US3769984A - Pacing catheter with frictional fit lead attachment - Google Patents
Pacing catheter with frictional fit lead attachment Download PDFInfo
- Publication number
- US3769984A US3769984A US00123242A US3769984DA US3769984A US 3769984 A US3769984 A US 3769984A US 00123242 A US00123242 A US 00123242A US 3769984D A US3769984D A US 3769984DA US 3769984 A US3769984 A US 3769984A
- Authority
- US
- United States
- Prior art keywords
- end portion
- electrode
- distal end
- conductor
- catheter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/02—Details
- A61N1/04—Electrodes
- A61N1/05—Electrodes for implantation or insertion into the body, e.g. heart electrode
- A61N1/056—Transvascular endocardial electrode systems
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/36—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
- A61N1/362—Heart stimulators
- A61N1/365—Heart stimulators controlled by a physiological parameter, e.g. heart potential
- A61N1/36514—Heart stimulators controlled by a physiological parameter, e.g. heart potential controlled by a physiological quantity other than heart potential, e.g. blood pressure
- A61N1/36564—Heart stimulators controlled by a physiological parameter, e.g. heart potential controlled by a physiological quantity other than heart potential, e.g. blood pressure controlled by blood pressure
Definitions
- ABSTRACT A device for transvenous insertion such as for use in connection with transmitting electrical pulses in a heart pacer.
- the device comprises a catheter having highly flexible electrical conductors spaced apart therein connected to a pair of spaced electrodes at the distal end for delivering a pacing signal.
- the conductors are formed of stranded tantalum filaments of extremely small cross-section.
- the catheter may include an axial lumen through which blood pressure measurements may be taken as well as permitting extension of guide wires therethrough for guiding the catheter as during venous insertion.
- the device may comprise an extruded plastic element with the conductor wires being coextruded therein for facilitated manufacture.
- This invention relates to transvenous insertion devices and in particular to insertion devices suitable for use in connect-ion with transmitting electrical pulses in heart pacers.
- a pulse conducting eleme'nt is provided in the form of an elongated flexible device which may be guided through a vein of the patient to dispose the distal end thereof in electrical connection association with the heart muscle.
- the proximalend of the device is connected to a voltage source, such as a battery, which may also be implanted in thepatients body.
- the voltage source includes means delivering time-spaced pulses to the heart muscle for suitably regulating, or pacing, the heart pumping action.
- the device must be extremely small and flexible for transvenous insertion into the heart and for limited interference with the normal body functions. Further, the device must be resistant to effect by body fluids, and reversely, must be physiologically inert so as to not adverselyafiect the patient when implanted therein.
- the present invention comprehends an improved electrical conductor device suitable for use as a pervenous heart pacing electrode, particularly for use in acute or emergency, situations.
- the device comprises an elongated, plastic catheter having a pair of electrical conductors extending from suitable leads at the proximal end to suitable spaced electrodes at the distal end.
- the conductors may comprise wires formed of stranded tantalum filaments having extremely small cross-section providing high flexibility.
- the catheter may be formed as a plastic extrusion with the wires being coextruded therein.
- the catheter of this invention is intended for use primarily as an acute transvenous pacing catheter, as in an emergency wherein the catheter is fed to the heart through a vein and is used for only a relatively short period of time (e.g., 1 day to 3 weeks), extreme flexibility is essential .so that'the catheter may be fed into the vein and .floated by the normal blood flow in the vein to the right vertical or atrium of the heart. It should also be noted, however, that this extreme flexibility also permits prolonged implantation in other than emergency situations providing a highly durable and break-resistant structure.-
- the catheter may be provided with an axial lumen for providing functioning in addition to the pacing function, as desired.
- the distal electrode may comprise a cup-shaped element defining the leading tipv of the catheter.
- the distal electrode may comprise a cylindrical electrode spaced rearwardly of a rounded tip of the plastic element.
- the catheter' may have a circular cross-section for facilitated transvenous insertion.
- FIG. 1 is a side elevation of a pacing catheter embodying the invention
- FIG. 2 is a fragmentary enlarged side elevation thereof illustrating more clearly the electrical connections therein;
- FIG. 3 is a fragmentary further enlarged diametric section of the distal end thereof
- FIG. 4 is a further enlarged transverse cross-section taken substantially along the line 4-4 of FIG. 3;
- FIG. 5 is a further enlarged transverse cross-section taken substantially along the line 5-5 of FIG. 3;
- FIG. 6 is a fragmentary diametric section of the distal end of a modified form of pacing catheter embodying the invention.
- FIG. 7 is a fragmentary'diametric section of still another form of pacing catheter embodying the invention provided with an axial lumen.
- a bipolar transvenous' pacing catheter generally designated 10 is shown to comprise an elongated element 11 formed of a flexible, electrically insulating material suitable for transvenous insertion.
- a first electrode 12 is provided at the distal end 13 of the elongated element, and a second electrode 14 is provided spaced rearwardly from electrode 12.
- a first electrical conductor 15 is extended longitudinally through elongated element 11 to have the distal end 16 thereof electrically connected to electrode 12.
- a second electrical conductor 17 is extended longitudinally through elongated element 11 to have the distal end 18 thereof electrically connected to electrode 14.
- Conductor 15 includes an input lead ortion 19 and conductor 17 includes an input lead portion 20 brought out from the element 11 at the proximal end 21 thereof.
- Suitable electrical connecting means may be provided at leads 19 and 20 and may be suitably color-coded for identification of the respective conductors 15 and 17. Any suitable method of effecting the electrical connection may be employed as willbe obvious to those skilled in the art.
- Catheter 10 may have a suitable length for use in conducting electrical pulses from an external or implanted battery power source to the heart muscle of the patient.
- the catheter may have a length of approximately centimeters.
- Element 11 is preferably circular in outer cross-section and may have a diameter of approximately 0.05 inch for facilitated transvenous insertion.
- Element 11 is preferably formed of a physiologically inert material, such as silicone rubber. Other suitable flexible plastic materials,
- Element 11 may be formed by extrusion and conductors 15 and 17 may be coextruded therewith for facilitated manufacture. Electrodes 12 and 14 may have axial lengths of approximately 3 mm. and may be spaced apart approximately 1 cm. at distal end 13 of element 11.
- Electrical conductors 15 and 17 comprise stranded wires of highly flexible, smalldiameter metal filaments.
- the invention comprehends the provision of such wires formed of filaments having a diameter of under approximately 50 microns.
- the filaments are twisted such as with a conventional twist of approximately 5 turns per inch.
- the electrical conductors may comprise 270 strands each of 12 micron filaments.
- An excellent filamentary material for such use comprises tantalum, although metals such as platinum, silver or stainless steel may also be used.
- the tantalum wires may be anodized such, as with a 20 to 25 volt film.
- the conductors and 17 comprise stranded filament bundles, or wires, electrically connected to the respective electrodes 12 and 14 by means of crimp rings 22 and 23, respectively.
- the crimp rings are preferably similarly formed of tantalum and have a length approximately one-half the axial length of the electrodes.
- the ends 16 and 18 of the conductors are brought out from the element 11 at a point adjacent the distal end of the crimp ring.
- the conductor is then folded back toward the proximal end of the device.
- the electrode is then slipped over the lead and crimp ring to clamp the end of the-conductor therebetween.
- the element For facilitated installation of the crimp ring on the element 11, the element may be axially stretched to' reduce its cross-section permitting the crimp ring to be moved thereover to the desired position. Upon release of the element 11, the expansion thereof provides a snug arrangement of the crimp ring at the desired location.
- the electrode elements may be crimped about the crimp rings to provide maintained association thereof.
- the assembly Upon installation of the electrodes, the assembly may be dipped in a suitable adhesive material to fill the bores from which the conductors may be removed in bringing the ends 16 and 18 outwardly from element'll.
- suitable adhesive material such as welding, soldering, etc.
- electrode 14 may comprise a tubular electrode. Electrode 12 may comprise a cups'haped electrode defining a rounded distal tip 24.
- a modified form of distal electrode generally designated 112 is shown to comprise a tubular electrode similar to electrode 14 with the distal tip 124 of element 111 extending forwardly beyond the electrode 112 to define the leading end of the device.
- connection of conductor 115 to electrode 112 may be similar to the connectiondescribed above relative to electrode 14.
- a pacing cathode generally designated 210 is shown to comprise a tubular elongated element 211 having embedded in the wall thereof electrical conductors 215 and 217 connected to electrodes 212 and 214 similarly as the connection of conductors 15 and 17 to electrodes 12 and 14 in catheter l0.
- Catheter 210 differs from catheter 10 solely in the provision of the axial lumen 225.
- a cupshaped distal electrode 212 is shown which effectively closes lumen 225, with a suitable opening or port being provided as desired along the length of the catheter.
- a cylindrical electrode such as electrode 112 of FIG. 6, may be provided, permitting the lumen to be used for additional functions such as for use in making blood pressure measurements.
- the lumen is adapted to accept guide wires and the like for guiding the catheter during the insertion process.
- the lumen has a diameter of approximately 0.016 inch a 0.015 inch stainless steel stylet may be used therewith.
- the disclosed catheters are extremely simple and economical of construction while yet providing a highly reliable pervenous or transvenous structure such as for use in electrically pacing a heart muscle.
- the catheters utilize extremely small diamater stranded filament tantalum wires permitting floating insertion into the heart and long trouble-free life notwithstanding the substantial flexing thereof occurring in such heart pacer use.
- the present invention may also be used in those heart pacing procedures wherein a single electrode or unipolar device is inserted into the heart with the patients body serving as a common electrical ground return between the heart and the power source.
- a single conductor would beextruded in the catheter and only a single distal electrode would be provided.
- a transvenous pacing catheter comprising an elongate element formed of a flexible, electrically insulating material suitable for transvenous insertion, a tubular metal member surrounding a distal end portion of said element in tight frictional engagement, a tubular electrode surrounding said metal member in generally concentric relation therewith, and a stranded bundle of metal filaments each having a diameter under approximately 50 microns and defining an electrical conductor embedded in'said element and extending from a proximal end portion toward the distal end portion thereof, said conductor having a distal end portion emerging from said element and extending between said metal member and said electrode in tight frictional engagement therebetween to provide a current conductive connection between said electrode and the proximal end portion of said conductor.
- transvenous pacing catheter of claim 1 wherein said metal member has a radially inwardly deformed portion receiving the distal end portion of said conductor.
