US4397916A - Laminated multilayer structure - Google Patents
Laminated multilayer structure Download PDFInfo
- Publication number
- US4397916A US4397916A US06/237,610 US23761081A US4397916A US 4397916 A US4397916 A US 4397916A US 23761081 A US23761081 A US 23761081A US 4397916 A US4397916 A US 4397916A
- Authority
- US
- United States
- Prior art keywords
- layer
- ethylene
- resin
- weight
- graft
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229920005989 resin Polymers 0.000 claims abstract description 94
- 239000011347 resin Substances 0.000 claims abstract description 94
- 125000000816 ethylene group Chemical group [H]C([H])([*:1])C([H])([H])[*:2] 0.000 claims abstract description 77
- 229920000573 polyethylene Polymers 0.000 claims abstract description 48
- 239000005977 Ethylene Substances 0.000 claims abstract description 39
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 claims abstract description 35
- 229910052751 metal Inorganic materials 0.000 claims abstract description 25
- 239000002184 metal Substances 0.000 claims abstract description 25
- 150000001732 carboxylic acid derivatives Chemical class 0.000 claims abstract description 14
- 239000004711 α-olefin Substances 0.000 claims abstract description 14
- 125000004432 carbon atom Chemical group C* 0.000 claims abstract description 13
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 claims abstract description 8
- 239000000203 mixture Substances 0.000 claims description 28
- 229920001577 copolymer Polymers 0.000 claims description 21
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 claims description 7
- 229920001225 polyester resin Polymers 0.000 claims description 7
- 239000004645 polyester resin Substances 0.000 claims description 7
- 229910052782 aluminium Inorganic materials 0.000 claims description 6
- 229920006122 polyamide resin Polymers 0.000 claims description 6
- 229910052802 copper Inorganic materials 0.000 claims description 3
- 239000000956 alloy Substances 0.000 claims description 2
- 229910045601 alloy Inorganic materials 0.000 claims description 2
- 229910052742 iron Inorganic materials 0.000 claims description 2
- 229910052759 nickel Inorganic materials 0.000 claims description 2
- 229910052718 tin Inorganic materials 0.000 claims description 2
- 150000001990 dicarboxylic acid derivatives Chemical class 0.000 claims 2
- 239000010410 layer Substances 0.000 description 106
- 230000000052 comparative effect Effects 0.000 description 18
- 229920000642 polymer Polymers 0.000 description 15
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 14
- 239000004677 Nylon Substances 0.000 description 12
- 229920001971 elastomer Polymers 0.000 description 12
- 229920001778 nylon Polymers 0.000 description 12
- -1 polyethylene Polymers 0.000 description 12
- 238000000034 method Methods 0.000 description 11
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 11
- 239000000853 adhesive Substances 0.000 description 10
- 230000001070 adhesive effect Effects 0.000 description 10
- 229920000098 polyolefin Polymers 0.000 description 10
- 239000005060 rubber Substances 0.000 description 10
- 150000008064 anhydrides Chemical class 0.000 description 9
- 239000000178 monomer Substances 0.000 description 9
- 230000032798 delamination Effects 0.000 description 8
- 239000011888 foil Substances 0.000 description 8
- 238000002156 mixing Methods 0.000 description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 150000001735 carboxylic acids Chemical class 0.000 description 6
- 239000002131 composite material Substances 0.000 description 6
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 6
- LYRFLYHAGKPMFH-UHFFFAOYSA-N octadecanamide Chemical compound CCCCCCCCCCCCCCCCCC(N)=O LYRFLYHAGKPMFH-UHFFFAOYSA-N 0.000 description 6
- YWAKXRMUMFPDSH-UHFFFAOYSA-N pentene Chemical compound CCCC=C YWAKXRMUMFPDSH-UHFFFAOYSA-N 0.000 description 6
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 6
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 5
- 229920001903 high density polyethylene Polymers 0.000 description 5
- 239000004700 high-density polyethylene Substances 0.000 description 5
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 4
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 4
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 4
- 239000004698 Polyethylene Substances 0.000 description 4
- 239000006096 absorbing agent Substances 0.000 description 4
- 239000000654 additive Substances 0.000 description 4
- 239000003963 antioxidant agent Substances 0.000 description 4
- 239000002216 antistatic agent Substances 0.000 description 4
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 239000000470 constituent Substances 0.000 description 4
- 238000001125 extrusion Methods 0.000 description 4
- 239000000945 filler Substances 0.000 description 4
- 239000003063 flame retardant Substances 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 229920000728 polyester Polymers 0.000 description 4
- 239000012748 slip agent Substances 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 4
- WSSSPWUEQFSQQG-UHFFFAOYSA-N 4-methyl-1-pentene Chemical compound CC(C)CC=C WSSSPWUEQFSQQG-UHFFFAOYSA-N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- 229920002292 Nylon 6 Polymers 0.000 description 3
- 239000004952 Polyamide Substances 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 239000003086 colorant Substances 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- HQQADJVZYDDRJT-UHFFFAOYSA-N ethene;prop-1-ene Chemical group C=C.CC=C HQQADJVZYDDRJT-UHFFFAOYSA-N 0.000 description 3
- 229920005637 ethylene/1-butene copolymer elastomer Polymers 0.000 description 3
- 239000000314 lubricant Substances 0.000 description 3
- 239000000155 melt Substances 0.000 description 3
- 239000002667 nucleating agent Substances 0.000 description 3
- 229920002647 polyamide Polymers 0.000 description 3
- 238000007127 saponification reaction Methods 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 229940037312 stearamide Drugs 0.000 description 3
- VYQGMACBEQPMBI-UHFFFAOYSA-N 1,3-dibromo-2-(3-bromopropoxy)-5-[3,5-dibromo-4-(3-bromopropoxy)phenyl]sulfonylbenzene Chemical compound C1=C(Br)C(OCCCBr)=C(Br)C=C1S(=O)(=O)C1=CC(Br)=C(OCCCBr)C(Br)=C1 VYQGMACBEQPMBI-UHFFFAOYSA-N 0.000 description 2
- AZQWKYJCGOJGHM-UHFFFAOYSA-N 1,4-benzoquinone Chemical compound O=C1C=CC(=O)C=C1 AZQWKYJCGOJGHM-UHFFFAOYSA-N 0.000 description 2
- AFFLGGQVNFXPEV-UHFFFAOYSA-N 1-decene Chemical compound CCCCCCCCC=C AFFLGGQVNFXPEV-UHFFFAOYSA-N 0.000 description 2
- CRSBERNSMYQZNG-UHFFFAOYSA-N 1-dodecene Chemical compound CCCCCCCCCCC=C CRSBERNSMYQZNG-UHFFFAOYSA-N 0.000 description 2
- GQEZCXVZFLOKMC-UHFFFAOYSA-N 1-hexadecene Chemical compound CCCCCCCCCCCCCCC=C GQEZCXVZFLOKMC-UHFFFAOYSA-N 0.000 description 2
- LIKMAJRDDDTEIG-UHFFFAOYSA-N 1-hexene Chemical compound CCCCC=C LIKMAJRDDDTEIG-UHFFFAOYSA-N 0.000 description 2
- KWKAKUADMBZCLK-UHFFFAOYSA-N 1-octene Chemical compound CCCCCCC=C KWKAKUADMBZCLK-UHFFFAOYSA-N 0.000 description 2
- HFDVRLIODXPAHB-UHFFFAOYSA-N 1-tetradecene Chemical compound CCCCCCCCCCCCC=C HFDVRLIODXPAHB-UHFFFAOYSA-N 0.000 description 2
- ZXDDPOHVAMWLBH-UHFFFAOYSA-N 2,4-Dihydroxybenzophenone Chemical compound OC1=CC(O)=CC=C1C(=O)C1=CC=CC=C1 ZXDDPOHVAMWLBH-UHFFFAOYSA-N 0.000 description 2
- JAHNSTQSQJOJLO-UHFFFAOYSA-N 2-(3-fluorophenyl)-1h-imidazole Chemical compound FC1=CC=CC(C=2NC=CN=2)=C1 JAHNSTQSQJOJLO-UHFFFAOYSA-N 0.000 description 2
- RSAUOQFEFINEDM-UHFFFAOYSA-N 4-(4-cyanophenoxy)benzonitrile Chemical compound C1=CC(C#N)=CC=C1OC1=CC=C(C#N)C=C1 RSAUOQFEFINEDM-UHFFFAOYSA-N 0.000 description 2
- KNDQHSIWLOJIGP-UHFFFAOYSA-N 826-62-0 Chemical compound C1C2C3C(=O)OC(=O)C3C1C=C2 KNDQHSIWLOJIGP-UHFFFAOYSA-N 0.000 description 2
- NLZUEZXRPGMBCV-UHFFFAOYSA-N Butylhydroxytoluene Chemical compound CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 NLZUEZXRPGMBCV-UHFFFAOYSA-N 0.000 description 2
- SOGAXMICEFXMKE-UHFFFAOYSA-N Butylmethacrylate Chemical compound CCCCOC(=O)C(C)=C SOGAXMICEFXMKE-UHFFFAOYSA-N 0.000 description 2
- 229920000049 Carbon (fiber) Polymers 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 125000001931 aliphatic group Chemical group 0.000 description 2
- 150000001408 amides Chemical class 0.000 description 2
- 229910000410 antimony oxide Inorganic materials 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- OGBUMNBNEWYMNJ-UHFFFAOYSA-N batilol Chemical compound CCCCCCCCCCCCCCCCCCOCC(O)CO OGBUMNBNEWYMNJ-UHFFFAOYSA-N 0.000 description 2
- CJOBVZJTOIVNNF-UHFFFAOYSA-N cadmium sulfide Chemical compound [Cd]=S CJOBVZJTOIVNNF-UHFFFAOYSA-N 0.000 description 2
- 229910000019 calcium carbonate Inorganic materials 0.000 description 2
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 2
- 239000000920 calcium hydroxide Substances 0.000 description 2
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 2
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 2
- 239000000292 calcium oxide Substances 0.000 description 2
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 2
- 239000006229 carbon black Substances 0.000 description 2
- 239000004917 carbon fiber Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 description 2
- 239000004927 clay Substances 0.000 description 2
- 229910052570 clay Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- RWGFKTVRMDUZSP-UHFFFAOYSA-N cumene Chemical compound CC(C)C1=CC=CC=C1 RWGFKTVRMDUZSP-UHFFFAOYSA-N 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- WHHGLZMJPXIBIX-UHFFFAOYSA-N decabromodiphenyl ether Chemical compound BrC1=C(Br)C(Br)=C(Br)C(Br)=C1OC1=C(Br)C(Br)=C(Br)C(Br)=C1Br WHHGLZMJPXIBIX-UHFFFAOYSA-N 0.000 description 2
- NNBZCPXTIHJBJL-UHFFFAOYSA-N decalin Chemical compound C1CCCC2CCCCC21 NNBZCPXTIHJBJL-UHFFFAOYSA-N 0.000 description 2
- ZQMIGQNCOMNODD-UHFFFAOYSA-N diacetyl peroxide Chemical compound CC(=O)OOC(C)=O ZQMIGQNCOMNODD-UHFFFAOYSA-N 0.000 description 2
- WOZVHXUHUFLZGK-UHFFFAOYSA-N dimethyl terephthalate Chemical compound COC(=O)C1=CC=C(C(=O)OC)C=C1 WOZVHXUHUFLZGK-UHFFFAOYSA-N 0.000 description 2
- USIUVYZYUHIAEV-UHFFFAOYSA-N diphenyl ether Chemical compound C=1C=CC=CC=1OC1=CC=CC=C1 USIUVYZYUHIAEV-UHFFFAOYSA-N 0.000 description 2
