US20230113427A1 - Vehicular parking system - Google Patents

Vehicular parking system Download PDF

Info

Publication number
US20230113427A1
US20230113427A1 US18/065,746 US202218065746A US2023113427A1 US 20230113427 A1 US20230113427 A1 US 20230113427A1 US 202218065746 A US202218065746 A US 202218065746A US 2023113427 A1 US2023113427 A1 US 2023113427A1
Authority
US
United States
Prior art keywords
parking
vehicle
communication
vehicular
space availability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
US18/065,746
Inventor
Krishna Koravadi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Magna Electronics Inc
Original Assignee
Magna Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Magna Electronics Inc filed Critical Magna Electronics Inc
Priority to US18/065,746 priority Critical patent/US20230113427A1/en
Publication of US20230113427A1 publication Critical patent/US20230113427A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/56Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
    • G06V20/58Recognition of moving objects or obstacles, e.g. vehicles or pedestrians; Recognition of traffic objects, e.g. traffic signs, traffic lights or roads
    • G06V20/584Recognition of moving objects or obstacles, e.g. vehicles or pedestrians; Recognition of traffic objects, e.g. traffic signs, traffic lights or roads of vehicle lights or traffic lights
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D15/00Steering not otherwise provided for
    • B62D15/02Steering position indicators ; Steering position determination; Steering aids
    • B62D15/027Parking aids, e.g. instruction means
    • B62D15/0285Parking performed automatically
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/36Input/output arrangements for on-board computers
    • G01C21/3679Retrieval, searching and output of POI information, e.g. hotels, restaurants, shops, filling stations, parking facilities
    • G01C21/3685Retrieval, searching and output of POI information, e.g. hotels, restaurants, shops, filling stations, parking facilities the POI's being parking facilities