- transvenous pacing catheter according to claim 1 wherein the distal end portion of said conductor emerges from said element at a location distally of said metal member and extends toward the proximal end portion of said element.
- transvenous pacing catheter of claim 1 further including a second tubular metal member surrounding the distal end portion of said element in tight frictional engagement and in axially spaced relation from said electrode, a second electrode having a tubular portion surrounding said second metal member in generally concentric relation therewith, and a second stranded bundle of metal filaments each having a diameter under approximately 50 microns and defining a second electrical conductor embedded in said element and extending from the proximal end portion toward the distal end portion thereof, said second conductor emerging from said element and extending between said second metal 6 second metal member and extends toward the proximal end of said element.
- transvenous pacing catheter of claim 5 wherein said second electrode is generally cup-shaped with an outer substantially rounded distal end defining the distal tip of the catheter.
Landscapes
- Health & Medical Sciences (AREA)
- Heart & Thoracic Surgery (AREA)
- Vascular Medicine (AREA)
- Cardiology (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Electrotherapy Devices (AREA)
Abstract
A device for transvenous insertion such as for use in connection with transmitting electrical pulses in a heart pacer. The device comprises a catheter having highly flexible electrical conductors spaced apart therein connected to a pair of spaced electrodes at the distal end for delivering a pacing signal. The conductors are formed of stranded tantalum filaments of extremely small crosssection. The catheter may include an axial lumen through which blood pressure measurements may be taken as well as permitting extension of guide wires therethrough for guiding the catheter as during venous insertion. The device may comprise an extruded plastic element with the conductor wires being coextruded therein for facilitated manufacture.
Description
limited States Patent 191 Muench Nov. 6, 1973 PACING CATHETER WITH FRICTIONAL FIT LEAD ATTACHMENT [75] Inventor: Lloyd D. Muench, Berea, Ohio [73] Assignee: Sherwood Medical Industries Inc.,
. St Louis, Mo.
[22] Filed: Mar. 11, 1971 [21] Appl. No.: 123,242
OTHER PUBLICATIONS Lillehei et al., Journal of American Medical Associa-,
tion, Vol. 2,006-2,010
172, No. 18, Apr. 30, 1960, pp.
Primary Examiner-William E. Kamm Att0rney-Hofgren, Wegner, Allen, Stellman & McCord [57] ABSTRACT A device for transvenous insertion such as for use in connection with transmitting electrical pulses in a heart pacer. The device comprises a catheter having highly flexible electrical conductors spaced apart therein connected to a pair of spaced electrodes at the distal end for delivering a pacing signal. The conductors are formed of stranded tantalum filaments of extremely small cross-section. The catheter may include an axial lumen through which blood pressure measurements may be taken as well as permitting extension of guide wires therethrough for guiding the catheter as during venous insertion. The device may comprise an extruded plastic element with the conductor wires being coextruded therein for facilitated manufacture.
6 Claims, 7 Drawing Figures PACING CATHETER WITH FRICTIONAL FIT LEAD ATTACHMENT BACKGROUND OF THE INVENTION 1. Field of the Invention i This invention relates to transvenous insertion devices and in particular to insertion devices suitable for use in connect-ion with transmitting electrical pulses in heart pacers.
2. Description of 'the Prior Art In the conventional heart pacer means, a pulse conducting eleme'nt is provided in the form of an elongated flexible device which may be guided through a vein of the patient to dispose the distal end thereof in electrical connection association with the heart muscle. The proximalend of the device is connected to a voltage source, such as a battery, which may also be implanted in thepatients body. The voltage source includes means delivering time-spaced pulses to the heart muscle for suitably regulating, or pacing, the heart pumping action. v
It is extremely important that the electrical conductors of the device remain unbroken notwithstanding the flexing thereof occurring in the use of the device. The device must be extremely small and flexible for transvenous insertion into the heart and for limited interference with the normal body functions. Further, the device must be resistant to effect by body fluids, and reversely, must be physiologically inert so as to not adverselyafiect the patient when implanted therein.
SUMMARYOF THE INVENTION The present invention comprehends an improved electrical conductor device suitable for use as a pervenous heart pacing electrode, particularly for use in acute or emergency, situations. The device comprises an elongated, plastic catheter having a pair of electrical conductors extending from suitable leads at the proximal end to suitable spaced electrodes at the distal end. The conductors may comprise wires formed of stranded tantalum filaments having extremely small cross-section providing high flexibility. The catheter may be formed as a plastic extrusion with the wires being coextruded therein.
Since the catheter of this invention is intended for use primarily as an acute transvenous pacing catheter, as in an emergency wherein the catheter is fed to the heart through a vein and is used for only a relatively short period of time (e.g., 1 day to 3 weeks), extreme flexibility is essential .so that'the catheter may be fed into the vein and .floated by the normal blood flow in the vein to the right vertical or atrium of the heart. It should also be noted, however, that this extreme flexibility also permits prolonged implantation in other than emergency situations providing a highly durable and break-resistant structure.-
The cathetermay be provided with an axial lumen for providing functioning in addition to the pacing function, as desired.
The distal electrode may comprise a cup-shaped element defining the leading tipv of the catheter. Altematively, the distal electrode may comprise a cylindrical electrode spaced rearwardly of a rounded tip of the plastic element.
The catheter'may havea circular cross-section for facilitated transvenous insertion.
BRIEF DESCRIPTION OF THE DRAWING Other features and advantages of the invention will be apparent from the following description taken in connection with the accompanying drawing wherein:
FIG. 1 is a side elevation of a pacing catheter embodying the invention;
FIG. 2 is a fragmentary enlarged side elevation thereof illustrating more clearly the electrical connections therein;
FIG. 3 is a fragmentary further enlarged diametric section of the distal end thereof;
FIG. 4 is a further enlarged transverse cross-section taken substantially along the line 4-4 of FIG. 3;
FIG. 5 is a further enlarged transverse cross-section taken substantially along the line 5-5 of FIG. 3;
FIG. 6 is a fragmentary diametric section of the distal end of a modified form of pacing catheter embodying the invention; and
FIG. 7 is a fragmentary'diametric section of still another form of pacing catheter embodying the invention provided with an axial lumen.
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the exemplary embodiment of the invention as disclosed in FIGS. 1-5 of the drawing, a bipolar transvenous' pacing catheter generally designated 10 is shown to comprise an elongated element 11 formed of a flexible, electrically insulating material suitable for transvenous insertion. A first electrode 12 is provided at the distal end 13 of the elongated element, and a second electrode 14 is provided spaced rearwardly from electrode 12. A first electrical conductor 15 is extended longitudinally through elongated element 11 to have the distal end 16 thereof electrically connected to electrode 12. A second electrical conductor 17 is extended longitudinally through elongated element 11 to have the distal end 18 thereof electrically connected to electrode 14. Conductor 15 includes an input lead ortion 19 and conductor 17 includes an input lead portion 20 brought out from the element 11 at the proximal end 21 thereof. Suitable electrical connecting means may be provided at leads 19 and 20 and may be suitably color-coded for identification of the respective conductors 15 and 17. Any suitable method of effecting the electrical connection may be employed as willbe obvious to those skilled in the art.
such as polyvinyl chloride, may be used, as will be obvious to those skilled in the art. Element 11 may be formed by extrusion and conductors 15 and 17 may be coextruded therewith for facilitated manufacture. Electrodes 12 and 14 may have axial lengths of approximately 3 mm. and may be spaced apart approximately 1 cm. at distal end 13 of element 11.
The invention comprehends the provision of such wires formed of filaments having a diameter of under approximately 50 microns. Preferably, the filaments are twisted such as with a conventional twist of approximately 5 turns per inch. Illustratively, the electrical conductors may comprise 270 strands each of 12 micron filaments. An excellent filamentary material for such use comprises tantalum, although metals such as platinum, silver or stainless steel may also be used. The tantalum wires may be anodized such, as with a 20 to 25 volt film.
As best seen in FIG. 3, the conductors and 17 comprise stranded filament bundles, or wires, electrically connected to the respective electrodes 12 and 14 by means of crimp rings 22 and 23, respectively. The crimp rings are preferably similarly formed of tantalum and have a length approximately one-half the axial length of the electrodes. In effecting the connection of the wires to the electrodes, the ends 16 and 18 of the conductors are brought out from the element 11 at a point adjacent the distal end of the crimp ring. The conductor is then folded back toward the proximal end of the device. The electrode is then slipped over the lead and crimp ring to clamp the end of the-conductor therebetween. For facilitated installation of the crimp ring on the element 11, the element may be axially stretched to' reduce its cross-section permitting the crimp ring to be moved thereover to the desired position. Upon release of the element 11, the expansion thereof provides a snug arrangement of the crimp ring at the desired location. The electrode elements may be crimped about the crimp rings to provide maintained association thereof. Upon installation of the electrodes, the assembly may be dipped in a suitable adhesive material to fill the bores from which the conductors may be removed in bringing the ends 16 and 18 outwardly from element'll. As will be obvious to those skilled in the art, other suitable methods of connecting the electrodes to the conductors may be employed, such as welding, soldering, etc.
As best seen in FIG. 3, electrode 14 may comprise a tubular electrode. Electrode 12 may comprise a cups'haped electrode defining a rounded distal tip 24.
As shown in FIG. 6, a modified form of distal electrode generally designated 112 is shown to comprise a tubular electrode similar to electrode 14 with the distal tip 124 of element 111 extending forwardly beyond the electrode 112 to define the leading end of the device.
Thus, in the arrangement of FIG. 6, connection of conductor 115 to electrode 112 may be similar to the connectiondescribed above relative to electrode 14.
As indicated briefly above, the invention comprehends the provision of a tubular element in lieu of the solid cross-section element 11 when desired. Thus, as shown in FIG. 7, a pacing cathode generally designated 210 is shown to comprise a tubular elongated element 211 having embedded in the wall thereof electrical conductors 215 and 217 connected to electrodes 212 and 214 similarly as the connection of conductors 15 and 17 to electrodes 12 and 14 in catheter l0. Catheter 210 differs from catheter 10 solely in the provision of the axial lumen 225. In illustrating catheter 210, a cupshaped distal electrode 212 is shown which effectively closes lumen 225, with a suitable opening or port being provided as desired along the length of the catheter. If desired, however, a cylindrical electrode, such as electrode 112 of FIG. 6, may be provided, permitting the lumen to be used for additional functions such as for use in making blood pressure measurements. Further, the lumen is adapted to accept guide wires and the like for guiding the catheter during the insertion process. Illustratively, where the lumen has a diameter of approximately 0.016 inch a 0.015 inch stainless steel stylet may be used therewith.
