US4510461A - Phase lock loop having switchable filters and oscillators - Google Patents
Phase lock loop having switchable filters and oscillators Download PDFInfo
- Publication number
- US4510461A US4510461A US06/401,051 US40105182A US4510461A US 4510461 A US4510461 A US 4510461A US 40105182 A US40105182 A US 40105182A US 4510461 A US4510461 A US 4510461A
- Authority
- US
- United States
- Prior art keywords
- frequency
- phase
- signal
- output
- flip
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000001514 detection method Methods 0.000 claims description 8
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 claims 5
- 239000003990 capacitor Substances 0.000 description 12
- 239000000872 buffer Substances 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 238000000034 method Methods 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 230000010355 oscillation Effects 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000007704 transition Effects 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 238000012358 sourcing Methods 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03L—AUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
- H03L7/00—Automatic control of frequency or phase; Synchronisation
- H03L7/06—Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
- H03L7/08—Details of the phase-locked loop
- H03L7/099—Details of the phase-locked loop concerning mainly the controlled oscillator of the loop
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03L—AUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
- H03L7/00—Automatic control of frequency or phase; Synchronisation
- H03L7/06—Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
- H03L7/08—Details of the phase-locked loop
- H03L7/10—Details of the phase-locked loop for assuring initial synchronisation or for broadening the capture range
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03L—AUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
- H03L7/00—Automatic control of frequency or phase; Synchronisation
- H03L7/06—Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
- H03L7/08—Details of the phase-locked loop
- H03L7/10—Details of the phase-locked loop for assuring initial synchronisation or for broadening the capture range
- H03L7/107—Details of the phase-locked loop for assuring initial synchronisation or for broadening the capture range using a variable transfer function for the loop, e.g. low pass filter having a variable bandwidth
- H03L7/1075—Details of the phase-locked loop for assuring initial synchronisation or for broadening the capture range using a variable transfer function for the loop, e.g. low pass filter having a variable bandwidth by changing characteristics of the loop filter, e.g. changing the gain, changing the bandwidth
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S331/00—Oscillators
- Y10S331/02—Phase locked loop having lock indicating or detecting means
Definitions
- Phase-lock circuits are well-known in the art and are used in many situations in which it is desired to synchronize an output signal with an input signal by locking the phase of the output signal to that of the input signal.
- Such prior art phase-lock circuits in general include a phase detector, a loop filter, and a voltage-controlled oscillator (VCO).
- VCO voltage-controlled oscillator
- One disadvantage of conventional phase-lock circuits is that the acquisition range in which lock can occur, that is, the ratio of an input signal frequency F in to an output signal frequency F out , is typically limited to just a few percent (e.g., 5% to 20%).
- a simple phase detector is used rather than a phase/frequency detector.
- the frequency variation range of the VCO is limited. If the input signal frequency is outside the acquisition range of the output signal frequency, then the two frequencies must somehow be brought closer together (perhaps even by changing the VCO range) in order to allow lock to occur.
- a phase-lock circuit in which the lock range is extended to many decades of frequency ratios.
- a preferred embodiment includes a phase/frequency detector capable of both phase and frequency detection, a plurality of switchable loop filters and voltage-controlled oscillators to provide a wide acquisition range, and range detectors (both over and under) to sense when a particular VCO range is exceeded in either direction so that a new filter-VCO combination may be selected.
- FIG. 1 is a block diagram of a conventional phase-lock circuit
- FIG. 2 is a block diagram of a preferred embodiment in accordance with the present invention.
- FIG. 3 is a detailed circuit schematic of a phase/frequency detection circuit employed by the present invention.
- FIG. 4 is a waveform ladder diagram for explaining the phase comparison operation of the circuit of FIG. 3;
- FIG. 5 is a waveform ladder diagram illustrating the case in which the input signal leads the output signal by a half-cycle
- FIG. 6 is a waveform ladder diagram illustrating the case in which the input signal frequency is twice that of the output signal frequency
- FIG. 7 is a circuit schematic showing the details of the switchable filters and over-range and under-range detectors used in the circuit of FIG. 2;
- FIG. 8 is a circuit schematic showing the details of the voltage-controlled oscillator circuits used in the phase-lock circuit of FIG. 2.
- FIG. 1 a conventional phase-lock circuit of the prior art consisting of a phase detector 10, a filter 12, and a voltage-controlled oscillator (VCO) 14.
- Phase detector 10 compares the phase of the input signal with that of the output signal from VCO 14, and generates a pulse voltage, the width of which is directly proportional to the phase difference between the two signals.
- Filter 12 converts the output pulse from phase detector 10 into a DC voltage to control the oscillation frequency of VCO 14.
- an output signal F out is synchronized with an input signal F in such that the phase of the output signal is locked to the phase of the input signal.
- FIG. 2 shows a block diagram of a phase-lock circuit in accordance with the present invention.
- Phase/frequency detector 16 compares an input signal at terminal 18 with an output signal at terminal 20, and generates output pulses, the duty factor and frequency of which are determined by either a constant or a changing phase difference between the input and output signals.
- Phase/frequency detector 16 (as opposed to purely a phase detector) has two modes of operation--that of phase detection and that of frequency detection. The output thereof is proportional to phase difference for two close together frequencies and latched either high or low for frequency differences greater than 2:1.
- the output pulses from phase/frequency detector 16 are applied to one of a plurality of loop filters 22 through 26 via switch 28.
- the integrating constants of the filters are different from each other, and each filter has an own optimum pulse frequency range for converting the output pulses from phase/frequency detector 16 to a DC voltage for the best loop dynamics.
- the control voltage outputs of filters 22 through 26 are connected to VCOs 30 through 34, over-range detector 36 and under-range detector 38.
- the oscillation frequency and phase of VCOs 30 through 34 are controlled by the DC voltage output of filters 22 through 26, and the selected output of such VCOs is connected to phase/frequency detector 16 and terminal 20 via switch 40.
- the oscillation frequency ranges of VCOs 30 through 34 are such that respective ones overlap.
- Over-range and under-range detectors 36 and 38 compare the output control voltage from the selected filter of loop filters 22 through 26 with reference voltages V ref1 and V ref2 , and switch control unit 42 controls switches 28 and 40 in accordance with the outputs from detectors 36 and 38.