- 239000000975 dye Substances 0.000 description 2
- 239000001530 fumaric acid Substances 0.000 description 2
- 239000003365 glass fiber Substances 0.000 description 2
- 229920000578 graft copolymer Polymers 0.000 description 2
- 150000003949 imides Chemical class 0.000 description 2
- 239000003999 initiator Substances 0.000 description 2
- 239000011229 interlayer Substances 0.000 description 2
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 2
- 239000000347 magnesium hydroxide Substances 0.000 description 2
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 2
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 2
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 2
- 239000011976 maleic acid Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- LVHBHZANLOWSRM-UHFFFAOYSA-N methylenebutanedioic acid Natural products OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 description 2
- QUAMTGJKVDWJEQ-UHFFFAOYSA-N octabenzone Chemical compound OC1=CC(OCCCCCCCC)=CC=C1C(=O)C1=CC=CC=C1 QUAMTGJKVDWJEQ-UHFFFAOYSA-N 0.000 description 2
- CCCMONHAUSKTEQ-UHFFFAOYSA-N octadec-1-ene Chemical compound CCCCCCCCCCCCCCCCC=C CCCMONHAUSKTEQ-UHFFFAOYSA-N 0.000 description 2
- FATBGEAMYMYZAF-KTKRTIGZSA-N oleamide Chemical compound CCCCCCCC\C=C/CCCCCCCC(N)=O FATBGEAMYMYZAF-KTKRTIGZSA-N 0.000 description 2
- VTRUBDSFZJNXHI-UHFFFAOYSA-N oxoantimony Chemical compound [Sb]=O VTRUBDSFZJNXHI-UHFFFAOYSA-N 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000005022 packaging material Substances 0.000 description 2
- 239000000049 pigment Substances 0.000 description 2
- 229920001707 polybutylene terephthalate Polymers 0.000 description 2
- 229920005672 polyolefin resin Polymers 0.000 description 2
- 150000003254 radicals Chemical class 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 229940116351 sebacate Drugs 0.000 description 2
- CXMXRPHRNRROMY-UHFFFAOYSA-L sebacate(2-) Chemical compound [O-]C(=O)CCCCCCCCC([O-])=O CXMXRPHRNRROMY-UHFFFAOYSA-L 0.000 description 2
- 239000000454 talc Substances 0.000 description 2
- 229910052623 talc Inorganic materials 0.000 description 2
- WMZHDICSCDKPFS-UHFFFAOYSA-N triacont-1-ene Chemical compound CCCCCCCCCCCCCCCCCCCCCCCCCCCCC=C WMZHDICSCDKPFS-UHFFFAOYSA-N 0.000 description 2
- FMZUHGYZWYNSOA-VVBFYGJXSA-N (1r)-1-[(4r,4ar,8as)-2,6-diphenyl-4,4a,8,8a-tetrahydro-[1,3]dioxino[5,4-d][1,3]dioxin-4-yl]ethane-1,2-diol Chemical compound C([C@@H]1OC(O[C@@H]([C@@H]1O1)[C@H](O)CO)C=2C=CC=CC=2)OC1C1=CC=CC=C1 FMZUHGYZWYNSOA-VVBFYGJXSA-N 0.000 description 1
- BEWIWYDBTBVVIA-SNAWJCMRSA-N (e)-4-(butylamino)-4-oxobut-2-enoic acid Chemical compound CCCCNC(=O)\C=C\C(O)=O BEWIWYDBTBVVIA-SNAWJCMRSA-N 0.000 description 1
- OZMRKDKXIMXNRP-BQYQJAHWSA-N (e)-4-(dibutylamino)-4-oxobut-2-enoic acid Chemical compound CCCCN(CCCC)C(=O)\C=C\C(O)=O OZMRKDKXIMXNRP-BQYQJAHWSA-N 0.000 description 1
- BZVFXWPGZHIDSJ-AATRIKPKSA-N (e)-4-(diethylamino)-4-oxobut-2-enoic acid Chemical compound CCN(CC)C(=O)\C=C\C(O)=O BZVFXWPGZHIDSJ-AATRIKPKSA-N 0.000 description 1
- HBQGCOWNLUOCBU-ONEGZZNKSA-N (e)-4-(ethylamino)-4-oxobut-2-enoic acid Chemical compound CCNC(=O)\C=C\C(O)=O HBQGCOWNLUOCBU-ONEGZZNKSA-N 0.000 description 1
- FSQQTNAZHBEJLS-OWOJBTEDSA-N (e)-4-amino-4-oxobut-2-enoic acid Chemical compound NC(=O)\C=C\C(O)=O FSQQTNAZHBEJLS-OWOJBTEDSA-N 0.000 description 1
- BSSNZUFKXJJCBG-OWOJBTEDSA-N (e)-but-2-enediamide Chemical compound NC(=O)\C=C\C(N)=O BSSNZUFKXJJCBG-OWOJBTEDSA-N 0.000 description 1
- BEWIWYDBTBVVIA-PLNGDYQASA-N (z)-4-(butylamino)-4-oxobut-2-enoic acid Chemical compound CCCCNC(=O)\C=C/C(O)=O BEWIWYDBTBVVIA-PLNGDYQASA-N 0.000 description 1
- OZMRKDKXIMXNRP-FPLPWBNLSA-N (z)-4-(dibutylamino)-4-oxobut-2-enoic acid Chemical compound CCCCN(CCCC)C(=O)\C=C/C(O)=O OZMRKDKXIMXNRP-FPLPWBNLSA-N 0.000 description 1
- BZVFXWPGZHIDSJ-WAYWQWQTSA-N (z)-4-(diethylamino)-4-oxobut-2-enoic acid Chemical compound CCN(CC)C(=O)\C=C/C(O)=O BZVFXWPGZHIDSJ-WAYWQWQTSA-N 0.000 description 1
- HBQGCOWNLUOCBU-ARJAWSKDSA-N (z)-4-(ethylamino)-4-oxobut-2-enoic acid Chemical compound CCNC(=O)\C=C/C(O)=O HBQGCOWNLUOCBU-ARJAWSKDSA-N 0.000 description 1
- BSSNZUFKXJJCBG-UPHRSURJSA-N (z)-but-2-enediamide Chemical compound NC(=O)\C=C/C(N)=O BSSNZUFKXJJCBG-UPHRSURJSA-N 0.000 description 1
- QGLWBTPVKHMVHM-KTKRTIGZSA-N (z)-octadec-9-en-1-amine Chemical compound CCCCCCCC\C=C/CCCCCCCCN QGLWBTPVKHMVHM-KTKRTIGZSA-N 0.000 description 1
- UBRWPVTUQDJKCC-UHFFFAOYSA-N 1,3-bis(2-tert-butylperoxypropan-2-yl)benzene Chemical compound CC(C)(C)OOC(C)(C)C1=CC=CC(C(C)(C)OOC(C)(C)C)=C1 UBRWPVTUQDJKCC-UHFFFAOYSA-N 0.000 description 1
- CBCKQZAAMUWICA-UHFFFAOYSA-N 1,4-phenylenediamine Chemical compound NC1=CC=C(N)C=C1 CBCKQZAAMUWICA-UHFFFAOYSA-N 0.000 description 1
- PQUXFUBNSYCQAL-UHFFFAOYSA-N 1-(2,3-difluorophenyl)ethanone Chemical compound CC(=O)C1=CC=CC(F)=C1F PQUXFUBNSYCQAL-UHFFFAOYSA-N 0.000 description 1
- JNPCNDJVEUEFBO-UHFFFAOYSA-N 1-butylpyrrole-2,5-dione Chemical compound CCCCN1C(=O)C=CC1=O JNPCNDJVEUEFBO-UHFFFAOYSA-N 0.000 description 1
- FETIWDPIODONQB-UHFFFAOYSA-N 1-methyl-4-[(2-methylpropan-2-yl)oxy]benzene Chemical compound CC1=CC=C(OC(C)(C)C)C=C1 FETIWDPIODONQB-UHFFFAOYSA-N 0.000 description 1
- HIDBROSJWZYGSZ-UHFFFAOYSA-N 1-phenylpyrrole-2,5-dione Chemical compound O=C1C=CC(=O)N1C1=CC=CC=C1 HIDBROSJWZYGSZ-UHFFFAOYSA-N 0.000 description 1
- YIYBRXKMQFDHSM-UHFFFAOYSA-N 2,2'-Dihydroxybenzophenone Chemical compound OC1=CC=CC=C1C(=O)C1=CC=CC=C1O YIYBRXKMQFDHSM-UHFFFAOYSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- XMNIXWIUMCBBBL-UHFFFAOYSA-N 2-(2-phenylpropan-2-ylperoxy)propan-2-ylbenzene Chemical compound C=1C=CC=CC=1C(C)(C)OOC(C)(C)C1=CC=CC=C1 XMNIXWIUMCBBBL-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- ROHFBIREHKPELA-UHFFFAOYSA-N 2-[(3,5-ditert-butyl-4-hydroxyphenyl)methyl]prop-2-enoic acid;methane Chemical compound C.CC(C)(C)C1=CC(CC(=C)C(O)=O)=CC(C(C)(C)C)=C1O.CC(C)(C)C1=CC(CC(=C)C(O)=O)=CC(C(C)(C)C)=C1O.CC(C)(C)C1=CC(CC(=C)C(O)=O)=CC(C(C)(C)C)=C1O.CC(C)(C)C1=CC(CC(=C)C(O)=O)=CC(C(C)(C)C)=C1O ROHFBIREHKPELA-UHFFFAOYSA-N 0.000 description 1
- NDLNTMNRNCENRZ-UHFFFAOYSA-N 2-[2-hydroxyethyl(octadecyl)amino]ethanol Chemical compound CCCCCCCCCCCCCCCCCCN(CCO)CCO NDLNTMNRNCENRZ-UHFFFAOYSA-N 0.000 description 1
- BITAPBDLHJQAID-KTKRTIGZSA-N 2-[2-hydroxyethyl-[(z)-octadec-9-enyl]amino]ethanol Chemical compound CCCCCCCC\C=C/CCCCCCCCN(CCO)CCO BITAPBDLHJQAID-KTKRTIGZSA-N 0.000 description 1
- RIZOAHWIOYVVDL-UHFFFAOYSA-N 2-[docosyl(2-hydroxyethyl)amino]ethanol Chemical compound CCCCCCCCCCCCCCCCCCCCCCN(CCO)CCO RIZOAHWIOYVVDL-UHFFFAOYSA-N 0.000 description 1
- NKFNBVMJTSYZDV-UHFFFAOYSA-N 2-[dodecyl(2-hydroxyethyl)amino]ethanol Chemical compound CCCCCCCCCCCCN(CCO)CCO NKFNBVMJTSYZDV-UHFFFAOYSA-N 0.000 description 1
- MJWIPTSHMLSLFE-UHFFFAOYSA-N 2-[hexadecyl(2-hydroxyethyl)amino]ethanol Chemical compound CCCCCCCCCCCCCCCCN(CCO)CCO MJWIPTSHMLSLFE-UHFFFAOYSA-N 0.000 description 1
- XDRAKJQFCQVBMP-UHFFFAOYSA-N 2-but-2-enyl-3-methylbutanedioic acid Chemical compound CC=CCC(C(O)=O)C(C)C(O)=O XDRAKJQFCQVBMP-UHFFFAOYSA-N 0.000 description 1
- ISPYQTSUDJAMAB-UHFFFAOYSA-N 2-chlorophenol Chemical compound OC1=CC=CC=C1Cl ISPYQTSUDJAMAB-UHFFFAOYSA-N 0.000 description 1
- WFUGQJXVXHBTEM-UHFFFAOYSA-N 2-hydroperoxy-2-(2-hydroperoxybutan-2-ylperoxy)butane Chemical compound CCC(C)(OO)OOC(C)(CC)OO WFUGQJXVXHBTEM-UHFFFAOYSA-N 0.000 description 1
- RPBWMJBZQXCSFW-UHFFFAOYSA-N 2-methylpropanoyl 2-methylpropaneperoxoate Chemical compound CC(C)C(=O)OOC(=O)C(C)C RPBWMJBZQXCSFW-UHFFFAOYSA-N 0.000 description 1
- JBIJLHTVPXGSAM-UHFFFAOYSA-N 2-naphthylamine Chemical compound C1=CC=CC2=CC(N)=CC=C21 JBIJLHTVPXGSAM-UHFFFAOYSA-N 0.000 description 1
- VAPQAGMSICPBKJ-UHFFFAOYSA-N 2-nitroacridine Chemical compound C1=CC=CC2=CC3=CC([N+](=O)[O-])=CC=C3N=C21 VAPQAGMSICPBKJ-UHFFFAOYSA-N 0.000 description 1
- OCXPJMSKLNNYLE-UHFFFAOYSA-N 2-prop-2-enylbutanedioic acid Chemical compound OC(=O)CC(C(O)=O)CC=C OCXPJMSKLNNYLE-UHFFFAOYSA-N 0.000 description 1
- BIISIZOQPWZPPS-UHFFFAOYSA-N 2-tert-butylperoxypropan-2-ylbenzene Chemical compound CC(C)(C)OOC(C)(C)C1=CC=CC=C1 BIISIZOQPWZPPS-UHFFFAOYSA-N 0.000 description 1
- FRIBMENBGGCKPD-UHFFFAOYSA-N 3-(2,3-dimethoxyphenyl)prop-2-enal Chemical compound COC1=CC=CC(C=CC=O)=C1OC FRIBMENBGGCKPD-UHFFFAOYSA-N 0.000 description 1
- YDUGVOUXNSWQSW-UHFFFAOYSA-N 3-bromo-1h-pyridin-2-one Chemical compound OC1=NC=CC=C1Br YDUGVOUXNSWQSW-UHFFFAOYSA-N 0.000 description 1
- YHQXBTXEYZIYOV-UHFFFAOYSA-N 3-methylbut-1-ene Chemical compound CC(C)C=C YHQXBTXEYZIYOV-UHFFFAOYSA-N 0.000 description 1
- AYKYXWQEBUNJCN-UHFFFAOYSA-N 3-methylfuran-2,5-dione Chemical compound CC1=CC(=O)OC1=O AYKYXWQEBUNJCN-UHFFFAOYSA-N 0.000 description 1
- OFNISBHGPNMTMS-UHFFFAOYSA-N 3-methylideneoxolane-2,5-dione Chemical compound C=C1CC(=O)OC1=O OFNISBHGPNMTMS-UHFFFAOYSA-N 0.000 description 1
- LDTAOIUHUHHCMU-UHFFFAOYSA-N 3-methylpent-1-ene Chemical compound CCC(C)C=C LDTAOIUHUHHCMU-UHFFFAOYSA-N 0.000 description 1
- WUMMIJWEUDHZCL-UHFFFAOYSA-N 3-prop-2-enyloxolane-2,5-dione Chemical compound C=CCC1CC(=O)OC1=O WUMMIJWEUDHZCL-UHFFFAOYSA-N 0.000 description 1
- OIYTYGOUZOARSH-UHFFFAOYSA-N 4-methoxy-2-methylidene-4-oxobutanoic acid Chemical compound COC(=O)CC(=C)C(O)=O OIYTYGOUZOARSH-UHFFFAOYSA-N 0.000 description 1
- YZPUIHVHPSUCHD-UHFFFAOYSA-N 4-methylcyclohex-4-ene-1,2-dicarboxylic acid Chemical compound CC1=CCC(C(O)=O)C(C(O)=O)C1 YZPUIHVHPSUCHD-UHFFFAOYSA-N 0.000 description 1
- UWSMKYBKUPAEJQ-UHFFFAOYSA-N 5-Chloro-2-(3,5-di-tert-butyl-2-hydroxyphenyl)-2H-benzotriazole Chemical compound CC(C)(C)C1=CC(C(C)(C)C)=CC(N2N=C3C=C(Cl)C=CC3=N2)=C1O UWSMKYBKUPAEJQ-UHFFFAOYSA-N 0.000 description 1
- OEMSKMUAMXLNKL-UHFFFAOYSA-N 5-methyl-3a,4,7,7a-tetrahydro-2-benzofuran-1,3-dione Chemical compound C1C(C)=CCC2C(=O)OC(=O)C12 OEMSKMUAMXLNKL-UHFFFAOYSA-N 0.000 description 1
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 1
- 239000004342 Benzoyl peroxide Substances 0.000 description 1
- OMPJBNCRMGITSC-UHFFFAOYSA-N Benzoylperoxide Chemical compound C=1C=CC=CC=1C(=O)OOC(=O)C1=CC=CC=C1 OMPJBNCRMGITSC-UHFFFAOYSA-N 0.000 description 1
- 229920000089 Cyclic olefin copolymer Polymers 0.000 description 1
- IEPRKVQEAMIZSS-UHFFFAOYSA-N Di-Et ester-Fumaric acid Natural products CCOC(=O)C=CC(=O)OCC IEPRKVQEAMIZSS-UHFFFAOYSA-N 0.000 description 1