Thus, the disclosed catheters are extremely simple and economical of construction while yet providing a highly reliable pervenous or transvenous structure such as for use in electrically pacing a heart muscle. The catheters utilize extremely small diamater stranded filament tantalum wires permitting floating insertion into the heart and long trouble-free life notwithstanding the substantial flexing thereof occurring in such heart pacer use.
It should be understood that the present invention may also be used in those heart pacing procedures wherein a single electrode or unipolar device is inserted into the heart with the patients body serving as a common electrical ground return between the heart and the power source. For use in applications such as this, only a single conductor would beextruded in the catheter and only a single distal electrode would be provided.
The foregoing disclosure of specific embodiments is illustrative of the broad inventive concepts comprehended by the invention.
I claim:
1. A transvenous pacing catheter comprising an elongate element formed of a flexible, electrically insulating material suitable for transvenous insertion, a tubular metal member surrounding a distal end portion of said element in tight frictional engagement, a tubular electrode surrounding said metal member in generally concentric relation therewith, and a stranded bundle of metal filaments each having a diameter under approximately 50 microns and defining an electrical conductor embedded in'said element and extending from a proximal end portion toward the distal end portion thereof, said conductor having a distal end portion emerging from said element and extending between said metal member and said electrode in tight frictional engagement therebetween to provide a current conductive connection between said electrode and the proximal end portion of said conductor.
2. The transvenous pacing catheter of claim 1 wherein said metal member has a radially inwardly deformed portion receiving the distal end portion of said conductor.
3. The transvenous pacing catheter according to claim 1 wherein the distal end portion of said conductor emerges from said element at a location distally of said metal member and extends toward the proximal end portion of said element.
4. The transvenous pacing catheter of claim 1 further including a second tubular metal member surrounding the distal end portion of said element in tight frictional engagement and in axially spaced relation from said electrode, a second electrode having a tubular portion surrounding said second metal member in generally concentric relation therewith, and a second stranded bundle of metal filaments each having a diameter under approximately 50 microns and defining a second electrical conductor embedded in said element and extending from the proximal end portion toward the distal end portion thereof, said second conductor emerging from said element and extending between said second metal 6 second metal member and extends toward the proximal end of said element.
6. The transvenous pacing catheter of claim 5 wherein said second electrode is generally cup-shaped with an outer substantially rounded distal end defining the distal tip of the catheter.
Claims (6)
1. A transvenous pacing catheter comprising an elongate element formed of a flexible, electrically insulating material suitable for transvenous insertion, a tubular metal member surrounding a distal end portion of said element in tight frictional engagement, a tubular electrode surrounding said metal member in generally concentric relation therewith, and a stranded bundle of metal filaments each having a diameter under approximately 50 microns and defining an electrical conductor embedded in said element and extending from a proximal end portion toward the distal end portion thereof, said conductor having a distal end portion emerging from said element and extending between said metal member and said electrode in tight frictional engagement therebetween to provide a current conductive connection between said electrode and the proximal end portion of said conductor.
2. The transvenous pacing catheter of claim 1 wherein said metal member has a radially inwardly deformed portion receiving the distal end portion of said conductor.
3. The transvenous pacing catheter according to claim 1 wherein the distal end portion of said conductor emerges from said element at a location distally of said metal member and extends toward the proximal end portion of said element.
4. The transvenous pacing catheter of claim 1 further including a second tubular metal member surrounding the distal end portion of said element in tight frictional engagement and in axially spaced relation from said electrode, a second electrode having a tubular portion surrounding said second metal member in generally concentric relation therewith, and a second stranded bundle of metal filaments each having a diameter under approximately 50 microns and defining a second electrical conductor embedded in said element and extending from the proximal end portion toward the distal end portion thereof, said second conductor emerging from said element and extending between said second metal member and said tubular portion of said second electrode in tight frictional engagement therebetween to provide a current conductive connection between said second electrode and the proximal end portion of said second conductor.
5. The transvenous pacing catheter of claim 4 wherein the distal end portion of said second conductor emerges from said element at a location distally of said second metal member and extends toward the proximal end of said element.
6. The transvenous pacing catheter of claim 5 wherein said second electrode is generally cup-shaped with an outer substantially rounded distal end defining the distal tip of the catheter.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12324271A | 1971-03-11 | 1971-03-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3769984A true US3769984A (en) | 1973-11-06 |
Family
ID=22407515
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US00123242A Expired - Lifetime US3769984A (en) | 1971-03-11 | 1971-03-11 | Pacing catheter with frictional fit lead attachment |
Country Status (1)
Country | Link |
---|---|
US (1) | US3769984A (en) |
Cited By (121)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3827115A (en) * | 1972-02-22 | 1974-08-06 | Univ Erasmus | Method of manufacturing a catheter |
US3903896A (en) * | 1974-04-01 | 1975-09-09 | Dietrich Harmjanz | Catheter for the electrical stimulation of the heart |
US4151835A (en) * | 1978-03-08 | 1979-05-01 | John Copeland | Foetal scalp electrodes |
US4214594A (en) * | 1978-10-06 | 1980-07-29 | Daig Corporation | Temporary pacemaker lead apparatus |
US4214804A (en) * | 1978-09-25 | 1980-07-29 | Daig Corporation | Press fit electrical connection apparatus |
US4280511A (en) * | 1980-02-25 | 1981-07-28 | Medtronic, Inc. | Ring electrode for pacing lead and process of making same |
DE3122812A1 (en) * | 1980-06-09 | 1982-03-25 | Medical Testing Systems, Inc., Beverly Hills, Calif. | ELECTRODE ARRANGEMENT FOR INSERTION INTO A CATHETER |
FR2491763A1 (en) * | 1980-10-10 | 1982-04-16 | Medtronic Inc | SLEEVE ELECTRODE FOR CARDIAC STIMULATION CABLE AND METHOD FOR MANUFACTURING THE SAME |
US4327747A (en) * | 1980-09-22 | 1982-05-04 | Cordis Corporation | Terminal assembly for a carbon fiber implantable lead |
US4379462A (en) * | 1980-10-29 | 1983-04-12 | Neuromed, Inc. | Multi-electrode catheter assembly for spinal cord stimulation |
EP0037223B1 (en) * | 1980-03-21 | 1983-07-13 | Medtronic, Inc. | A body implantable lead having a ring electrode, and a process for making same |
US4432377A (en) * | 1982-01-29 | 1984-02-21 | Medtronic, Inc. | Biomedical lead with ring electrode and method of making same |
US4444195A (en) * | 1981-11-02 | 1984-04-24 | Cordis Corporation | Cardiac lead having multiple ring electrodes |
US4458695A (en) * | 1982-07-16 | 1984-07-10 | Cordis Corporation | Multipolar electrode assembly for pacing lead |
US4481953A (en) * | 1981-11-12 | 1984-11-13 | Cordis Corporation | Endocardial lead having helically wound ribbon electrode |
US4514589A (en) * | 1981-09-03 | 1985-04-30 | Heraeus Quarschmelze Gmbh | Electrode connecting cable for cardiac pacemaker |
EP0159540A1 (en) * | 1984-04-06 | 1985-10-30 | Osypka, Peter, Dr. Ing. | Surgical electrode |
US4572214A (en) * | 1980-04-11 | 1986-02-25 | Ursus Konsult Ab | Electrode device |
US4574814A (en) * | 1981-07-31 | 1986-03-11 | Cardiofrance-Compagnie Francaise D'electrocardiologie | Sliding coaxial probe for a pacemaker |
US4592372A (en) * | 1984-05-22 | 1986-06-03 | Cordis Corporation | Pacing/sensing electrode sleeve and method of forming same |
US4633889A (en) * | 1984-12-12 | 1987-01-06 | Andrew Talalla | Stimulation of cauda-equina spinal nerves |
US4690155A (en) * | 1985-07-03 | 1987-09-01 | Cordis Corporation | Monophasic action potential recording lead |
US4693258A (en) * | 1984-12-11 | 1987-09-15 | Dr. Ing. P. Osypka GmbH Medizinelektronik | Surgical electrode for cardiac pacing and monitoring |
US4699157A (en) * | 1985-08-27 | 1987-10-13 | Electro-Catheter Corporation | Pacing catheter and method of making same |