- filter 22 is used with VCOs 30 and 31
- filter 24 is used with VCOs 31 and 32
- filter 25 is used with VCOs 32 and 33
- filter 26 is used with VCOs 33 and 34.
- the frequency ranges of filters 22 through 26 are set from the lower frequency range upward
- the frequency ranges of VCOs 30 through 34 are set from the lower frequency range upward.
- Switch control unit 42 may be a system including a microprocessor, a random access memory as a temporary memory and a read only memory for firmware.
- VCO 30 When switches 28 and 40 select filter 22 and VCO 30, respectively, and the input frequency F in is within the low frequency range, VCO 30 generates an output signal, the phase of which is locked to the input low frequency signal at terminal 18. If the input frequency F in increases, the phase difference between the input and output signals increases and the output DC voltage from filter 22 correspondingly increases. When this output DC voltage increases to a point which exceeds the reference voltage V ref1 , over-range detector 36 detects this situation and applies an output control signal to switch control unit 42. In accordance with this output, switch control unit 42 controls the operation of switch 40 so that it selects VCO 31.
- switch control unit 42 If the input frequency F in is within the range of VCO 31, the output control voltage from filter 22 is between the reference voltages V ref1 and V ref2 and switch control unit 42 does not further control switches 28 and 40. VCO 31 will become locked to the phase and frequency of the input signal. If the input frequency F in is higher than the range of VCO 31, the output control voltage from filter 22 will be higher than the reference voltage V ref1 and over-range detector 36 generates a control output voltage which is applied to switch control unit 42. Switch control unit 42 controls switches 28 and 40 so that they select blocks 24 and 32. As described earlier, if the input frequency F in continues to increase, filters 25 and 26 and VCOs 33 and 34 are selected in this order.
- switch 28 and 40 select filter 26 and VCO 34 and the input frequency F in is lower than the range of VCO 34, the output voltage from filter 26 decreases. Since the output from filter 26 is lower than the reference voltage V ref2 , under-range detector 38 applies an output control signal to switch control unit 42. According to the operation of switch control unit 42, switch 28 selects VCO 33. If the input signal frequency F in is in the range of VCO 33, the output signal frequency F out from VCO 33 becomes locked to the input signal frequency F in . If the input signal frequency F in is lower than the range of VCO 33, switches 28 and 40 select loop filter 25 and VCO 32. If the input signal frequency F in further decreases, filters 24 and 22 and VCOs 31 and 30 are selected in this order. Thus, it can be appreciated that the present invention can extend the lock range of the phase lock circuit.
- FIG. 3 shows a circuit schematic of phase/frequency detector 16 used in FIG. 2.
- Terminal 44 receives the input signal F in from terminal 18 (of FIG. 2), and is connected to the clock terminals of flip-flops 46 and 48.
- Terminal 50 receives the output signal F out from terminal 20, and is connected to the clock terminals of flip-flops 52 and 54.
- the Q outputs of flip-flops 46 and 48 are applied to OR gate 56, and the D input terminal of flip-flop 46 is connected to the Q output terminal of flip-flop 48.
- NOR gate 58 receives the Q outputs from flip-flops 48 and 52, to reset them.
- OR gate 60 receives the Q outputs from flip-flop 52 and 54, and the D input terminal of flip-flop 54 receives the Q output from flip-flop 52.
- the D input terminals of flip-flops 48 and 52 receive a suitable positive supply voltage through a diode.
- the non-inverting and inverting outputs from OR gate 56 control a first current switch consisting of emitter coupled transistors 62-64 and constant current source transistor 66.
- the non-inverting and inverting outputs from OR gate 60 control a second current switch consisting of emitter coupled transistors 68-70 and constant current source transistor 72. These current switches form a charge pump to furnish current to the loop filter connected to output terminal 80.
- the bases of transistors 66 and 72 are connected to a voltage divider consisting of resistors and temperature compensation transistor 74 connected as a diode.
- the collectors of transistors 64 and 68 are connected to the common junction of resistors 76 and 78 and terminal 80.
- the signal waveforms A through F of FIGS. 4 through 6 appear at points indicated by ⁇ A through ⁇ F in FIG. 3.
- FIG. 4 depicts some of the output waveforms in the phase comparison mode.
- the two signals A and B the input and output signals, respectively
- the two signals A and B are equal in phase and frequency, as depicted.
- all four flip-flops 46-48-52-54 have just been reset.
- flip-flop 48 sets.
- flip-flops 52 and 54 will set, since the F out signal has not yet arrived, and flip-flop 46 cannot set, since a low level is at terminal D of flip-flop 46(D) when the edge of signal F in , which may be a trigger signal, arrives.
- the logical high of signal D enables gate 56 to turn on transistor 64 to begin driving the next stage, the charge pump for the loop filter, to increase the loop frequency, and the low from Q of flip-flop 48 permits flip-flop 48 to control the output of gate 58, which is still low.
- the high state of signal D is also applied to the D input of flip-flop 46 to arm that flip-flop for the next incoming trigger cycle of F in .
- the positive edge of the F out signal which may be an internal square-wave signal produced by a VCO, occurs, setting the flip-flop 52.
- Flip-flop 54 cannot set because signal E is low when the clock edge occurs.
- the set condition of flip-flop 52 causes signal E to go high, and Q of flip-flop 52 to go low. This low is applied to gate 58, which resets both flip-flops and terminates the charge pump drive signal.
- the result is an output pulse that is very little wider than the propagation time of gate 58 and the time difference between the two flip-flops 48 and 52, thus containing just enough energy to affect the charge pump output, and slightly shift the frequency.
- the resultant output of the circuit at terminal 80 is a series of very narrow pulses that first drive the phase-locked loop slightly up in frequency, then slightly down, averaging to the frequency of the applied trigger signal F in .
- FIG. 5 illustrates the case that occurs when the trigger signal F in leads the loop signal F out by a half-cycle, so the phase is different, and the frequency is also somewhat different.
- the first positive edge of F in signal A sets flip-flop 48, which arms flip-flop 46, begins the pump-up signal to the charge pump via gate 56, and enables gate 58.