- IEPRKVQEAMIZSS-WAYWQWQTSA-N Diethyl maleate Chemical compound CCOC(=O)\C=C/C(=O)OCC IEPRKVQEAMIZSS-WAYWQWQTSA-N 0.000 description 1
- 239000004278 EU approved seasoning Substances 0.000 description 1
- UAUDZVJPLUQNMU-UHFFFAOYSA-N Erucasaeureamid Natural products CCCCCCCCC=CCCCCCCCCCCCC(N)=O UAUDZVJPLUQNMU-UHFFFAOYSA-N 0.000 description 1
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 description 1
- XLYMOEINVGRTEX-ARJAWSKDSA-N Ethyl hydrogen fumarate Chemical compound CCOC(=O)\C=C/C(O)=O XLYMOEINVGRTEX-ARJAWSKDSA-N 0.000 description 1
- JHWNWJKBPDFINM-UHFFFAOYSA-N Laurolactam Chemical compound O=C1CCCCCCCCCCCN1 JHWNWJKBPDFINM-UHFFFAOYSA-N 0.000 description 1
- PEEHTFAAVSWFBL-UHFFFAOYSA-N Maleimide Chemical compound O=C1NC(=O)C=C1 PEEHTFAAVSWFBL-UHFFFAOYSA-N 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- FSQQTNAZHBEJLS-UHFFFAOYSA-N Monoamide-Fumaric acid Natural products NC(=O)C=CC(O)=O FSQQTNAZHBEJLS-UHFFFAOYSA-N 0.000 description 1
- 229920000571 Nylon 11 Polymers 0.000 description 1
- 229920000299 Nylon 12 Polymers 0.000 description 1
- 229920000305 Nylon 6,10 Polymers 0.000 description 1
- 229920002302 Nylon 6,6 Polymers 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000003973 alkyl amines Chemical class 0.000 description 1
- CEGOLXSVJUTHNZ-UHFFFAOYSA-K aluminium tristearate Chemical compound [Al+3].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O CEGOLXSVJUTHNZ-UHFFFAOYSA-K 0.000 description 1
- 229940063655 aluminum stearate Drugs 0.000 description 1
- ZGNIGAHODXRWIT-UHFFFAOYSA-K aluminum;4-tert-butylbenzoate Chemical compound [Al+3].CC(C)(C)C1=CC=C(C([O-])=O)C=C1.CC(C)(C)C1=CC=C(C([O-])=O)C=C1.CC(C)(C)C1=CC=C(C([O-])=O)C=C1 ZGNIGAHODXRWIT-UHFFFAOYSA-K 0.000 description 1
- 125000003368 amide group Chemical group 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 235000019400 benzoyl peroxide Nutrition 0.000 description 1
- NIDNOXCRFUCAKQ-UHFFFAOYSA-N bicyclo[2.2.1]hept-5-ene-2,3-dicarboxylic acid Chemical compound C1C2C=CC1C(C(=O)O)C2C(O)=O NIDNOXCRFUCAKQ-UHFFFAOYSA-N 0.000 description 1
- 239000004566 building material Substances 0.000 description 1
- OCWYEMOEOGEQAN-UHFFFAOYSA-N bumetrizole Chemical compound CC(C)(C)C1=CC(C)=CC(N2N=C3C=C(Cl)C=CC3=N2)=C1O OCWYEMOEOGEQAN-UHFFFAOYSA-N 0.000 description 1
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical compound CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 description 1
- CJZGTCYPCWQAJB-UHFFFAOYSA-L calcium stearate Chemical compound [Ca+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O CJZGTCYPCWQAJB-UHFFFAOYSA-L 0.000 description 1
- 239000008116 calcium stearate Substances 0.000 description 1
- 235000013539 calcium stearate Nutrition 0.000 description 1
- 150000001244 carboxylic acid anhydrides Chemical class 0.000 description 1
- HNEGQIOMVPPMNR-IHWYPQMZSA-N citraconic acid Chemical compound OC(=O)C(/C)=C\C(O)=O HNEGQIOMVPPMNR-IHWYPQMZSA-N 0.000 description 1
- 229940018557 citraconic acid Drugs 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000010411 cooking Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229940120693 copper naphthenate Drugs 0.000 description 1
- XCJYREBRNVKWGJ-UHFFFAOYSA-N copper(II) phthalocyanine Chemical compound [Cu+2].C12=CC=CC=C2C(N=C2[N-]C(C3=CC=CC=C32)=N2)=NC1=NC([C]1C=CC=CC1=1)=NC=1N=C1[C]3C=CC=CC3=C2[N-]1 XCJYREBRNVKWGJ-UHFFFAOYSA-N 0.000 description 1
- SEVNKWFHTNVOLD-UHFFFAOYSA-L copper;3-(4-ethylcyclohexyl)propanoate;3-(3-ethylcyclopentyl)propanoate Chemical compound [Cu+2].CCC1CCC(CCC([O-])=O)C1.CCC1CCC(CCC([O-])=O)CC1 SEVNKWFHTNVOLD-UHFFFAOYSA-L 0.000 description 1
- SPTHWAJJMLCAQF-UHFFFAOYSA-M ctk4f8481 Chemical compound [O-]O.CC(C)C1=CC=CC=C1C(C)C SPTHWAJJMLCAQF-UHFFFAOYSA-M 0.000 description 1
- 235000013365 dairy product Nutrition 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- LSXWFXONGKSEMY-UHFFFAOYSA-N di-tert-butyl peroxide Chemical compound CC(C)(C)OOC(C)(C)C LSXWFXONGKSEMY-UHFFFAOYSA-N 0.000 description 1
- 229940087101 dibenzylidene sorbitol Drugs 0.000 description 1
- 150000001991 dicarboxylic acids Chemical class 0.000 description 1
- ZEFVHSWKYCYFFL-UHFFFAOYSA-N diethyl 2-methylidenebutanedioate Chemical compound CCOC(=O)CC(=C)C(=O)OCC ZEFVHSWKYCYFFL-UHFFFAOYSA-N 0.000 description 1
- LDCRTTXIJACKKU-ONEGZZNKSA-N dimethyl fumarate Chemical compound COC(=O)\C=C\C(=O)OC LDCRTTXIJACKKU-ONEGZZNKSA-N 0.000 description 1
- 229960004419 dimethyl fumarate Drugs 0.000 description 1
- BTVWZWFKMIUSGS-UHFFFAOYSA-N dimethylethyleneglycol Natural products CC(C)(O)CO BTVWZWFKMIUSGS-UHFFFAOYSA-N 0.000 description 1
- 229940069096 dodecene Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000008157 edible vegetable oil Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- UAUDZVJPLUQNMU-KTKRTIGZSA-N erucamide Chemical compound CCCCCCCC\C=C/CCCCCCCCCCCC(N)=O UAUDZVJPLUQNMU-KTKRTIGZSA-N 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- SUPCQIBBMFXVTL-UHFFFAOYSA-N ethyl 2-methylprop-2-enoate Chemical compound CCOC(=O)C(C)=C SUPCQIBBMFXVTL-UHFFFAOYSA-N 0.000 description 1
- 229920001038 ethylene copolymer Polymers 0.000 description 1
- 238000007765 extrusion coating Methods 0.000 description 1
- 239000005003 food packaging material Substances 0.000 description 1
- 235000011194 food seasoning agent Nutrition 0.000 description 1
- XLYMOEINVGRTEX-UHFFFAOYSA-N fumaric acid monoethyl ester Natural products CCOC(=O)C=CC(O)=O XLYMOEINVGRTEX-UHFFFAOYSA-N 0.000 description 1
- NKHAVTQWNUWKEO-UHFFFAOYSA-N fumaric acid monomethyl ester Natural products COC(=O)C=CC(O)=O NKHAVTQWNUWKEO-UHFFFAOYSA-N 0.000 description 1
- VOZRXNHHFUQHIL-UHFFFAOYSA-N glycidyl methacrylate Chemical compound CC(=C)C(=O)OCC1CO1 VOZRXNHHFUQHIL-UHFFFAOYSA-N 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- HSEMFIZWXHQJAE-UHFFFAOYSA-N hexadecanamide Chemical compound CCCCCCCCCCCCCCCC(N)=O HSEMFIZWXHQJAE-UHFFFAOYSA-N 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 239000004702 low-density polyethylene Substances 0.000 description 1
- 229940099514 low-density polyethylene Drugs 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- FSQQTNAZHBEJLS-UPHRSURJSA-N maleamic acid Chemical compound NC(=O)\C=C/C(O)=O FSQQTNAZHBEJLS-UPHRSURJSA-N 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 235000013372 meat Nutrition 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- FQPSGWSUVKBHSU-UHFFFAOYSA-N methacrylamide Chemical compound CC(=C)C(N)=O FQPSGWSUVKBHSU-UHFFFAOYSA-N 0.000 description 1
- NKHAVTQWNUWKEO-NSCUHMNNSA-N monomethyl fumarate Chemical compound COC(=O)\C=C\C(O)=O NKHAVTQWNUWKEO-NSCUHMNNSA-N 0.000 description 1
- 229940005650 monomethyl fumarate Drugs 0.000 description 1
- TVMXDCGIABBOFY-UHFFFAOYSA-N n-Octanol Natural products CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- FATBGEAMYMYZAF-UHFFFAOYSA-N oleicacidamide-heptaglycolether Natural products CCCCCCCCC=CCCCCCCCC(N)=O FATBGEAMYMYZAF-UHFFFAOYSA-N 0.000 description 1
- 229940113162 oleylamide Drugs 0.000 description 1
- RPQRDASANLAFCM-UHFFFAOYSA-N oxiran-2-ylmethyl prop-2-enoate Chemical compound C=CC(=O)OCC1CO1 RPQRDASANLAFCM-UHFFFAOYSA-N 0.000 description 1
- 239000012785 packaging film Substances 0.000 description 1
- 229920006280 packaging film Polymers 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- LLLCSBYSPJHDJX-UHFFFAOYSA-M potassium;2-methylprop-2-enoate Chemical compound [K+].CC(=C)C([O-])=O LLLCSBYSPJHDJX-UHFFFAOYSA-M 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000011342 resin composition Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 229940047670 sodium acrylate Drugs 0.000 description 1
- SONHXMAHPHADTF-UHFFFAOYSA-M sodium;2-methylprop-2-enoate Chemical compound [Na+].CC(=C)C([O-])=O SONHXMAHPHADTF-UHFFFAOYSA-M 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- CIHOLLKRGTVIJN-UHFFFAOYSA-N tert‐butyl hydroperoxide Chemical compound CC(C)(C)OO CIHOLLKRGTVIJN-UHFFFAOYSA-N 0.000 description 1
- 239000011135 tin Substances 0.000 description 1
- 235000010215 titanium dioxide Nutrition 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- XTTGYFREQJCEML-UHFFFAOYSA-N tributyl phosphite Chemical compound CCCCOP(OCCCC)OCCCC XTTGYFREQJCEML-UHFFFAOYSA-N 0.000 description 1
- 238000009966 trimming Methods 0.000 description 1
- QOQNJVLFFRMJTQ-UHFFFAOYSA-N trioctyl phosphite Chemical compound CCCCCCCCOP(OCCCCCCCC)OCCCCCCCC QOQNJVLFFRMJTQ-UHFFFAOYSA-N 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
- PXXNTAGJWPJAGM-UHFFFAOYSA-N vertaline Natural products C1C2C=3C=C(OC)C(OC)=CC=3OC(C=C3)=CC=C3CCC(=O)OC1CC1N2CCCC1 PXXNTAGJWPJAGM-UHFFFAOYSA-N 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- XOOUIPVCVHRTMJ-UHFFFAOYSA-L zinc stearate Chemical compound [Zn+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O XOOUIPVCVHRTMJ-UHFFFAOYSA-L 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/32—Layered products comprising a layer of synthetic resin comprising polyolefins
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/04—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B15/08—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/06—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B27/08—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/04—Homopolymers or copolymers of ethene
- C08L23/08—Copolymers of ethene
- C08L23/0807—Copolymers of ethene with unsaturated hydrocarbons only containing four or more carbon atoms
- C08L23/0815—Copolymers of ethene with unsaturated hydrocarbons only containing four or more carbon atoms with aliphatic 1-olefins containing one carbon-to-carbon double bond
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L51/00—Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
- C08L51/06—Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2553/00—Packaging equipment or accessories not otherwise provided for
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2203/00—Applications
- C08L2203/10—Applications used for bottles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S428/00—Stock material or miscellaneous articles
- Y10S428/91—Product with molecular orientation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/13—Hollow or container type article [e.g., tube, vase, etc.]