US4777955A (en) * | 1987-11-02 | 1988-10-18 | Cordis Corporation | Left ventricle mapping probe |
US4835853A (en) * | 1987-05-27 | 1989-06-06 | Siemens Aktiengesellschaft | Method for electrically connecting conductors & electrodes in an implantable electrode lead |
US4998933A (en) * | 1988-06-10 | 1991-03-12 | Advanced Angioplasty Products, Inc. | Thermal angioplasty catheter and method |
US5184619A (en) * | 1986-11-10 | 1993-02-09 | Peritronics Medical, Inc. | Intrauterine pressure and fetal heart rate sensor |
US5246014A (en) * | 1991-11-08 | 1993-09-21 | Medtronic, Inc. | Implantable lead system |
US5265623A (en) * | 1992-07-16 | 1993-11-30 | Angeion Corporation | Optimized field defibrillation catheter |
EP0580928A1 (en) | 1992-07-31 | 1994-02-02 | ARIES S.r.l. | A spinal electrode catheter |
US5318041A (en) * | 1990-09-17 | 1994-06-07 | C. R. Bard, Inc. | Core wire steerable electrode catheter |
US5366443A (en) * | 1992-01-07 | 1994-11-22 | Thapliyal And Eggers Partners | Method and apparatus for advancing catheters through occluded body lumens |
US5409467A (en) * | 1992-10-02 | 1995-04-25 | Board Of Regents, The University Of Texas System | Antimicrobial catheter |
US5417208A (en) * | 1993-10-12 | 1995-05-23 | Arrow International Investment Corp. | Electrode-carrying catheter and method of making same |
US5419767A (en) * | 1992-01-07 | 1995-05-30 | Thapliyal And Eggers Partners | Methods and apparatus for advancing catheters through severely occluded body lumens |
US5582609A (en) * | 1993-10-14 | 1996-12-10 | Ep Technologies, Inc. | Systems and methods for forming large lesions in body tissue using curvilinear electrode elements |
US5649974A (en) * | 1992-07-27 | 1997-07-22 | Angeion Corporation | Low profile defibrillation catheter |
WO1998017345A1 (en) | 1996-10-22 | 1998-04-30 | Medtronic, Inc. | Temporary transvenous endocardial lead |
US5843153A (en) * | 1997-07-15 | 1998-12-01 | Sulzer Intermedics Inc. | Steerable endocardial lead using magnetostrictive material and a magnetic field |
WO1999049932A1 (en) * | 1998-03-30 | 1999-10-07 | Boston Scientific Corporation | Catheter carrying an electrode and methods of assembly |
US5984917A (en) * | 1995-06-07 | 1999-11-16 | Ep Technologies, Inc. | Device and method for remote insertion of a closed loop |
US6032061A (en) * | 1997-02-20 | 2000-02-29 | Boston Scientifc Corporation | Catheter carrying an electrode and methods of assembly |
US6055456A (en) * | 1999-04-29 | 2000-04-25 | Medtronic, Inc. | Single and multi-polar implantable lead for sacral nerve electrical stimulation |
US6064902A (en) * | 1998-04-16 | 2000-05-16 | C.R. Bard, Inc. | Pulmonary vein ablation catheter |
US6086556A (en) * | 1993-10-01 | 2000-07-11 | Boston Scientific Corporation | Medical device balloons containing thermoplastic elastomers |
US6106522A (en) * | 1993-10-14 | 2000-08-22 | Ep Technologies, Inc. | Systems and methods for forming elongated lesion patterns in body tissue using straight or curvilinear electrode elements |
WO2000048668A1 (en) * | 1999-02-18 | 2000-08-24 | Intermedics Inc. | Endocardial defibrillation lead with strain-relief coil connection |
WO2000048666A1 (en) * | 1999-02-18 | 2000-08-24 | Intermedics Inc. | Endocardial defibrillation lead with looped cable conductor |
US6115624A (en) * | 1997-07-30 | 2000-09-05 | Genesis Technologies, Inc. | Multiparameter fetal monitoring device |
US6129724A (en) * | 1993-10-14 | 2000-10-10 | Ep Technologies, Inc. | Systems and methods for forming elongated lesion patterns in body tissue using straight or curvilinear electrode elements |
US6132824A (en) * | 1989-09-25 | 2000-10-17 | Schneider (Usa) Inc. | Multilayer catheter balloon |
US6136258A (en) * | 1991-04-26 | 2000-10-24 | Boston Scientific Corporation | Method of forming a co-extruded balloon for medical purposes |
US6144870A (en) * | 1996-10-21 | 2000-11-07 | Procath Corporation | Catheter with improved electrodes and method of fabrication |
WO2000072911A1 (en) | 1999-06-02 | 2000-12-07 | Medtronic, Inc. | Guidewire placed implantable lead with tip seal |
US6181971B1 (en) * | 1998-12-09 | 2001-01-30 | Pacesetter, Inc. | Joining conductor cables and electrodes on a multi-lumen lead body |
US6208881B1 (en) * | 1998-10-20 | 2001-03-27 | Micropure Medical, Inc. | Catheter with thin film electrodes and method for making same |
US6241754B1 (en) | 1993-10-15 | 2001-06-05 | Ep Technologies, Inc. | Composite structures and methods for ablating tissue to form complex lesion patterns in the treatment of cardiac conditions and the like |
US20020042642A1 (en) * | 1999-04-29 | 2002-04-11 | Gerber Martin Theodore | Implantable lead for sacral nerve electrical stimulation |
US6447506B1 (en) | 1993-10-15 | 2002-09-10 | Ep Technologies, Inc. | Systems and methods for creating long, thin lesions in body tissue |
US6493591B1 (en) | 2000-07-19 | 2002-12-10 | Medtronic, Inc. | Implantable active fixation lead with guidewire tip |
US6535762B1 (en) | 1999-02-24 | 2003-03-18 | Pacesetter, Inc. | Combination ICD and pacemaker system having integrated distal electrode |
US6634364B2 (en) | 2000-12-15 | 2003-10-21 | Cardiac Pacemakers, Inc. | Method of deploying a ventricular lead containing a hemostasis mechanism |
US6671560B2 (en) | 1998-06-12 | 2003-12-30 | Cardiac Pacemakers, Inc. | Modified guidewire for left ventricular access lead |
US20040044277A1 (en) * | 2002-08-30 | 2004-03-04 | Fuimaono Kristine B. | Catheter and method for mapping Purkinje fibers |
US20050085885A1 (en) * | 1998-08-12 | 2005-04-21 | Cardiac Pacemakers, Inc. | Expandable seal for use with medical device and system |
US6896842B1 (en) | 1993-10-01 | 2005-05-24 | Boston Scientific Corporation | Medical device balloons containing thermoplastic elastomers |
US20050228469A1 (en) * | 2004-04-12 | 2005-10-13 | Cardiac Pacemakers, Inc. | Electrode and conductor interconnect and method therefor |
US20050240238A1 (en) * | 2000-11-15 | 2005-10-27 | Medtronic, Inc. | Minimally invasive apparatus for implanting a sacral stimulation lead |
US6997941B2 (en) | 1996-08-13 | 2006-02-14 | Oratec Interventions, Inc. | Method and apparatus for treating annular fissures in intervertebral discs |
US7163523B2 (en) | 2003-02-26 | 2007-01-16 | Scimed Life Systems, Inc. | Balloon catheter |
US7166099B2 (en) | 2003-08-21 | 2007-01-23 | Boston Scientific Scimed, Inc. | Multilayer medical devices |
US20070168007A1 (en) * | 2005-01-11 | 2007-07-19 | Advanced Bionics Corporation | Lead Assembly and Method of Making Same |
US20080178449A1 (en) * | 2007-01-31 | 2008-07-31 | Huotari Craig T | Conductor junctions for medical electrical leads |
US20080188917A1 (en) * | 1999-04-29 | 2008-08-07 | Medtronic, Inc. | Single and multipolar implantable lead for sacral nerve electrical stimulation |
US7422585B1 (en) | 1992-01-07 | 2008-09-09 | Arthrocare Corporation | System for electrosurgical myocardial revascularization |
US7449019B2 (en) | 1999-01-25 | 2008-11-11 | Smith & Nephew, Inc. | Intervertebral decompression |
US20090024196A1 (en) * | 2004-05-10 | 2009-01-22 | Boston Scientific Neuromodulation Corporation | Implantable electrode, insertion tool for use therewith, and insertion method |
US7505812B1 (en) | 1993-05-10 | 2009-03-17 | Arthrocare Corporation | Electrosurgical system for treating restenosis of body lumens |
US20090318992A1 (en) * | 2008-06-19 | 2009-12-24 | Tracee Eidenschink | Pacing catheter releasing conductive liquid |
US20100004706A1 (en) * | 2008-07-01 | 2010-01-07 | Mokelke Eric A | Pacing system controller integrated into indeflator |
US7891085B1 (en) | 2005-01-11 | 2011-02-22 | Boston Scientific Neuromodulation Corporation | Electrode array assembly and method of making same |
US20110077672A1 (en) * | 1995-06-07 | 2011-03-31 | Fleischman Sidney D | Devices For Installing Stasis Reducing Means In Body Tissue |
US20110077725A1 (en) * | 2009-09-30 | 2011-03-31 | Medtronic, Inc. | Medical electrical lead |
US7962208B2 (en) | 2005-04-25 | 2011-06-14 | Cardiac Pacemakers, Inc. | Method and apparatus for pacing during revascularization |
US8050775B2 (en) | 2000-08-30 | 2011-11-01 | Cardiac Pacemakers, Inc. | Coronary vein lead having pre-formed biased portions for fixation |
US20120253445A1 (en) * | 2011-03-31 | 2012-10-04 | Oscor Inc. | MRI compatible conductor system for catheter and stimulation leads |
US20120330121A1 (en) * | 2004-08-05 | 2012-12-27 | Cathrx Ltd | Process of manufacturing a medical use electrical lead, and electrical leads for medical use |
US8457738B2 (en) | 2008-06-19 | 2013-06-04 | Cardiac Pacemakers, Inc. | Pacing catheter for access to multiple vessels |
US20130167372A1 (en) * | 1999-04-26 | 2013-07-04 | Damon Ray Black | Method of forming a lead |
US8639357B2 (en) | 2008-06-19 | 2014-01-28 | Cardiac Pacemakers, Inc. | Pacing catheter with stent electrode |
US8874207B2 (en) | 2005-12-23 | 2014-10-28 | Cardiac Pacemakers, Inc. | Method and apparatus for tissue protection against ischemia using remote conditioning |
US9037235B2 (en) | 2008-06-19 | 2015-05-19 | Cardiac Pacemakers, Inc. | Pacing catheter with expandable distal end |
US9242088B2 (en) | 2013-11-22 | 2016-01-26 | Simon Fraser University | Apparatus and methods for assisted breathing by transvascular nerve stimulation |