Definitions

  • the present invention relates generally to a vehicle vision system for a vehicle and, more particularly, to a vehicle vision system that utilizes one or more cameras at a vehicle.
  • the present invention provides a collision avoidance system or vision system or imaging system for a vehicle that utilizes one or more cameras (preferably one or more CMOS cameras) to capture image data representative of images exterior of the vehicle, and provides an adaptive traffic light response system that determines the status of a traffic light ahead of the vehicle and, responsive to the determined status and vehicle or driver parameters, generates an alert to the driver (such as when the determined vehicle status or parameters indicate that the driver is not responding properly to the present traffic light signal or condition).
  • CMOS cameras preferably one or more CMOS cameras
  • a vision system of a vehicle includes a camera disposed at a vehicle and having a field of view forwardly of the vehicle, and a control comprising an image processor.
  • the image processor is operable to process image data captured by the camera.
  • the control is operable to receive wireless communication (such as from a V2I (vehicle to infrastructure) communication system or the like) that is associated with a traffic light ahead of the vehicle.
  • the wireless communication comprises a communicated status of the traffic light ahead of the vehicle.
  • the image processor responsive to processing of captured image data, is operable to determine an imaged status of the traffic light ahead of the vehicle and in the field of view of the camera.
  • the control compares the imaged status with the communicated status and, when the communicated status corresponds to the imaged status, determines or confirms the status of the traffic light ahead of the vehicle. Responsive to a determination that the driver of the vehicle is not properly responding to the determined traffic light status, the system is operable to at least one of (i) generate an alert to the driver of the vehicle and (ii) apply the brakes of the vehicle.
  • the parking assist system at least one of (i) determines an available parking slot responsive to a received signal indicative of an available parking slot and (ii) determines an available parking slot responsive to image processing of image data captured by at least one camera. Responsive to determination of an available parking slot, the communication system transmits a signal indicative of the available parking slot. Responsive to receipt of the transmitted signal, a driver of the vehicle can reserve the available slot via actuation by the driver of a user input. Responsive to receipt of a reservation signal from the vehicle, the communication system transmits an updated signal to indicate that the parking slot is reserved.
  • the system may determine an available parking slot responsive to a received signal indicative of an available parking slot, and the received signal may be received from another vehicle at the parking lot.
  • the communication system may determine an available parking slot via image processing of image data captured by at least one camera at the parking lot.
  • the system may comprise a plurality of cameras arranged at the parking lot, wherein the communication system determines available parking slots via image processing of image data captured by the cameras.
  • FIG. 1 is a plan view of a vehicle with a vision system that incorporates cameras in accordance with the present invention
  • FIG. 2 is a schematic of the traffic light response system of the present invention
  • FIG. 3 is a schematic of a vehicle at an intersection and equipped with the adaptive traffic light response system of the present invention
  • FIG. 4 is another schematic of a vehicle at an intersection and equipped with the adaptive traffic light response system of the present invention
  • FIG. 5 is a schematic of use of a parking slot finding system in accordance with the present invention.
  • FIG. 6 is a schematic of use of another parking slot finding system in accordance with the present invention.
  • FIG. 7 is a schematic of a vehicle vision and communication system in accordance with the present invention.
  • FIG. 8 is a schematic of use of the vehicle vision and communication system of FIG. 7 ;
  • FIG. 9 is a schematic of a vehicle at an intersection and equipped with a communication system of the present invention.
  • FIG. 10 is a schematic of the communication system of the vehicle of FIG. 9 .
  • a vehicle vision system and/or driver assist system and/or object detection system and/or alert system operates to capture images exterior of the vehicle and may process the captured image data to display images and to detect objects at or near the vehicle and in the predicted path of the vehicle, such as to assist a driver of the vehicle in maneuvering the vehicle in a rearward direction.
  • the vision system includes an image processor or image processing system that is operable to receive image data from one or more cameras and provide an output to a display device for displaying images representative of the captured image data.
  • the vision system may provide a top down or bird's eye or surround view display and may provide a displayed image that is representative of the subject vehicle, and optionally with the displayed image being customized to at least partially correspond to the actual subject vehicle.
  • a vehicle 10 includes an imaging system or vision system 12 that includes at least one exterior facing imaging sensor or camera, such as a rearward facing imaging sensor or camera 14 a (and the system may optionally include multiple exterior facing imaging sensors or cameras, such as a forwardly facing camera 14 b at the front (or at the windshield and behind the windshield and viewing through the windshield) of the vehicle, and a sidewardly/rearwardly facing camera 14 c , 14 d at respective sides of the vehicle), which captures images exterior of the vehicle, with the camera having a lens for focusing images at or onto an imaging array or imaging plane or imager of the camera ( FIG. 1 ).
  • an imaging system or vision system 12 that includes at least one exterior facing imaging sensor or camera, such as a rearward facing imaging sensor or camera 14 a (and the system may optionally include multiple exterior facing imaging sensors or cameras, such as a forwardly facing camera 14 b at the front (or at the windshield and behind the windshield and viewing through the windshield) of the vehicle, and a sidewardly/rearwardly facing camera 14
  • the vision system 12 includes a control or electronic control unit (ECU) or processor 18 that is operable to process image data captured by the cameras and may provide displayed images at a display device 16 for viewing by the driver of the vehicle (although shown in FIG. 1 as being part of or incorporated in or at an interior rearview mirror assembly 20 of the vehicle, the control and/or the display device may be disposed elsewhere at or in the vehicle).
  • the data transfer or signal communication from the camera to the ECU may comprise any suitable data or communication link, such as a vehicle network bus or the like of the equipped vehicle.
  • the system of the present invention determines, such as via image processing of image data captured by a forward facing or viewing camera of the vehicle, a traffic light status and, responsive to a determination (such as via processing of vehicle status) that the driver is not properly responding to the traffic light or signal, generates an alert to the driver.
  • the subject vehicle is equipped with a front imager operable to capture image data and an image processor that processes captured image data (via an image processing algorithm) and determines a traffic light status of a traffic light ahead of the vehicle and in the field of view of the imager.
  • the adaptive traffic light response (ATLR) system (such as an algorithm running in the ECU of the vehicle) monitors the vehicle status (such as brake status, accelerator status, vehicle speed, and/or the like) and the driver response, and is operable to alert the driver if he or she is making a mistake.
  • TTC time to collision
  • the system may apply the vehicle brakes to limit or avoid or mitigate the collision.
  • the traffic light may broadcast the traffic light status.
  • This information may be received by the V2I communication module of the vehicle and thus, even in poor visibility conditions, the system can receive and process and use the traffic light information.
  • the V2I information may be fused with the camera data to achieve enhanced reliability of the system.
  • the adaptive traffic light response system may use the traffic light location information to fuse with the camera traffic light information to achieve enhanced performance. For example, if the GPS communication does not indicate that there is a traffic light ahead of the vehicle and there is no communication from a V2I communication module ahead of the vehicle, then the control may ignore (or weigh less) a determination of a traffic light condition as determined via image processing of image data captured by the forward facing camera.
  • the two or three different signals or determinations can be weighted differently depending on the driving conditions and region. For example, on a clear day when the image processor determines that a traffic light is ahead of the vehicle and is a red light, the system may generate an alert to the driver if the driver does not respond accordingly, even if there is no communication from a V2I communication module. Likewise, in poor visibility conditions, the system may respond primarily to the V2I communication module.
  • control of the vision system may be responsive to a communicated traffic light status and a determined or imaged traffic light status, and may determine the traffic light status and generate an alert accordingly. If the two signals indicate the same traffic light status (for example, both indicate that the traffic light is green), then the system determines or confirms the traffic light status and generates an alert and/or applies the vehicle brakes accordingly. When the signals contradict (such as, for example, when the communication or communicated status indicates a green light and the image processor or imaged status indicates a red light), the system may generate an alert to the driver of the vehicle, but may not apply the brakes of the vehicle.
  • This decision may also be dependent on visibility conditions, such that the control applies a greater weight or consideration to the V2I communicated traffic light status in poor visibility conditions or the like (such as fog or rain or snow conditions, such as may be determined via image processing of captured image data).
  • the control may generate an alert to the driver responsive to the imaged status being different than the communicated status. Responsive to the determination or confirmation of the traffic light status, the control may generate an alert and/or apply the vehicle brakes or may otherwise control a vehicle function.
  • the driver of the subject vehicle may be distracted by the moving vehicle at the right of the subject vehicle and may start moving the subject vehicle forward (incorrectly assuming that the traffic light has changed to green).
  • the subject vehicle may be equipped with a collision mitigation braking system and the adaptive traffic light response system monitors the traffic light status and may (responsive to a determination that the traffic light is red) generate an alert to the driver and/or may automatically apply the brakes of the subject vehicle to prevent the driver from moving the vehicle forwardly into the intersection until the traffic light changes to green.
  • the control may determine that the traffic light status is red via image processing and/or a V2I communication (which may also indicate if a green right turn arrow was also activated when the subject vehicle started moving forward).
  • the driver of the subject vehicle may be distracted and may not slow down or stop.
  • the subject vehicle may be equipped with a collision mitigation braking system and the adaptive traffic light response system monitors the traffic light status and may (responsive to a determination that the traffic light is red) generate an alert to the driver before the vehicle approaches and enters the intersection. If the driver does not respond to the alert by applying the brakes, the system may automatically apply the brakes of the subject vehicle to prevent the driver from moving the vehicle forwardly into the intersection while the traffic light is determined to be red.
  • the subject or host vehicle is equipped with a front imager of forward viewing camera and an image processing algorithm that processes captured image data and determines the traffic light status.
  • the ATLR algorithm running in the ECU will monitor the vehicle status and the driver response and alert the driver if he/she is making a mistake, and if the TTC exceeds a threshold level, the system will apply brake to limit or prevent or mitigate the collision.
  • traffic lights are equipped with a V2I communication module, then the traffic light will broadcast the present status of the traffic light. This information may be received by the V2I communication module of the vehicle, and this information may be used to fuse with the camera captured image data to achieve higher reliability in poor visibility or poor weather conditions.
  • the ATLR module may use the traffic light location information to fuse with the camera traffic light information to achieve enhanced system performance.
  • the present invention thus provides a system that may enhance an existing CMB system or feature and/or may be used in an autonomous vehicle.
  • the vehicle may include a cooperative v2v-based (vehicle-to-vehicle-based) parking solution or system.
  • a driver of a vehicle when trying to find a parking slot, may have difficulties with large parking lots as the user may need to keep driving in many rows to find a free parking slot.
  • the subject vehicle and other vehicles at a parking lot may be equipped with a v2v communication link. When the driver of the subject vehicle is looking for an open parking slot, the subject vehicle will receive the information of all the available free slots at that parking lot via the v2v communication link.
  • a communication such as via a Designated Short Range Communication (DSRC) radio or v2v communication or the like
  • the driver of the vehicle Upon receipt of a communication (such as via a Designated Short Range Communication (DSRC) radio or v2v communication or the like) indicative of an available empty parking slot, the driver of the vehicle will select the nearest open slot and reserve the slot, with the reservation protocol preferably being cooperatively accomplished. For example, if there are multiple users that want to reserve an open slot at a same time, then no one will get the open slot reserved. The users may continue to transmit the reserve request after a random time interval and one of the users may eventually reserve the open slot. If no other users are looking to reserve the slot, then the user who first reserves the slot will get the slot reserved and may broadcast or transmit a communication indicative of the slot being reserved.
  • DSRC Designated Short Range Communication
  • the determination of an open slot may be made via another vehicle leaving a parking slot (and transmitting the location information at that time) or via parked vehicles communicating information about an open parking slot at or near the parked vehicle or via a communication from another vehicle moving through the parking lot and determining one or more empty slots as it moves through the parking lot.
  • that vehicle's communication system such as via a DSRC radio or v2x (vehicle-to-infrastructure) link or the like
  • v2x vehicle-to-infrastructure
  • other vehicles that are looking for an open parking slot may determine open slots and may broadcast or transmit a communication regarding open slot information when the vehicle's system finds another open slot (such as by using a camera or vision system or an ultrasonic sensor system or the like) as that vehicle is driving through the parking lot.
  • the vehicles looking for a parking slot responsive to the communications regarding available slots, may also be able to reserve a slot that is open or available. All the vehicles equipped with the communication link and system of the present invention may forward a list of open slots as well as reserved slots to provide a further range for the communications so as to reach vehicles just entering the parking lot or the like that may be a substantial distance from an available slot.
  • the parking slot determining and reserving system of the present invention may provide enhanced determination and reservation of parking slots for vehicles equipped with a communication link or the like (such as a v2v communication link or v2x communication link or the like).
  • the present invention provides enhanced parking coordination and may provide an automated and coordinated parking solution.
  • the parking lot may also provide communications regarding parking slot availability.
  • many light posts in a parking lot are equipped with a camera that has better visibility of the open slots as well as traffic moving towards filled slots where the parked vehicle is leaving or backing up from the slot. If the light posts were provided with a DSRC radio and the camera output were fed to the DSRC radio, the radio could then transmit or communicate or broadcast parking slot information, which may achieve a smart parking solution.
  • the DSRC radio located in the light post may process the camera or video image data and may identify an open parking slot and generate a communication regarding the parking slot availability and/or update an existing list of available parking slots and may broad cast or transmit that communication to the vehicles at the parking lot that are looking for an empty and available parking slot.