- Y10T428/1352—Polymer or resin containing [i.e., natural or synthetic]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/13—Hollow or container type article [e.g., tube, vase, etc.]
- Y10T428/1352—Polymer or resin containing [i.e., natural or synthetic]
- Y10T428/1355—Elemental metal containing [e.g., substrate, foil, film, coating, etc.]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31678—Of metal
- Y10T428/31692—Next to addition polymer from unsaturated monomers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31678—Of metal
- Y10T428/31692—Next to addition polymer from unsaturated monomers
- Y10T428/31696—Including polyene monomers [e.g., butadiene, etc.]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31725—Of polyamide
- Y10T428/31739—Nylon type
- Y10T428/31743—Next to addition polymer from unsaturated monomer[s]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31725—Of polyamide
- Y10T428/31739—Nylon type
- Y10T428/31743—Next to addition polymer from unsaturated monomer[s]
- Y10T428/31746—Polymer of monoethylenically unsaturated hydrocarbon
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31725—Of polyamide
- Y10T428/3175—Next to addition polymer from unsaturated monomer[s]
- Y10T428/31757—Polymer of monoethylenically unsaturated hydrocarbon
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31786—Of polyester [e.g., alkyd, etc.]
- Y10T428/31797—Next to addition polymer from unsaturated monomers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31855—Of addition polymer from unsaturated monomers
- Y10T428/31909—Next to second addition polymer from unsaturated monomers
- Y10T428/31913—Monoolefin polymer
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31855—Of addition polymer from unsaturated monomers
- Y10T428/31909—Next to second addition polymer from unsaturated monomers
- Y10T428/31928—Ester, halide or nitrile of addition polymer
Definitions
- This invention relates to an improved laminated multilayer structure composed of (A) a layer of a graft-modified ethylene resin grafted with an unsaturated carboxylic acid or a functional derivative thereof, and directedly attached thereto, (B) an oxygen- or nitrogen-containing polar resin layer such as a layer of a polyamide resin, a saponified copolymer of ethylene and vinyl acetate or a polyester resin, or a metal layer.
- This structure has a greatly improved peel strength between layers (A) and (B), which is conducive to elimination of the trouble of delamination both at room temperature and high temperatures under severe conditions. It also has greatly improved impact strength characteristics such as low-temperature impact strength and falling impact strength.
- the structure further possesses good rigidity and other mechanical properties, heat stability, transparency, gas-barrier property and steam barrier property, and is useful in the fields of packaging materials, containers, interior and exterior panels of buildings, advertisement panels, etc.
- U.S. Pat. No. 4,058,647 discloses a laminated resin product composed of (1) a gas-barrier polymer layer of a polyester, a polyamide or a hydrolyzed copolymer of ethylene and vinyl acetate and (2) a modified polyolefin composition layer laminated thereon, wherein said modified polyolefin composition is a mixture of 60 to 97% of a polyolefin which polyolefin comprises 0.1 to 100% by weight of a polyolefin modified with an unsaturated carboxylic acid or the anhydride thereof such that the unsaturated acid or anhydride content is from 0.01 to 10% by weight of the total polyolefin content and wherein an unmodified polyolefin comprises from 99.9 to 0% by weight of the total polyolefin content with 40 to 3% by weight of a rubber component having a Mooney viscosity (50 ML 1+4 , 100° C.) of 40 to 150.
- a modified polyolefin composition is
- the present inventors have made extensive investigations in order to overcome the aforesaid troubles associated with the previously suggested laminated multilayer structure composed of (A) a layer of a graft-modified ethylene resin grafted with an unsaturated carboxylic acid or a functional derivative thereof and (B) an oxygen- or nitrogen-containing polar resin layer or a metal layer in contact with the layer (A).
- a layer (A) having a specified MI 10 /MI 2 ratio and at the same time satisfying specified ranges of ethylene content, graft monomer content and density particularly a layer (A) composed of a mixture of a graft-modified ethylene resin and an unmodified ethylene polymer which have a specified MI 2 /[ ⁇ ] -8 .77 and specified density, removes the aforesaid troubles, and gives a laminated multilayer structure which as compared with conventional similar multilayer structures, has at least about two times as high a bond strength at room temperature and high temperatures, greatly improved impact strength characteristics such as low-temperature impact strength and falling impact strength, and other excellent properties.
- a laminated multilayer structure composed of (A) a layer of a graft-modified ethylene resin grafted with an unsaturated carboxylic acid or a functional derivative thereof and (B) an oxygen- or nitrogen-containing polar resin layer or a metal layer in contact with the layer (A); characterized in that
- the layer (A) consists of
- MI 10 means the melt index at 190° C. under a load of 10 kg measured in accordance with ASTM D1238, and MI 2 denotes the melt index at 190° C. under a load of 2,160 g (2.16 kg) measured in accordance with ASTM D1238.
- the intrinsic viscosity [ ⁇ ] denotes the intrinsic viscosity number (dl/g) of a polymer measured in decalin solution at 135° C.
- the density denotes the value (g/cm 3 ) measured in accordance with ASTM D1505.
- the layer (A) consists of a mixture of the two ethylene polymers (i) and (ii).
- the graft-modified ethylene resin (i) is obtained by modifying an ethylene polymer containing 0 to 15 mole% of an alpha-olefin having 3 to 30 carbon atoms as a comonomer with an unsaturated carboxylic acid or a functional derivative thereof.
- a graft-modified ethylene resin itself is known, and can be produced by methods known per se.
- Examples of the unsaturated carboxylic acids are those having 2 to 20 carbon atoms such as acrylic acid, methacrylic acid, maleic acid, fumaric acid and itaconic acid.
- the functional derivatives thereof include, for example, the anhydrides, ester derivatives, amide derivatives, imide derivatives, and metal salts (such as alkali metal salts) of unsaturated carboxylic acids.
- Unsaturated dicarboxylic acids having 4 to 10 carbon atoms and the functional derivatives thereof, particularly the anhydrides thereof, are the especially preferred grafting monomers.
- grafting monomers include, for example, maleic acid, fumaric acid, itaconic acid, citraconic acid, allylsuccinic acid, cyclohex-4-ene-1,2-dicarboxylic acid, 4-methylcyclohex-4-ene-1,2-dicarboxylic acid, bicyclo[2.2.1]hept-5-ene-2,3-dicarboxylic acid, x-methylbicyclo[2.2.1]hept-5-ene-2,3-dicarboxylic acid, maleic anhydride, itaconic anhydride, citraconic anhydride, allylsuccinic anhydride, cyclohex-4-ene-1,2-dicarboxylic anhydride, 4-methylcyclohex-4-ene-1,2-dicarboxylic anhydride, bicyclo[2.2.1]hept-5-ene-2,3-dicarboxylic anhydride, and x-methylbicyclo[2.2.1]hept-5-ene-2,2-dicar
- Examples of other grafting mononers include C 1 -C 8 alkyl esters or glycidyl ester derivatives of unsaturated carboxylic acids such as methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, butyl acrylate, butyl methacrylate, glycidyl acrylate, glycidyl methacrylate, monoethyl maleate, diethyl maleate, monomethyl fumarate, dimethyl fumarate, monomethyl itaconate, and diethyl itaconate; amide derivatives of unsaturated carboxylic acids such as acrylamide, methacrylamide, maleic monoamide, maleic diamide, maleic N-monoethylamide, maleic N,N-diethylamide, maleic N-monobutylamide, maleic N,N-dibutylamide, fumaric monoamide, fumaric diamide, fumaric N-mono
- a grafting monomer to the ethylene polymer which may contain up to 15 mole% of at least one alpha-olefin having 3 to 30 carbon atoms as a comonomer.
- this can be achieved by heating the ethylene polymer and the grafting monomer at high temperatures of, say, about 150° to about 300° C. in the presence or absence of a solvent with or without a radical initiator.
- Another vinyl monomer may be present during the grafting reaction.
- Suitable solvents that may be used in this reaction are benzene, toluene, xylene, chlorobenzene, cumene, etc.
- Suitable radical initiators that may be used include t-butyl hydroperoxide, cumene hydroperoxide, diisopropylbenzene hydroperoxide, di-t-butyl peroxide, t-butyl cumyl peroxide, (dicumyl peroxide, 1,3-bis-(t-butylperoxyisopropyl)benzene, acetyl peroxide, benzoyl peroxide, isobutyryl peroxide, bis-3,5,5-trimethyl-hexanoyl peroxide, and methyl ethyl ketone peroxide.
- the amount of the carboxylic acid or its functional derivative can be suitably selected, but is preferably 0.01 to 10%, more preferably 0.1 to 5%, based on the weight of the layer (A).
- the amount of the monomer grafted is determined by measuring the oxygen content of the graft copolymer by oxygen analysis and the absorption intensities of the graft copolymer near 1710, 1790 and 1860 cm -1 by infrared absorption spectroscopic analysis.
- An ethylene polymer having an MI 2 /[ ⁇ ] -8 .77 ratio in absolute value of not less than 15 and a density of 0.88 to 0.98 g/cm 3 is used as the ethylene polymer containing 0 to 15 mole% of the aforesaid alpha-olefin.
- Use of ethylene polymers which do not meet the requirements for the MI 2 /[ ⁇ ] -8 .77 and density requirements fails to give the outstanding improving effects in accordance with this invention in regard to delamination strength at room and elevated temperatures and impact strength at low temperatures in the resulting laminated structure.
- the unmodified ethylene polymer (ii) used as a mixture with the graft-modified ethylene resin (i) contains 0 to 50 mole% of an alpha-olefin having 3 to 30 carbon atoms as a comonomer and has an MI 2 /[ ⁇ ] -8 .77 ratio of not less than 15 and a density of 0.86 to 0.96 g/cm 3 .
- This unmodified ethylene polymer (ii) embraces a broad range of ethylene polymers ranging from plastics to rubbery resins.
- alpha-olefin having 3 to 30 carbon atoms as an optional comonomer examples include propylene, 1-butene, 1-pentene, 3-methyl-1-butene, 1-hexene, 4-methyl-1-pentene, 3-methyl-1-pentene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene, 1-eicocene, 1-dococene, 1-tetracocene, 1-hexacocene, 1-octacocene, and 1-triacontene.
- These alpha-olefins may be used singly or as a mixture of two or more.
- Examples of rubbery resins as the polymer (ii) are an ethylene/propylene copolymer rubber, an ethylene/propylene/diene copolymer rubber, an ethylene/1-butene copolymer rubber, an ethylene/1-butene/diene copolymer rubber, an ethylene/propylene/1-butene copolymer rubber, an ethylene/propylene/1-butene/diene copolymer rubber, ethylene/4-methyl-1-pentene copolymer rubber, and mixtures of at least two of these rubbers with each other.
- the ethylene/propylene copolymer rubbers and the ethylene/1-butene copolymer rubber are most preferred.
- the ethylene/propylene copolymer rubber and the ethylene/1-butene copolymer rubber have a melt index (measured at 190° C. in accordance with ASTM D1238-65T) of 0.1 to 20, and an ethylene content of 60 to 90 mole%.
- the amounts of the graft-modified ethylene resin (i) and the unmodified ethylene polymer (ii) constituting the layer (A) can be properly chosen. Based on the total weight of (i) and (ii), the amount of (i) may be selected from 1 to 100% by weight, preferably from 3 to 100% by weight, and the amount of (ii) may be selected from 99 to 0% by weight, preferably 97 to 0% by weight.
- the layer (A) in the laminated multilayer structure of this invention should meet the following requirements (a) to (d).
- (b) It should contain the carboxylic acid or the derivative thereof in an amount of 0.01 to 10% by weight, preferably 0.05 to 5% by weight, based on the weight of the layer (A).
- the layer (A) in the structure of this invention is subjected to the further limitation that the graft-modified ethylene resin (i) and the unmodified ethylene polymer (ii) as a mixture are selected so as to meet the requirements (a) to (d) as a mixture.
- the alpha-olefin comonomers used in (i) and (ii) should be properly selected so that the total amount of these is consistent with the specified ethylene content. If the ethylene content (a) of the layer (A) is less than the specified limit, delamination may occur at a high temperature in the resulting laminated structure.
- the further limitation (b) restricts the amount of the grafting monomer in the resin (i) and the mixing ratio between (i) and (ii). If the amount of the carboxylic acid or the derivative thereof is less than the specified lower limit (b), sufficient delamination strength cannot be obtained, and if it exceeds the specified upper limit, the modified ethylene polymer has an increased gel content and its moldability is reduced.
- the mixing ratio between the (i) and (ii) and the densities of the components (i) and (ii) are further restricted by the limitation (c). If the density of the layer (A) is lower than the specified lower limit in (c), bond strength at a high temperature decreases, and if it exceeds the specified upper limit, the resin becomes brittle and therefore, the resulting laminated structure has lowered impact strength.
- the densities and amounts of (i) and (ii) should be selected so that the layer (A) meets and requirement (c).
- the layer (A) should further meet the specified ratio of MI 10 /MI 2 in (d) above. Accordingly, the MI 10 /MI 2 and amounts of the resin (i) and the polymer (ii) should be selected so that the resulting layer (A) satisfies the MI 10 /MI 2 ratio specified in (d).
- the MI 10 /MI 2 ratio of the layer (A) is an important factor in this invention in conjunction with the other parameters. If the MI 10 /MI 2 ratio of layer (A) is lower than 5, the moldability of the layer (A) is inferior, and if it exceeds 18, high delamination strength cannot be obtained.