EP2992926A1 (en) * | 2002-01-29 | 2016-03-09 | Medtronic, Inc. | Method and apparatus for shielding against mri disturbances |
US9314299B2 (en) | 2012-03-21 | 2016-04-19 | Biosense Webster (Israel) Ltd. | Flower catheter for mapping and ablating veinous and other tubular locations |
US9370311B2 (en) | 2012-08-17 | 2016-06-21 | Medtronic Ablation Frontiers Llc | Electrophysiology catheter design |
US9409012B2 (en) | 2008-06-19 | 2016-08-09 | Cardiac Pacemakers, Inc. | Pacemaker integrated with vascular intervention catheter |
US9456760B2 (en) | 2013-03-14 | 2016-10-04 | C. R. Bard, Inc. | Closed catheter tip including electrically conductive pathway |
US9566436B2 (en) | 2007-01-29 | 2017-02-14 | Simon Fraser University | Transvascular nerve stimulation apparatus and methods |
US9597509B2 (en) | 2014-01-21 | 2017-03-21 | Simon Fraser University | Systems and related methods for optimization of multi-electrode nerve pacing |
US9700714B2 (en) | 2013-12-20 | 2017-07-11 | Medtronic, Inc. | Methods and devices for inhibiting tissue growth from restricting a strain relief loop of an implantable medical lead |
US9700224B2 (en) | 2013-03-14 | 2017-07-11 | C. R. Bard, Inc. | Electrically conductive pathway in a closed-ended catheter |
US9776005B2 (en) | 2013-06-21 | 2017-10-03 | Lungpacer Medical Inc. | Transvascular diaphragm pacing systems and methods of use |
US10039920B1 (en) | 2017-08-02 | 2018-08-07 | Lungpacer Medical, Inc. | Systems and methods for intravascular catheter positioning and/or nerve stimulation |
US10173052B2 (en) | 2016-03-18 | 2019-01-08 | Teleflex Innovations S.À.R.L. | Pacing guidewire |
US10293164B2 (en) | 2017-05-26 | 2019-05-21 | Lungpacer Medical Inc. | Apparatus and methods for assisted breathing by transvascular nerve stimulation |
US10485969B2 (en) | 2016-02-19 | 2019-11-26 | Boston Scientific Neuromodulation Corporation | Electrical stimulation cuff devices and systems |
US10493269B2 (en) | 2016-06-02 | 2019-12-03 | Boston Scientific Neuromodulation Corporation | Leads for electrostimulation of peripheral nerves and other targets |
US10512772B2 (en) | 2012-03-05 | 2019-12-24 | Lungpacer Medical Inc. | Transvascular nerve stimulation apparatus and methods |
US10709888B2 (en) | 2016-07-29 | 2020-07-14 | Boston Scientific Neuromodulation Corporation | Systems and methods for making and using an electrical stimulation system for peripheral nerve stimulation |
US10814127B2 (en) | 2016-02-05 | 2020-10-27 | Boston Scientific Neuromodulation Corporation | Slotted sleeve neurostimulation device |
US10905883B2 (en) | 2016-12-02 | 2021-02-02 | Boston Scientific Neuromodulation Corporation | Methods and systems for selecting stimulation parameters for electrical stimulation devices |
US10940308B2 (en) | 2017-08-04 | 2021-03-09 | Lungpacer Medical Inc. | Systems and methods for trans-esophageal sympathetic ganglion recruitment |
US10987511B2 (en) | 2018-11-08 | 2021-04-27 | Lungpacer Medical Inc. | Stimulation systems and related user interfaces |
US11357979B2 (en) | 2019-05-16 | 2022-06-14 | Lungpacer Medical Inc. | Systems and methods for sensing and stimulation |
US11745022B2 (en) | 2018-11-21 | 2023-09-05 | Sorin Crm Sas | Implantable medical lead with strain relief device |
US11771900B2 (en) | 2019-06-12 | 2023-10-03 | Lungpacer Medical Inc. | Circuitry for medical stimulation systems |
US11883658B2 (en) | 2017-06-30 | 2024-01-30 | Lungpacer Medical Inc. | Devices and methods for prevention, moderation, and/or treatment of cognitive injury |
US11986665B2 (en) * | 2018-11-21 | 2024-05-21 | Sorin Crm Sas | Implantable lead |
US12029903B2 (en) | 2017-12-11 | 2024-07-09 | Lungpacer Medical Inc. | Systems and methods for strengthening a respiratory muscle |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2047308A (en) * | 1934-05-05 | 1936-07-14 | T M Chapman S Sons Co | Electrical therapeutic pad |
US3035583A (en) * | 1959-05-27 | 1962-05-22 | Hirsch Winfred | Conductive sutures |
US3313293A (en) * | 1964-01-13 | 1967-04-11 | Hewlett Packard Co | Multi-electrode needle |
US3333045A (en) * | 1965-07-20 | 1967-07-25 | Gen Electric | Body implantable electrical conductor |
US3348548A (en) * | 1965-04-26 | 1967-10-24 | William M Chardack | Implantable electrode with stiffening stylet |
US3437091A (en) * | 1965-12-19 | 1969-04-08 | Yeda Res & Dev | Pacemaking device-electrode catheter and method |
US3474791A (en) * | 1966-03-24 | 1969-10-28 | Brunswick Corp | Multiple conductor electrode |
US3533403A (en) * | 1967-05-10 | 1970-10-13 | Riley D Woodson | Combination heart catheter and electrode |
US3664347A (en) * | 1968-07-27 | 1972-05-23 | Dietrich Harmjanz | Electric heart stimulation method and electrode |
-
1971
- 1971-03-11 US US00123242A patent/US3769984A/en not_active Expired - Lifetime
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2047308A (en) * | 1934-05-05 | 1936-07-14 | T M Chapman S Sons Co | Electrical therapeutic pad |
US3035583A (en) * | 1959-05-27 | 1962-05-22 | Hirsch Winfred | Conductive sutures |
US3313293A (en) * | 1964-01-13 | 1967-04-11 | Hewlett Packard Co | Multi-electrode needle |
US3348548A (en) * | 1965-04-26 | 1967-10-24 | William M Chardack | Implantable electrode with stiffening stylet |
US3333045A (en) * | 1965-07-20 | 1967-07-25 | Gen Electric | Body implantable electrical conductor |
US3437091A (en) * | 1965-12-19 | 1969-04-08 | Yeda Res & Dev | Pacemaking device-electrode catheter and method |
US3474791A (en) * | 1966-03-24 | 1969-10-28 | Brunswick Corp | Multiple conductor electrode |
US3533403A (en) * | 1967-05-10 | 1970-10-13 | Riley D Woodson | Combination heart catheter and electrode |
US3664347A (en) * | 1968-07-27 | 1972-05-23 | Dietrich Harmjanz | Electric heart stimulation method and electrode |
Non-Patent Citations (1)
Title |
---|
Lillehei et al., Journal of American Medical Association, Vol. 172, No. 18, Apr. 30, 1960, pp. 2,006 2,010 * |
Cited By (220)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3827115A (en) * | 1972-02-22 | 1974-08-06 | Univ Erasmus | Method of manufacturing a catheter |
US3903896A (en) * | 1974-04-01 | 1975-09-09 | Dietrich Harmjanz | Catheter for the electrical stimulation of the heart |
US4151835A (en) * | 1978-03-08 | 1979-05-01 | John Copeland | Foetal scalp electrodes |
US4214804A (en) * | 1978-09-25 | 1980-07-29 | Daig Corporation | Press fit electrical connection apparatus |
US4214594A (en) * | 1978-10-06 | 1980-07-29 | Daig Corporation | Temporary pacemaker lead apparatus |
US4280511A (en) * | 1980-02-25 | 1981-07-28 | Medtronic, Inc. | Ring electrode for pacing lead and process of making same |
EP0037223B1 (en) * | 1980-03-21 | 1983-07-13 | Medtronic, Inc. | A body implantable lead having a ring electrode, and a process for making same |
US4572214A (en) * | 1980-04-11 | 1986-02-25 | Ursus Konsult Ab | Electrode device |
DE3122812A1 (en) * | 1980-06-09 | 1982-03-25 | Medical Testing Systems, Inc., Beverly Hills, Calif. | ELECTRODE ARRANGEMENT FOR INSERTION INTO A CATHETER |
US4327747A (en) * | 1980-09-22 | 1982-05-04 | Cordis Corporation | Terminal assembly for a carbon fiber implantable lead |
DE3140075A1 (en) * | 1980-10-10 | 1982-04-22 | Medtronic, Inc., 55440 Minneapolis, Minn. | ELECTRODE FOR AN IMPLANITABLE LINE, AND METHOD FOR PRODUCING SUCH AN ELECTRODE |
FR2491763A1 (en) * | 1980-10-10 | 1982-04-16 | Medtronic Inc | SLEEVE ELECTRODE FOR CARDIAC STIMULATION CABLE AND METHOD FOR MANUFACTURING THE SAME |
US4379462A (en) * | 1980-10-29 | 1983-04-12 | Neuromed, Inc. | Multi-electrode catheter assembly for spinal cord stimulation |
US4574814A (en) * | 1981-07-31 | 1986-03-11 | Cardiofrance-Compagnie Francaise D'electrocardiologie | Sliding coaxial probe for a pacemaker |
US4514589A (en) * | 1981-09-03 | 1985-04-30 | Heraeus Quarschmelze Gmbh | Electrode connecting cable for cardiac pacemaker |
US4444195A (en) * | 1981-11-02 | 1984-04-24 | Cordis Corporation | Cardiac lead having multiple ring electrodes |
US4481953A (en) * | 1981-11-12 | 1984-11-13 | Cordis Corporation | Endocardial lead having helically wound ribbon electrode |
US4432377A (en) * | 1982-01-29 | 1984-02-21 | Medtronic, Inc. | Biomedical lead with ring electrode and method of making same |
US4458695A (en) * | 1982-07-16 | 1984-07-10 | Cordis Corporation | Multipolar electrode assembly for pacing lead |
EP0159540A1 (en) * | 1984-04-06 | 1985-10-30 | Osypka, Peter, Dr. Ing. | Surgical electrode |
US4592372A (en) * | 1984-05-22 | 1986-06-03 | Cordis Corporation | Pacing/sensing electrode sleeve and method of forming same |
US4693258A (en) * | 1984-12-11 | 1987-09-15 | Dr. Ing. P. Osypka GmbH Medizinelektronik | Surgical electrode for cardiac pacing and monitoring |
US4633889A (en) * | 1984-12-12 | 1987-01-06 | Andrew Talalla | Stimulation of cauda-equina spinal nerves |
US4690155A (en) * | 1985-07-03 | 1987-09-01 | Cordis Corporation | Monophasic action potential recording lead |
US4699157A (en) * | 1985-08-27 | 1987-10-13 | Electro-Catheter Corporation | Pacing catheter and method of making same |
US5184619A (en) * | 1986-11-10 | 1993-02-09 | Peritronics Medical, Inc. | Intrauterine pressure and fetal heart rate sensor |
US4835853A (en) * | 1987-05-27 | 1989-06-06 | Siemens Aktiengesellschaft | Method for electrically connecting conductors & electrodes in an implantable electrode lead |
