Nuvasive Specialized Orthopedics, Inc. External adjustment device for distraction device
US8382756B2 (en) 2008-11-10 2013-02-26 Ellipse Technologies, Inc. External adjustment device for distraction device
US20090143823A1 (en) * 2008-11-13 2009-06-04 Jeon Dong M Transverse connector system for spinal rods
US10517643B2 (en) 2009-02-23 2019-12-31 Nuvasive Specialized Orthopedics, Inc. Non-invasive adjustable distraction system
US11304729B2 (en) 2009-02-23 2022-04-19 Nuvasive Specialized Orthhopedics, Inc. Non-invasive adjustable distraction system
US9848914B2 (en) 2009-02-23 2017-12-26 Nuvasive Specialized Orthopedics, Inc. Non-invasive adjustable distraction system
US11918254B2 (en) 2009-02-23 2024-03-05 Nuvasive Specialized Orthopedics Inc. Adjustable implant system
US20100217271A1 (en) * 2009-02-23 2010-08-26 Ellipse Technologies, Inc. Spinal distraction system
US8974463B2 (en) 2009-02-23 2015-03-10 Ellipse Technologies, Inc. Non-invasive adjustable distraction system
US8197490B2 (en) 2009-02-23 2012-06-12 Ellipse Technologies, Inc. Non-invasive adjustable distraction system
US11602380B2 (en) 2009-04-29 2023-03-14 Nuvasive Specialized Orthopedics, Inc. Interspinous process device and method
US10478232B2 (en) 2009-04-29 2019-11-19 Nuvasive Specialized Orthopedics, Inc. Interspinous process device and method
US11944358B2 (en) 2009-09-04 2024-04-02 Nuvasive Specialized Orthopedics, Inc. Bone growth device and method
US11207110B2 (en) 2009-09-04 2021-12-28 Nuvasive Specialized Orthopedics, Inc. Bone growth device and method
US9561057B2 (en) 2009-09-21 2017-02-07 Globus Medical, Inc. Transverse connector
US9974570B2 (en) 2009-09-21 2018-05-22 Globus Medical, Inc. Transverse connector
US11497530B2 (en) 2010-06-30 2022-11-15 Nuvasive Specialized Orthopedics, Inc. External adjustment device for distraction device
US9248043B2 (en) 2010-06-30 2016-02-02 Ellipse Technologies, Inc. External adjustment device for distraction device
US10660675B2 (en) 2010-06-30 2020-05-26 Nuvasive Specialized Orthopedics, Inc. External adjustment device for distraction device
US9204900B2 (en) 2010-07-12 2015-12-08 Globus Medical, Inc. Interspinous ligament transverse connector
US8777996B2 (en) 2010-07-12 2014-07-15 Globus Medical, Inc. Interspinous ligament transverse connector
US10405891B2 (en) 2010-08-09 2019-09-10 Nuvasive Specialized Orthopedics, Inc. Maintenance feature in magnetic implant
WO2012072413A1 (en) * 2010-12-03 2012-06-07 Zimmer Spine Rod holding device
US10646262B2 (en) 2011-02-14 2020-05-12 Nuvasive Specialized Orthopedics, Inc. System and method for altering rotational alignment of bone sections
US11406432B2 (en) 2011-02-14 2022-08-09 Nuvasive Specialized Orthopedics, Inc. System and method for altering rotational alignment of bone sections
US10743794B2 (en) 2011-10-04 2020-08-18 Nuvasive Specialized Orthopedics, Inc. Devices and methods for non-invasive implant length sensing
US11445939B2 (en) 2011-10-04 2022-09-20 Nuvasive Specialized Orthopedics, Inc. Devices and methods for non-invasive implant length sensing
US11812923B2 (en) 2011-10-07 2023-11-14 Alan Villavicencio Spinal fixation device
US10349982B2 (en) 2011-11-01 2019-07-16 Nuvasive Specialized Orthopedics, Inc. Adjustable magnetic devices and methods of using same
US11918255B2 (en) 2011-11-01 2024-03-05 Nuvasive Specialized Orthopedics Inc. Adjustable magnetic devices and methods of using same
US10016220B2 (en) 2011-11-01 2018-07-10 Nuvasive Specialized Orthopedics, Inc. Adjustable magnetic devices and methods of using same
US11123107B2 (en) 2011-11-01 2021-09-21 Nuvasive Specialized Orthopedics, Inc. Adjustable magnetic devices and methods of using same
USRE48250E1 (en) 2012-01-16 2020-10-13 K2M, Inc. Rod reducer, compressor, distractor system
USRE49410E1 (en) 2012-01-16 2023-02-07 K2M, Inc. Rod reducer, compressor, distractor system
US11839410B2 (en) 2012-06-15 2023-12-12 Nuvasive Inc. Magnetic implants with improved anatomical compatibility
US9510863B2 (en) 2012-07-02 2016-12-06 Spectrum Spine Ip Holdings, Llc Bone screw coupling assembly
US9364262B2 (en) * 2012-07-02 2016-06-14 Spectrum Spine Ip Holdings, Llc Bone screw coupling assembly
US20140005724A1 (en) * 2012-07-02 2014-01-02 James C. Robinson Bone screw coupling assembly
US9468470B2 (en) 2012-07-09 2016-10-18 Zimmer Spine Anchor for attachment to a bony structure
USRE49720E1 (en) 2012-10-18 2023-11-07 Nuvasive Specialized Orthopedics, Inc. Intramedullary implants for replacing lost bone
USRE49061E1 (en) 2012-10-18 2022-05-10 Nuvasive Specialized Orthopedics, Inc. Intramedullary implants for replacing lost bone
US11191579B2 (en) 2012-10-29 2021-12-07 Nuvasive Specialized Orthopedics, Inc. Adjustable devices for treating arthritis of the knee
US11213330B2 (en) 2012-10-29 2022-01-04 Nuvasive Specialized Orthopedics, Inc. Adjustable devices for treating arthritis of the knee
US11871971B2 (en) 2012-10-29 2024-01-16 Nuvasive Specialized Orthopedics, Inc. Adjustable devices for treating arthritis of the knee
US11857226B2 (en) 2013-03-08 2024-01-02 Nuvasive Specialized Orthopedics Systems and methods for ultrasonic detection of device distraction
US12059178B2 (en) 2013-03-14 2024-08-13 Stryker European Operations Holdings Llc Percutaneous spinal cross link system and method
US9510875B2 (en) 2013-03-14 2016-12-06 Stryker European Holdings I, Llc Systems and methods for percutaneous spinal fusion