- the layer (A) having an MI 10 /MI 2 ratio of from 5 to 18 may be obtained by using the graft-modified ethylene resin (i) alone having an MI 10 /MI 2 ratio of from 5 to 18, or by using graft-modified ethylene resins (i) having different MI 10 /MI 2 ratios and blending them so that the resulting blend has an MI 10 /MI 2 ratio of from 5 to 18.
- the graft modified ethylene resin (i) and the unmodified ethylene polymer (ii) are used and mixed so that the mixture has an MI 10 /MI 2 ratio of from 5 to 18.
- the layer (A) is composed of the graft-modified ethylene resin (i) or a mixture of it with the ethylene polymer (ii).
- the mixture of (i) and (ii) it may be prepared by any methods of mixing which permit homogeneous mixing of the two components.
- a method which involves mixing the individual components (i) and (ii) by a ribbon blender, tumbler, Henschel mixer, etc. a method involving melt-kneading the mixture obtained by the aforesaid method in an extruder, a Banbury mixer, a two-roll mill, a kneader, etc., and a method involving dissolving the individual components in solvents, well mixing the solutions with stirring, and then adding a non-solvent for precipitation.
- composition composed of (i) and (ii) may further include various additives such as antioxidants, ultraviolet absorbers, antistatic agents, pigments, dyes, nucleating agents, fillers, slip agents, lubricants, fire retardants, and antiblocking agents.
- additives such as antioxidants, ultraviolet absorbers, antistatic agents, pigments, dyes, nucleating agents, fillers, slip agents, lubricants, fire retardants, and antiblocking agents.
- antioxidants examples include 2,6-di-t-butyl-p-cresol, O-t-butyl-p-cresol, tetrakis-[methylene-3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate)methane, ⁇ -naphthylamine, and para-phenylenediamine.
- ultraviolet absorbers examples include 2,4-dihydroxybenzophenone, 2-(2'-hydroxy-3',5'-di-t-butylphenyl)-5-chlorobenzotriazole, 2-(2-hydroxy-3-t-butyl-5-methylphenyl)-5-chlorobenzotriazole, and bis(2,2',6,6')-tetramethyl-4-piperidine)sebacate.
- antistatic agents examples include lauryl diethanolamine, palmityl diethanolamine, stearyl diethanolamine, oleyl diethanolamine, behenyl diethanolamine, polyoxyethylene alkylamines, stearyl monoglyceride, and 2-hydroxy-4-n-octoxybenzophenone.
- colorants including pigments and dyes are carbon black, titanium white, cadmium yellow and copper phthalaocyanine blue.
- nucleating agents examples include aluminum p-tert-butylbenzoate, dibenzylidene sorbitol, and aluminum hydroxy-di-p-t-butylbenzoate.
- fillers are glass fibers, carbon fibers, talc, clay, silica, calcium carbonate, barium sulfate, magnesium hydroxide, calcium hydroxide and calcium oxide.
- slip agents examples include stearamide, oleamide and erucinamide.
- lubricants examples include calcium stearate, zinc stearate, aluminum stearate, magnesium stearate, and polyethylene wax.
- fire retardants examples include antimony oxide, decabromobiphenyl ether, and bis(3,5-dibromo-4-bromopropyloxyphenyl)sulfone.
- antiblocking agents examples include silicon dioxide and polystyrene.
- the amounts of these other additives may be selected from suitable amounts which do not adversely affect the objects of this invention.
- the suitable amounts are about 0.01 to about 5% by weight for the antioxidants; about 0.01 to about 5% by weight for the ultraviolet absorbers; about 0.01 to about 1% by weight for the antistatic agents; about 0.01 to about 5% by weight for the coloring agents; about 0.01 to about 5% by weight for the nucleating agents; about 0.1 to about 60% by weight for the fillers; about 0.01 to about 1% by weight for the slip agents; about 0.01 to about 1% by weight for the lubricants; about 0.1 to about 50% by weight for the fire retardants; and about 0.01 to about 30% by weight for the antiblocking agents.
- the laminated multilayer structure of this invention is composed of the layer (A) which satisfies the combination of parameters described hereinabove, and (B) an oxygen- or nitrogen-containing polar resin layer or a metal layer in contact with the layer (A).
- Examples of preferred polar resins in layer (B) are polyamide resins, a saponified copolymer of ethylene and vinyl acetate, and polyesters. More specifically, they include long-chain synthetic polyamides having recurring units of the amide group in the main chain, such as nylon 6, nylon 66, nylon 610, nylon 11 and nylon 12; a saponified copolymer of ethylene and vinyl acetate having a degree of saponification of about 90 to 100 mole% obtained by saponifying an ethylene/vinyl acetate copolymer having an ethylene content of about 15 to about 60 mole%; polyesters such as polyethylene terephthalate and polybutylene terephthalate; and mixtures thereof.
- the metal layer as the layer (B) may, for example be a foil, film or sheet of a metal such as aluminum, iron, copper, tin and nickel, or of an alloy containing at least one of such metals as a main component.
- a metal such as aluminum, iron, copper, tin and nickel
- An aluminum foil, film or sheet and a stainless steel foil, film or sheet are preferred.
- the thickness of the foil, film or sheet can be properly selected, and for example, it is about 0.01 to about 0.2 mm.
- the oxygen- or nitrogen-containing polar resin layer (B) may also contain known additives in conventional amounts.
- additives may include, for example, about 0.01 to about 5% by weight, based on the weight of the resin, of antioxidants such as 2,6-di-tert.butyl-p-cresol, O-t-butyl-p-cresol, tetrakis-[methylene-3-(3,5-di-tert.butyl-4-hydroxyphenyl)-propionate]methane, copper naphthenate, p-benzoquinone, trioctyl phosphite, and tributyl phosphite; about 0.01 to about 5% by weight, based on the weight of the resin, of about 0.01 to about 5% by weight of ultraviolet absorbers such as 2,4-dihydroxybenzophenone, 2,2-dihydroxybenzophenone, 2-(2'-hydroxy-3,5-di-tert.-butylphenyl)-5-ch
- the laminated structures in accordance with this invention may be in various forms. For example, it is a two-layer structure composed of the layers (A) and (B) in contact with each other. Or it may be a three-layer sandwich structure composed of the layers (A), (B) and (A) or the layers (B), (A) and (B) in this order. There can also be obtained a structure having four or more layers composed of the aforesaid three-layer structures and the layer (A) or (B) placed as a topmost layer on either side of the three-layer structure.
- a multilayer laminated structure which is composed of any one of the above-exemplified structures and laminated thereto, a layer of a polymer having adhesiveness to the modified ethylene polymer, nylon or EVA copolymer, for example polypropylene, polyethylene and ethylene/alpha-olefin copolymers which are adhesive to the modified ethylene polymer, or an EVA copolymer which is adhesive to nylon, or nylon and polyester resins which are adhesive to the EVA copolymer.
- a polymer having adhesiveness to the modified ethylene polymer nylon or EVA copolymer, for example polypropylene, polyethylene and ethylene/alpha-olefin copolymers which are adhesive to the modified ethylene polymer, or an EVA copolymer which is adhesive to nylon, or nylon and polyester resins which are adhesive to the EVA copolymer.
- Examples of possible combinations are a three-layer structure such as polyethylene/modified ethylene polymer/nylon or EVA copolymer, and modified ethylene polymer/EVA copolymer or nylon/nylon or EVA copolymer; a four-layer structure such as polyethylene/modified ethylene polymer/nylon or EVA copolymer/modified ethylene polymer, and polyethylene/modified ethylene polymer/EVA copolymer or nylon/nylon or EVA copolymer; and a five-layer structure such as polyethylene/modified ethylene polymer/nylon or EVA copolymer/modified ethylene polymer/polyethylene.
- Various other combinations are possible which contain modified ethylene polymer/nylon or EVA copolymer as constituent elements. In these laminated structures, any one of the constituent layers may be oriented monoaxially or biaxially.
- multilayer laminated structures which include modified ethylene polymer/metal foil, polyethylene/modified ethylene polymer/metal foil, polyethylene/modified ethylene polymer/metal foil/modified ethylene polymer, and other laminated structures containing modified ethylene polymer/metal foil as constituent elements.
- the laminated multilayer structure of this invention can be produced by means known per se. For example, it can be produced by melting the individual components in separate extruders, and co-extruding them through a single die near the exit of the extruders.
- the temperature of the grafted high-density polyethylene resin composition during the co-extrusion is about 130° C. to about 300° C., preferably about 150° C. to about 250° C.
- the temperature of the polyamide resin to be co-extruded is from its melting point to about 300° C., preferably from a point about 10° C. above its melting point to about 280° C.
- the polyamide resin when the polyamide resin is nylon 6, its temperature during co-extrusion is about 230° to about 300° C., preferably about 240° to about 280° C.
- the polyester resin being co-extruded may have a temperature ranging from a point 10° C. above its melting point to 300° C., preferably 270° to 280° C.
- the saponified copolymer of ethylene and vinyl acetate may have a temperature of from 170° C. to 260° C., preferably 180° to 230° C., during the co-extrusion.
- the graft-modified ethylene resin layer may be laminated onto it by such means as press-forming, extrusion laminating, extrusion coating, and powder coating. At this time, the metal layer may be heated, and elevated pressures may be used.
- the laminated multilayer structure of this invention can be used in the form of films, sheets, boards, pipes, hollow containers, etc.
- the multilayer structure of this invention has markedly improved adhesive strength, and is free from delamination which has conventionally been encountered during use at high temperatures or under severe conditions.
- the laminated multilayer structure of this invention can be used suitably in various applications, for example packaging materials for vegetables, meats, dairy products, etc., food packaging materials such as packaging films, containers and cook-in pouches for seasonings, edible oils, medicines, etc., gasoline tanks, drum cans and large-sized containers which require impact strength and oil resistance, and building materials and the like such as interior and exterior finishing or trimming panels of buildings, and advertisement panels.
- graft-modified ethylene resins as a layer (A) was melted in an extruder and fed to a coextrusion die while keeping the resin temperature at 190° C.
- Nylon 6 (Amilan CM-1046, a trademark for a product of Toray Industries, Inc.) as a layer (B) was melted in another extruder, and fed to the coextrusion die while keeping the resin temperature at 240° C.
- High-density polyethylene MI 2 0.04; density 0.956 was melted in still another extruder, and fed to the coextrusion die while keeping the resin temperature at 230° C.
- a three-layered parison was extruded from the coextrusion die, and blow molded in a mold for forming a bottle.
- the bottle formed was a cylindrical bottle having an inner capacity of 500 cm 3 and consisting of an outer layer of high-density polyethylene (thickness 1 mm), an interlayer of the layer (A) (thickness 0.1 mm) and an inner layer of the layer (B) (thickness 0.2 mm).
- the delamination strength and low-temperature impact strength of the bottle were measured, and the results are shown in Table 3.
- the methods of measurement were as follows:
- the delamination strength is shown as the peel strength measured by the method of a peel test.
- a test specimen 10 mm in width, was cut off from the side wall of the composite bottle, and was partly delaminated between the layers (A) and (B). It was then subjected to a peel test at 23° C. at a peel angle of 180° by pulling the specimen at a speed of 50 mm/min. with an Instron tester. Thus, the peel strength (kg/cm) of the specimen was determined.
- a predetermined number of specimens were cut off from the bottom portion of the composite bottle, and placed in an atmosphere at -40° C. with their pinch-off portions directed upward.
- a 1-kilogram weight having a hemispherical end with a diameter of 8 mm was let fall onto the pinch-off portions of the specimens from various heights, and the height of weight fall which led to destruction of 50% of the specimens was determined. This height was defined as the low-temperature impact strength (m).
- Each of the graft-modified ethylene resins shown in Table 2 was mixed with at least one of the unmodified ethylene polymers described in Table 4 by a tumbler blender, and the mixture was pelletized by an extruder at a resin temperature of 210° C.
- a three-layer laminated bottle was formed in the same way as in Example 1 except that the resulting pellets were used as the layer (A). The properties of the bottle are shown in Table 5.
- a three-layer composite bottle was formed in the same way as in Example 1 except that an ethylene/vinyl alcohol copolymer (a saponification product having a degree of saponification of 99% of an ethylene/vinyl acetate copolymer containing 31 mole% of ethylene) was used as the layer (B) and the resin layer (A) shown in Table 6 was used.
- the properties of the bottle are shown in Table 6.
- a three-layer composite bottle was formed in the same way as in Example 5 except that the resin layer shown in Table 7 was used.
- the peel strength of the bottle was measured at 23°, 60°, 80° and 100° C. respectively, and the average of the measured peel strengths at these temperatures is shown in Table 7.
- a cylindrical three-layer composite container having an inner capacity of 50 liters and composed of an outer layer of high-density polyethylene (thickness 5 mm), an interlayer of the resin (A) (thickness 0.1 mm) and an inner layer of 6-nylon (thickness 0.2 mm) was formed by the method shown in Example 1 using the resin (A) shown in Table 8.
- the peel strength of the container was measured in the same way as in Example 1.
- a polyester resin was melted in another extruder, and fed to the coextrusion die at a resin temperature of 250° C. These molten resins were extruded from the coextrusion die and quenched by a cooling roll at 30° C. to form a two-layer film.
- the polyester resin used was a mixture of 90 parts by weight of polybutylene terephthalate having an intrinsic viscosity, measured at 25° C. in a 1% o-chlorophenol solution, of 0.90 and 10 parts by weight of a polyester having an intrinsic viscosity of 0.85 and derived from dimethyl terephthalate, ethylene glycol and diethylene glycol.
- the peel strength of the specimen was 1.8 kg/cm.