- the square-wave B sets flip-flop 52 and resets both flip-flops 48 and 52 through the output of gate 58. This terminates the charge pump signal F.
- the phase lock loop filter can respond to a pulse of this width, so the loop frequency is altered upwards slightly.
- the next positive edge of signal A again sets flip-flop 48, and the process is repeated.
- the pulse width of the second charge signal F is narrower, and continues to decrease with succeeding cycles.
- the phase-lock loop adjusts the frequency to the point that the positive edge of signal B leads the positive of signal A indicating that the correction process has overshot the center mark. Then, the process is reversed, until the circuit rocks back and forth over the in-phase mark, as just explained.
- FIG. 6 illustrates the case that occurs when signal A is more than twice the frequency of signal B.
- the inner latches 48 and 52 phase detector
- the process would be slow, and would temporarily reverse when phase crossings occurred, such as when the frequency of one signal was twice or three times the other.
- the first positive edge of signal A sets flip-flop 48, which arms flip-flop 46 to set at the next transition if signal B does not arrive first. This does not occur, since signal A is more than three times faster than the square-wave B, in this case.
- the second positive edge, at t 1 sets flip-flop 48.
- the positive level at Q of flip-flop 46 has no effect on the gate for now, since the other input is already high from the set state of flip-flop 48.
- the square-wave signal B sets flip-flop 52, which resets flip-flop 48. This has no effect on the output of gate 56 which is still held by Q of flip-flop 46.
- flip-flop 48 is once again set, and in the absence of the high of signal D is reset.
- the output signal from gate 56 is a bipolar drive signal that drives one-half of the charge pump circuit.
- the output of gate 60 is a similar signal that drives the other half of the charge pump circuit.
- FIG. 7 is a circuit schematic of the loop filters and over-range and under-range detectors 36 and 38 used in FIG. 2.
- Terminal 82 receives the output voltages from terminal 80 in FIG. 3, and is connected to the inverting input terminal of operational amplifier 84 through current-setting resistor 86.
- Multiplexer 88, timing capacitors 90 through 96 and resistor 98 are inserted between the output and inverting input terminals of operational amplifier 84 and thereby form a first Miller integrator.
- the terminal X is selectively connected to one of the terminals X 0 through X 3 in response to two-bit control signal at terminals A and B thereby to complete the capacitive feedback loop of the Miller integrator.
- the non-inverting input terminal of operational amplifier 84 is grounded through a resistor.
- the output from the first Miller integrator, that is, operational amplifier 84, is connected through resistor 102 to the inverting input terminal of operational amplifier 100 with the non-inverting input terminal thereof receiving a proper voltage from a voltage divider.
- Multiplexer 104, capacitors 106 through 110 and resistor 112 are inserted between the output and inverting input terminals of operational amplifier 100.
- Multiplexer 104 is the same as multiplexer 88, and control terminals A and B thereof receive the control signal from switch control 42 through terminals 114 and 116 and buffer transistors 118 and 120.
- operational amplifier 100 When the terminal Y of multiplexer 104 is connected to the terminal Y 3 , operational amplifier 100 operates as a voltage follower inverter with resistor 112 being the single feedback element. When the terminal Y is connected to one of the terminals Y 0 , Y 1 and Y 2 , operational amplifier 100 operates as a second Miller integrator.
- the first and second Miller integrators form an active filter, and the characteristic thereof is selected by the control signal at terminals 114 and 116. Therefore, this active filter produces the DC output voltage at terminal 122 in accordance with the integrated pulse voltage at terminal 82.
- Multiplexers 88 and 104 correspond to switch 28 in FIG. 2.
- Comparators 124 and 126 compare the output voltage at terminal 122 with the reference voltages V ref1 and V ref2 produced by a voltage divider consisting of resistors 128, 130 and 132. Comparators 124 and 126 respectively correspond to over- and under-range detectors 36 and 38, and terminals 134 and 136 are connected to switch control 42.
- VCO 30, 32 or 34 Under normal operating conditions, VCO 30, 32 or 34 generates the output signal the phase of which is the same as the input signal at terminal 82. Sometimes an output signal is needed which is a predetermined degree of out-of-phase with reference to the input signal.
- the inverting input terminal of operational amplifier 84 receives a second input voltage from digital-to-analog (D/A) converter 138 through buffer 140 and input resistor 142.
- D/A converter 138 receives a control digital signal from a control circuit (not shown) such as a microprocessor system.
- the operator sets the desired degree so that D/A converter 138 applies the DC voltage to the first Miller integrator. Since filters 22 through 26 are active filters, Miller integrators, it is easy to sum two input voltages. If current is added to or removed from the summing input of operational amplifier 84, the loop will lock with whatever duty cycle and polarity is required to cancel out the offset. By this means the phase difference between input 50 and output 44 is programmed by D/A converter
- FIG. 8 shows a circuit schematic of VCOs 30 through 34 and switch 40.
- Terminal 144 receives the DC voltage from terminal 122, and is connected to the reference terminals V ref of D/A converters 146 and 148 which receive digital signals from the control circuit (not shown). However, the digital signals are set to predetermined values in the phase lock mode.
- the analog outputs from D/A converters 146 and 148 control current sourcing circuit 150 and current sinking circuit 152. Since the analog outputs from D/A converters 146 and 148 vary in accordance with the DC voltage at terminal 144, this DC voltage controls the output current values of current sources 150 and 152.
- Current source 150 supplies the current to a first current switch consisting of emitter coupled transistors 154 and 156, and current source 152 sinks the current from a second current switch consisting of emitter coupled transistors 158 and 160.
- Transistors 154 and 158 are controlled by transistor 162
- transistors 156 and 160 are controlled by transistor 164
- the bases of transistors 162 and 164 receive push-pull pulses from level detector 166.
- the collectors of transistors 156 and 158 are grounded, and the collectors of transistors 154 and 160 are connected to buffer 168 and capacitor 170.
- Capacitors 172 through 178 are selectively connected in parallel with capacitor 170 by electromagnetic relays 180 through 186.
- Level detector 166 detects predetermined upper and lower levels of the output from buffer 168, and generates the push-pull pulse which changes logic levels (high or low) with each detection of the upper and lower levels of buffer 168.
- the current from current source 150 charges the capacitor(s) selected from capacitors 170 through 178.