  • the open slot list transmitted by the light post DSRC radio appears at the human machine interface or HMI (such as at a display screen or the like in the cabin of the equipped vehicle and viewable by the driver) and the driver may reserve an open slot using the HMI.
  • This reservation request is transmitted to the light post DSRC radio (or a centralized processor that is linked to multiple parking lot system DSRC radios at light posts or other structures at the parking lot), and if the system has not received any other vehicle request for the same slot, the system reserves the slot and transmits the updated open slot and reserved slot list and confirms the reservation request.
  • the vehicle driver that was looking for the open slot and selected the slot may park his or her vehicle at the reserved slot.
  • the GPS location of the light post DSRC radio may be programmed at the installation time, the location of the open slot with respect to the light post location could be calculated in the light post DSRC radio and transmitted along with the open slot/reserve slot list.
  • the system may continuously update the parking slot availability list over time. For example, when a vehicle moves out of a parking slot, the DSRC radio at the parking lot detects this via image processing of captured image data and updates the open slot list accordingly.
  • the parking lot DSRC radio system may also be used as a cross traffic alert device for vehicles that are equipped with DSRC radios or communication links or the like with no cross traffic detection. For example, the system may detect two vehicles approaching an intersection of the parking lot or may detect a leaving vehicle backing or driving into a path of travel of another vehicle, and may generate an alert to the drivers of those vehicles to warn them of a potential collision.
  • the communication systems and parking slot finding assist system may utilize aspects of the systems described in U.S. patent application Ser. No. 14/303,695, filed Jun. 13, 2014 and published Dec. 25, 2014 as U.S. Publication No. US-2014-0375476, which is hereby incorporated herein by reference in its entirety.
  • the vehicle may include a cooperative lane sharing system that assists the driver in determining when a vehicle (such as a motorcycle or the like) is approaching from behind the equipped vehicle and in the same lane as the equipped vehicle but at a side of the lane so as to “share” the lane as traffic moves along the road.
  • a vehicle such as a motorcycle or the like
  • lane sharing is legal to improve the efficiency of the roadway, whereby vehicles or cars and motor cycles share the same lane (in a side-by-side manner) especially during the traffic jam condition.
  • the vehicle driver looks for a motor cycle approaching (such as at the left side of the vehicle) and makes the pathway available by manually driving closer to the right side of the lane. This coordination is sometimes difficult, because the driver of the subject vehicle may not be able to see the approaching motorcycle and may want to change lanes in front of the approaching motorcycle, which may result in a collision.
  • the subject may be equipped with a DSRC radio along with a side camera or radar sensor or the like.
  • a traffic jam assist (TJA) feature of the subject vehicle may use the information from the DSRC radio about an approaching motorcycle and the vehicle system may automatically make a path for the approaching motorcycle by aligning the vehicle to the right lane making (virtual splitting/sharing the lane).
  • the TJA algorithm may fuse the camera/radar and DSRC radio data to get better confidence of the target (approaching motor cycle). Once the motor cycle passes by, the vehicle system may align the vehicle back to the lane center.
  • the subject vehicle system may determine such a maneuver (such as responsive to detecting a turn signal activation of the motorcycle or the like) and may slow down the subject vehicle and make way for the motor cycle lane change in a coordinated manner.
  • the motorcycle may also receive information or data from the vehicle and that information may alert the driver of the motorcycle if the car/vehicle ahead of the motorcycle is about to make a lane change, whereby the motorcycle driver can be prepared to stop of slow down.
  • the TJA system and lane sharing system of the present invention may utilize aspects of the systems described in U.S. patent application Ser. No. 14/303,694, filed Jun. 13, 2014, now U.S. Pat. No. 9,260,095, which is hereby incorporated herein by reference in its entirety.
  • a system of the present invention may function to enhance turning by vehicles through intersections, such as when the driver of a vehicle is making a left turn through an intersection.
  • intersections such as when the driver of a vehicle is making a left turn through an intersection.
  • the vehicles that need to make a left turn have to take a turn in a coordinated manner, and this may lead to accidents as the driver of the subject vehicle may not be able to see an approaching vehicle in another lane (because the driver's view may be blocked by another stopped vehicle in front of the subject vehicle and trying to make a left turn in the other direction) or often the driver may make mistakenly judge the speed of an approaching vehicle and try to make a left turn which may result in an accident.
  • the subject vehicle (SV) driver's view is blocked by a stopped vehicle ( 2 ), which is trying to turn left at the intersection.
  • the SV driver needs to coordinate with the target vehicle (TV), which is approaching the intersection (possibly at high speed) and the SV driver needs to make a judgment to turn left, which may lead to an accident if the driver of the SV is not able to make the right decision at the right time.
  • the system of the present invention may help the SV driver to make the right decision as well as automatically apply braking in the event of a dangerous situation (such as if the SV driver makes a poor decision to turn in front of a fast approaching target vehicle) to prevent accident.
  • the SV and TV are equipped with a DSRC radio, and the SV should be able to receive the speed, acceleration, relative distance of the TV approaching the intersection.
  • the ADAS system of the present invention computes the Time To Collision (TTC) and alerts the SV driver even if the driver is not able to see the approaching vehicle (TV) ahead of and approaching the SV. If the determined or computed TTC exceeds a certain threshold, the ADAS system may activate automatic braking of the SV to limit movement of the SV into the path of the TV and thus to limit or substantially preclude a collision with the TV.
  • TTC Time To Collision
  • the camera or sensor may comprise any suitable camera or sensor.
  • the camera may comprise a “smart camera” that includes the imaging sensor array and associated circuitry and image processing circuitry and electrical connectors and the like as part of a camera module, such as by utilizing aspects of the vision systems described in International Publication Nos. WO 2013/081984 and/or WO 2013/081985, which are hereby incorporated herein by reference in their entireties.
  • the system includes an image processor operable to process image data captured by the camera or cameras, such as for detecting objects or other vehicles or pedestrians or the like in the field of view of one or more of the cameras.
  • the image processor may comprise an EYEQ2 or EYEQ3 image processing chip available from Mobileye Vision Technologies Ltd. of Jerusalem, Israel, and may include object detection software (such as the types described in U.S. Pat. Nos. 7,855,755; 7,720,580 and/or 7,038,577, which are hereby incorporated herein by reference in their entireties), and may analyze image data to detect vehicles and/or other objects.
  • the system may generate an alert to the driver of the vehicle and/or may generate an overlay at the displayed image to highlight or enhance display of the detected object or vehicle, in order to enhance the driver's awareness of the detected object or vehicle or hazardous condition during a driving maneuver of the equipped vehicle.
  • the vehicle may include any type of sensor or sensors, such as imaging sensors or radar sensors or lidar sensors or ladar sensors or ultrasonic sensors or the like.
  • the imaging sensor or camera may capture image data for image processing and may comprise any suitable camera or sensing device, such as, for example, a two dimensional array of a plurality of photosensor elements arranged in at least 640 columns and 480 rows (at least a 640 ⁇ 480 imaging array, such as a megapixel imaging array or the like), with a respective lens focusing images onto respective portions of the array.
  • the photosensor array may comprise a plurality of photosensor elements arranged in a photosensor array having rows and columns.
  • the imaging array has at least 300,000 photosensor elements or pixels, more preferably at least 500,000 photosensor elements or pixels and more preferably at least 1 million photosensor elements or pixels.
  • the imaging array may capture color image data, such as via spectral filtering at the array, such as via an RGB (red, green and blue) filter or via a red/red complement filter or such as via an RCC (red, clear, clear) filter or the like.
  • the logic and control circuit of the imaging sensor may function in any known manner, and the image processing and algorithmic processing may comprise any suitable means for processing the images and/or image data.
  • the vision system and/or processing and/or camera and/or circuitry may utilize aspects described in U.S. Pat. Nos. 7,005,974; 5,760,962; 5,877,897; 5,796,094; 5,949,331; 6,222,447; 6,302,545; 6,396,397; 6,498,620; 6,523,964; 6,611,202; 6,201,642; 6,690,268; 6,717,610; 6,757,109; 6,802,617; 6,806,452; 6,822,563; 6,891,563; 6,946,978; 7,859,565; 5,550,677; 5,670,935; 6,636,258; 7,145,519; 7,161,616; 7,230,640; 7,248,283; 7,295,229; 7,301,466; 7,592,928; 7,881,496; 7,720,580; 7,038,577; 6,882,287; 5,929,786 and/or 5,786,
  • the system may communicate with other communication systems via any suitable means, such as by utilizing aspects of the systems described in International Publication Nos. WO/2010/144900; WO 2013/043661 and/or WO 2013/081985, and/or U.S. patent application Ser. No. 13/202,005, filed Aug. 17, 2011, now U.S. Pat. No. 9,126,525, which are hereby incorporated herein by reference in their entireties.
  • the imaging device and control and image processor and any associated illumination source may comprise any suitable components, and may utilize aspects of the cameras and vision systems described in U.S. Pat. Nos. 5,550,677; 5,877,897; 6,498,620; 5,670,935; 5,796,094; 6,396,397; 6,806,452; 6,690,268; 7,005,974; 7,937,667; 7,123,168; 7,004,606; 6,946,978; 7,038,577; 6,353,392; 6,320,176; 6,313,454 and/or 6,824,281, and/or International Publication Nos.
  • WO 2010/099416 WO 2011/028686 and/or WO 2013/016409, and/or U.S. Pat. Publication No. US 2010-0020170, and/or U.S. patent application Ser. No. 13/534,657, filed Jun. 27, 2012 and published Jan. 3, 2013 as U.S. Publication No. US-2013-0002873, which are all hereby incorporated herein by reference in their entireties.
  • the camera or cameras may comprise any suitable cameras or imaging sensors or camera modules, and may utilize aspects of the cameras or sensors described in U.S. Publication No. US-2009-0244361 and/or U.S. Pat. Nos.
  • the imaging array sensor may comprise any suitable sensor, and may utilize various imaging sensors or imaging array sensors or cameras or the like, such as a CMOS imaging array sensor, a CCD sensor or other sensors or the like, such as the types described in U.S. Pat. Nos.
  • the camera module and circuit chip or board and imaging sensor may be implemented and operated in connection with various vehicular vision-based systems, and/or may be operable utilizing the principles of such other vehicular systems, such as a vehicle headlamp control system, such as the type disclosed in U.S. Pat. Nos. 5,796,094; 6,097,023; 6,320,176; 6,559,435; 6,831,261; 7,004,606; 7,339,149 and/or 7,526,103, which are all hereby incorporated herein by reference in their entireties, a rain sensor, such as the types disclosed in commonly assigned U.S. Pat. Nos.
  • a vehicle vision system such as a forwardly, sidewardly or rearwardly directed vehicle vision system utilizing principles disclosed in U.S. Pat. Nos.
  • a reverse or sideward imaging system such as for a lane change assistance system or lane departure warning system or for a blind spot or object detection system, such as imaging or detection systems of the types disclosed in U.S. Pat. Nos. 7,881,496; 7,720,580; 7,038,577; 5,929,786 and/or 5,786,772, which are hereby incorporated herein by reference in their entireties, a video device for internal cabin surveillance and/or video telephone function, such as disclosed in U.S. Pat. Nos. 5,760,962; 5,877,897; 6,690,268 and/or 7,370,983, and/or U.S. Publication No.
  • the circuit board or chip may include circuitry for the imaging array sensor and or other electronic accessories or features, such as by utilizing compass-on-a-chip or EC driver-on-a-chip technology and aspects such as described in U.S. Pat. Nos. 7,255,451 and/or 7,480,149 and/or U.S. Publication No. US-2006-0061008 and/or U.S. patent application Ser. No. 12/578,732, filed Oct. 14, 2009, now U.S. Pat. No. 9,487,144, which are hereby incorporated herein by reference in their entireties.
  • the vision system may include a display for displaying images captured by one or more of the imaging sensors for viewing by the driver of the vehicle while the driver is normally operating the vehicle.
  • the vision system may include a video display device disposed at or in the interior rearview mirror assembly of the vehicle, such as by utilizing aspects of the video mirror display systems described in U.S. Pat. No. 6,690,268 and/or U.S. patent application Ser. No. 13/333,337, filed Dec. 21, 2011, now U.S. Pat. No. 9,264,672, which are hereby incorporated herein by reference in their entireties.
  • the video mirror display may comprise any suitable devices and systems and optionally may utilize aspects of the compass display systems described in U.S. Pat. Nos.
  • the video mirror display screen or device may be operable to display images captured by a rearward viewing camera of the vehicle during a reversing maneuver of the vehicle (such as responsive to the vehicle gear actuator being placed in a reverse gear position or the like) to assist the driver in backing up the vehicle, and optionally may be operable to display the compass heading or directional heading character or icon when the vehicle is not undertaking a reversing maneuver, such as when the vehicle is being driven in a forward direction along a road (such as by utilizing aspects of the display system described in International Publication No. WO 2012/051500, which is hereby incorporated herein by reference in its entirety).
  • the vision system (utilizing the forward facing camera and a rearward facing camera and other cameras disposed at the vehicle with exterior fields of view) may be part of or may provide a display of a top-down view or birds-eye view system of the vehicle or a surround view at the vehicle, such as by utilizing aspects of the vision systems described International Publication Nos. WO 2010/099416; WO 2011/028686; WO 2012/075250; WO 2013/019795; WO 2012-075250; WO 2012/145822; WO 2013/081985; WO 2013/086249 and/or WO 2013/109869, and/or U.S. patent application Ser. No. 13/333,337, filed Dec. 21, 2011, now U.S. Pat. No. 9,264,672, which are hereby incorporated herein by reference in their entireties.
  • a video mirror display may be disposed rearward of and behind the reflective element assembly and may comprise a display such as the types disclosed in U.S. Pat. Nos. 5,530,240; 6,329,925; 7,855,755; 7,626,749; 7,581,859; 7,446,650; 7,370,983; 7,338,177; 7,274,501; 7,255,451; 7,195,381; 7,184,190; 5,668,663; 5,724,187 and/or 6,690,268, and/or in U.S. Publication Nos. US-2006-0061008 and/or US-2006-0050018, which are all hereby incorporated herein by reference in their entireties.
  • the display is viewable through the reflective element when the display is activated to display information.
  • the display element may be any type of display element, such as a vacuum fluorescent (VF) display element, a light emitting diode (LED) display element, such as an organic light emitting diode (OLED) or an inorganic light emitting diode, an electroluminescent (EL) display element, a liquid crystal display (LCD) element, a video screen display element or backlit thin film transistor (TFT) display element or the like, and may be operable to display various information (as discrete characters, icons or the like, or in a multi-pixel manner) to the driver of the vehicle, such as passenger side inflatable restraint (PSIR) information, tire pressure status, and/or the like.
  • PSIR passenger side inflatable restraint
  • the mirror assembly and/or display may utilize aspects described in U.S. Pat. Nos. 7,184,190; 7,255,451; 7,446,924 and/or 7,338,177, which are all hereby incorporated herein by reference in their entireties.
  • the thicknesses and materials of the coatings on the substrates of the reflective element may be selected to provide a desired color or tint to the mirror reflective element, such as a blue colored reflector, such as is known in the art and such as described in U.S. Pat. Nos. 5,910,854; 6,420,036 and/or 7,274,501, which are hereby incorporated herein by reference in their entireties.
  • the display or displays and any associated user inputs may be associated with various accessories or systems, such as, for example, a tire pressure monitoring system or a passenger air bag status or a garage door opening system or a telematics system or any other accessory or system of the mirror assembly or of the vehicle or of an accessory module or console of the vehicle, such as an accessory module or console of the types described in U.S. Pat. Nos. 7,289,037; 6,877,888; 6,824,281; 6,690,268; 6,672,744; 6,386,742 and 6,124,886, and/or U.S. Publication No. US-2006-0050018, which are hereby incorporated herein by reference in their entireties.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Traffic Control Systems (AREA)
  • Mechanical Engineering (AREA)