US4777955A (en) * | 1987-11-02 | 1988-10-18 | Cordis Corporation | Left ventricle mapping probe |
US4998933A (en) * | 1988-06-10 | 1991-03-12 | Advanced Angioplasty Products, Inc. | Thermal angioplasty catheter and method |
US6132824A (en) * | 1989-09-25 | 2000-10-17 | Schneider (Usa) Inc. | Multilayer catheter balloon |
US5318041A (en) * | 1990-09-17 | 1994-06-07 | C. R. Bard, Inc. | Core wire steerable electrode catheter |
US6482348B1 (en) | 1991-04-26 | 2002-11-19 | Boston Scientific Corporation | Method of forming a co-extruded balloon for medical purposes |
US6136258A (en) * | 1991-04-26 | 2000-10-24 | Boston Scientific Corporation | Method of forming a co-extruded balloon for medical purposes |
US7585289B2 (en) | 1991-04-26 | 2009-09-08 | Boston Scientific Scimed, Inc. | Co-extruded medical balloon |
US5246014A (en) * | 1991-11-08 | 1993-09-21 | Medtronic, Inc. | Implantable lead system |
US5419767A (en) * | 1992-01-07 | 1995-05-30 | Thapliyal And Eggers Partners | Methods and apparatus for advancing catheters through severely occluded body lumens |
US5366443A (en) * | 1992-01-07 | 1994-11-22 | Thapliyal And Eggers Partners | Method and apparatus for advancing catheters through occluded body lumens |
US7422585B1 (en) | 1992-01-07 | 2008-09-09 | Arthrocare Corporation | System for electrosurgical myocardial revascularization |
US5265623A (en) * | 1992-07-16 | 1993-11-30 | Angeion Corporation | Optimized field defibrillation catheter |
US5649974A (en) * | 1992-07-27 | 1997-07-22 | Angeion Corporation | Low profile defibrillation catheter |
US5374285A (en) * | 1992-07-31 | 1994-12-20 | Aries S.R.L. | Spinal electrode catheter |
EP0580928A1 (en) | 1992-07-31 | 1994-02-02 | ARIES S.r.l. | A spinal electrode catheter |
US5409467A (en) * | 1992-10-02 | 1995-04-25 | Board Of Regents, The University Of Texas System | Antimicrobial catheter |
US7505812B1 (en) | 1993-05-10 | 2009-03-17 | Arthrocare Corporation | Electrosurgical system for treating restenosis of body lumens |
US6896842B1 (en) | 1993-10-01 | 2005-05-24 | Boston Scientific Corporation | Medical device balloons containing thermoplastic elastomers |
US6086556A (en) * | 1993-10-01 | 2000-07-11 | Boston Scientific Corporation | Medical device balloons containing thermoplastic elastomers |
US7781038B2 (en) | 1993-10-01 | 2010-08-24 | Boston Scientific Scimed, Inc. | Medical device balloons containing thermoplastic elastomers |
US5417208A (en) * | 1993-10-12 | 1995-05-23 | Arrow International Investment Corp. | Electrode-carrying catheter and method of making same |
US20030088244A1 (en) * | 1993-10-14 | 2003-05-08 | Swanson David K. | Systems and methods for forming large lesions in body tissue using curvilinear electrode elements |
US6171306B1 (en) | 1993-10-14 | 2001-01-09 | Ep Technologies, Inc. | Systems and methods for forming large lesions in body tissue using curvilinear electrode elements |
US6106522A (en) * | 1993-10-14 | 2000-08-22 | Ep Technologies, Inc. | Systems and methods for forming elongated lesion patterns in body tissue using straight or curvilinear electrode elements |
US6514246B1 (en) | 1993-10-14 | 2003-02-04 | Ep Technologies, Inc. | Systems and methods for forming large lesions in body tissue using curvilinear electrode elements |
US5582609A (en) * | 1993-10-14 | 1996-12-10 | Ep Technologies, Inc. | Systems and methods for forming large lesions in body tissue using curvilinear electrode elements |
US6129724A (en) * | 1993-10-14 | 2000-10-10 | Ep Technologies, Inc. | Systems and methods for forming elongated lesion patterns in body tissue using straight or curvilinear electrode elements |
US7837684B2 (en) | 1993-10-15 | 2010-11-23 | Ep Technologies, Inc. | Composite structures and methods for ablating tissue to form complex lesion patterns in the treatment of cardiac conditions and the like |
US20010029366A1 (en) * | 1993-10-15 | 2001-10-11 | Swanson David K. | Composite structures and methods for ablating tissue to form complex lesion patterns in the treatment of cardiac conditions and the like |
US7335196B2 (en) | 1993-10-15 | 2008-02-26 | Ep Technologies, Inc. | Systems and methods for creating long, thin lesions in body tissue |
US7115122B1 (en) | 1993-10-15 | 2006-10-03 | Ep Technologies, Inc. | Composite structures and methods for ablating tissue to form complex lesion patterns in the treatment of cardiac conditions and the like |
US6447506B1 (en) | 1993-10-15 | 2002-09-10 | Ep Technologies, Inc. | Systems and methods for creating long, thin lesions in body tissue |
US20050043727A1 (en) * | 1993-10-15 | 2005-02-24 | Swanson David K. | Systems and methods for creating long, thin lesions in body tissue |
US7413568B2 (en) | 1993-10-15 | 2008-08-19 | Ep Technologies, Inc. | Composite structures and methods for ablating tissue to form complex lesion patterns in the treatment of cardiac conditions and the like |
US20080161802A1 (en) * | 1993-10-15 | 2008-07-03 | Swanson David K | Composite Structures and Methods for Ablating Tissue to Form Complex Lesion Patterns in the Treatment of Cardiac Conditions and the Like |
US6241754B1 (en) | 1993-10-15 | 2001-06-05 | Ep Technologies, Inc. | Composite structures and methods for ablating tissue to form complex lesion patterns in the treatment of cardiac conditions and the like |
US20110077672A1 (en) * | 1995-06-07 | 2011-03-31 | Fleischman Sidney D | Devices For Installing Stasis Reducing Means In Body Tissue |
US5984917A (en) * | 1995-06-07 | 1999-11-16 | Ep Technologies, Inc. | Device and method for remote insertion of a closed loop |
US20080097488A1 (en) * | 1995-06-07 | 2008-04-24 | Fleischman Sidney D | Device For Installing Stasis Reducing Means In Body Tissue |
US6379366B1 (en) | 1995-06-07 | 2002-04-30 | Ep Technologies, Inc. | Devices for installing stasis reducing means in body tissue |
US7857822B2 (en) | 1995-06-07 | 2010-12-28 | Ep Technologies, Inc. | Device for installing stasis reducing means in body tissue |
US6830576B2 (en) | 1995-06-07 | 2004-12-14 | Ep Technologies, Inc. | Apparatus for electrically isolating a portion of the atria |
US20050033321A1 (en) * | 1995-06-07 | 2005-02-10 | Fleischman Sidney D. | Methods for electrically isolating a portion of the atria |
US7297144B2 (en) | 1995-06-07 | 2007-11-20 | Ep Technologies, Inc. | Methods for electrically isolating a portion of the atria |
US8187312B2 (en) | 1996-08-13 | 2012-05-29 | Neurotherm, Inc. | Method for treating intervertebral disc |
US20080091252A1 (en) * | 1996-08-13 | 2008-04-17 | Oratec Interventions, Inc., A California Corporation | Method for treating intervertebral disc |
US7267683B2 (en) | 1996-08-13 | 2007-09-11 | Oratec Interventions, Inc. | Method for treating intervertebral discs |
US7282061B2 (en) | 1996-08-13 | 2007-10-16 | Oratec Interventions, Inc. | Method of treating intervertebral disc |
US7647123B2 (en) | 1996-08-13 | 2010-01-12 | Oratec Interventions, Inc. | Method for treating intervertebral discs |
US6997941B2 (en) | 1996-08-13 | 2006-02-14 | Oratec Interventions, Inc. | Method and apparatus for treating annular fissures in intervertebral discs |
US7400930B2 (en) | 1996-08-13 | 2008-07-15 | Oratec Interventions, Inc. | Method for treating intervertebral discs |
US8226697B2 (en) | 1996-08-13 | 2012-07-24 | Neurotherm, Inc. | Method for treating intervertebral disc |
US6144870A (en) * | 1996-10-21 | 2000-11-07 | Procath Corporation | Catheter with improved electrodes and method of fabrication |
US5851226A (en) * | 1996-10-22 | 1998-12-22 | Medtronic, Inc. | Temporary transvenous endocardial lead |
WO1998017345A1 (en) | 1996-10-22 | 1998-04-30 | Medtronic, Inc. | Temporary transvenous endocardial lead |
US6032061A (en) * | 1997-02-20 | 2000-02-29 | Boston Scientifc Corporation | Catheter carrying an electrode and methods of assembly |
US5843153A (en) * | 1997-07-15 | 1998-12-01 | Sulzer Intermedics Inc. | Steerable endocardial lead using magnetostrictive material and a magnetic field |
US6115624A (en) * | 1997-07-30 | 2000-09-05 | Genesis Technologies, Inc. | Multiparameter fetal monitoring device |
WO1999049932A1 (en) * | 1998-03-30 | 1999-10-07 | Boston Scientific Corporation | Catheter carrying an electrode and methods of assembly |
US6064902A (en) * | 1998-04-16 | 2000-05-16 | C.R. Bard, Inc. | Pulmonary vein ablation catheter |
US6671560B2 (en) | 1998-06-12 | 2003-12-30 | Cardiac Pacemakers, Inc. | Modified guidewire for left ventricular access lead |
US6901288B2 (en) | 1998-08-12 | 2005-05-31 | Cardiac Pacemakers, Inc. | Sealing assembly for intravenous lead |
US20050085885A1 (en) * | 1998-08-12 | 2005-04-21 | Cardiac Pacemakers, Inc. | Expandable seal for use with medical device and system |
US7657324B2 (en) | 1998-08-12 | 2010-02-02 | Cardiac Pacemakers, Inc. | Seal for use with cardiac lead |
US7412290B2 (en) | 1998-08-12 | 2008-08-12 | Cardiac Pacemakers, Inc. | Seal for use with medical device and system |
US6208881B1 (en) * | 1998-10-20 | 2001-03-27 | Micropure Medical, Inc. | Catheter with thin film electrodes and method for making same |
US6181971B1 (en) * | 1998-12-09 | 2001-01-30 | Pacesetter, Inc. | Joining conductor cables and electrodes on a multi-lumen lead body |