- a positive going ramp is produced across the capacitor(s).
- level detector 166 detects the upper level of the ramp, the logic levels of the push-pull pulse from detector 166 exchange so that transistors 154 and 158 turn off and transistors 156 and 160 turn on.
- Current source 152 sinks the current from the capacitor(s) and a negative going ramp is produced across the capacitor(s).
- level detector 166 detects the lower level of the negative going ramp, the logic levels from detector 166 exchange so that the capacitor(s) is charged again by current source 150.
- the above operations repeat, and a triangle waveform is obtained from terminal 198.
- the square wave output signal at terminal 200 is applied to terminal 20.
- the phase and frequency of the output signal at terminal 200 is controlled by the DC voltage at terminal 144, and the frequency range depends on the value of the capacitor(s) selected by relays 180 through 186.
- Relays 180 through 186 correspond to switch 40 in FIG. 2, and the other components correspond to VCOs 30 through 34.
- the circuit of FIG. 5 can generate a desired frequency signal by applying desired control signals to D/A converters 146 and 148 and latch circuit 196.
- the DC voltage at terminal 144 is fixed to a predetermined voltage that produces the desired output frequency.
- the present invention can extend the lock range which is greater than 1,000,000:1.
- the VCO may be other types such as an oscillator including a vari-cap diode.
- the filters may be passive filters instead of the active filters.
Landscapes
- Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)
Abstract
Description
Claims (5)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56-137677 | 1981-09-01 | ||
JP56137677A JPS5843632A (en) | 1981-09-01 | 1981-09-01 | Phase fixing circuit |
Publications (1)
Publication Number | Publication Date |
---|---|
US4510461A true US4510461A (en) | 1985-04-09 |
Family
ID=15204231
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US06/401,051 Expired - Lifetime US4510461A (en) | 1981-09-01 | 1982-07-22 | Phase lock loop having switchable filters and oscillators |
Country Status (7)
Country | Link |
---|---|
US (1) | US4510461A (en) |
JP (1) | JPS5843632A (en) |
CA (1) | CA1194935A (en) |
DE (1) | DE3232155C2 (en) |
FR (1) | FR2519486B1 (en) |
GB (1) | GB2104742B (en) |
NL (1) | NL8203364A (en) |
Cited By (46)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4587496A (en) * | 1984-09-12 | 1986-05-06 | General Signal Corporation | Fast acquisition phase-lock loop |
US4590440A (en) * | 1984-07-06 | 1986-05-20 | American Microsystems, Inc. | Phase locked loop with high and/or low frequency limit detectors for preventing false lock on harmonics |
US4629999A (en) * | 1983-12-27 | 1986-12-16 | North American Philips Corp. | Phase-locked loop capable of generating a plurality of stable frequency signals |
US4825321A (en) * | 1987-05-20 | 1989-04-25 | Plus Development Corporation | Modular unitary disk file subsystem having increased data storage capacity |
US4858034A (en) * | 1987-05-20 | 1989-08-15 | Plus Development Corporation | Modular unitary disk file subsystem with differing density zones |
US4862296A (en) * | 1987-09-21 | 1989-08-29 | Sony Corporation | PCM signal reproducing apparatus with adjustable phase lock loop circuitry |
US4953163A (en) * | 1985-11-20 | 1990-08-28 | Kabushiki Kaisha Kenwood | TDM transmission system |
US4958228A (en) * | 1988-10-19 | 1990-09-18 | Matsushita Electric Industrial Co., Ltd. | Automatic frequency change device |
US5049838A (en) * | 1989-09-19 | 1991-09-17 | The Boeing Company | Minimum intrusion search oscillator for use in feedback loops |
US5268647A (en) * | 1991-09-19 | 1993-12-07 | Nec Corporation | Method and arrangement of coherently demodulating PSK signals using a feedback loop including a filter bank |
US5276716A (en) * | 1990-02-15 | 1994-01-04 | Advanced Micro Devices Inc. | Bi-phase decoder phase-lock loop in CMOS |
US5367269A (en) * | 1990-11-08 | 1994-11-22 | Pioneer Electronic Corporation | System for producing an oscillating jamming signal utilizing a phase-locked loop |
US5386437A (en) * | 1991-11-08 | 1995-01-31 | Sony Corporation | Phase-locked loop circuit |
US5559474A (en) * | 1994-05-26 | 1996-09-24 | Matsushita Electric Industrial Co., Ltd. | Frequency synthesizer with controllable loop filter |
US5909149A (en) * | 1997-08-29 | 1999-06-01 | Lucent Technologies, Inc. | Multiband phase locked loop using a switched voltage controlled oscillator |
US6112068A (en) * | 1997-12-22 | 2000-08-29 | Texas Instruments Incorporated | Phase-locked loop circuit with switchable outputs for multiple loop filters |
US6229399B1 (en) * | 1997-04-25 | 2001-05-08 | Matsushita Electric Industrial Co., Ltd. | Multiple frequency band synthesizer using a single voltage control oscillator |
WO2001041351A1 (en) * | 1999-12-03 | 2001-06-07 | Fujitsu Limited | Phase synchronization loop circuit and optical repeater provided with the circuit, optical terminal station device and optical communication system |
EP1115205A1 (en) * | 1998-09-17 | 2001-07-11 | Hitachi, Ltd. | Pll circuit and radio communication terminal using pll |
WO2001058018A2 (en) * | 2000-02-04 | 2001-08-09 | Conexant Systems, Inc. | Phase-locked loop having a bank of vcos for fully integrated broadband tuner |
US20010031627A1 (en) * | 1999-05-21 | 2001-10-18 | Christian Ries | Multiband frequency generation using a single PLL-circuit |