Abstract

A vehicular parking system includes vehicle-to-vehicle (V2V) communication system disposed at a first vehicle. The vehicular parking system, as the first vehicle navigates a parking facility in search of an available parking space, receives a parking space availability communication via the V2V communication system. The parking space availability communication originates from a second vehicle that is also navigating the parking facility. The parking space availability communication indicates multiple available parking spaces within the parking facility and the multiple available parking spaces are determined by the second vehicle as the second vehicle navigates the parking facility and passes available parking spaces. The vehicular parking system, responsive to receiving the parking space availability communication, reserves one of the multiple available parking spaces of the parking space availability communication for the first vehicle.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • The present application is a continuation of U.S. patent application Ser. No. 16/356,003, filed Mar. 18, 2019, which is a continuation of U.S. patent application Ser. No. 15/878,727, filed Jan. 24, 2018, now U.S. Pat. No. 10,235,581, which is a continuation of U.S. patent application Ser. No. 14/519,469, filed Oct. 21, 2014, now U.S. Pat. No. 9,881,220, which claims the filing benefits of U.S. provisional applications, Ser. No. 62/001,795, filed May 22, 2014, Ser. No. 61/947,053, filed Mar. 3, 2014, and Ser. No. 61/895,610, filed Oct. 25, 2013, which are hereby incorporated herein by reference in their entireties.
  • FIELD OF THE INVENTION
  • The present invention relates generally to a vehicle vision system for a vehicle and, more particularly, to a vehicle vision system that utilizes one or more cameras at a vehicle.
  • BACKGROUND OF THE INVENTION
  • Use of imaging sensors in vehicle imaging systems is common and known. Examples of such known systems are described in U.S. Pat. Nos. 5,949,331; 5,670,935 and/or 5,550,677, which are hereby incorporated herein by reference in their entireties.
  • SUMMARY OF THE INVENTION
  • The present invention provides a collision avoidance system or vision system or imaging system for a vehicle that utilizes one or more cameras (preferably one or more CMOS cameras) to capture image data representative of images exterior of the vehicle, and provides an adaptive traffic light response system that determines the status of a traffic light ahead of the vehicle and, responsive to the determined status and vehicle or driver parameters, generates an alert to the driver (such as when the determined vehicle status or parameters indicate that the driver is not responding properly to the present traffic light signal or condition).
  • According to an aspect of the present invention, a vision system of a vehicle includes a camera disposed at a vehicle and having a field of view forwardly of the vehicle, and a control comprising an image processor. The image processor is operable to process image data captured by the camera. The control is operable to receive wireless communication (such as from a V2I (vehicle to infrastructure) communication system or the like) that is associated with a traffic light ahead of the vehicle. The wireless communication comprises a communicated status of the traffic light ahead of the vehicle. The image processor, responsive to processing of captured image data, is operable to determine an imaged status of the traffic light ahead of the vehicle and in the field of view of the camera. The control compares the imaged status with the communicated status and, when the communicated status corresponds to the imaged status, determines or confirms the status of the traffic light ahead of the vehicle. Responsive to a determination that the driver of the vehicle is not properly responding to the determined traffic light status, the system is operable to at least one of (i) generate an alert to the driver of the vehicle and (ii) apply the brakes of the vehicle.
  • According to another aspect of the present invention, a parking assist system for assisting a driver of a vehicle in finding and reserving an available parking slot or space of a parking lot or area includes a communication system operable to communicate information regarding parking slot availability to a receiver of a vehicle. The parking assist system at least one of (i) determines an available parking slot responsive to a received signal indicative of an available parking slot and (ii) determines an available parking slot responsive to image processing of image data captured by at least one camera. Responsive to determination of an available parking slot, the communication system transmits a signal indicative of the available parking slot. Responsive to receipt of the transmitted signal, a driver of the vehicle can reserve the available slot via actuation by the driver of a user input. Responsive to receipt of a reservation signal from the vehicle, the communication system transmits an updated signal to indicate that the parking slot is reserved.
  • The system may determine an available parking slot responsive to a received signal indicative of an available parking slot, and the received signal may be received from another vehicle at the parking lot. The communication system may determine an available parking slot via image processing of image data captured by at least one camera at the parking lot. The system may comprise a plurality of cameras arranged at the parking lot, wherein the communication system determines available parking slots via image processing of image data captured by the cameras.
  • These and other objects, advantages, purposes and features of the present invention will become apparent upon review of the following specification in conjunction with the drawings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a plan view of a vehicle with a vision system that incorporates cameras in accordance with the present invention;
  • FIG. 2 is a schematic of the traffic light response system of the present invention;
  • FIG. 3 is a schematic of a vehicle at an intersection and equipped with the adaptive traffic light response system of the present invention;
  • FIG. 4 is another schematic of a vehicle at an intersection and equipped with the adaptive traffic light response system of the present invention;
  • FIG. 5 is a schematic of use of a parking slot finding system in accordance with the present invention;
  • FIG. 6 is a schematic of use of another parking slot finding system in accordance with the present invention;
  • FIG. 7 is a schematic of a vehicle vision and communication system in accordance with the present invention;
  • FIG. 8 is a schematic of use of the vehicle vision and communication system of FIG. 7 ;
  • FIG. 9 is a schematic of a vehicle at an intersection and equipped with a communication system of the present invention; and
  • FIG. 10 is a schematic of the communication system of the vehicle of FIG. 9 .
  • DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • A vehicle vision system and/or driver assist system and/or object detection system and/or alert system operates to capture images exterior of the vehicle and may process the captured image data to display images and to detect objects at or near the vehicle and in the predicted path of the vehicle, such as to assist a driver of the vehicle in maneuvering the vehicle in a rearward direction. The vision system includes an image processor or image processing system that is operable to receive image data from one or more cameras and provide an output to a display device for displaying images representative of the captured image data. Optionally, the vision system may provide a top down or bird's eye or surround view display and may provide a displayed image that is representative of the subject vehicle, and optionally with the displayed image being customized to at least partially correspond to the actual subject vehicle.
  • Referring now to the drawings and the illustrative embodiments depicted therein, a vehicle 10 includes an imaging system or vision system 12 that includes at least one exterior facing imaging sensor or camera, such as a rearward facing imaging sensor or camera 14 a (and the system may optionally include multiple exterior facing imaging sensors or cameras, such as a forwardly facing camera 14 b at the front (or at the windshield and behind the windshield and viewing through the windshield) of the vehicle, and a sidewardly/rearwardly facing camera 14 c, 14 d at respective sides of the vehicle), which captures images exterior of the vehicle, with the camera having a lens for focusing images at or onto an imaging array or imaging plane or imager of the camera (FIG. 1 ). The vision system 12 includes a control or electronic control unit (ECU) or processor 18 that is operable to process image data captured by the cameras and may provide displayed images at a display device 16 for viewing by the driver of the vehicle (although shown in FIG. 1 as being part of or incorporated in or at an interior rearview mirror assembly 20 of the vehicle, the control and/or the display device may be disposed elsewhere at or in the vehicle). The data transfer or signal communication from the camera to the ECU may comprise any suitable data or communication link, such as a vehicle network bus or the like of the equipped vehicle.
  • Many major accidents occur due to driver mistake of not following the traffic lights. The system of the present invention determines, such as via image processing of image data captured by a forward facing or viewing camera of the vehicle, a traffic light status and, responsive to a determination (such as via processing of vehicle status) that the driver is not properly responding to the traffic light or signal, generates an alert to the driver.
  • For example, and with reference to FIG. 2 , the subject vehicle is equipped with a front imager operable to capture image data and an image processor that processes captured image data (via an image processing algorithm) and determines a traffic light status of a traffic light ahead of the vehicle and in the field of view of the imager. The adaptive traffic light response (ATLR) system (such as an algorithm running in the ECU of the vehicle) monitors the vehicle status (such as brake status, accelerator status, vehicle speed, and/or the like) and the driver response, and is operable to alert the driver if he or she is making a mistake. Optionally, if a determined time to collision (TTC) exceeds a threshold level, the system may apply the vehicle brakes to limit or avoid or mitigate the collision.
  • Optionally, if the traffic lights are equipped with a V2I (vehicle-to-infrastructure) communication module or the like, the traffic light may broadcast the traffic light status. This information may be received by the V2I communication module of the vehicle and thus, even in poor visibility conditions, the system can receive and process and use the traffic light information. The V2I information may be fused with the camera data to achieve enhanced reliability of the system.
  • Optionally, when the vehicle is equipped with a GPS system and GPS data maps, the adaptive traffic light response system may use the traffic light location information to fuse with the camera traffic light information to achieve enhanced performance. For example, if the GPS communication does not indicate that there is a traffic light ahead of the vehicle and there is no communication from a V2I communication module ahead of the vehicle, then the control may ignore (or weigh less) a determination of a traffic light condition as determined via image processing of image data captured by the forward facing camera.
  • The two or three different signals or determinations can be weighted differently depending on the driving conditions and region. For example, on a clear day when the image processor determines that a traffic light is ahead of the vehicle and is a red light, the system may generate an alert to the driver if the driver does not respond accordingly, even if there is no communication from a V2I communication module. Likewise, in poor visibility conditions, the system may respond primarily to the V2I communication module.
  • Thus, the control of the vision system may be responsive to a communicated traffic light status and a determined or imaged traffic light status, and may determine the traffic light status and generate an alert accordingly. If the two signals indicate the same traffic light status (for example, both indicate that the traffic light is green), then the system determines or confirms the traffic light status and generates an alert and/or applies the vehicle brakes accordingly. When the signals contradict (such as, for example, when the communication or communicated status indicates a green light and the image processor or imaged status indicates a red light), the system may generate an alert to the driver of the vehicle, but may not apply the brakes of the vehicle. This decision may also be dependent on visibility conditions, such that the control applies a greater weight or consideration to the V2I communicated traffic light status in poor visibility conditions or the like (such as fog or rain or snow conditions, such as may be determined via image processing of captured image data). Optionally, the control may generate an alert to the driver responsive to the imaged status being different than the communicated status. Responsive to the determination or confirmation of the traffic light status, the control may generate an alert and/or apply the vehicle brakes or may otherwise control a vehicle function.
  • For example, and such as shown in FIG. 3 , when the subject vehicle (equipped with the adaptive traffic light response system of the present invention) approaches an intersection with a red light and a vehicle in the right lane starts to make a right turn on red, the driver of the subject vehicle may be distracted by the moving vehicle at the right of the subject vehicle and may start moving the subject vehicle forward (incorrectly assuming that the traffic light has changed to green). The subject vehicle may be equipped with a collision mitigation braking system and the adaptive traffic light response system monitors the traffic light status and may (responsive to a determination that the traffic light is red) generate an alert to the driver and/or may automatically apply the brakes of the subject vehicle to prevent the driver from moving the vehicle forwardly into the intersection until the traffic light changes to green. The control may determine that the traffic light status is red via image processing and/or a V2I communication (which may also indicate if a green right turn arrow was also activated when the subject vehicle started moving forward).
  • As shown in FIG. 4 , when the subject vehicle approaches an intersection with a red light, the driver of the subject vehicle may be distracted and may not slow down or stop. The subject vehicle may be equipped with a collision mitigation braking system and the adaptive traffic light response system monitors the traffic light status and may (responsive to a determination that the traffic light is red) generate an alert to the driver before the vehicle approaches and enters the intersection. If the driver does not respond to the alert by applying the brakes, the system may automatically apply the brakes of the subject vehicle to prevent the driver from moving the vehicle forwardly into the intersection while the traffic light is determined to be red.
  • Thus, the subject or host vehicle is equipped with a front imager of forward viewing camera and an image processing algorithm that processes captured image data and determines the traffic light status. The ATLR algorithm running in the ECU will monitor the vehicle status and the driver response and alert the driver if he/she is making a mistake, and if the TTC exceeds a threshold level, the system will apply brake to limit or prevent or mitigate the collision. Optionally, if traffic lights are equipped with a V2I communication module, then the traffic light will broadcast the present status of the traffic light. This information may be received by the V2I communication module of the vehicle, and this information may be used to fuse with the camera captured image data to achieve higher reliability in poor visibility or poor weather conditions. When the vehicle is equipped with GPS data map, the ATLR module may use the traffic light location information to fuse with the camera traffic light information to achieve enhanced system performance. The present invention thus provides a system that may enhance an existing CMB system or feature and/or may be used in an autonomous vehicle.
  • Optionally, the vehicle may include a cooperative v2v-based (vehicle-to-vehicle-based) parking solution or system. Often, a driver of a vehicle, when trying to find a parking slot, may have difficulties with large parking lots as the user may need to keep driving in many rows to find a free parking slot. For example, and with reference to FIG. 5 , the subject vehicle and other vehicles at a parking lot may be equipped with a v2v communication link. When the driver of the subject vehicle is looking for an open parking slot, the subject vehicle will receive the information of all the available free slots at that parking lot via the v2v communication link.
  • Upon receipt of a communication (such as via a Designated Short Range Communication (DSRC) radio or v2v communication or the like) indicative of an available empty parking slot, the driver of the vehicle will select the nearest open slot and reserve the slot, with the reservation protocol preferably being cooperatively accomplished. For example, if there are multiple users that want to reserve an open slot at a same time, then no one will get the open slot reserved. The users may continue to transmit the reserve request after a random time interval and one of the users may eventually reserve the open slot. If no other users are looking to reserve the slot, then the user who first reserves the slot will get the slot reserved and may broadcast or transmit a communication indicative of the slot being reserved.
  • The determination of an open slot may be made via another vehicle leaving a parking slot (and transmitting the location information at that time) or via parked vehicles communicating information about an open parking slot at or near the parked vehicle or via a communication from another vehicle moving through the parking lot and determining one or more empty slots as it moves through the parking lot. For example, and as shown in FIG. 5 , when a previously parked vehicle is starting to leave its parking slot, that vehicle's communication system (such as via a DSRC radio or v2x (vehicle-to-infrastructure) link or the like) will start transmitting the location information about the parking slot that is being vacated and that is going to be open or available. Also, such as also shown in FIG. 5 , other vehicles that are looking for an open parking slot may determine open slots and may broadcast or transmit a communication regarding open slot information when the vehicle's system finds another open slot (such as by using a camera or vision system or an ultrasonic sensor system or the like) as that vehicle is driving through the parking lot. The vehicles looking for a parking slot, responsive to the communications regarding available slots, may also be able to reserve a slot that is open or available. All the vehicles equipped with the communication link and system of the present invention may forward a list of open slots as well as reserved slots to provide a further range for the communications so as to reach vehicles just entering the parking lot or the like that may be a substantial distance from an available slot.
  • The parking slot determining and reserving system of the present invention may provide enhanced determination and reservation of parking slots for vehicles equipped with a communication link or the like (such as a v2v communication link or v2x communication link or the like). The present invention provides enhanced parking coordination and may provide an automated and coordinated parking solution.
  • Optionally, the parking lot may also provide communications regarding parking slot availability. For example, and with reference to FIG. 6 , many light posts in a parking lot are equipped with a camera that has better visibility of the open slots as well as traffic moving towards filled slots where the parked vehicle is leaving or backing up from the slot. If the light posts were provided with a DSRC radio and the camera output were fed to the DSRC radio, the radio could then transmit or communicate or broadcast parking slot information, which may achieve a smart parking solution. The DSRC radio located in the light post may process the camera or video image data and may identify an open parking slot and generate a communication regarding the parking slot availability and/or update an existing list of available parking slots and may broad cast or transmit that communication to the vehicles at the parking lot that are looking for an empty and available parking slot.