- Maleic anhydride was grafted to the ethylene polymer e described in Table 1 to prepare maleic anhydride-modified ethylene resin having a maleic anhydride content of 0.2% by weight, a density of 0.968, an MI 2 of 0.6 and an MI 10 /MI 2 ratio of 21.
- Example 23 was repeated except that the resulting graft-modified ethylene resin was used instead of the resin k'.
- the resulting two-layer film had a peel strength of 0.6 kg/cm.
- This modified resin was bonded under pressure to each of (a) an aluminum foil and (b) a steel sheet, each of which had been degreased, at 200° C. for 5 minutes (the resin layer 1 mm thick; the metal layer 0.1 mm thick) to form a laminated sheet.
- Example 24 was repeated except that the maleic anhydride-grafted ethylene resin described in Table 2 was used instead of the grafted ethylene resin used in Example 24.
- the peel strength of the resulting metal laminated sheet was measured, and the results are shown in Table 9.
- ethylene/propylene copolymer containing 0.2 mole% of propylene component (MI 2 0.94, density 0.953, MI 10 /MI 2 1025) was grafted 0.3% by weight of bicyclo[2.2.1]hept-5-ene-2,3-dicarboxylic anhydride to prepare a graft-modified ethylene resin E having an MI 2 of 0.2, an MI 10 /MI 2 ratio of 13 and a density of 0.954.
- ethylene/propylene copolymer was grafted 0.3% by weight of cyclohex-4-ene-1,2-dicarboxylic anhydride to prepare a graft-modified ethylene resin F having an MI 2 of 0.1, an MI 10 /MI 2 of 15, and a density of 0.954.
- a 50-liter three-layer composite container was produced in the same way as in Example 21 using the graft-modified ethylene resin E or F.
- the peel strength and falling impact strength of the container were measured, and the results are shown in Table 10.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Laminated Bodies (AREA)
Abstract
Description
TABLE 1 ______________________________________ Comonomer MI.sub.2 Sam- Content (g/10 [η] MI.sub.2 / Density ple Type (mole %) min.) (dl/g) [η].sup.-8.77 (g/cm.sup.3) ______________________________________ a none 0 2.3 1.22 13 0.920 (*) (Low- density poly- ethylene) b propylene 0.2 10.6 1.30 106 0.955 b' " 0.2 1.2 2.06 679 0.956 c " 0.2 0.94 2.22 1025 0.953 c' " 0.2 1.0 2.15 823 0.955 d " 15.0 2 1.70 210 0.885 e " 0.1 1.4 2.00 611 0.966 e' " 0.1 0.4 2.61 1803 0.958 f butene-1 10.0 20 1.15 68 0.900 g 4-methyl- 0.4 1.0 2.16 857 0.948 1-pentene h propylene 0.1 13 1.29 121 0.963 ______________________________________ (*) An ethylene homopolymer produced by the conventional highpressure polymerization process.
TABLE 2 ______________________________________ Content Eth- Eth- of maleic ylene Den- ylene anhy- content MI.sub.2 sity Sam- poly- dride (mole (g/10 [η] MI.sub.10 / (g/ ple mer (wt. %) %) min.) (dl/g) MI.sub.2 cm.sup.3) ______________________________________ i a 0.2 100 1.8 1.20 10 0.921 j b 2.0 99.3 0.4 1.27 20 0.958 j' b' 0.1 99.8 0.4 2.06 17 0.957 k c 0.2 99.8 0.1 2.16 17 0.954 k' c 0.2 99.8 0.4 2.10 11 0.954 l c 0.4 99.8 0.2 2.06 14 0.955 l' c' 0.2 99.8 0.4 2.12 11 0.958 m d 1.8 84.5 0.2 1.70 9 0.885 n e 0.4 99.9 0.2 1.92 23 0.968 n' e' 0.16 99.9 0.2 2.56 25 0.960 o h 2.0 99.4 2.0 1.27 23 0.965 p f 2.0 89.5 3.4 1.20 10 0.905 q g 0.2 99.6 0.3 2.14 10 0.950 ______________________________________
TABLE 3 ______________________________________ Resin in layer (A) Maleic Graft- anhy- Properties of the bottle modified dride Peel Low-temper- ethylene content MI.sub.10 / strength ature impact Example resin (wt. %) MI.sub.2 (kg/cm) strength (m) ______________________________________ Ex- ample 1 m 1.8 9 5.0 1.8 Ex- ample 2 k 0.2 17 5.0 1.9 Ex- ample 3 p 2.0 10 7.0 2.3 Ex- ample 4 q 0.2 10 4.9 1.7 Com- parative Ex- ample 1 i 0.2 10 2.5 0.4 Com- parative Ex- ample 2 j 2.0 20 2.5 0.5 ______________________________________
TABLE 4 ______________________________________ Comonomer MI.sub.2 Sam- Con- (g/10 [η] MI.sub.2 / MI.sub.10 / Den- ple Type tent min.) (dl/g) [η].sup.-8.77 MI.sub.2 sity ______________________________________ r None 0 1.5 1.85 331 10 0.965 s propylene 0.2 0.94 2.22 1025 9 0.953 t " 0.1 1.2 2.10 804 30 0.960 y butene-1 0.2 1.1 2.10 737 10 0.955 z 4-methyl- 0.1 1.0 2.20 1007 10 0.957 1-pentene u propylene 0.2 1.3 2.04 675 14 0.955 v " 0.1 1.4 1.81 255 19 0.955 w " 18 0.5 2.10 335 5.7 0.870 w' " 20 0.5 2.08 308 6 0.865 x " 0.2 1.2 2.00 524 20 0.956 ______________________________________
TABLE 5 __________________________________________________________________________ Resin in layer (A) Properties of the bottle Graft-modified Unmodified ethylene Maleic Low-tem- ethylene resin polymer Ethylene anhydride Peel perature Amount MI.sub.10 / Amount MI.sub.10 / content content MI.sub.10 / strength impact strength Example (wt. %) Type MI.sub.2 (wt. %) Type MI.sub.2 (mole %) (wt. %) Density MI.sub.2 (kg/cm) (m) __________________________________________________________________________ Example 5 20 l 14 80 s 9 99.8 0.1 0.953 10 4.5 1.6 Example 6 50 " " 50 " " 99.8 0.2 0.954 12 6.0 2.0 Example 7 80 " " 20 " " 99.8 0.3 0.955 13 6.5 2.0 Example 8 50 " " 50 y 10 99.8 0.2 0.955 13 6.0 2.0 Example 9 50 " " 50 z 10 99.9 0.2 0.956 13 6.1 2.0 Example 10 50 " " 50 r 19 99.9 0.2 0.960 16 5.6 1.5 Example 11 25 n 23 75 s 9 99.9 0.1 0.960 17 5.1 1.6 Example 12 25 l 14 45 v 19 94.0 0.1 0.930 13 6.0 1.8 30 w 5.7 Example 13 25 l 14 65 v 19 97.9 0.1 0.947 15 5.5 1.5 10 w 5.7 Example 14 8 o 23 62 x 20 93.8 0.2 0.933 16 4.5 1.3 30 w 5.7 Com- parative Example 3 25 l 14 75 t 30 99.9 0.1 0.959 25 2.3 0.5 Com- parative Example 4 8 o 23 92 u 14 99.8 0.2 0.960 28 1.4 0.3 __________________________________________________________________________
TABLE 6 __________________________________________________________________________ Resin in layer (A) Properties of the bottle Graft-modified Unmodified ethylene Maleic Low-tem- ethylene resin polymer Ethylene anhydride Peel perature Amount MI.sub.10 / Amount MI.sub.10 / content content MI.sub.10 / strength impact strength Example (wt. %) Type MI.sub.2 (wt. %) Type MI.sub.2 (mole %) (wt. %) Density MI.sub.2 (kg/cm) (m) __________________________________________________________________________ Example 15 100 k' 11 -- -- -- 99.8 0.2 0.954 11 4.3 1.3 Example 16 90 j' 17 10 w' 6 98.0 0.14 0.945 9 3.8 1.3 (23° C.) 1.9 (100° C.) Example 17 50 l 14 50 r 19 99.9 0.2 0.960 16 4.0 1.3 Example 18 25 n 23 75 s 9 99.9 0.1 0.960 17 4.1 1.4 Com- parative Example 5 100 j 20 -- -- -- 99.3 2.0 0.958 20 0.8 0.1 Com- parative Example 6 25 l 14 75 t 30 99.9 0.1 0.959 25 0.9 0.1 Com- parative Example 7 8 o 23 92 u 14 99.8 0.2 0.960 28 0.7 0.1 __________________________________________________________________________
TABLE 7 __________________________________________________________________________ Resin in layer (A) Graft-modified Unmodified ethylene Maleic Peel strength ethylene resin polymer Ethylene anhydride measured at a Amount MI.sub.10 / Amount MI.sub.10 / content content MI.sub.10 / temperature (°C.) Example (wt. %) Type MI.sub.2 (wt. %) Type MI.sub.2 (mole %) (wt. %) Density MI.sub.2 23 60 80 100 __________________________________________________________________________ Example 19 90 l' 11 10 w' 6 97.8 0.20 0.949 9 6.5 5.2 4.1 2.9 Example 20 90 j' 17 10 w' 6 97.8 0.09 0.950 15 4.0 3.0 1.4 1.1 Com- parative Example 8 90 n' 25 10 w' 6 97.9 0.13 0.951 20 2.0 1.0 0.2 <0.1 __________________________________________________________________________
TABLE 8 __________________________________________________________________________ Resin in layer (A) Graft-modified Unmodified ethylene Maleic Properties of the bottle ethylene resin polymer Ethylene anhydride Peel Falling impact Amount MI.sub.10 / Amount MI.sub.10 / content content MI.sub.10 / strength strength Example (wt. %) Type MI.sub.2 (wt. %) Type MI.sub.2 (mole %) (wt. %) Density MI.sub.2 (kg/cm) (m) __________________________________________________________________________ Example 21 100 k' 11 -- -- -- 99.8 0.2 0.954 11 9.5 10 Example 22 80 l 14 20 s 9 99.8 0.3 0.955 13 8.9 10 Com- parative Example 9 100 i 10 -- -- -- 100 0.2 0.921 10 1.9 1.0 Com- parative Example 10 100 j 20 -- -- -- 99.3 2.0 0.958 20 2.7 1.5 __________________________________________________________________________
TABLE 9 ______________________________________ Peel strength (kg/cm) Al-laminated sheet Steel-laminated sheet ______________________________________ Example 24 Al broken 9.8 Comparative Example 12 3.0 4.1 ______________________________________
TABLE 10 ______________________________________ Graft-modified Peel Falling impact ethylene resin strength strength ______________________________________ Example 25 E 8.9 9.5 Example 26 F 8.8 9.8 ______________________________________
Claims (7)
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2407880A JPS56120344A (en) | 1980-02-29 | 1980-02-29 | Multilayer laminated structure |
JP2407980A JPS6011056B2 (en) | 1980-02-29 | 1980-02-29 | Modified ethylene polymer composition |
JP55-24079 | 1980-02-29 | ||
JP55-24078 | 1980-06-17 | ||
JP55-181331 | 1980-12-23 | ||
JP18133180A JPS57105349A (en) | 1980-12-23 | 1980-12-23 | Multilayer laminated structure |
Publications (1)
Publication Number | Publication Date |
---|---|
US4397916A true US4397916A (en) | 1983-08-09 |
Family
ID=27284505
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US06/237,610 Expired - Lifetime US4397916A (en) | 1980-02-29 | 1981-02-24 | Laminated multilayer structure |
Country Status (4)
Country | Link |
---|---|
US (1) | US4397916A (en) |
EP (1) | EP0035392B1 (en) |
CA (1) | CA1172552A (en) |
DE (1) | DE3161469D1 (en) |
Cited By (57)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4517316A (en) * | 1984-01-24 | 1985-05-14 | Dasurat Enterprises Pte Ltd. | Porous irrigation pipe prepared from particulate elastomer and thermoplastic binder containing controlled moisture content |
US4533576A (en) * | 1982-08-06 | 1985-08-06 | Toyo Seikan Kaisha Limited | Composite material for packaging containers |
US4567069A (en) * | 1984-06-18 | 1986-01-28 | Owens-Illinois, Inc. | Multilayer containers with improved stress crack properties |
US4654240A (en) * | 1984-09-28 | 1987-03-31 | Baxter Travenol Laboratories, Inc. | Laminate film for flexible containers |
US4686125A (en) * | 1984-09-28 | 1987-08-11 | Baxter Travenol Laboratories, Inc. | Film laminate for sterile flexible containers |
US4692361A (en) * | 1984-09-28 | 1987-09-08 | Baxter Travenol Laboratories, Inc. | Film laminate with gas barrier for sterile flexible containers |
US4803102A (en) * | 1985-11-29 | 1989-02-07 | American National Can Company | Multiple layer packaging films and packages formed therefrom |
AU584910B2 (en) * | 1984-08-15 | 1989-06-08 | Dow Chemical Company, The | Maleic anhydride grafts of olefin polymers |
US4910085A (en) * | 1985-11-29 | 1990-03-20 | American National Can Company | Multiple layer packaging films and packages formed thereof |
US4950541A (en) * | 1984-08-15 | 1990-08-21 | The Dow Chemical Company | Maleic anhydride grafts of olefin polymers |
AU602266B2 (en) * | 1987-10-15 | 1990-10-04 | Cmb Foodcan Plc | Laminated metal sheet |
AU606768B2 (en) * | 1987-10-15 | 1991-02-14 | Cmb Foodcan Plc | Laminates of polyolefin-based film and metal and processes for producing such laminates |
AU611507B2 (en) * | 1987-10-15 | 1991-06-13 | Cmb Foodcan Plc | Laminated metal sheet |
US5045401A (en) * | 1989-12-21 | 1991-09-03 | The Dow Chemical Company | Non-isothermal crystallizable adhesive compositions for multilayer laminated structures |
US5066542A (en) * | 1984-08-15 | 1991-11-19 | The Dow Chemical Company | Resin blends of maleic anhydride grafts of olefin polymers for extrusion coating onto metal foil substrates |
WO1992002669A1 (en) * | 1990-08-07 | 1992-02-20 | The Dow Chemical Company | Method for making biocomponent fibers |