US6356158B1 (en) * | 2000-05-02 | 2002-03-12 | Xilinx, Inc. | Phase-locked loop employing programmable tapped-delay-line oscillator |
US6505038B1 (en) | 1998-12-14 | 2003-01-07 | Thomson Licensing S.A. | Method of driving a receiver stage and respective apparatus |
US6512801B1 (en) * | 1998-05-26 | 2003-01-28 | Matsushita Electric Industrial Co., Ltd. | Receiver capable of selecting optimal voltage controlled oscillator |
US20030164743A1 (en) * | 1999-12-14 | 2003-09-04 | Broadcom Corporation | Varactor folding technique for phase noise reduction in electronic oscillators |
US20040066219A1 (en) * | 2000-12-07 | 2004-04-08 | Paul Burgess | Radio transceiver having a phase-locked loop circuit |
US20040183613A1 (en) * | 2003-03-21 | 2004-09-23 | Kurd Nasser A. | Method and apparatus for detecting on-die voltage variations |
US20050104665A1 (en) * | 2003-11-13 | 2005-05-19 | Molnar Alyosha C. | On-chip VCO calibration |
KR100686440B1 (en) * | 1998-05-22 | 2007-02-23 | 텔레폰악티에볼라겟엘엠에릭슨(펍) | Multiband frequency generation using a single pll-circuit |
US20070152758A1 (en) * | 2004-09-08 | 2007-07-05 | Fujitsu Limited | PLL frequency synthesizer |
US20070268083A1 (en) * | 2006-05-16 | 2007-11-22 | Agere Systems Inc. | Systems and methods for multi-range clock generation |
US20080220733A1 (en) * | 2007-03-02 | 2008-09-11 | Matsushita Electric Industrial Co., Ltd. | Fast frequency range selection in ranged controlled oscillators |
US20090066436A1 (en) * | 2007-09-12 | 2009-03-12 | Richwave Technology Corp. | Multi-brand electronic apparatus and multi-band signal processing method |
US20100070207A1 (en) * | 2008-09-18 | 2010-03-18 | Enraf B.V. | Method for robust gauging accuracy for level gauges under mismatch and large opening effects in stillpipes and related apparatus |
US20100066589A1 (en) * | 2008-09-18 | 2010-03-18 | Enraf B.V. | Method and apparatus for highly accurate higher frequency signal generation and related level gauge |
US20100070208A1 (en) * | 2008-09-18 | 2010-03-18 | Enraf B.V. | Apparatus and method for dynamic peak detection, identification, and tracking in level gauging applications |
US7746179B1 (en) | 2006-09-13 | 2010-06-29 | Rf Micro Devices, Inc. | Method and apparatus for selecting a frequency generating element |
US20100175470A1 (en) * | 2007-09-04 | 2010-07-15 | Honeywell International Inc. | Method and device for determining the level l of a liquid within a specified measuring range by means of radar signals transmitted to the liquid surface and radar signals reflected from the liquid surface |
KR101007211B1 (en) * | 2010-05-01 | 2011-01-12 | 삼성탈레스 주식회사 | Wideband high frequency synthesizer for airborne |
US20110163910A1 (en) * | 2006-02-22 | 2011-07-07 | Enraf B.V. | Radar liquid level detection using stepped frequency pulses |
CN102946249A (en) * | 2012-12-10 | 2013-02-27 | 北京中科飞鸿科技有限公司 | Frequency synthesizer |
US8508308B2 (en) * | 2011-09-01 | 2013-08-13 | Lsi Corporation | Automatic frequency calibration of a multi-LCVCO phase locked loop with adaptive thresholds and programmable center control voltage |
US20130234802A1 (en) * | 2010-05-28 | 2013-09-12 | Marvell World Trade Ltd. | Method and apparatus for drift compensation in pll |
US9046406B2 (en) | 2012-04-11 | 2015-06-02 | Honeywell International Inc. | Advanced antenna protection for radars in level gauging and other applications |
WO2016045455A1 (en) * | 2014-09-28 | 2016-03-31 | 成都维客亲源健康科技有限公司 | Highly reliable and low computational load heart rhythm recognition circuit and method applicable in wearable device |
RU2804407C1 (en) * | 2023-04-04 | 2023-09-29 | Акционерное общество "Концерн "Созвездие" | Wide-range synthesizer with phase-locked loop controlled oscillator with switchable resonators |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07105717B2 (en) * | 1984-02-10 | 1995-11-13 | 株式会社日立製作所 | Clock generator |
JP2569508B2 (en) * | 1986-11-12 | 1997-01-08 | ソニー株式会社 | PLL circuit |
JP2513252B2 (en) * | 1987-09-25 | 1996-07-03 | 日本電気株式会社 | Phase synchronization circuit |
US4935941A (en) * | 1988-03-30 | 1990-06-19 | Konica Corporation | Multiple frequency data recovery system |
JPH0799807B2 (en) * | 1990-03-09 | 1995-10-25 | 株式会社東芝 | Phase synchronization circuit |
KR910019345A (en) * | 1990-04-06 | 1991-11-30 | 정용문 | Magnetic frequency automatic synchronization control circuit of display device |
JP2987173B2 (en) * | 1990-06-29 | 1999-12-06 | 日本電気ホームエレクトロニクス株式会社 | Phase locked loop circuit |
KR940005459A (en) * | 1992-06-22 | 1994-03-21 | 모리시타 요이찌 | PLL circuit |
US5686864A (en) * | 1995-09-05 | 1997-11-11 | Motorola, Inc. | Method and apparatus for controlling a voltage controlled oscillator tuning range in a frequency synthesizer |
JP4656836B2 (en) * | 2003-12-19 | 2011-03-23 | パナソニック株式会社 | Synchronous clock generation apparatus and synchronous clock generation method |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3431509A (en) * | 1968-01-08 | 1969-03-04 | Collins Radio Co | Phase locked loop with digitalized frequency and phase discriminator |
US3538450A (en) * | 1968-11-04 | 1970-11-03 | Collins Radio Co | Phase locked loop with digital capacitor and varactor tuned oscillator |
US3729688A (en) * | 1971-12-15 | 1973-04-24 | Motorola Inc | Oscillator with switchable filter control voltage input for rapidly switching to discrete frequency outputs |
US3909735A (en) * | 1974-04-04 | 1975-09-30 | Ncr Co | Slow switch for bandwidth change in phase-locked loop |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1102325A (en) * | 1964-09-04 | 1968-02-07 | Plessey Uk Ltd | Improvements in or relating to frequency synthesisers |