  • When the driver of a DSRC equipped vehicle is looking for an open slot, the open slot list transmitted by the light post DSRC radio appears at the human machine interface or HMI (such as at a display screen or the like in the cabin of the equipped vehicle and viewable by the driver) and the driver may reserve an open slot using the HMI. This reservation request is transmitted to the light post DSRC radio (or a centralized processor that is linked to multiple parking lot system DSRC radios at light posts or other structures at the parking lot), and if the system has not received any other vehicle request for the same slot, the system reserves the slot and transmits the updated open slot and reserved slot list and confirms the reservation request. Once the reservation is complete, the vehicle driver that was looking for the open slot and selected the slot may park his or her vehicle at the reserved slot. Optionally, because the GPS location of the light post DSRC radio may be programmed at the installation time, the location of the open slot with respect to the light post location could be calculated in the light post DSRC radio and transmitted along with the open slot/reserve slot list.
  • The system may continuously update the parking slot availability list over time. For example, when a vehicle moves out of a parking slot, the DSRC radio at the parking lot detects this via image processing of captured image data and updates the open slot list accordingly. Optionally, the parking lot DSRC radio system may also be used as a cross traffic alert device for vehicles that are equipped with DSRC radios or communication links or the like with no cross traffic detection. For example, the system may detect two vehicles approaching an intersection of the parking lot or may detect a leaving vehicle backing or driving into a path of travel of another vehicle, and may generate an alert to the drivers of those vehicles to warn them of a potential collision. The communication systems and parking slot finding assist system may utilize aspects of the systems described in U.S. patent application Ser. No. 14/303,695, filed Jun. 13, 2014 and published Dec. 25, 2014 as U.S. Publication No. US-2014-0375476, which is hereby incorporated herein by reference in its entirety.
  • Optionally, the vehicle may include a cooperative lane sharing system that assists the driver in determining when a vehicle (such as a motorcycle or the like) is approaching from behind the equipped vehicle and in the same lane as the equipped vehicle but at a side of the lane so as to “share” the lane as traffic moves along the road. In many countries, such lane sharing is legal to improve the efficiency of the roadway, whereby vehicles or cars and motor cycles share the same lane (in a side-by-side manner) especially during the traffic jam condition. At present, the vehicle driver looks for a motor cycle approaching (such as at the left side of the vehicle) and makes the pathway available by manually driving closer to the right side of the lane. This coordination is sometimes difficult, because the driver of the subject vehicle may not be able to see the approaching motorcycle and may want to change lanes in front of the approaching motorcycle, which may result in a collision.
  • As shown in FIGS. 7 and 8 , the subject may be equipped with a DSRC radio along with a side camera or radar sensor or the like. A traffic jam assist (TJA) feature of the subject vehicle may use the information from the DSRC radio about an approaching motorcycle and the vehicle system may automatically make a path for the approaching motorcycle by aligning the vehicle to the right lane making (virtual splitting/sharing the lane). When the motorcycle appears in the visibility of the side camera/radar, the TJA algorithm may fuse the camera/radar and DSRC radio data to get better confidence of the target (approaching motor cycle). Once the motor cycle passes by, the vehicle system may align the vehicle back to the lane center.
  • When the motorcycle is travelling next to the subject vehicle in the blind spot and would like to cut-in to change lane, the subject vehicle system may determine such a maneuver (such as responsive to detecting a turn signal activation of the motorcycle or the like) and may slow down the subject vehicle and make way for the motor cycle lane change in a coordinated manner. Optionally, the motorcycle may also receive information or data from the vehicle and that information may alert the driver of the motorcycle if the car/vehicle ahead of the motorcycle is about to make a lane change, whereby the motorcycle driver can be prepared to stop of slow down. The TJA system and lane sharing system of the present invention may utilize aspects of the systems described in U.S. patent application Ser. No. 14/303,694, filed Jun. 13, 2014, now U.S. Pat. No. 9,260,095, which is hereby incorporated herein by reference in its entirety.
  • Optionally, a system of the present invention may function to enhance turning by vehicles through intersections, such as when the driver of a vehicle is making a left turn through an intersection. For example, in Canada it is common to have intersections with no left signal lights even with large roads with multiple lanes. The vehicles that need to make a left turn have to take a turn in a coordinated manner, and this may lead to accidents as the driver of the subject vehicle may not be able to see an approaching vehicle in another lane (because the driver's view may be blocked by another stopped vehicle in front of the subject vehicle and trying to make a left turn in the other direction) or often the driver may make mistakenly judge the speed of an approaching vehicle and try to make a left turn which may result in an accident.
  • This is a very common scenario for example, in Canada, even with multiple lanes. For example, and such as shown in FIG. 9 , the subject vehicle (SV) driver's view is blocked by a stopped vehicle (2), which is trying to turn left at the intersection. The SV driver needs to coordinate with the target vehicle (TV), which is approaching the intersection (possibly at high speed) and the SV driver needs to make a judgment to turn left, which may lead to an accident if the driver of the SV is not able to make the right decision at the right time. The system of the present invention may help the SV driver to make the right decision as well as automatically apply braking in the event of a dangerous situation (such as if the SV driver makes a poor decision to turn in front of a fast approaching target vehicle) to prevent accident.
  • In accordance with the present invention, and such as shown in FIGS. 9 and 10 , the SV and TV are equipped with a DSRC radio, and the SV should be able to receive the speed, acceleration, relative distance of the TV approaching the intersection. Using this information, the ADAS system of the present invention computes the Time To Collision (TTC) and alerts the SV driver even if the driver is not able to see the approaching vehicle (TV) ahead of and approaching the SV. If the determined or computed TTC exceeds a certain threshold, the ADAS system may activate automatic braking of the SV to limit movement of the SV into the path of the TV and thus to limit or substantially preclude a collision with the TV.
  • The camera or sensor may comprise any suitable camera or sensor. Optionally, the camera may comprise a “smart camera” that includes the imaging sensor array and associated circuitry and image processing circuitry and electrical connectors and the like as part of a camera module, such as by utilizing aspects of the vision systems described in International Publication Nos. WO 2013/081984 and/or WO 2013/081985, which are hereby incorporated herein by reference in their entireties.
  • The system includes an image processor operable to process image data captured by the camera or cameras, such as for detecting objects or other vehicles or pedestrians or the like in the field of view of one or more of the cameras. For example, the image processor may comprise an EYEQ2 or EYEQ3 image processing chip available from Mobileye Vision Technologies Ltd. of Jerusalem, Israel, and may include object detection software (such as the types described in U.S. Pat. Nos. 7,855,755; 7,720,580 and/or 7,038,577, which are hereby incorporated herein by reference in their entireties), and may analyze image data to detect vehicles and/or other objects. Responsive to such image processing, and when an object or other vehicle is detected, the system may generate an alert to the driver of the vehicle and/or may generate an overlay at the displayed image to highlight or enhance display of the detected object or vehicle, in order to enhance the driver's awareness of the detected object or vehicle or hazardous condition during a driving maneuver of the equipped vehicle.
  • The vehicle may include any type of sensor or sensors, such as imaging sensors or radar sensors or lidar sensors or ladar sensors or ultrasonic sensors or the like. The imaging sensor or camera may capture image data for image processing and may comprise any suitable camera or sensing device, such as, for example, a two dimensional array of a plurality of photosensor elements arranged in at least 640 columns and 480 rows (at least a 640×480 imaging array, such as a megapixel imaging array or the like), with a respective lens focusing images onto respective portions of the array. The photosensor array may comprise a plurality of photosensor elements arranged in a photosensor array having rows and columns. Preferably, the imaging array has at least 300,000 photosensor elements or pixels, more preferably at least 500,000 photosensor elements or pixels and more preferably at least 1 million photosensor elements or pixels. The imaging array may capture color image data, such as via spectral filtering at the array, such as via an RGB (red, green and blue) filter or via a red/red complement filter or such as via an RCC (red, clear, clear) filter or the like. The logic and control circuit of the imaging sensor may function in any known manner, and the image processing and algorithmic processing may comprise any suitable means for processing the images and/or image data.
  • For example, the vision system and/or processing and/or camera and/or circuitry may utilize aspects described in U.S. Pat. Nos. 7,005,974; 5,760,962; 5,877,897; 5,796,094; 5,949,331; 6,222,447; 6,302,545; 6,396,397; 6,498,620; 6,523,964; 6,611,202; 6,201,642; 6,690,268; 6,717,610; 6,757,109; 6,802,617; 6,806,452; 6,822,563; 6,891,563; 6,946,978; 7,859,565; 5,550,677; 5,670,935; 6,636,258; 7,145,519; 7,161,616; 7,230,640; 7,248,283; 7,295,229; 7,301,466; 7,592,928; 7,881,496; 7,720,580; 7,038,577; 6,882,287; 5,929,786 and/or 5,786,772, and/or International Publication Nos. WO 2011/028686; WO 2010/099416; WO 2012/061567; WO 2012/068331; WO 2012/075250; WO 2012/103193; WO 2012/0116043; WO 2012/0145313; WO 2012/0145501; WO 2012/145818; WO 2012/145822; WO 2012/158167; WO 2012/075250; WO 2012/0116043; WO 2012/0145501; WO 2012/154919; WO 2013/019707; WO 2013/016409; WO 2013/019795; WO 2013/067083; WO 2013/070539; WO 2013/043661; WO 2013/048994; WO 2013/063014, WO 2013/081984; WO 2013/081985; WO 2013/074604; WO 2013/086249; WO 2013/103548; WO 2013/109869; WO 2013/123161; WO 2013/126715; WO 2013/043661 and/or WO 2013/158592, which are all hereby incorporated herein by reference in their entireties. The system may communicate with other communication systems via any suitable means, such as by utilizing aspects of the systems described in International Publication Nos. WO/2010/144900; WO 2013/043661 and/or WO 2013/081985, and/or U.S. patent application Ser. No. 13/202,005, filed Aug. 17, 2011, now U.S. Pat. No. 9,126,525, which are hereby incorporated herein by reference in their entireties.
  • The imaging device and control and image processor and any associated illumination source, if applicable, may comprise any suitable components, and may utilize aspects of the cameras and vision systems described in U.S. Pat. Nos. 5,550,677; 5,877,897; 6,498,620; 5,670,935; 5,796,094; 6,396,397; 6,806,452; 6,690,268; 7,005,974; 7,937,667; 7,123,168; 7,004,606; 6,946,978; 7,038,577; 6,353,392; 6,320,176; 6,313,454 and/or 6,824,281, and/or International Publication Nos. WO 2010/099416; WO 2011/028686 and/or WO 2013/016409, and/or U.S. Pat. Publication No. US 2010-0020170, and/or U.S. patent application Ser. No. 13/534,657, filed Jun. 27, 2012 and published Jan. 3, 2013 as U.S. Publication No. US-2013-0002873, which are all hereby incorporated herein by reference in their entireties. The camera or cameras may comprise any suitable cameras or imaging sensors or camera modules, and may utilize aspects of the cameras or sensors described in U.S. Publication No. US-2009-0244361 and/or U.S. Pat. Nos. 8,542,451; 7,965,336 and/or 7,480,149, which are hereby incorporated herein by reference in their entireties. The imaging array sensor may comprise any suitable sensor, and may utilize various imaging sensors or imaging array sensors or cameras or the like, such as a CMOS imaging array sensor, a CCD sensor or other sensors or the like, such as the types described in U.S. Pat. Nos. 5,550,677; 5,670,935; 5,760,962; 5,715,093; 5,877,897; 6,922,292; 6,757,109; 6,717,610; 6,590,719; 6,201,642; 6,498,620; 5,796,094; 6,097,023; 6,320,176; 6,559,435; 6,831,261; 6,806,452; 6,396,397; 6,822,563; 6,946,978; 7,339,149; 7,038,577; 7,004,606; 7,720,580 and/or 7,965,336, and/or International Publication Nos. WO 2009/036176 and/or WO 2009/046268, which are all hereby incorporated herein by reference in their entireties.
  • The camera module and circuit chip or board and imaging sensor may be implemented and operated in connection with various vehicular vision-based systems, and/or may be operable utilizing the principles of such other vehicular systems, such as a vehicle headlamp control system, such as the type disclosed in U.S. Pat. Nos. 5,796,094; 6,097,023; 6,320,176; 6,559,435; 6,831,261; 7,004,606; 7,339,149 and/or 7,526,103, which are all hereby incorporated herein by reference in their entireties, a rain sensor, such as the types disclosed in commonly assigned U.S. Pat. Nos. 6,353,392; 6,313,454; 6,320,176 and/or 7,480,149, which are hereby incorporated herein by reference in their entireties, a vehicle vision system, such as a forwardly, sidewardly or rearwardly directed vehicle vision system utilizing principles disclosed in U.S. Pat. Nos. 5,550,677; 5,670,935; 5,760,962; 5,877,897; 5,949,331; 6,222,447; 6,302,545; 6,396,397; 6,498,620; 6,523,964; 6,611,202; 6,201,642; 6,690,268; 6,717,610; 6,757,109; 6,802,617; 6,806,452; 6,822,563; 6,891,563; 6,946,978 and/or 7,859,565, which are all hereby incorporated herein by reference in their entireties, a trailer hitching aid or tow check system, such as the type disclosed in U.S. Pat. No. 7,005,974, which is hereby incorporated herein by reference in its entirety, a reverse or sideward imaging system, such as for a lane change assistance system or lane departure warning system or for a blind spot or object detection system, such as imaging or detection systems of the types disclosed in U.S. Pat. Nos. 7,881,496; 7,720,580; 7,038,577; 5,929,786 and/or 5,786,772, which are hereby incorporated herein by reference in their entireties, a video device for internal cabin surveillance and/or video telephone function, such as disclosed in U.S. Pat. Nos. 5,760,962; 5,877,897; 6,690,268 and/or 7,370,983, and/or U.S. Publication No. US-2006-0050018, which are hereby incorporated herein by reference in their entireties, a traffic sign recognition system, a system for determining a distance to a leading or trailing vehicle or object, such as a system utilizing the principles disclosed in U.S. Pat. Nos. 6,396,397 and/or 7,123,168, which are hereby incorporated herein by reference in their entireties, and/or the like.
  • Optionally, the circuit board or chip may include circuitry for the imaging array sensor and or other electronic accessories or features, such as by utilizing compass-on-a-chip or EC driver-on-a-chip technology and aspects such as described in U.S. Pat. Nos. 7,255,451 and/or 7,480,149 and/or U.S. Publication No. US-2006-0061008 and/or U.S. patent application Ser. No. 12/578,732, filed Oct. 14, 2009, now U.S. Pat. No. 9,487,144, which are hereby incorporated herein by reference in their entireties.
  • Optionally, the vision system may include a display for displaying images captured by one or more of the imaging sensors for viewing by the driver of the vehicle while the driver is normally operating the vehicle. Optionally, for example, the vision system may include a video display device disposed at or in the interior rearview mirror assembly of the vehicle, such as by utilizing aspects of the video mirror display systems described in U.S. Pat. No. 6,690,268 and/or U.S. patent application Ser. No. 13/333,337, filed Dec. 21, 2011, now U.S. Pat. No. 9,264,672, which are hereby incorporated herein by reference in their entireties. The video mirror display may comprise any suitable devices and systems and optionally may utilize aspects of the compass display systems described in U.S. Pat. Nos. 7,370,983; 7,329,013; 7,308,341; 7,289,037; 7,249,860; 7,004,593; 4,546,551; 5,699,044; 4,953,305; 5,576,687; 5,632,092; 5,677,851; 5,708,410; 5,737,226; 5,802,727; 5,878,370; 6,087,953; 6,173,508; 6,222,460; 6,513,252 and/or 6,642,851, and/or European patent application, published Oct. 11, 2000 under Publication No. EP 0 1043566, and/or U.S. Publication No. US-2006-0061008, which are all hereby incorporated herein by reference in their entireties. Optionally, the video mirror display screen or device may be operable to display images captured by a rearward viewing camera of the vehicle during a reversing maneuver of the vehicle (such as responsive to the vehicle gear actuator being placed in a reverse gear position or the like) to assist the driver in backing up the vehicle, and optionally may be operable to display the compass heading or directional heading character or icon when the vehicle is not undertaking a reversing maneuver, such as when the vehicle is being driven in a forward direction along a road (such as by utilizing aspects of the display system described in International Publication No. WO 2012/051500, which is hereby incorporated herein by reference in its entirety).
  • Optionally, the vision system (utilizing the forward facing camera and a rearward facing camera and other cameras disposed at the vehicle with exterior fields of view) may be part of or may provide a display of a top-down view or birds-eye view system of the vehicle or a surround view at the vehicle, such as by utilizing aspects of the vision systems described International Publication Nos. WO 2010/099416; WO 2011/028686; WO 2012/075250; WO 2013/019795; WO 2012-075250; WO 2012/145822; WO 2013/081985; WO 2013/086249 and/or WO 2013/109869, and/or U.S. patent application Ser. No. 13/333,337, filed Dec. 21, 2011, now U.S. Pat. No. 9,264,672, which are hereby incorporated herein by reference in their entireties.
  • Optionally, a video mirror display may be disposed rearward of and behind the reflective element assembly and may comprise a display such as the types disclosed in U.S. Pat. Nos. 5,530,240; 6,329,925; 7,855,755; 7,626,749; 7,581,859; 7,446,650; 7,370,983; 7,338,177; 7,274,501; 7,255,451; 7,195,381; 7,184,190; 5,668,663; 5,724,187 and/or 6,690,268, and/or in U.S. Publication Nos. US-2006-0061008 and/or US-2006-0050018, which are all hereby incorporated herein by reference in their entireties. The display is viewable through the reflective element when the display is activated to display information. The display element may be any type of display element, such as a vacuum fluorescent (VF) display element, a light emitting diode (LED) display element, such as an organic light emitting diode (OLED) or an inorganic light emitting diode, an electroluminescent (EL) display element, a liquid crystal display (LCD) element, a video screen display element or backlit thin film transistor (TFT) display element or the like, and may be operable to display various information (as discrete characters, icons or the like, or in a multi-pixel manner) to the driver of the vehicle, such as passenger side inflatable restraint (PSIR) information, tire pressure status, and/or the like. The mirror assembly and/or display may utilize aspects described in U.S. Pat. Nos. 7,184,190; 7,255,451; 7,446,924 and/or 7,338,177, which are all hereby incorporated herein by reference in their entireties. The thicknesses and materials of the coatings on the substrates of the reflective element may be selected to provide a desired color or tint to the mirror reflective element, such as a blue colored reflector, such as is known in the art and such as described in U.S. Pat. Nos. 5,910,854; 6,420,036 and/or 7,274,501, which are hereby incorporated herein by reference in their entireties.
  • Optionally, the display or displays and any associated user inputs may be associated with various accessories or systems, such as, for example, a tire pressure monitoring system or a passenger air bag status or a garage door opening system or a telematics system or any other accessory or system of the mirror assembly or of the vehicle or of an accessory module or console of the vehicle, such as an accessory module or console of the types described in U.S. Pat. Nos. 7,289,037; 6,877,888; 6,824,281; 6,690,268; 6,672,744; 6,386,742 and 6,124,886, and/or U.S. Publication No. US-2006-0050018, which are hereby incorporated herein by reference in their entireties.
  • Changes and modifications in the specifically described embodiments can be carried out without departing from the principles of the invention, which is intended to be limited only by the scope of the appended claims, as interpreted according to the principles of patent law including the doctrine of equivalents.