US5153249A (en) * | 1989-05-11 | 1992-10-06 | Mitsui Toatsu Chemicals, Inc. | Polypropylene resin compositions |
US5209972A (en) * | 1983-05-04 | 1993-05-11 | Super Scott S | Multiple layer packaging film |
US5314733A (en) * | 1991-06-12 | 1994-05-24 | Mitsubishi Petrochemical Co., Ltd. | Multi-layer container |
US5346963A (en) * | 1993-04-28 | 1994-09-13 | The Dow Chemical Company | Graft-modified, substantially linear ethylene polymers and methods for their use |
US5741865A (en) * | 1995-07-18 | 1998-04-21 | Witco Corporation | Fatty alkly diethanolamines to stabilize the optical clarity of polyols containing zinc fatty acid salts |
US5788926A (en) * | 1995-08-16 | 1998-08-04 | Toyo Seikan Kaisha, Ltd. | Plastic bottle and process for making the same |
EP0933196A2 (en) * | 1998-01-28 | 1999-08-04 | Basf Aktiengesellschaft | Multilayered structural composite materials with polybutylene terephthalate barrier layer |
GB2335389A (en) * | 1998-03-20 | 1999-09-22 | Solvay | Fuel tank or tubing for filling this tank |
US5993949A (en) * | 1993-11-16 | 1999-11-30 | Baxter International Inc. | Multilayer, halide free, retortable barrier film |
US6047828A (en) * | 1997-03-10 | 2000-04-11 | Hay; Henry F. | Polyolefin drums |
US6087001A (en) * | 1996-06-27 | 2000-07-11 | Elf Atovhem S.A. | Coextrusion binder, its use in a multilayer structure and the structure thus obtained |
EP1031410A1 (en) * | 1999-02-25 | 2000-08-30 | Toyo Boseki Kabushiki Kaisha | Printable polyolefin film |
WO2002006045A1 (en) * | 2000-07-13 | 2002-01-24 | Toray Plastics (America), Inc. | Biaxially oriented polypropylene metallized film for packaging |
US6361843B1 (en) | 1997-09-22 | 2002-03-26 | Baxter International Inc. | Multilayered polymer structure for medical products |
US6528173B1 (en) | 1997-02-24 | 2003-03-04 | Baxter International Inc. | Coextruded multilayer films for sterilizable fluid containers |
US6562425B2 (en) | 1996-05-23 | 2003-05-13 | Pliant Corporation | Carrier release sheet for styrene molding process and process and system |
US20030113490A1 (en) * | 2001-12-13 | 2003-06-19 | Zo-Chun Jen | Polyester bottles with reduced bottle-to-bottle friction |
US20030118766A1 (en) * | 2001-12-26 | 2003-06-26 | Masaki Koike | Fuel tube |
US20030176847A1 (en) * | 1997-09-22 | 2003-09-18 | Hurst William S. | Contoured tubing closure |
US20030219557A1 (en) * | 1996-08-12 | 2003-11-27 | Pliant Corporation | Carrier release sheet for styrene molding process and process and system |
US6746738B1 (en) * | 1999-04-06 | 2004-06-08 | Atofina | Coextrusion binder, its use for a multilayer structure and the structure thus obtained |
US6764752B2 (en) | 2000-07-13 | 2004-07-20 | Toray Plastics (America), Inc. | Biaxially oriented polypropylene metallized film for packaging |
US6924013B1 (en) * | 1999-04-06 | 2005-08-02 | Arkema (Formerly Atofina) | Coextrusion binder, its use for a multilayer structure and the structure thus obtained |
US20050221040A1 (en) * | 2001-12-26 | 2005-10-06 | Masaki Koike | Fuel tube |
US6964798B2 (en) | 1993-11-16 | 2005-11-15 | Baxter International Inc. | Multi-layered polymer based thin film structure for medical grade products |
US20060189742A1 (en) * | 2002-08-19 | 2006-08-24 | Ralf Ulrich | Elastomer modifed olyamides for improving the breaking resistance of films and hollow elements |
US20070071966A1 (en) * | 2003-10-14 | 2007-03-29 | Tesa Ag | Age-resistant soft polyolefin wrapping foil |
US20070095559A1 (en) * | 2003-10-14 | 2007-05-03 | Tesa Ag | Flame-resistant carbon black-filled polyolefin wrapping foil |
US20070248814A1 (en) * | 2003-10-14 | 2007-10-25 | Tesa Ag | Carbon Black-Filled Age-Resistant Polyolefin Wrapping Foil |
US20080107909A1 (en) * | 2002-02-04 | 2008-05-08 | Basf Aktiengesellschaft | Use of antiadhesive packaging materials for packaging chemicals and foodstuffs |
US7651781B2 (en) | 2001-10-24 | 2010-01-26 | Ball Corporation | Polypropylene container and process for making the same |
US20100029827A1 (en) * | 2006-12-21 | 2010-02-04 | Dow Global Technologies Inc | Polyolefin compositions and articles prepared therefrom, and methods for making the same |
US20100098958A1 (en) * | 2008-10-21 | 2010-04-22 | Schwab Thomas J | Polyolefin-metal laminate |
US20100143651A1 (en) * | 2006-12-21 | 2010-06-10 | Dow Global Technologies Inc. | Functionalized olefin polymers, compositions and articles prepared therefrom, and methods for making the same |
US20100229252A1 (en) * | 2007-07-23 | 2010-09-09 | Cellectis | Meganuclease variants cleaving a dna target sequence from the human hemoglobin beta gene and uses thereof |
US20100292403A1 (en) * | 2007-07-27 | 2010-11-18 | Patricia Ansems | Polyolefin compositions and articles prepared therefrom, and methods for making the same |
US20100297371A1 (en) * | 2007-10-29 | 2010-11-25 | Shikoku Kakoh Co., Ltd. | Film for food packaging |
EP0733472B2 (en) † | 1995-03-22 | 2011-09-28 | Cryovac, Inc. | Multilayer films for packaging and administering medical solutions |
US20140008373A1 (en) * | 2011-04-01 | 2014-01-09 | Luxfer Canada Limited | Multilayer liner for a high-pressure gas cylinder |
US8708992B2 (en) | 2009-11-02 | 2014-04-29 | Hosokawa Yoko Co., Ltd. | Plastic film having oxygen absorbing function and infusion bag |
WO2019070648A2 (en) | 2017-10-03 | 2019-04-11 | Abec, Inc. | Reactor systems |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4407873A (en) * | 1982-08-06 | 1983-10-04 | American Can Company | Retortable packaging structure |
JPS6268728A (en) * | 1985-09-24 | 1987-03-28 | Nippon Petrochem Co Ltd | Preparation of laminated body |
GB8724244D0 (en) * | 1987-10-15 | 1987-11-18 | Metal Box Plc | Producing laminated materials |
GB8724242D0 (en) * | 1987-10-15 | 1987-11-18 | Metal Box Plc | Laminated metal sheet |
US4785900A (en) * | 1987-12-17 | 1988-11-22 | Caterpillar Industrial Inc. | Vehicle compartment closure arrangement |
EP0420924B1 (en) * | 1988-06-20 | 1996-05-15 | Rexam Graphics Limited | Barrier membranes e.g. for use in building |
DE69033230T2 (en) * | 1989-05-22 | 1999-12-30 | Showa Denko Kk | Process for the production of a laminate |
US5223311A (en) * | 1989-05-22 | 1993-06-29 | Showa Denko K.K. | Laminate and process for producing the same |
US5011720A (en) * | 1989-07-10 | 1991-04-30 | Owens-Illinois Plastic Products Inc. | Multilayer containers and method of making same |
GB9021090D0 (en) * | 1990-09-27 | 1990-11-07 | Bp Chem Int Ltd | Adhesive and its uses |
FR2697465A1 (en) * | 1992-10-30 | 1994-05-06 | Atochem Elf Sa | Laminates based on polyamide / polyolefin alloys and coextrusion binders, objects obtained therefrom, coating methods therewith. |
DE4433664A1 (en) * | 1994-09-21 | 1996-03-28 | Buna Sow Leuna Olefinverb Gmbh | Thermoplastic molding compounds with gas barrier properties |
DE69618272T2 (en) * | 1995-05-09 | 2002-08-14 | Atofina, Puteaux | Grafted polyolefine coextrusion binder |
ATE207502T1 (en) | 1996-04-19 | 2001-11-15 | Atofina | CO-EXTRUSION BINDER MADE OF A MIXTURE OF GRAFTED POLYOLEFINS |
US20030129428A1 (en) * | 1996-06-10 | 2003-07-10 | Mingliang Lawrence Tsai | Multilayer polyamide film structures |
US6440566B1 (en) | 1998-10-01 | 2002-08-27 | Airtech International, Inc. | Method of molding or curing a resin material at high temperatures using a multilayer release film |
DE102004056875A1 (en) * | 2004-11-25 | 2006-06-01 | Clariant Gmbh | Use of polar modified polyolefin waxes for improving the adhesion of sealants to powder coatings |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3931449A (en) * | 1972-08-17 | 1976-01-06 | Toyo Seikan Kaisha Limited | Resinous laminates having improved gas permeation and resistance to delamination |
US4058647A (en) * | 1975-02-27 | 1977-11-15 | Mitsubishi Petrochemical Co., Ltd. | Process for preparing laminated resin product |
JPS5593449A (en) * | 1979-01-10 | 1980-07-15 | Mitsui Toatsu Chemicals | Laminated shaped piece of polyolefin or like |
US4269321A (en) * | 1977-11-29 | 1981-05-26 | Toyo Seikan Kaisha, Ltd. | Peelable bonded structures and process for preparing same |
US4308084A (en) * | 1979-03-28 | 1981-12-29 | Morton-Norwich Products, Inc. | Process for preparing retort-proof metal layer laminates for packaging foodstuffs using aluminum hydroxide-modified copolymers as adhesives |
US4311742A (en) * | 1979-08-17 | 1982-01-19 | Toyo Seikan Kaisha, Ltd. | Retort-sterilizable laminated pouch comprising a flexible gas-barrier substrate and blended crystalline olefin layer |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BE599711A (en) * | 1960-02-01 | |||
FR2070723B1 (en) * | 1969-11-28 | 1974-03-22 | Nitto Electric Ind Co | |
JPS5439433B1 (en) * | 1971-04-03 | 1979-11-28 | ||
JPS5032287A (en) * | 1973-07-20 | 1975-03-28 | ||
JPS534880B2 (en) * | 1973-11-22 | 1978-02-21 | ||
LU76197A1 (en) * | 1976-11-12 | 1978-07-10 | ||
JPS5512008A (en) * | 1978-06-29 | 1980-01-28 | Mitsui Petrochemical Ind | Packing laminate sack |
-
1981
- 1981-02-24 US US06/237,610 patent/US4397916A/en not_active Expired - Lifetime
- 1981-02-27 EP EP81300837A patent/EP0035392B1/en not_active Expired
- 1981-02-27 CA CA000371879A patent/CA1172552A/en not_active Expired
- 1981-02-27 DE DE8181300837T patent/DE3161469D1/en not_active Expired
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3931449A (en) * | 1972-08-17 | 1976-01-06 | Toyo Seikan Kaisha Limited | Resinous laminates having improved gas permeation and resistance to delamination |
US4058647A (en) * | 1975-02-27 | 1977-11-15 | Mitsubishi Petrochemical Co., Ltd. | Process for preparing laminated resin product |
US4269321A (en) * | 1977-11-29 | 1981-05-26 | Toyo Seikan Kaisha, Ltd. | Peelable bonded structures and process for preparing same |
JPS5593449A (en) * | 1979-01-10 | 1980-07-15 | Mitsui Toatsu Chemicals | Laminated shaped piece of polyolefin or like |
US4308084A (en) * | 1979-03-28 | 1981-12-29 | Morton-Norwich Products, Inc. | Process for preparing retort-proof metal layer laminates for packaging foodstuffs using aluminum hydroxide-modified copolymers as adhesives |
US4311742A (en) * | 1979-08-17 | 1982-01-19 | Toyo Seikan Kaisha, Ltd. | Retort-sterilizable laminated pouch comprising a flexible gas-barrier substrate and blended crystalline olefin layer |
Cited By (75)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4533576A (en) * | 1982-08-06 | 1985-08-06 | Toyo Seikan Kaisha Limited | Composite material for packaging containers |
US5209972A (en) * | 1983-05-04 | 1993-05-11 | Super Scott S | Multiple layer packaging film |
WO1985003194A1 (en) * | 1984-01-24 | 1985-08-01 | Mason James W | Porous irrigation pipe and method |
US4517316A (en) * | 1984-01-24 | 1985-05-14 | Dasurat Enterprises Pte Ltd. | Porous irrigation pipe prepared from particulate elastomer and thermoplastic binder containing controlled moisture content |
US4567069A (en) * | 1984-06-18 | 1986-01-28 | Owens-Illinois, Inc. | Multilayer containers with improved stress crack properties |
AU584910B2 (en) * | 1984-08-15 | 1989-06-08 | Dow Chemical Company, The | Maleic anhydride grafts of olefin polymers |
US5066542A (en) * | 1984-08-15 | 1991-11-19 | The Dow Chemical Company | Resin blends of maleic anhydride grafts of olefin polymers for extrusion coating onto metal foil substrates |
US4950541A (en) * | 1984-08-15 | 1990-08-21 | The Dow Chemical Company | Maleic anhydride grafts of olefin polymers |
US4654240A (en) * | 1984-09-28 | 1987-03-31 | Baxter Travenol Laboratories, Inc. | Laminate film for flexible containers |
US4692361A (en) * | 1984-09-28 | 1987-09-08 | Baxter Travenol Laboratories, Inc. | Film laminate with gas barrier for sterile flexible containers |
US4686125A (en) * | 1984-09-28 | 1987-08-11 | Baxter Travenol Laboratories, Inc. | Film laminate for sterile flexible containers |