US10568669B2 (en) 2013-03-14 2020-02-25 Stryker European Holdings I, Llc Systems and methods for percutaneous spinal fusion
US9827020B2 (en) 2013-03-14 2017-11-28 Stryker European Holdings I, Llc Percutaneous spinal cross link system and method
US11779377B2 (en) 2013-03-14 2023-10-10 Stryker European Operations Holdings Llc Systems and methods for percutaneous spinal fusion
US10912590B2 (en) 2013-03-14 2021-02-09 Stryker European Operations Holdings Llc Percutaneous spinal cross link system and method
US11766252B2 (en) 2013-07-31 2023-09-26 Nuvasive Specialized Orthopedics, Inc. Noninvasively adjustable suture anchors
US11696836B2 (en) 2013-08-09 2023-07-11 Nuvasive, Inc. Lordotic expandable interbody implant
US9526531B2 (en) 2013-10-07 2016-12-27 Intelligent Implant Systems, Llc Polyaxial plate rod system and surgical procedure
US9956010B2 (en) 2013-10-07 2018-05-01 Intelligent Implant Systems, Llc Polyaxial plate rod system and surgical procedure
US11576702B2 (en) 2013-10-10 2023-02-14 Nuvasive Specialized Orthopedics, Inc. Adjustable spinal implant
US10751094B2 (en) 2013-10-10 2020-08-25 Nuvasive Specialized Orthopedics, Inc. Adjustable spinal implant
US12127949B1 (en) 2013-12-06 2024-10-29 Stryker European Operations Holdings Llc Percutaneous posterior spinal fusion implant construction and method
US9744050B1 (en) 2013-12-06 2017-08-29 Stryker European Holdings I, Llc Compression and distraction system for percutaneous posterior spinal fusion
US10159579B1 (en) 2013-12-06 2018-12-25 Stryker European Holdings I, Llc Tubular instruments for percutaneous posterior spinal fusion systems and methods
US9408716B1 (en) 2013-12-06 2016-08-09 Stryker European Holdings I, Llc Percutaneous posterior spinal fusion implant construction and method
US11622793B2 (en) 2013-12-13 2023-04-11 Stryker European Operations Holdings Llc Tissue retraction and vertebral displacement devices, systems, and methods for posterior spinal fusion
US10507046B2 (en) 2013-12-13 2019-12-17 Stryker European Holdings I, Llc Tissue retraction and vertebral displacement devices, systems, and methods for posterior spinal fusion
US9622795B2 (en) 2013-12-13 2017-04-18 Stryker European Holdings I, Llc Tissue retraction and vertebral displacement devices, systems, and methods for posterior spinal fusion
US11246694B2 (en) 2014-04-28 2022-02-15 Nuvasive Specialized Orthopedics, Inc. System for informational magnetic feedback in adjustable implants
US11357547B2 (en) 2014-10-23 2022-06-14 Nuvasive Specialized Orthopedics Inc. Remotely adjustable interactive bone reshaping implant
US10034690B2 (en) 2014-12-09 2018-07-31 John A. Heflin Spine alignment system
US10736668B2 (en) 2014-12-09 2020-08-11 John A. Heflin Spine alignment system
US11419637B2 (en) 2014-12-09 2022-08-23 John A. Heflin Spine alignment system
US11963705B2 (en) 2014-12-26 2024-04-23 Nuvasive Specialized Orthopedics, Inc. Systems and methods for distraction
US10271885B2 (en) 2014-12-26 2019-04-30 Nuvasive Specialized Orthopedics, Inc. Systems and methods for distraction
US11439449B2 (en) 2014-12-26 2022-09-13 Nuvasive Specialized Orthopedics, Inc. Systems and methods for distraction
US11890043B2 (en) 2014-12-26 2024-02-06 Nuvasive Specialized Orthopedics, Inc. Systems and methods for distraction
US11612416B2 (en) 2015-02-19 2023-03-28 Nuvasive Specialized Orthopedics, Inc. Systems and methods for vertebral adjustment
US12076051B2 (en) 2015-02-19 2024-09-03 Nuvasive Specialized Orthopedics, Inc. Systems and methods for vertebral adjustment
US10238427B2 (en) 2015-02-19 2019-03-26 Nuvasive Specialized Orthopedics, Inc. Systems and methods for vertebral adjustment
US11596456B2 (en) 2015-10-16 2023-03-07 Nuvasive Specialized Orthopedics, Inc. Adjustable devices for treating arthritis of the knee
US10617453B2 (en) 2015-10-16 2020-04-14 Nuvasive Specialized Orthopedics, Inc. Adjustable devices for treating arthritis of the knee
US10835290B2 (en) 2015-12-10 2020-11-17 Nuvasive Specialized Orthopedics, Inc. External adjustment device for distraction device
US11504162B2 (en) 2015-12-10 2022-11-22 Nuvasive Specialized Orthopedics, Inc. External adjustment device for distraction device
US10918425B2 (en) 2016-01-28 2021-02-16 Nuvasive Specialized Orthopedics, Inc. System and methods for bone transport
US11801187B2 (en) 2016-02-10 2023-10-31 Nuvasive Specialized Orthopedics, Inc. Systems and methods for controlling multiple surgical variables
US10575876B2 (en) 2016-04-20 2020-03-03 K2M, Inc. Spinal stabilization assemblies with bone hooks
US10034693B2 (en) 2016-07-07 2018-07-31 Mark S. Stern Spinous laminar clamp assembly
US11577097B2 (en) 2019-02-07 2023-02-14 Nuvasive Specialized Orthopedics, Inc. Ultrasonic communication in medical devices
US11589901B2 (en) 2019-02-08 2023-02-28 Nuvasive Specialized Orthopedics, Inc. External adjustment device
US12004784B2 (en) 2021-02-23 2024-06-11 Nuvasive Specialized Orthopedics, Inc. Adjustable implant, system and methods
US11944359B2 (en) 2021-02-23 2024-04-02 Nuvasive Specialized Orthopedics, Inc. Adjustable implant, system and methods
US11806054B2 (en) 2021-02-23 2023-11-07 Nuvasive Specialized Orthopedics, Inc. Adjustable implant, system and methods
US11737787B1 (en) 2021-05-27 2023-08-29 Nuvasive, Inc. Bone elongating devices and methods of use
US12023073B2 (en) 2021-08-03 2024-07-02 Nuvasive Specialized Orthopedics, Inc. Adjustable implant