Claims (20)

1. A vehicular parking system, the vehicular parking system comprising:
a vehicle-to-vehicle (V2V) communication system disposed at a first vehicle;
wherein the vehicular parking system, as the first vehicle navigates a parking facility in search of an available parking space, receives a parking space availability communication via the V2V communication system;
wherein the parking space availability communication originates from a second vehicle that is also navigating the parking facility, and wherein the parking space availability communication indicates multiple available parking spaces within the parking facility, and wherein the multiple available parking spaces are determined by the second vehicle as the second vehicle navigates the parking facility and passes available parking spaces; and
wherein the vehicular parking system, responsive to receiving the parking space availability communication, reserves one of the multiple available parking spaces of the parking space availability communication for the first vehicle.
2. The vehicular parking system of claim 1, wherein the vehicular parking system, responsive to receiving the parking space availability communication, forwards the parking space availability communication to a third vehicle that is different than the second vehicle.
3. The vehicular parking system of claim 1, wherein the V2V communication system comprises a designated short range communication (DSRC) radio.
4. The vehicular parking system of claim 1, wherein the vehicular parking system reserves the one of the multiple available parking spaces of the parking space availability communication responsive to selection of the one of the multiple available parking spaces of the parking space availability communication by a driver of the first vehicle.
5. The vehicular parking system of claim 1, wherein the vehicular parking system, responsive to reserving the one of the multiple available parking spaces of the parking space availability communication, communicates, using the V2V communication system, the reservation of the one of the multiple available parking spaces of the parking space availability communication.
6. The vehicular parking system of claim 5, wherein the vehicular parking system communicates the reservation of the one of the multiple available parking spaces of the parking space availability communication to a third vehicle that is different than the second vehicle.
7. The vehicular parking system of claim 1, wherein the vehicular parking system, when reserving the one of the multiple available parking spaces of the parking space availability communication, continuously transmits a reserve request after a random time interval until the one of the multiple available parking spaces of the parking space availability communication is reserved.
8. The vehicular parking system of claim 1, wherein the second vehicle determines the multiple available parking spaces responsive to processing of image data captured by a camera disposed at the second vehicle.
9. The vehicular parking system of claim 1, wherein the second vehicle determines the multiple available parking spaces responsive to processing of sensor data captured by an ultrasonic sensor disposed at the second vehicle.
10. The vehicular parking system of claim 1, wherein the parking space availability communication comprises a location of each available parking space of the multiple available parking spaces of the parking space availability communication.
11. A vehicular parking system, the vehicular parking system comprising:
a vehicle-to-vehicle (V2V) communication system disposed at a first vehicle;
wherein the vehicular parking system, as the first vehicle navigates a parking facility in search of an available parking space, receives a parking space availability communication via the V2V communication system;
wherein the parking space availability communication originates from a second vehicle that is also navigating the parking facility, and wherein the parking space availability communication indicates multiple available parking spaces within the parking facility, and wherein the multiple available parking spaces are determined by the second vehicle as the second vehicle navigates the parking facility and passes available parking spaces;
wherein the vehicular parking system, responsive to receiving the parking space availability communication, reserves one of the multiple available parking spaces of the parking space availability communication for the first vehicle;
wherein the vehicular parking system, responsive to receiving the parking space availability communication, using the V2V communication system, forwards the parking space availability communication to a third vehicle that is different than the second vehicle; and
wherein the vehicular parking system, using the V2V communication system, communicates the reservation of the one of the multiple available parking spaces of the parking space availability communication to the third vehicle.
12. The vehicular parking system of claim 11, wherein the V2V communication system comprises a designated short range communication (DSRC) radio.
13. The vehicular parking system of claim 11, wherein the vehicular parking system reserves the one of the multiple available parking spaces of the parking space availability communication responsive to selection of the one of the multiple available parking spaces of the parking space availability communication by a driver of the first vehicle.
14. The vehicular parking system of claim 11, wherein the vehicular parking system, when reserving the one of the multiple available parking spaces of the parking space availability communication, continuously transmits a reserve request after a random time interval until the one of the multiple available parking spaces of the parking space availability communication is reserved.
15. The vehicular parking system of claim 11, wherein the second vehicle determines the multiple available parking spaces responsive to processing of image data captured by a camera disposed at the second vehicle.
16. The vehicular parking system of claim 11, wherein the second vehicle determines the multiple available parking spaces responsive to processing of sensor data captured by an ultrasonic sensor disposed at the second vehicle.
17. A vehicular parking system, the vehicular parking system comprising:
a vehicle-to-vehicle (V2V) communication system disposed at a first vehicle;
wherein the vehicular parking system, as the first vehicle navigates a parking facility in search of an available parking space, receives a parking space availability communication via the V2V communication system;
wherein the parking space availability communication originates from a second vehicle that is also navigating the parking facility, and wherein the parking space availability communication indicates multiple available parking spaces within the parking facility, and wherein the parking space availability communication comprises a location of each available parking space of the multiple available parking spaces of the parking space availability communication, and wherein the multiple available parking spaces are determined by the second vehicle as the second vehicle navigates the parking facility and passes available parking spaces, and wherein the second vehicle determines the multiple available parking spaces responsive to processing of image data captured by a camera disposed at the second vehicle; and
wherein the vehicular parking system, responsive to receiving the parking space availability communication, reserves one of the multiple available parking spaces of the parking space availability communication for the first vehicle.
18. The vehicular parking system of claim 17, wherein the vehicular parking system, responsive to receiving the parking space availability communication, forwards the parking space availability communication to a third vehicle that is different than the second vehicle.
19. The vehicular parking system of claim 17, wherein the V2V communication system comprises a designated short range communication (DSRC) radio.
20. The vehicular parking system of claim 17, wherein the vehicular parking system reserves the one of the multiple available parking spaces of the parking space availability communication responsive to selection of the one of the multiple available parking spaces of the parking space availability communication by a driver of the first vehicle.
US18/065,746 2013-10-25 2022-12-14 Vehicular parking system Pending US20230113427A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/065,746 US20230113427A1 (en) 2013-10-25 2022-12-14 Vehicular parking system

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US201361895610P 2013-10-25 2013-10-25
US201461947053P 2014-03-03 2014-03-03
US201462001795P 2014-05-22 2014-05-22
US14/519,469 US9881220B2 (en) 2013-10-25 2014-10-21 Vehicle vision system utilizing communication system
US15/878,727 US10235581B2 (en) 2013-10-25 2018-01-24 Vehicle vision system with traffic light status determination
US16/356,003 US20190213428A1 (en) 2013-10-25 2019-03-18 Method for providing vehicular parking assistance
US18/065,746 US20230113427A1 (en) 2013-10-25 2022-12-14 Vehicular parking system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US16/356,003 Continuation US20190213428A1 (en) 2013-10-25 2019-03-18 Method for providing vehicular parking assistance