FR1524102A (en) * | 1967-01-12 | 1968-05-10 | Cit Alcatel | Automatically Controlled Wide Range Frequency Synthesizer |
GB1390232A (en) * | 1972-03-20 | 1975-04-09 | Communication Associates Inc | Frequency synthesizer |
JPS5149180B2 (en) * | 1973-05-17 | 1976-12-24 | ||
JPS5227342A (en) * | 1975-08-27 | 1977-03-01 | Sony Corp | Signal generator |
JPS592209B2 (en) * | 1977-06-03 | 1984-01-17 | 日本電気株式会社 | PLL oscillation circuit |
DE2735031C3 (en) * | 1977-08-03 | 1980-05-22 | Siemens Ag, 1000 Berlin Und 8000 Muenchen | Phase locked loop |
US4214496A (en) * | 1978-10-06 | 1980-07-29 | Gulf & Western Manufacturing Company | Shock dampening systems for presses |
DE2938780C3 (en) * | 1979-09-25 | 1982-04-08 | Siemens AG, 1000 Berlin und 8000 München | Circuit arrangement for regulating an internal pulse repetition frequency which is higher by a factor of n than a controlling, external pulse repetition frequency |
-
1981
- 1981-09-01 JP JP56137677A patent/JPS5843632A/en active Pending
-
1982
- 1982-07-22 US US06/401,051 patent/US4510461A/en not_active Expired - Lifetime
- 1982-07-28 GB GB08221759A patent/GB2104742B/en not_active Expired
- 1982-08-10 CA CA000409091A patent/CA1194935A/en not_active Expired
- 1982-08-27 NL NL8203364A patent/NL8203364A/en not_active Application Discontinuation
- 1982-08-30 DE DE3232155A patent/DE3232155C2/en not_active Expired
- 1982-09-01 FR FR8214949A patent/FR2519486B1/en not_active Expired
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3431509A (en) * | 1968-01-08 | 1969-03-04 | Collins Radio Co | Phase locked loop with digitalized frequency and phase discriminator |
US3538450A (en) * | 1968-11-04 | 1970-11-03 | Collins Radio Co | Phase locked loop with digital capacitor and varactor tuned oscillator |
US3729688A (en) * | 1971-12-15 | 1973-04-24 | Motorola Inc | Oscillator with switchable filter control voltage input for rapidly switching to discrete frequency outputs |
US3909735A (en) * | 1974-04-04 | 1975-09-30 | Ncr Co | Slow switch for bandwidth change in phase-locked loop |
Cited By (80)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4629999A (en) * | 1983-12-27 | 1986-12-16 | North American Philips Corp. | Phase-locked loop capable of generating a plurality of stable frequency signals |
US4590440A (en) * | 1984-07-06 | 1986-05-20 | American Microsystems, Inc. | Phase locked loop with high and/or low frequency limit detectors for preventing false lock on harmonics |
US4587496A (en) * | 1984-09-12 | 1986-05-06 | General Signal Corporation | Fast acquisition phase-lock loop |
US4953163A (en) * | 1985-11-20 | 1990-08-28 | Kabushiki Kaisha Kenwood | TDM transmission system |
US4825321A (en) * | 1987-05-20 | 1989-04-25 | Plus Development Corporation | Modular unitary disk file subsystem having increased data storage capacity |
US4858034A (en) * | 1987-05-20 | 1989-08-15 | Plus Development Corporation | Modular unitary disk file subsystem with differing density zones |
US4862296A (en) * | 1987-09-21 | 1989-08-29 | Sony Corporation | PCM signal reproducing apparatus with adjustable phase lock loop circuitry |
US4958228A (en) * | 1988-10-19 | 1990-09-18 | Matsushita Electric Industrial Co., Ltd. | Automatic frequency change device |
US5049838A (en) * | 1989-09-19 | 1991-09-17 | The Boeing Company | Minimum intrusion search oscillator for use in feedback loops |
US5276716A (en) * | 1990-02-15 | 1994-01-04 | Advanced Micro Devices Inc. | Bi-phase decoder phase-lock loop in CMOS |
US5367269A (en) * | 1990-11-08 | 1994-11-22 | Pioneer Electronic Corporation | System for producing an oscillating jamming signal utilizing a phase-locked loop |
US5268647A (en) * | 1991-09-19 | 1993-12-07 | Nec Corporation | Method and arrangement of coherently demodulating PSK signals using a feedback loop including a filter bank |
US5386437A (en) * | 1991-11-08 | 1995-01-31 | Sony Corporation | Phase-locked loop circuit |
US5559474A (en) * | 1994-05-26 | 1996-09-24 | Matsushita Electric Industrial Co., Ltd. | Frequency synthesizer with controllable loop filter |
US6229399B1 (en) * | 1997-04-25 | 2001-05-08 | Matsushita Electric Industrial Co., Ltd. | Multiple frequency band synthesizer using a single voltage control oscillator |
US5909149A (en) * | 1997-08-29 | 1999-06-01 | Lucent Technologies, Inc. | Multiband phase locked loop using a switched voltage controlled oscillator |
US6112068A (en) * | 1997-12-22 | 2000-08-29 | Texas Instruments Incorporated | Phase-locked loop circuit with switchable outputs for multiple loop filters |
KR100686440B1 (en) * | 1998-05-22 | 2007-02-23 | 텔레폰악티에볼라겟엘엠에릭슨(펍) | Multiband frequency generation using a single pll-circuit |
US6512801B1 (en) * | 1998-05-26 | 2003-01-28 | Matsushita Electric Industrial Co., Ltd. | Receiver capable of selecting optimal voltage controlled oscillator |
EP1115205A1 (en) * | 1998-09-17 | 2001-07-11 | Hitachi, Ltd. | Pll circuit and radio communication terminal using pll |
US20030143960A1 (en) * | 1998-09-17 | 2003-07-31 | Taizo Yamawaki | PLL circuit and radio communication terminal apparatus using the same |
EP1758255A3 (en) * | 1998-09-17 | 2010-11-24 | Renesas Electronics Corporation | PLL circuit and radio communication terminal apparatus using the same |
US7333779B2 (en) | 1998-09-17 | 2008-02-19 | Renesas Technology Corp. | PLL circuit and radio communication terminal apparatus using the same |
US6970683B2 (en) | 1998-09-17 | 2005-11-29 | Renesas Technology Corp. | PLL circuit and radio communication terminal apparatus using the same |