US6505401B1 (en) * | 1998-12-09 | 2003-01-14 | Pacesetter, Inc. | Method of making an implantable medical electrical lead |
US7449019B2 (en) | 1999-01-25 | 2008-11-11 | Smith & Nephew, Inc. | Intervertebral decompression |
WO2000048668A1 (en) * | 1999-02-18 | 2000-08-24 | Intermedics Inc. | Endocardial defibrillation lead with strain-relief coil connection |
WO2000048666A1 (en) * | 1999-02-18 | 2000-08-24 | Intermedics Inc. | Endocardial defibrillation lead with looped cable conductor |
US6477429B1 (en) | 1999-02-18 | 2002-11-05 | Intermedics, Inc. | Endocardial defibrillation lead with looped cable conductor |
US6259954B1 (en) | 1999-02-18 | 2001-07-10 | Intermedics Inc. | Endocardial difibrillation lead with strain-relief coil connection |
US6535762B1 (en) | 1999-02-24 | 2003-03-18 | Pacesetter, Inc. | Combination ICD and pacemaker system having integrated distal electrode |
US8671566B2 (en) * | 1999-04-26 | 2014-03-18 | Advanced Neuromodulation Systems, Inc. | Method of forming a lead |
US20130167372A1 (en) * | 1999-04-26 | 2013-07-04 | Damon Ray Black | Method of forming a lead |
US20020042642A1 (en) * | 1999-04-29 | 2002-04-11 | Gerber Martin Theodore | Implantable lead for sacral nerve electrical stimulation |
US6055456A (en) * | 1999-04-29 | 2000-04-25 | Medtronic, Inc. | Single and multi-polar implantable lead for sacral nerve electrical stimulation |
US20080188917A1 (en) * | 1999-04-29 | 2008-08-07 | Medtronic, Inc. | Single and multipolar implantable lead for sacral nerve electrical stimulation |
US6192280B1 (en) | 1999-06-02 | 2001-02-20 | Medtronic, Inc. | Guidewire placed implantable lead with tip seal |
WO2000072911A1 (en) | 1999-06-02 | 2000-12-07 | Medtronic, Inc. | Guidewire placed implantable lead with tip seal |
US6493591B1 (en) | 2000-07-19 | 2002-12-10 | Medtronic, Inc. | Implantable active fixation lead with guidewire tip |
US8498721B2 (en) | 2000-08-30 | 2013-07-30 | Cardiac Pacemakers, Inc. | Coronary vein leads having pre-formed biased portions for fixation |
US8050775B2 (en) | 2000-08-30 | 2011-11-01 | Cardiac Pacemakers, Inc. | Coronary vein lead having pre-formed biased portions for fixation |
US20050240238A1 (en) * | 2000-11-15 | 2005-10-27 | Medtronic, Inc. | Minimally invasive apparatus for implanting a sacral stimulation lead |
US8180461B2 (en) | 2000-11-15 | 2012-05-15 | Medtronics, Inc. | Minimally invasive apparatus for implanting a sacral stimulation lead |
US6634364B2 (en) | 2000-12-15 | 2003-10-21 | Cardiac Pacemakers, Inc. | Method of deploying a ventricular lead containing a hemostasis mechanism |
EP2992926A1 (en) * | 2002-01-29 | 2016-03-09 | Medtronic, Inc. | Method and apparatus for shielding against mri disturbances |
US20040044277A1 (en) * | 2002-08-30 | 2004-03-04 | Fuimaono Kristine B. | Catheter and method for mapping Purkinje fibers |
US20050113660A1 (en) * | 2002-08-30 | 2005-05-26 | Biosense Webster, Inc. | Catheter and method for mapping purkinje fibers |
US20060111627A1 (en) * | 2002-08-30 | 2006-05-25 | Fuimaono Kristine B | Catheter and method for mapping purkinje fibers |
US7302285B2 (en) | 2002-08-30 | 2007-11-27 | Biosense Webster, Inc. | Catheter and method for mapping purkinje fibers |
US7228164B2 (en) | 2002-08-30 | 2007-06-05 | Biosense Webster Inc. | Catheter and method for mapping Purkinje fibers |
US7163523B2 (en) | 2003-02-26 | 2007-01-16 | Scimed Life Systems, Inc. | Balloon catheter |
US20090125000A1 (en) * | 2003-08-21 | 2009-05-14 | Boston Scientific Scimed, Inc. | Multilayer Medical Devices |
US7166099B2 (en) | 2003-08-21 | 2007-01-23 | Boston Scientific Scimed, Inc. | Multilayer medical devices |
US7815628B2 (en) | 2003-08-21 | 2010-10-19 | Boston Scientific Scimed, Inc. | Multilayer medical devices |
US20050228469A1 (en) * | 2004-04-12 | 2005-10-13 | Cardiac Pacemakers, Inc. | Electrode and conductor interconnect and method therefor |
US8538554B2 (en) * | 2004-05-10 | 2013-09-17 | Boston Scientific Neuromodulation Corporation | Implantable electrode, insertion tool for use therewith, and insertion method |
US20090024196A1 (en) * | 2004-05-10 | 2009-01-22 | Boston Scientific Neuromodulation Corporation | Implantable electrode, insertion tool for use therewith, and insertion method |
EP2799109B1 (en) * | 2004-08-05 | 2019-05-08 | Cathrx Ltd | A process of manufacturing an electrical lead and an electrical lead |
US10668275B2 (en) * | 2004-08-05 | 2020-06-02 | Cathrx Ltd | Electrical leads for medical use |
US20120330121A1 (en) * | 2004-08-05 | 2012-12-27 | Cathrx Ltd | Process of manufacturing a medical use electrical lead, and electrical leads for medical use |
US20070168007A1 (en) * | 2005-01-11 | 2007-07-19 | Advanced Bionics Corporation | Lead Assembly and Method of Making Same |
US8646172B2 (en) * | 2005-01-11 | 2014-02-11 | Boston Scientific Neuromodulation Corporation | Electrode array assembly and method of making same |
US11883647B2 (en) | 2005-01-11 | 2024-01-30 | Boston Scientific Neuromodulation Corporation | Electrode array assembly and method of making same |
US9717899B2 (en) | 2005-01-11 | 2017-08-01 | Boston Scientific Neuromodulation Corporation | Method of manufacturing a stimulation lead |
US20140053401A1 (en) * | 2005-01-11 | 2014-02-27 | Boston Scientific Neuromodulation Corporation | Electrode array assembly and method of making same |
US8019439B2 (en) | 2005-01-11 | 2011-09-13 | Boston Scientific Neuromodulation Corporation | Lead assembly and method of making same |
US20130023972A1 (en) * | 2005-01-11 | 2013-01-24 | Boston Scientific Neuromodulation Corporation | Electrode array assembly and method of making same |
US8650747B2 (en) * | 2005-01-11 | 2014-02-18 | Boston Scientific Neuromodulation Corporation | Electrode array assembly and method of making same |
US7891085B1 (en) | 2005-01-11 | 2011-02-22 | Boston Scientific Neuromodulation Corporation | Electrode array assembly and method of making same |
US8918987B2 (en) * | 2005-01-11 | 2014-12-30 | Boston Scientific Neuromodulation Corporation | Electrode array assembly and method of making same |
US20110118815A1 (en) * | 2005-01-11 | 2011-05-19 | Boston Scientific Neuromodulation Corporation | Electrode array assembly and method of making same |
US7962208B2 (en) | 2005-04-25 | 2011-06-14 | Cardiac Pacemakers, Inc. | Method and apparatus for pacing during revascularization |
US9415225B2 (en) | 2005-04-25 | 2016-08-16 | Cardiac Pacemakers, Inc. | Method and apparatus for pacing during revascularization |
US8452400B2 (en) | 2005-04-25 | 2013-05-28 | Cardiac Pacemakers, Inc. | Method and apparatus for pacing during revascularization |
US9649495B2 (en) | 2005-04-25 | 2017-05-16 | Cardiac Pacemakers, Inc. | Method and apparatus for pacing during revascularization |
US10549101B2 (en) | 2005-04-25 | 2020-02-04 | Cardiac Pacemakers, Inc. | Method and apparatus for pacing during revascularization |
US8874207B2 (en) | 2005-12-23 | 2014-10-28 | Cardiac Pacemakers, Inc. | Method and apparatus for tissue protection against ischemia using remote conditioning |
US10022546B2 (en) | 2007-01-29 | 2018-07-17 | Lungpacer Medical Inc. | Transvascular nerve stimulation apparatus and methods |
US9968785B2 (en) | 2007-01-29 | 2018-05-15 | Lungpacer Medical, Inc. | Transvascular nerve stimulation apparatus and methods |
US10561843B2 (en) | 2007-01-29 | 2020-02-18 | Lungpacer Medical, Inc. | Transvascular nerve stimulation apparatus and methods |
US10765867B2 (en) | 2007-01-29 | 2020-09-08 | Lungpacer Medical Inc. | Transvascular nerve stimulation apparatus and methods |
US10792499B2 (en) | 2007-01-29 | 2020-10-06 | Lungpacer Medical Inc. | Transvascular nerve stimulation apparatus and methods |
US10864374B2 (en) | 2007-01-29 | 2020-12-15 | Lungpacer Medical Inc. | Transvascular nerve stimulation apparatus and methods |
US9950167B2 (en) | 2007-01-29 | 2018-04-24 | Lungpacer Medical, Inc. | Transvascular nerve stimulation apparatus and methods |
US11027130B2 (en) | 2007-01-29 | 2021-06-08 | Lungpacer Medical Inc. | Transvascular nerve stimulation apparatus and methods |
US9566436B2 (en) | 2007-01-29 | 2017-02-14 | Simon Fraser University | Transvascular nerve stimulation apparatus and methods |
US7890184B2 (en) | 2007-01-31 | 2011-02-15 | Medtronic, Inc. | Conductor junctions for medical electrical leads |
US20080178449A1 (en) * | 2007-01-31 | 2008-07-31 | Huotari Craig T | Conductor junctions for medical electrical leads |
US9409012B2 (en) | 2008-06-19 | 2016-08-09 | Cardiac Pacemakers, Inc. | Pacemaker integrated with vascular intervention catheter |
US9037235B2 (en) | 2008-06-19 | 2015-05-19 | Cardiac Pacemakers, Inc. | Pacing catheter with expandable distal end |
US8457738B2 (en) | 2008-06-19 | 2013-06-04 | Cardiac Pacemakers, Inc. | Pacing catheter for access to multiple vessels |
US8244352B2 (en) | 2008-06-19 | 2012-08-14 | Cardiac Pacemakers, Inc. | Pacing catheter releasing conductive liquid |
US8639357B2 (en) | 2008-06-19 | 2014-01-28 | Cardiac Pacemakers, Inc. | Pacing catheter with stent electrode |
US20090318992A1 (en) * | 2008-06-19 | 2009-12-24 | Tracee Eidenschink | Pacing catheter releasing conductive liquid |
US8170661B2 (en) | 2008-07-01 | 2012-05-01 | Cardiac Pacemakers, Inc. | Pacing system controller integrated into indeflator |
US20100004706A1 (en) * | 2008-07-01 | 2010-01-07 | Mokelke Eric A | Pacing system controller integrated into indeflator |