Publications (1)

Publication Number Publication Date
US20230113427A1 true US20230113427A1 (en) 2023-04-13

Family

ID=53006757

Family Applications (4)

Application Number Title Priority Date Filing Date
US14/519,469 Active 2036-07-25 US9881220B2 (en) 2013-10-25 2014-10-21 Vehicle vision system utilizing communication system
US15/878,727 Active US10235581B2 (en) 2013-10-25 2018-01-24 Vehicle vision system with traffic light status determination
US16/356,003 Abandoned US20190213428A1 (en) 2013-10-25 2019-03-18 Method for providing vehicular parking assistance
US18/065,746 Pending US20230113427A1 (en) 2013-10-25 2022-12-14 Vehicular parking system

Family Applications Before (3)

Application Number Title Priority Date Filing Date
US14/519,469 Active 2036-07-25 US9881220B2 (en) 2013-10-25 2014-10-21 Vehicle vision system utilizing communication system
US15/878,727 Active US10235581B2 (en) 2013-10-25 2018-01-24 Vehicle vision system with traffic light status determination
US16/356,003 Abandoned US20190213428A1 (en) 2013-10-25 2019-03-18 Method for providing vehicular parking assistance

Country Status (1)

Country Link
US (4) US9881220B2 (en)

Families Citing this family (135)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9068844B2 (en) 2010-01-08 2015-06-30 Dp Technologies, Inc. Method and apparatus for an integrated personal navigation system
US10609335B2 (en) 2012-03-23 2020-03-31 Magna Electronics Inc. Vehicle vision system with accelerated object confirmation
US10043388B1 (en) * 2013-05-29 2018-08-07 Dp Technologies, Inc. Parking system
US9881220B2 (en) 2013-10-25 2018-01-30 Magna Electronics Inc. Vehicle vision system utilizing communication system
US9688199B2 (en) 2014-03-04 2017-06-27 Magna Electronics Inc. Vehicle alert system utilizing communication system
EP2922041B1 (en) * 2014-03-19 2016-05-18 Deutsche Telekom AG System for constructing stopped vehicle-infrastructure communication network
US20150316387A1 (en) * 2014-04-30 2015-11-05 Toyota Motor Engineering & Manufacturing North America, Inc. Detailed map format for autonomous driving
US20150316386A1 (en) 2014-04-30 2015-11-05 Toyota Motor Engineering & Manufacturing North America, Inc. Detailed map format for autonomous driving
US10389016B2 (en) 2014-05-12 2019-08-20 Magna Electronics Inc. Vehicle communication system with heated antenna
US10328932B2 (en) 2014-06-02 2019-06-25 Magna Electronics Inc. Parking assist system with annotated map generation
US9729636B2 (en) 2014-08-01 2017-08-08 Magna Electronics Inc. Smart road system for vehicles
US10043091B2 (en) 2014-12-05 2018-08-07 Magna Electronics Inc. Vehicle vision system with retroreflector pattern recognition
US9740945B2 (en) 2015-01-14 2017-08-22 Magna Electronics Inc. Driver assistance system for vehicle
US10032369B2 (en) 2015-01-15 2018-07-24 Magna Electronics Inc. Vehicle vision system with traffic monitoring and alert
US20180012492A1 (en) 2015-02-06 2018-01-11 Delphi Technologies, Inc. Method of automatically controlling an autonomous vehicle based on electronic messages from roadside infrastructure or other vehicles
US20160231746A1 (en) * 2015-02-06 2016-08-11 Delphi Technologies, Inc. System And Method To Operate An Automated Vehicle
US10678261B2 (en) 2015-02-06 2020-06-09 Aptiv Technologies Limited Method and apparatus for controlling an autonomous vehicle
WO2016150732A1 (en) * 2015-03-23 2016-09-29 Philips Lighting Holding B.V. Luminaire parking guidance
US9555736B2 (en) 2015-04-03 2017-01-31 Magna Electronics Inc. Vehicle headlamp control using sensing and communication systems
WO2016178190A1 (en) 2015-05-06 2016-11-10 Magna Mirrors Of America, Inc. Vehicle vision system with blind zone display and alert system
US10819943B2 (en) 2015-05-07 2020-10-27 Magna Electronics Inc. Vehicle vision system with incident recording function
US10419723B2 (en) 2015-06-25 2019-09-17 Magna Electronics Inc. Vehicle communication system with forward viewing camera and integrated antenna
US10115314B2 (en) 2015-07-08 2018-10-30 Magna Electronics Inc. Lane change system for platoon of vehicles
US10214206B2 (en) 2015-07-13 2019-02-26 Magna Electronics Inc. Parking assist system for vehicle
US10078789B2 (en) 2015-07-17 2018-09-18 Magna Electronics Inc. Vehicle parking assist system with vision-based parking space detection
US20170025008A1 (en) * 2015-07-20 2017-01-26 Dura Operating, Llc Communication system and method for communicating the availability of a parking space
US10331956B2 (en) 2015-09-23 2019-06-25 Magna Electronics Inc. Vehicle vision system with detection enhancement using light control
EP3663168B1 (en) * 2015-10-22 2023-01-04 Nissan Motor Co., Ltd. Parking support method and parking support device
US11488397B2 (en) 2015-11-02 2022-11-01 Magna Electronics Inc. Vehicle customization system
US9881501B2 (en) 2015-11-02 2018-01-30 Magna Electronics Inc. Driver assistance system with traffic light alert
JP6728634B2 (en) * 2015-11-04 2020-07-22 株式会社リコー Detecting device, detecting method and program
US11027654B2 (en) 2015-12-04 2021-06-08 Magna Electronics Inc. Vehicle vision system with compressed video transfer via DSRC link
US10393872B2 (en) 2015-12-08 2019-08-27 Garmin Switzerland Gmbh Camera augmented bicycle radar sensor system
US10430674B2 (en) 2015-12-14 2019-10-01 Magna Electronics Inc. Vehicle vision system using reflective vehicle tags
US12123950B2 (en) 2016-02-15 2024-10-22 Red Creamery, LLC Hybrid LADAR with co-planar scanning and imaging field-of-view
US10160437B2 (en) 2016-02-29 2018-12-25 Magna Electronics Inc. Vehicle control system with reverse assist
US20170253237A1 (en) 2016-03-02 2017-09-07 Magna Electronics Inc. Vehicle vision system with automatic parking function
US10863335B2 (en) 2016-03-04 2020-12-08 Magna Electronics Inc. Vehicle trailer angle detection system using short range communication devices
US10332401B2 (en) * 2016-03-06 2019-06-25 Foresight Automotive Ltd. Running vehicle alerting system and method
US10703204B2 (en) 2016-03-23 2020-07-07 Magna Electronics Inc. Vehicle driver monitoring system
US10685247B2 (en) * 2016-03-29 2020-06-16 Aptiv Technologies Limited Infrastructure-device status-verification system for automated vehicles
US10574305B2 (en) 2016-05-11 2020-02-25 Magna Electronics Inc. Vehicle secured communication system
US10650304B2 (en) 2016-05-11 2020-05-12 Magna Electronics Inc. Vehicle driving assist system with enhanced data processing
US10040481B2 (en) 2016-05-17 2018-08-07 Magna Electronics Inc. Vehicle trailer angle detection system using ultrasonic sensors
US10423971B2 (en) * 2016-05-19 2019-09-24 Toyota Jidosha Kabushiki Kaisha Roadside service estimates based on wireless vehicle data
US10190560B2 (en) 2016-06-03 2019-01-29 Magna Electronics Inc. Camera based vehicle start-stop feature
US10147246B2 (en) 2016-06-09 2018-12-04 Magna Electronics Inc. Wheel bolt torque monitoring system for vehicle
US10309792B2 (en) 2016-06-14 2019-06-04 nuTonomy Inc. Route planning for an autonomous vehicle
US11092446B2 (en) 2016-06-14 2021-08-17 Motional Ad Llc Route planning for an autonomous vehicle
US10126136B2 (en) 2016-06-14 2018-11-13 nuTonomy Inc. Route planning for an autonomous vehicle
US10768298B2 (en) * 2016-06-14 2020-09-08 Magna Electronics Inc. Vehicle sensing system with 360 degree near range sensing
US11454719B2 (en) 2016-07-08 2022-09-27 Magna Electronics Inc. 2D MIMO radar system for vehicle
US10708227B2 (en) 2016-07-19 2020-07-07 Magna Electronics Inc. Scalable secure gateway for vehicle
US10486742B2 (en) 2016-08-01 2019-11-26 Magna Electronics Inc. Parking assist system using light projections
US10852418B2 (en) 2016-08-24 2020-12-01 Magna Electronics Inc. Vehicle sensor with integrated radar and image sensors
US10677894B2 (en) 2016-09-06 2020-06-09 Magna Electronics Inc. Vehicle sensing system for classification of vehicle model
US11068918B2 (en) 2016-09-22 2021-07-20 Magna Electronics Inc. Vehicle communication system
US10496090B2 (en) 2016-09-29 2019-12-03 Magna Electronics Inc. Handover procedure for driver of autonomous vehicle
KR102581779B1 (en) 2016-10-11 2023-09-25 주식회사 에이치엘클레무브 Apparatus and method for prevention of collision at crossroads
US10681513B2 (en) 2016-10-20 2020-06-09 nuTonomy Inc. Identifying a stopping place for an autonomous vehicle
US10857994B2 (en) 2016-10-20 2020-12-08 Motional Ad Llc Identifying a stopping place for an autonomous vehicle
US10473470B2 (en) 2016-10-20 2019-11-12 nuTonomy Inc. Identifying a stopping place for an autonomous vehicle
US10331129B2 (en) 2016-10-20 2019-06-25 nuTonomy Inc. Identifying a stopping place for an autonomous vehicle
US10562624B2 (en) 2016-11-18 2020-02-18 Magna Mirrors Of America, Inc. Vehicle vision system using aerial camera
US10347129B2 (en) 2016-12-07 2019-07-09 Magna Electronics Inc. Vehicle system with truck turn alert
US10462354B2 (en) 2016-12-09 2019-10-29 Magna Electronics Inc. Vehicle control system utilizing multi-camera module
US10276043B2 (en) * 2016-12-22 2019-04-30 GM Global Technology Operations LLC Vehicle system using vehicle-to-infrastructure and sensor information
DE102017100529A1 (en) * 2017-01-12 2018-07-12 Connaught Electronics Ltd. Method for operating a camera depending on a current state of a surrounding area of the camera, camera and motor vehicle
US10703341B2 (en) 2017-02-03 2020-07-07 Magna Electronics Inc. Vehicle sensor housing with theft protection
US10607094B2 (en) 2017-02-06 2020-03-31 Magna Electronics Inc. Vehicle vision system with traffic sign recognition
US11536829B2 (en) 2017-02-16 2022-12-27 Magna Electronics Inc. Vehicle radar system with radar embedded into radome
US10782388B2 (en) 2017-02-16 2020-09-22 Magna Electronics Inc. Vehicle radar system with copper PCB
US10380438B2 (en) * 2017-03-06 2019-08-13 Honda Motor Co., Ltd. System and method for vehicle control based on red color and green color detection
US10614326B2 (en) * 2017-03-06 2020-04-07 Honda Motor Co., Ltd. System and method for vehicle control based on object and color detection
US10300894B2 (en) * 2017-03-13 2019-05-28 Denso International America, Inc. Auto-braking system for vehicle and method for auto-braking vehicle
US10504367B2 (en) * 2017-04-24 2019-12-10 Ford Global Technologies, Llc Navigation assisted collision avoidance at intersections
US10870426B2 (en) 2017-06-22 2020-12-22 Magna Electronics Inc. Driving assistance system with rear collision mitigation
EP3646305A4 (en) 2017-06-27 2021-03-17 American Traffic Solutions, Inc. Vehicle location tracking systems and methods
US10525903B2 (en) * 2017-06-30 2020-01-07 Aptiv Technologies Limited Moving traffic-light detection system for an automated vehicle
CN110914109B (en) * 2017-07-21 2023-03-10 三菱电机株式会社 Illumination system and illumination method
US10883846B2 (en) 2017-08-23 2021-01-05 Magna Electronics Inc. Vehicle communication system with area classifier
US11453393B2 (en) 2017-10-09 2022-09-27 Magna Electronics Inc. Autonomous vehicle with path planning system
US20190122447A1 (en) * 2017-10-24 2019-04-25 Asad Ullah SHAH Methods and systems for payments of services used by vehicles based on time, distance and place
US11486968B2 (en) 2017-11-15 2022-11-01 Magna Electronics Inc. Vehicle Lidar sensing system with sensor module
US10682966B2 (en) 2017-11-16 2020-06-16 Magna Electronics Inc. Vehicle light/display control system using camera
US10713944B2 (en) 2017-12-26 2020-07-14 Continental Automotive Systems, Inc. Vehicle-to-vehicle dynamic parking finder assistant
US11417107B2 (en) 2018-02-19 2022-08-16 Magna Electronics Inc. Stationary vision system at vehicle roadway
US11047977B2 (en) 2018-02-20 2021-06-29 Magna Electronics Inc. Vehicle radar system with solution for ADC saturation
US11072284B2 (en) 2018-03-28 2021-07-27 Magna Electronics Inc. Vehicular vision system using wireless camera
US10640042B2 (en) 2018-03-29 2020-05-05 Magna Electronics Inc. Surround view vision system that utilizes trailer camera
JP6911810B2 (en) * 2018-05-16 2021-07-28 トヨタ自動車株式会社 Out-of-vehicle information sharing system, out-of-vehicle information sharing device and out-of-vehicle information sharing method
US11808876B2 (en) 2018-10-25 2023-11-07 Magna Electronics Inc. Vehicular radar system with vehicle to infrastructure communication
US10636305B1 (en) 2018-11-16 2020-04-28 Toyota Motor North America, Inc. Systems and methods for determining parking availability on floors of multi-story units
US11454720B2 (en) 2018-11-28 2022-09-27 Magna Electronics Inc. Vehicle radar system with enhanced wave guide antenna system
US10832575B2 (en) * 2018-12-04 2020-11-10 Toyota Motor North America, Inc. Network connected parking system
US11488399B2 (en) 2018-12-19 2022-11-01 Magna Electronics Inc. Vehicle driver monitoring system for determining driver workload
US11332124B2 (en) 2019-01-10 2022-05-17 Magna Electronics Inc. Vehicular control system
US11747806B1 (en) 2019-02-05 2023-09-05 AV-Connect, Inc. Systems for and method of connecting, controlling, and coordinating movements of autonomous vehicles and other actors
US11064165B2 (en) 2019-02-05 2021-07-13 Magna Electronics Inc. Wireless trailer camera system with tracking feature
US12044794B2 (en) 2019-02-26 2024-07-23 Magna Electronics Inc. Vehicular radar system with automatic sensor alignment
US11333739B2 (en) 2019-02-26 2022-05-17 Magna Electronics Inc. Vehicular radar system with automatic sensor alignment
CN110103955B (en) * 2019-04-28 2021-04-23 浙江吉利控股集团有限公司 Vehicle early warning method and device and electronic equipment
US11267393B2 (en) 2019-05-16 2022-03-08 Magna Electronics Inc. Vehicular alert system for alerting drivers of other vehicles responsive to a change in driving conditions
WO2020243484A1 (en) * 2019-05-29 2020-12-03 Mobileye Vision Technologies Ltd. Systems and methods for vehicle navigation
US10896609B2 (en) * 2019-06-17 2021-01-19 Toyota Motor North America, Inc. Cooperative parking space search by a vehicular micro cloud
US11909238B1 (en) 2019-07-23 2024-02-20 BlueOwl, LLC Environment-integrated smart ring charger
US11853030B2 (en) 2019-07-23 2023-12-26 BlueOwl, LLC Soft smart ring and method of manufacture
US12126181B2 (en) 2019-07-23 2024-10-22 Quanata, Llc Energy harvesting circuits for a smart ring
US11537203B2 (en) 2019-07-23 2022-12-27 BlueOwl, LLC Projection system for smart ring visual output
US11551644B1 (en) * 2019-07-23 2023-01-10 BlueOwl, LLC Electronic ink display for smart ring
US12067093B2 (en) 2019-07-23 2024-08-20 Quanata, Llc Biometric authentication using a smart ring
US11984742B2 (en) 2019-07-23 2024-05-14 BlueOwl, LLC Smart ring power and charging
US11594128B2 (en) 2019-07-23 2023-02-28 BlueOwl, LLC Non-visual outputs for a smart ring
US11479258B1 (en) 2019-07-23 2022-10-25 BlueOwl, LLC Smart ring system for monitoring UVB exposure levels and using machine learning technique to predict high risk driving behavior
US11949673B1 (en) 2019-07-23 2024-04-02 BlueOwl, LLC Gesture authentication using a smart ring
US11462107B1 (en) 2019-07-23 2022-10-04 BlueOwl, LLC Light emitting diodes and diode arrays for smart ring visual output
US12077193B1 (en) 2019-07-23 2024-09-03 Quanata, Llc Smart ring system for monitoring sleep patterns and using machine learning techniques to predict high risk driving behavior
US11637511B2 (en) 2019-07-23 2023-04-25 BlueOwl, LLC Harvesting energy for a smart ring via piezoelectric charging
US11556000B1 (en) 2019-08-22 2023-01-17 Red Creamery Llc Distally-actuated scanning mirror
US12036990B2 (en) 2019-11-22 2024-07-16 Magna Electronics Inc. Vehicular control system with controlled vehicle stopping and starting at intersection
US11081004B1 (en) * 2020-01-31 2021-08-03 Toyota Motor Engineering & Manufacturing North America, Inc. Hierarchical parking assistance by connected vehicles
US11854212B2 (en) * 2020-02-26 2023-12-26 Motional Ad Llc Traffic light detection system for vehicle
US11560143B2 (en) 2020-05-26 2023-01-24 Magna Electronics Inc. Vehicular autonomous parking system using short range communication protocols
US11210949B1 (en) 2020-06-08 2021-12-28 Toyota Motor Engineering & Manufacturing North America, Inc. Meter time notification of other vehicles to driver
US11823395B2 (en) 2020-07-02 2023-11-21 Magna Electronics Inc. Vehicular vision system with road contour detection feature
EP3968305A1 (en) * 2020-09-15 2022-03-16 Volkswagen Aktiengesellschaft Method, computer program and apparatus for controlling operation of a vehicle equipped with an automated driving function
CN112053578A (en) * 2020-09-15 2020-12-08 福建振杭机器人装备制造有限责任公司 Traffic light early warning method based on machine vision technology and detection device thereof
US11749105B2 (en) 2020-10-01 2023-09-05 Magna Electronics Inc. Vehicular communication system with turn signal identification
US12106583B2 (en) 2020-10-02 2024-10-01 Magna Electronics Inc. Vehicular lane marker determination system with lane marker estimation based in part on a LIDAR sensing system
US12030501B2 (en) 2020-10-02 2024-07-09 Magna Electronics Inc. Vehicular control system with enhanced vehicle passing maneuvering
US12060077B2 (en) 2021-01-12 2024-08-13 Continental Automotive Systems, Inc. Apparatus and method for confidence evaluation for messages received from traffic control devices
JP2022122534A (en) * 2021-02-10 2022-08-23 本田技研工業株式会社 Vehicle, vehicle control method, and computer program
WO2022246412A1 (en) * 2021-05-21 2022-11-24 Magna Electronics Inc. Efficient detection of structure and status of traffic lights
US12007476B2 (en) 2021-09-13 2024-06-11 Magna Electronics Inc. Method for detecting objects via a vehicular sensing system
US20230339394A1 (en) 2022-04-22 2023-10-26 Velo.Ai, Inc Artificially intelligent mobility safety system