Also Published As

Publication number Publication date
JPH02261441A (en) 1990-10-24
JPH0620466B2 (en) 1994-03-23

Similar Documents

Publication Publication Date Title
US5010879A (en) Device for correcting spinal deformities
CA2109457C (en) Osteosynthesis device for spinal consolidation
JP4146500B2 (en) Device for fixing the spine
US5122131A (en) Orthopaedic device for mechanical coupling to a surgical rod
US4611582A (en) Vertebral clamp
JP4002301B2 (en) Vertebral joint device having a connector for connecting a vertebral rod to a bone anchoring element
KR101046558B1 (en) Spinal implant
US5368594A (en) Vertebral osteosynthesis device
US9848913B2 (en) Methods for connecting a longitudinal member to a bone portion
US6090111A (en) Device for securing spinal rods
KR100190896B1 (en) Device for correcting, fixing, joining and traction of cervical vertebrae
JP3497512B2 (en) Multi-axis bone screw assembly
JP4414889B2 (en) Cross connector assembly for interconnecting a pair of orthopedic rods
US6146384A (en) Orthopedic fixation device and method of implantation
EP0929265B1 (en) A device for fixating and adjusting the positions of vertebrae in vertebral surgical operations
US20050070899A1 (en) Polyaxial bone screw with torqueless fastening
JPH01314564A (en) Spine fixing apparatus
EP0220736A2 (en) Apparatus for maintaining vertebrae in a desired relationship
EP0465158A2 (en) Apparatus for use in the treatment of spinal disorders
JPH05212055A (en) Apparatus for correcting, fixing, com- pressing and stretching spine
JP2004148126A (en) Universal multi-axis washer assembly
JP2002524188A (en) Variable-angle spine fixation system
KR20090015933A (en) Connector apparatus
JP2004500954A (en) Spinal implant for osteosynthesis devices
JPH08206130A (en) Apparatus for longitudinal direction match and/or binding ofbone joining

Legal Events

Date Code Title Description
AS Assignment

Owner name: TANAKA MEDICAL INSTRUMENT MANUFACTURING CO.

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNORS:MORIYA, HIDESHIGE;KITAHARA, HIROSHI;MINAMI, SHOHEI;AND OTHERS;REEL/FRAME:005244/0095

Effective date: 19891011

STCF Information on status: patent grant

Free format text: PATENTED CASE

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12