US4910085A (en) * | 1985-11-29 | 1990-03-20 | American National Can Company | Multiple layer packaging films and packages formed thereof |
US4803102A (en) * | 1985-11-29 | 1989-02-07 | American National Can Company | Multiple layer packaging films and packages formed therefrom |
AU602266B2 (en) * | 1987-10-15 | 1990-10-04 | Cmb Foodcan Plc | Laminated metal sheet |
AU606768B2 (en) * | 1987-10-15 | 1991-02-14 | Cmb Foodcan Plc | Laminates of polyolefin-based film and metal and processes for producing such laminates |
AU611507B2 (en) * | 1987-10-15 | 1991-06-13 | Cmb Foodcan Plc | Laminated metal sheet |
US5153249A (en) * | 1989-05-11 | 1992-10-06 | Mitsui Toatsu Chemicals, Inc. | Polypropylene resin compositions |
US5045401A (en) * | 1989-12-21 | 1991-09-03 | The Dow Chemical Company | Non-isothermal crystallizable adhesive compositions for multilayer laminated structures |
WO1992002669A1 (en) * | 1990-08-07 | 1992-02-20 | The Dow Chemical Company | Method for making biocomponent fibers |
WO1992006844A1 (en) * | 1990-10-15 | 1992-04-30 | The Dow Chemical Company | Resin blends of maleic anhydride grafts of olefin polymers for extrusion coating onto metal foil substrates |
US5314733A (en) * | 1991-06-12 | 1994-05-24 | Mitsubishi Petrochemical Co., Ltd. | Multi-layer container |
US5346963A (en) * | 1993-04-28 | 1994-09-13 | The Dow Chemical Company | Graft-modified, substantially linear ethylene polymers and methods for their use |
US5705565A (en) * | 1993-04-28 | 1998-01-06 | The Dow Chemical Company | Graft-modified substantially linear ethylene polymers and methods for their use |
US5993949A (en) * | 1993-11-16 | 1999-11-30 | Baxter International Inc. | Multilayer, halide free, retortable barrier film |
US6964798B2 (en) | 1993-11-16 | 2005-11-15 | Baxter International Inc. | Multi-layered polymer based thin film structure for medical grade products |
EP0733472B2 (en) † | 1995-03-22 | 2011-09-28 | Cryovac, Inc. | Multilayer films for packaging and administering medical solutions |
US5741865A (en) * | 1995-07-18 | 1998-04-21 | Witco Corporation | Fatty alkly diethanolamines to stabilize the optical clarity of polyols containing zinc fatty acid salts |
US5788926A (en) * | 1995-08-16 | 1998-08-04 | Toyo Seikan Kaisha, Ltd. | Plastic bottle and process for making the same |
US6576308B2 (en) * | 1996-05-23 | 2003-06-10 | Pliant Corporation | Carrier release sheet for styrene molding process and process system |
US6562425B2 (en) | 1996-05-23 | 2003-05-13 | Pliant Corporation | Carrier release sheet for styrene molding process and process and system |
US6087001A (en) * | 1996-06-27 | 2000-07-11 | Elf Atovhem S.A. | Coextrusion binder, its use in a multilayer structure and the structure thus obtained |
US6294269B1 (en) | 1996-06-27 | 2001-09-25 | Elf Atochem, S.A. | Coextrusion binder, its use in a multilayer structure and the structure thus obtained |
US20030219557A1 (en) * | 1996-08-12 | 2003-11-27 | Pliant Corporation | Carrier release sheet for styrene molding process and process and system |
US6528173B1 (en) | 1997-02-24 | 2003-03-04 | Baxter International Inc. | Coextruded multilayer films for sterilizable fluid containers |
US6047828A (en) * | 1997-03-10 | 2000-04-11 | Hay; Henry F. | Polyolefin drums |
US20040122414A9 (en) * | 1997-09-22 | 2004-06-24 | Hurst William S. | Contoured tubing closure |
US6361843B1 (en) | 1997-09-22 | 2002-03-26 | Baxter International Inc. | Multilayered polymer structure for medical products |
US20030176847A1 (en) * | 1997-09-22 | 2003-09-18 | Hurst William S. | Contoured tubing closure |
US6517918B1 (en) | 1998-01-28 | 2003-02-11 | Basell Polyolefine Gmbh | Multilayer composite plastics material containing a barrier layer of polybutylene terephthalate |
EP0933196A2 (en) * | 1998-01-28 | 1999-08-04 | Basf Aktiengesellschaft | Multilayered structural composite materials with polybutylene terephthalate barrier layer |
EP0933196A3 (en) * | 1998-01-28 | 2001-09-19 | Basf Aktiengesellschaft | Multilayered structural composite materials with polybutylene terephthalate barrier layer |
GB2335389A (en) * | 1998-03-20 | 1999-09-22 | Solvay | Fuel tank or tubing for filling this tank |
GB2335389B (en) * | 1998-03-20 | 2002-09-18 | Solvay | Fuel tank or tubing for filling this tank |
US6616994B2 (en) | 1998-03-20 | 2003-09-09 | Solvay (Société Anonyme) | Fuel tank or tubing for filling this tank |
AU771880B2 (en) * | 1999-02-25 | 2004-04-08 | Toyo Boseki Kabushiki Kaisha | Polyolefin film of superior printability |
EP1031410A1 (en) * | 1999-02-25 | 2000-08-30 | Toyo Boseki Kabushiki Kaisha | Printable polyolefin film |
US6746738B1 (en) * | 1999-04-06 | 2004-06-08 | Atofina | Coextrusion binder, its use for a multilayer structure and the structure thus obtained |
US6924013B1 (en) * | 1999-04-06 | 2005-08-02 | Arkema (Formerly Atofina) | Coextrusion binder, its use for a multilayer structure and the structure thus obtained |
WO2002006045A1 (en) * | 2000-07-13 | 2002-01-24 | Toray Plastics (America), Inc. | Biaxially oriented polypropylene metallized film for packaging |
US6764752B2 (en) | 2000-07-13 | 2004-07-20 | Toray Plastics (America), Inc. | Biaxially oriented polypropylene metallized film for packaging |
US7651781B2 (en) | 2001-10-24 | 2010-01-26 | Ball Corporation | Polypropylene container and process for making the same |
US8158052B2 (en) | 2001-10-24 | 2012-04-17 | Ball Corporation | Polypropylene container and process for making the same |
US20030113490A1 (en) * | 2001-12-13 | 2003-06-19 | Zo-Chun Jen | Polyester bottles with reduced bottle-to-bottle friction |
US20030118766A1 (en) * | 2001-12-26 | 2003-06-26 | Masaki Koike | Fuel tube |
US20050221040A1 (en) * | 2001-12-26 | 2005-10-06 | Masaki Koike | Fuel tube |
US20080107909A1 (en) * | 2002-02-04 | 2008-05-08 | Basf Aktiengesellschaft | Use of antiadhesive packaging materials for packaging chemicals and foodstuffs |
US20060189742A1 (en) * | 2002-08-19 | 2006-08-24 | Ralf Ulrich | Elastomer modifed olyamides for improving the breaking resistance of films and hollow elements |
US20070248814A1 (en) * | 2003-10-14 | 2007-10-25 | Tesa Ag | Carbon Black-Filled Age-Resistant Polyolefin Wrapping Foil |
US20070095559A1 (en) * | 2003-10-14 | 2007-05-03 | Tesa Ag | Flame-resistant carbon black-filled polyolefin wrapping foil |
US20070071966A1 (en) * | 2003-10-14 | 2007-03-29 | Tesa Ag | Age-resistant soft polyolefin wrapping foil |
US20100029827A1 (en) * | 2006-12-21 | 2010-02-04 | Dow Global Technologies Inc | Polyolefin compositions and articles prepared therefrom, and methods for making the same |
US9023939B2 (en) | 2006-12-21 | 2015-05-05 | Dow Global Technologies Llc | Polyolefin compositions and articles prepared therefrom, and methods for making the same |
US20100143651A1 (en) * | 2006-12-21 | 2010-06-10 | Dow Global Technologies Inc. | Functionalized olefin polymers, compositions and articles prepared therefrom, and methods for making the same |
US8981013B2 (en) | 2006-12-21 | 2015-03-17 | Dow Global Technologies Llc | Functionalized olefin polymers, compositions and articles prepared therefrom, and methods for making the same |
US8288470B2 (en) | 2006-12-21 | 2012-10-16 | Dow Global Technologies Llc | Polyolefin compositions and articles prepared therefrom, and methods for making the same |
US20100229252A1 (en) * | 2007-07-23 | 2010-09-09 | Cellectis | Meganuclease variants cleaving a dna target sequence from the human hemoglobin beta gene and uses thereof |
US20100292403A1 (en) * | 2007-07-27 | 2010-11-18 | Patricia Ansems | Polyolefin compositions and articles prepared therefrom, and methods for making the same |
US8653191B2 (en) | 2007-07-27 | 2014-02-18 | Dow Global Technologies Llc | Polyolefin compositions and articles prepared therefrom, and methods for making the same |
US20100297371A1 (en) * | 2007-10-29 | 2010-11-25 | Shikoku Kakoh Co., Ltd. | Film for food packaging |
AU2007360889B2 (en) * | 2007-10-29 | 2012-07-12 | Shikoku Kakoh Co., Ltd. | Film for food packaging |
US8404352B2 (en) * | 2008-10-21 | 2013-03-26 | Equistar Chemicals, Lp | Polyolefin-metal laminate |
US20100098958A1 (en) * | 2008-10-21 | 2010-04-22 | Schwab Thomas J | Polyolefin-metal laminate |
US8708992B2 (en) | 2009-11-02 | 2014-04-29 | Hosokawa Yoko Co., Ltd. | Plastic film having oxygen absorbing function and infusion bag |
US20140008373A1 (en) * | 2011-04-01 | 2014-01-09 | Luxfer Canada Limited | Multilayer liner for a high-pressure gas cylinder |
WO2019070648A2 (en) | 2017-10-03 | 2019-04-11 | Abec, Inc. | Reactor systems |
Also Published As
Publication number | Publication date |
---|---|
EP0035392A1 (en) | 1981-09-09 |
EP0035392B1 (en) | 1983-11-23 |
CA1172552A (en) | 1984-08-14 |
DE3161469D1 (en) | 1983-12-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4397916A (en) | Laminated multilayer structure | |
US4370388A (en) | Laminated multilayer structure | |
US4659785A (en) | Hot-melt adhesive composition | |
CA1200042A (en) | Adhesive blends | |
US4440911A (en) | Modified polyethylene and laminate thereof | |
US6087001A (en) | Coextrusion binder, its use in a multilayer structure and the structure thus obtained | |
US7510775B2 (en) | Composition based on isotactic polypropylene obtained by metallocene catalysis and on grafted isotactic polypropylene obtained by ziegler-natta catalysis | |
US5225482A (en) | Adhesive resin composition, laminate comprising this composition as adhesive layer, and process for preparation thereof | |
USH568H (en) | Olefin polymer composition and laminated structure including said composition as adhesive layer | |
US4537836A (en) | Composite structures | |
US20030040579A1 (en) | Grafted isotactic polypropylene obtained by metallocene catalysis | |
US6528587B2 (en) | Coextrusion binder based on cografted metallocene polyethylene | |
EP0479457A1 (en) | Adhesive or coating compositions and their uses | |
US5055526A (en) | Adhesive resin compositions and laminates utilizing same | |
CA2022799C (en) | Adhesive resin composition, laminate comprising this composition as adhesive layer, and process for preparation thereof | |
US5106692A (en) | Laminated structure comprising 4-methylpentene-1 bonded to thermoplastic resin layer | |
US6746738B1 (en) | Coextrusion binder, its use for a multilayer structure and the structure thus obtained | |
US5250349A (en) | Retortable packaging laminate structure with adhesive layer | |
US6924013B1 (en) | Coextrusion binder, its use for a multilayer structure and the structure thus obtained | |
EP0202954A2 (en) | Laminates | |
AU606227B2 (en) | Adhesive resin compositions and laminates utilizing same | |
JPH0649814B2 (en) | Modified olefin polymer composition | |
US5128411A (en) | Adhesive resin compositions and laminates utilizing same | |
JPS63378A (en) | Adhesive resin composition and laminated object made by using same | |
KR940004763B1 (en) | Adhesive resin composition laminate comprising this composition as adhesive layer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: MITSUI PETROCHEMICAL INDUSTRIES, LTD.; 2-5, 3-CHOM Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:NAGANO, RIICHIRO;REEL/FRAME:004098/0023 Effective date: 19810212 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, PL 96-517 (ORIGINAL EVENT CODE: M170); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, PL 96-517 (ORIGINAL EVENT CODE: M171); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 8 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M185); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 12 |
|
AS | Assignment |
Owner name: MITSUI CHEMICALS, INC., JAPAN Free format text: CHANGE OF NAME;ASSIGNOR:MITSUI PETROCHEMICAL INDUSTRIES, LTD.;REEL/FRAME:009297/0678 Effective date: 19971001 |