US9333341B2 (en) | 2009-09-30 | 2016-05-10 | Medtronic, Inc. | Medical electrical lead |
US20110077725A1 (en) * | 2009-09-30 | 2011-03-31 | Medtronic, Inc. | Medical electrical lead |
US20120253445A1 (en) * | 2011-03-31 | 2012-10-04 | Oscor Inc. | MRI compatible conductor system for catheter and stimulation leads |
US10512772B2 (en) | 2012-03-05 | 2019-12-24 | Lungpacer Medical Inc. | Transvascular nerve stimulation apparatus and methods |
US11369787B2 (en) | 2012-03-05 | 2022-06-28 | Lungpacer Medical Inc. | Transvascular nerve stimulation apparatus and methods |
US9314299B2 (en) | 2012-03-21 | 2016-04-19 | Biosense Webster (Israel) Ltd. | Flower catheter for mapping and ablating veinous and other tubular locations |
US10945625B2 (en) | 2012-08-17 | 2021-03-16 | Medtronic Ablation Frontiers Llc | Electrophysiology catheter design |
US9757190B2 (en) | 2012-08-17 | 2017-09-12 | Medtronic Ablation Frontiers Llc | Methods of manufacturing monophasic action potential mapping catheters |
US10039467B2 (en) | 2012-08-17 | 2018-08-07 | Medtronic Ablation Frontiers Llc | Electrophysiology catheter design |
US12102436B2 (en) | 2012-08-17 | 2024-10-01 | Medtronic Ablation Frontiers Llc | Electrophysiology catheter design |
US9370311B2 (en) | 2012-08-17 | 2016-06-21 | Medtronic Ablation Frontiers Llc | Electrophysiology catheter design |
US9700224B2 (en) | 2013-03-14 | 2017-07-11 | C. R. Bard, Inc. | Electrically conductive pathway in a closed-ended catheter |
US9456760B2 (en) | 2013-03-14 | 2016-10-04 | C. R. Bard, Inc. | Closed catheter tip including electrically conductive pathway |
US9776005B2 (en) | 2013-06-21 | 2017-10-03 | Lungpacer Medical Inc. | Transvascular diaphragm pacing systems and methods of use |
US11357985B2 (en) | 2013-06-21 | 2022-06-14 | Lungpacer Medical Inc. | Transvascular diaphragm pacing systems and methods of use |
US10589097B2 (en) | 2013-06-21 | 2020-03-17 | Lungpacer Medical Inc. | Transvascular diaphragm pacing systems and methods of use |
US10406367B2 (en) | 2013-06-21 | 2019-09-10 | Lungpacer Medical Inc. | Transvascular diaphragm pacing system and methods of use |
US10561844B2 (en) | 2013-06-21 | 2020-02-18 | Lungpacer Medical Inc. | Diaphragm pacing systems and methods of use |
US9545511B2 (en) | 2013-11-22 | 2017-01-17 | Simon Fraser University | Apparatus and methods for assisted breathing by transvascular nerve stimulation |
US9242088B2 (en) | 2013-11-22 | 2016-01-26 | Simon Fraser University | Apparatus and methods for assisted breathing by transvascular nerve stimulation |
US11707619B2 (en) | 2013-11-22 | 2023-07-25 | Lungpacer Medical Inc. | Apparatus and methods for assisted breathing by transvascular nerve stimulation |
US9931504B2 (en) | 2013-11-22 | 2018-04-03 | Lungpacer Medical, Inc. | Apparatus and methods for assisted breathing by transvascular nerve stimulation |
US10035017B2 (en) | 2013-11-22 | 2018-07-31 | Lungpacer Medical, Inc. | Apparatus and methods for assisted breathing by transvascular nerve stimulation |
US9700714B2 (en) | 2013-12-20 | 2017-07-11 | Medtronic, Inc. | Methods and devices for inhibiting tissue growth from restricting a strain relief loop of an implantable medical lead |
US10391314B2 (en) | 2014-01-21 | 2019-08-27 | Lungpacer Medical Inc. | Systems and related methods for optimization of multi-electrode nerve pacing |
US9597509B2 (en) | 2014-01-21 | 2017-03-21 | Simon Fraser University | Systems and related methods for optimization of multi-electrode nerve pacing |
US11311730B2 (en) | 2014-01-21 | 2022-04-26 | Lungpacer Medical Inc. | Systems and related methods for optimization of multi-electrode nerve pacing |
US10814127B2 (en) | 2016-02-05 | 2020-10-27 | Boston Scientific Neuromodulation Corporation | Slotted sleeve neurostimulation device |
US10485969B2 (en) | 2016-02-19 | 2019-11-26 | Boston Scientific Neuromodulation Corporation | Electrical stimulation cuff devices and systems |
US10173052B2 (en) | 2016-03-18 | 2019-01-08 | Teleflex Innovations S.À.R.L. | Pacing guidewire |
US10758725B2 (en) | 2016-03-18 | 2020-09-01 | Cardiac Interventions And Aviation Llc | Pacing guidewire |
US10881851B2 (en) | 2016-03-18 | 2021-01-05 | Cardiac Interventions And Aviation Llc | Pacing guidewire |
US11420046B2 (en) | 2016-03-18 | 2022-08-23 | Cardiac Interventions And Aviation Llc | Pacing guidewire |
US10493269B2 (en) | 2016-06-02 | 2019-12-03 | Boston Scientific Neuromodulation Corporation | Leads for electrostimulation of peripheral nerves and other targets |
US10709888B2 (en) | 2016-07-29 | 2020-07-14 | Boston Scientific Neuromodulation Corporation | Systems and methods for making and using an electrical stimulation system for peripheral nerve stimulation |
US10905883B2 (en) | 2016-12-02 | 2021-02-02 | Boston Scientific Neuromodulation Corporation | Methods and systems for selecting stimulation parameters for electrical stimulation devices |
US10293164B2 (en) | 2017-05-26 | 2019-05-21 | Lungpacer Medical Inc. | Apparatus and methods for assisted breathing by transvascular nerve stimulation |
US12029901B2 (en) | 2017-06-30 | 2024-07-09 | Lungpacer Medical Inc. | Devices and methods for prevention, moderation, and/or treatment of cognitive injury |
US11883658B2 (en) | 2017-06-30 | 2024-01-30 | Lungpacer Medical Inc. | Devices and methods for prevention, moderation, and/or treatment of cognitive injury |
US12029902B2 (en) | 2017-08-02 | 2024-07-09 | Lungpacer Medical Inc. | Intravascular catheter methods |
US10039920B1 (en) | 2017-08-02 | 2018-08-07 | Lungpacer Medical, Inc. | Systems and methods for intravascular catheter positioning and/or nerve stimulation |
US11090489B2 (en) | 2017-08-02 | 2021-08-17 | Lungpacer Medical, Inc. | Systems and methods for intravascular catheter positioning and/or nerve stimulation |
US10195429B1 (en) | 2017-08-02 | 2019-02-05 | Lungpacer Medical Inc. | Systems and methods for intravascular catheter positioning and/or nerve stimulation |
US10926087B2 (en) | 2017-08-02 | 2021-02-23 | Lungpacer Medical Inc. | Systems and methods for intravascular catheter positioning and/or nerve stimulation |
US11944810B2 (en) | 2017-08-04 | 2024-04-02 | Lungpacer Medical Inc. | Systems and methods for trans-esophageal sympathetic ganglion recruitment |
US10940308B2 (en) | 2017-08-04 | 2021-03-09 | Lungpacer Medical Inc. | Systems and methods for trans-esophageal sympathetic ganglion recruitment |
US12029903B2 (en) | 2017-12-11 | 2024-07-09 | Lungpacer Medical Inc. | Systems and methods for strengthening a respiratory muscle |
US11890462B2 (en) | 2018-11-08 | 2024-02-06 | Lungpacer Medical Inc. | Stimulation systems and related user interfaces |
US11717673B2 (en) | 2018-11-08 | 2023-08-08 | Lungpacer Medical Inc. | Stimulation systems and related user interfaces |
US10987511B2 (en) | 2018-11-08 | 2021-04-27 | Lungpacer Medical Inc. | Stimulation systems and related user interfaces |
US11745022B2 (en) | 2018-11-21 | 2023-09-05 | Sorin Crm Sas | Implantable medical lead with strain relief device |
US11986665B2 (en) * | 2018-11-21 | 2024-05-21 | Sorin Crm Sas | Implantable lead |
US11357979B2 (en) | 2019-05-16 | 2022-06-14 | Lungpacer Medical Inc. | Systems and methods for sensing and stimulation |
US11771900B2 (en) | 2019-06-12 | 2023-10-03 | Lungpacer Medical Inc. | Circuitry for medical stimulation systems |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3769984A (en) | Pacing catheter with frictional fit lead attachment | |
US3804098A (en) | Body implantable lead | |
US4481953A (en) | Endocardial lead having helically wound ribbon electrode | |
US6026567A (en) | Medical lead with stranded conductors | |
US4135518A (en) | Body implantable lead and electrode | |
US5133365A (en) | Implantable tapered spiral endocardial lead for use in internal defibrillation | |
US5545201A (en) | Bipolar active fixation lead for sensing and pacing the heart | |
US5649974A (en) | Low profile defibrillation catheter | |
US3474791A (en) | Multiple conductor electrode | |
US4030508A (en) | Low output electrode for cardiac pacing | |
US4301815A (en) | Trailing tine electrode lead | |
US5522872A (en) | Electrode-conductor sleeve joint for cardiac lead | |
US6066166A (en) | Medical electrical lead | |
US5330520A (en) | Implantable electrode and sensor lead apparatus | |
US4493329A (en) | Implantable electrode having different stiffening and curvature maintaining characteristics along its length | |
US5385578A (en) | Electrical connection for medical electrical stimulation electrodes | |
US5016808A (en) | Implantable tapered spiral endocardial lead for use in internal defibrillation | |
US4355646A (en) | Transvenous defibrillating lead | |
US6671562B2 (en) | High impedance drug eluting cardiac lead | |
US3788329A (en) | Body implantable lead | |
US4559951A (en) | Catheter assembly | |
US5456705A (en) | Medical electrical lead having a torque indicator | |
US7174220B1 (en) | Construction of a medical electrical lead | |
US6799991B2 (en) | Medical lead connector | |
US6254425B1 (en) | Electrical connector for cardiac devices |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: SHERWOOD MEDICAL COMPANY Free format text: MERGER;ASSIGNOR:SHERWOOD MEDICAL INDUSTRIES INC. (INTO);REEL/FRAME:004123/0634 Effective date: 19820412 |