US6996377B1 (en) | 1998-09-17 | 2006-02-07 | Renesas Technology Corp. | PLL circuit and radio communication terminal apparatus using the same |
US20050215222A1 (en) * | 1998-09-17 | 2005-09-29 | Taizo Yamawaki | PLL circuit and radio communication terminal apparatus using the same |
EP1115205A4 (en) * | 1998-09-17 | 2004-03-24 | Hitachi Ltd | Pll circuit and radio communication terminal using pll |
US6505038B1 (en) | 1998-12-14 | 2003-01-07 | Thomson Licensing S.A. | Method of driving a receiver stage and respective apparatus |
US20030068997A1 (en) * | 1998-12-14 | 2003-04-10 | Herbert Peusens | Method for driving a receiver stage and respective apparatus |
US7164896B2 (en) | 1998-12-14 | 2007-01-16 | Thomson Licensing | Method for driving a receiver stage and respective apparatus |
US6785525B2 (en) * | 1999-05-21 | 2004-08-31 | Telefonaktiebolaget L M Ericsson (Publ) | Multiband frequency generation using a single PLL-circuit |
US20010031627A1 (en) * | 1999-05-21 | 2001-10-18 | Christian Ries | Multiband frequency generation using a single PLL-circuit |
WO2001041351A1 (en) * | 1999-12-03 | 2001-06-07 | Fujitsu Limited | Phase synchronization loop circuit and optical repeater provided with the circuit, optical terminal station device and optical communication system |
US7027741B2 (en) | 1999-12-03 | 2006-04-11 | Fujitsu Limited | Phase lock loop circuit and optical repeating apparatus, optical terminal apparatus, and optical communication system having the same |
US20020121937A1 (en) * | 1999-12-03 | 2002-09-05 | Fujitsu Limited | Phase lock loop circuit and optical repeating apparatus, optical terminal apparatus, and optical communication system having the same |
US20030164743A1 (en) * | 1999-12-14 | 2003-09-04 | Broadcom Corporation | Varactor folding technique for phase noise reduction in electronic oscillators |
US6985044B2 (en) | 1999-12-14 | 2006-01-10 | Broadcom Corporation | Varactor folding technique for phase noise reduction in electronic oscillators |
US20050083143A1 (en) * | 1999-12-14 | 2005-04-21 | Broadcom Corporation | Varactor folding technique for phase noise reduction in electronic oscillators |
WO2001058018A2 (en) * | 2000-02-04 | 2001-08-09 | Conexant Systems, Inc. | Phase-locked loop having a bank of vcos for fully integrated broadband tuner |
WO2001058018A3 (en) * | 2000-02-04 | 2002-05-02 | Conexant Systems Inc | Phase-locked loop having a bank of vcos for fully integrated broadband tuner |
US6731712B1 (en) | 2000-02-04 | 2004-05-04 | Conexant Systems, Inc. | Fully integrated broadband tuner |
US6356158B1 (en) * | 2000-05-02 | 2002-03-12 | Xilinx, Inc. | Phase-locked loop employing programmable tapped-delay-line oscillator |
US6542040B1 (en) | 2000-05-02 | 2003-04-01 | Xilinx, Inc. | Phase-locked loop employing programmable tapped-delay-line oscillator |
US20040066219A1 (en) * | 2000-12-07 | 2004-04-08 | Paul Burgess | Radio transceiver having a phase-locked loop circuit |
US7466173B2 (en) * | 2000-12-07 | 2008-12-16 | Nokia Corporation | Radio transceiver having a phase-locked loop circuit |
US7061288B2 (en) * | 2000-12-07 | 2006-06-13 | Nokia Corporation | Radio transceiver having a phase-locked loop circuit |
US20060181318A1 (en) * | 2000-12-07 | 2006-08-17 | Paul Burgess | Radio transceiver having a phase-locked loop circuit |
US20040183613A1 (en) * | 2003-03-21 | 2004-09-23 | Kurd Nasser A. | Method and apparatus for detecting on-die voltage variations |
US7133751B2 (en) | 2003-03-21 | 2006-11-07 | Intel Corporation | Method and apparatus for detecting on-die voltage variations |
US6882238B2 (en) * | 2003-03-21 | 2005-04-19 | Intel Corporation | Method and apparatus for detecting on-die voltage variations |
US20050184764A1 (en) * | 2003-03-21 | 2005-08-25 | Kurd Nasser A. | Method and apparatus for detecting on-die voltage variations |
US20050104665A1 (en) * | 2003-11-13 | 2005-05-19 | Molnar Alyosha C. | On-chip VCO calibration |
US6933789B2 (en) * | 2003-11-13 | 2005-08-23 | Skyworks Solutions, Inc. | On-chip VCO calibration |
CN101015124B (en) * | 2004-09-08 | 2011-04-20 | 富士通半导体股份有限公司 | PLL frequency synthesizer |
US20070152758A1 (en) * | 2004-09-08 | 2007-07-05 | Fujitsu Limited | PLL frequency synthesizer |
US7405627B2 (en) * | 2004-09-08 | 2008-07-29 | Fujitsu Limited | PLL frequency synthesizer |
US8319680B2 (en) | 2006-02-22 | 2012-11-27 | Enraf B.V. | Radar liquid level detection using stepped frequency pulses |
US20110163910A1 (en) * | 2006-02-22 | 2011-07-07 | Enraf B.V. | Radar liquid level detection using stepped frequency pulses |
US7737798B2 (en) * | 2006-05-16 | 2010-06-15 | Agere Systems Inc. | Systems and methods for multi-range clock generation |
US20070268083A1 (en) * | 2006-05-16 | 2007-11-22 | Agere Systems Inc. | Systems and methods for multi-range clock generation |
US7746179B1 (en) | 2006-09-13 | 2010-06-29 | Rf Micro Devices, Inc. | Method and apparatus for selecting a frequency generating element |
US20080220733A1 (en) * | 2007-03-02 | 2008-09-11 | Matsushita Electric Industrial Co., Ltd. | Fast frequency range selection in ranged controlled oscillators |
US8186214B2 (en) | 2007-09-04 | 2012-05-29 | Enraf B.V. | Method and device for determining the level L of a liquid within a specified measuring range by means of radar signals transmitted to the liquid surface and radar signals reflected from the liquid surface |
US20100175470A1 (en) * | 2007-09-04 | 2010-07-15 | Honeywell International Inc. | Method and device for determining the level l of a liquid within a specified measuring range by means of radar signals transmitted to the liquid surface and radar signals reflected from the liquid surface |
US20090066436A1 (en) * | 2007-09-12 | 2009-03-12 | Richwave Technology Corp. | Multi-brand electronic apparatus and multi-band signal processing method |
US7777586B2 (en) * | 2007-09-12 | 2010-08-17 | Richwave Technology Corp. | Multi-brand electronic apparatus and multi-band signal processing method |
US20100070208A1 (en) * | 2008-09-18 | 2010-03-18 | Enraf B.V. | Apparatus and method for dynamic peak detection, identification, and tracking in level gauging applications |
US8659472B2 (en) * | 2008-09-18 | 2014-02-25 | Enraf B.V. | Method and apparatus for highly accurate higher frequency signal generation and related level gauge |
US20100066589A1 (en) * | 2008-09-18 | 2010-03-18 | Enraf B.V. | Method and apparatus for highly accurate higher frequency signal generation and related level gauge |
US8224594B2 (en) | 2008-09-18 | 2012-07-17 | Enraf B.V. | Apparatus and method for dynamic peak detection, identification, and tracking in level gauging applications |
US8271212B2 (en) | 2008-09-18 | 2012-09-18 | Enraf B.V. | Method for robust gauging accuracy for level gauges under mismatch and large opening effects in stillpipes and related apparatus |
US20100070207A1 (en) * | 2008-09-18 | 2010-03-18 | Enraf B.V. | Method for robust gauging accuracy for level gauges under mismatch and large opening effects in stillpipes and related apparatus |
KR101007211B1 (en) * | 2010-05-01 | 2011-01-12 | 삼성탈레스 주식회사 | Wideband high frequency synthesizer for airborne |
US8981855B2 (en) * | 2010-05-28 | 2015-03-17 | Marvell World Trade Ltd. | Method and apparatus for drift compensation in PLL |
US20130234802A1 (en) * | 2010-05-28 | 2013-09-12 | Marvell World Trade Ltd. | Method and apparatus for drift compensation in pll |
US8508308B2 (en) * | 2011-09-01 | 2013-08-13 | Lsi Corporation | Automatic frequency calibration of a multi-LCVCO phase locked loop with adaptive thresholds and programmable center control voltage |
US9046406B2 (en) | 2012-04-11 | 2015-06-02 | Honeywell International Inc. | Advanced antenna protection for radars in level gauging and other applications |
CN102946249A (en) * | 2012-12-10 | 2013-02-27 | 北京中科飞鸿科技有限公司 | Frequency synthesizer |
WO2016045455A1 (en) * | 2014-09-28 | 2016-03-31 | 成都维客亲源健康科技有限公司 | Highly reliable and low computational load heart rhythm recognition circuit and method applicable in wearable device |
RU2804407C1 (en) * | 2023-04-04 | 2023-09-29 | Акционерное общество "Концерн "Созвездие" | Wide-range synthesizer with phase-locked loop controlled oscillator with switchable resonators |
Also Published As
Publication number | Publication date |
---|---|
NL8203364A (en) | 1983-04-05 |
GB2104742B (en) | 1985-06-12 |
DE3232155C2 (en) | 1986-08-14 |
CA1194935A (en) | 1985-10-08 |
FR2519486A1 (en) | 1983-07-08 |
JPS5843632A (en) | 1983-03-14 |
DE3232155A1 (en) | 1983-03-17 |
FR2519486B1 (en) | 1988-06-10 |
GB2104742A (en) | 1983-03-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4510461A (en) | Phase lock loop having switchable filters and oscillators | |
US5266851A (en) | Phase detector | |
KR950028348A (en) | Clock Regeneration Circuit and Elements Used in the Clock Regeneration Circuit | |
JPH0770168B2 (en) | PLL circuit for magnetic disk device | |
EP0094837A2 (en) | Phase-locked circuit loop having improved locking capabilities | |
US5592110A (en) | Phase comparison circuit for maintaining a stable phase locked loop circuit in the absence of the pulse of an input signal | |
EP0164785B1 (en) | Electric circuit arrangement comprising a phase control-circuit | |
EP0287776A2 (en) | Phase-locked data detector | |
US4849704A (en) | Duty cycle independent phase detector | |
US4443842A (en) | Inverter firing control with compensation for variable switching delay | |
US6411144B1 (en) | Phase-locked loop circuit | |
US4843332A (en) | Wide range digital phase/frequency detector | |
AU612297B2 (en) | Voltage controlled oscillator | |
US6707408B2 (en) | Sigma-delta pulse-width-modulated signal generator circuit | |
US4184122A (en) | Digital phase comparison apparatus | |
US5365202A (en) | PLL frequency synthesizer using plural phase comparisons | |
US4884035A (en) | Wide range digital phase/frequency detector | |
JPH08274635A (en) | Phase-locked circuit | |
JP3080007B2 (en) | PLL circuit | |
GB2202700A (en) | A phase-locked loop fm detection system | |
US4345219A (en) | Frequency agile hold-sample-hold phase detector | |
JP4244397B2 (en) | PLL circuit | |
KR0145860B1 (en) | Frequency multiplier using d/a converter | |
JP3097080B2 (en) | Phase locked loop circuit | |
JPS6390213A (en) | Automatic mode switching pll circuit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
AS | Assignment |
Owner name: TEKTRONIX, INC., 4900 S.W. GRIFFITH DRIVE P.O. BOX Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNORS:DICKES, ERIC J.;HILL, THOMAS C. III;FLEGAL, ROBERT T.;REEL/FRAME:004326/0931 Effective date: 19820715 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FEPP | Fee payment procedure |
Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
FEPP | Fee payment procedure |
Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 12 |
|
AS | Assignment |
Owner name: ST. CLAIR INTELLECTUAL PROPERTY CONSULTANTS, INC., Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:TEKTRONIX, INC.;REEL/FRAME:008209/0468 Effective date: 19961008 |