Family Cites Families (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5670935A (en) 1993-02-26 1997-09-23 Donnelly Corporation Rearview vision system for vehicle including panoramic view
US6822563B2 (en) 1997-09-22 2004-11-23 Donnelly Corporation Vehicle imaging system with accessory control
US6396397B1 (en) 1993-02-26 2002-05-28 Donnelly Corporation Vehicle imaging system with stereo imaging
US6498620B2 (en) 1993-02-26 2002-12-24 Donnelly Corporation Vision system for a vehicle including an image capture device and a display system having a long focal length
US5550677A (en) 1993-02-26 1996-08-27 Donnelly Corporation Automatic rearview mirror system using a photosensor array
US5877897A (en) 1993-02-26 1999-03-02 Donnelly Corporation Automatic rearview mirror, vehicle lighting control and vehicle interior monitoring system using a photosensor array
US5796094A (en) 1993-02-26 1998-08-18 Donnelly Corporation Vehicle headlight control using imaging sensor
US6891563B2 (en) 1996-05-22 2005-05-10 Donnelly Corporation Vehicular vision system
US6405132B1 (en) 1997-10-22 2002-06-11 Intelligent Technologies International, Inc. Accident avoidance system
US5786772A (en) 1996-03-22 1998-07-28 Donnelly Corporation Vehicle blind spot detection display system
US7655894B2 (en) * 1996-03-25 2010-02-02 Donnelly Corporation Vehicular image sensing system
US6313454B1 (en) 1999-07-02 2001-11-06 Donnelly Corporation Rain sensor
US6690268B2 (en) 2000-03-02 2004-02-10 Donnelly Corporation Video mirror systems incorporating an accessory module
US6477464B2 (en) 2000-03-09 2002-11-05 Donnelly Corporation Complete mirror-based global-positioning system (GPS) navigation solution
US6693517B2 (en) 2000-04-21 2004-02-17 Donnelly Corporation Vehicle mirror assembly communicating wirelessly with vehicle accessories and occupants
US6201642B1 (en) 1999-07-27 2001-03-13 Donnelly Corporation Vehicular vision system with a wide angle lens including a diffractive element
CA2369648A1 (en) 1999-04-16 2000-10-26 Matsushita Electric Industrial Co., Limited Image processing device and monitoring system
US7167796B2 (en) * 2000-03-09 2007-01-23 Donnelly Corporation Vehicle navigation system for use with a telematics system
JP3773433B2 (en) 2000-10-11 2006-05-10 シャープ株式会社 Ambient monitoring device for moving objects
DE20105340U1 (en) 2001-03-26 2001-07-26 Daimler Chrysler Ag Dimensional environment detection
US6882287B2 (en) 2001-07-31 2005-04-19 Donnelly Corporation Automotive lane change aid
US6636258B2 (en) 2001-10-19 2003-10-21 Ford Global Technologies, Llc 360° vision system for a vehicle
JP3607994B2 (en) 2001-11-12 2005-01-05 トヨタ自動車株式会社 Vehicle periphery monitoring device
JP4227743B2 (en) 2001-11-19 2009-02-18 株式会社デンソー Anti-theft system
US7145519B2 (en) 2002-04-18 2006-12-05 Nissan Motor Co., Ltd. Image display apparatus, method, and program for automotive vehicle
US7005974B2 (en) 2002-04-19 2006-02-28 Donnelly Corporation Vehicle imaging system
US6946978B2 (en) 2002-04-25 2005-09-20 Donnelly Corporation Imaging system for vehicle
WO2003093857A2 (en) 2002-05-03 2003-11-13 Donnelly Corporation Object detection system for vehicle
US7528704B2 (en) 2003-02-17 2009-05-05 Siemens Aktiengesellschaft Method and device for preventing injuries and material damage caused by motor vehicle doors
JP3948431B2 (en) 2003-04-09 2007-07-25 トヨタ自動車株式会社 Vehicle periphery monitoring device
US20040225434A1 (en) * 2003-05-07 2004-11-11 Gotfried Bradley L. Vehicle navigation and safety systems
US6975246B1 (en) 2003-05-13 2005-12-13 Itt Manufacturing Enterprises, Inc. Collision avoidance using limited range gated video
US7881496B2 (en) 2004-09-30 2011-02-01 Donnelly Corporation Vision system for vehicle
US7720580B2 (en) 2004-12-23 2010-05-18 Donnelly Corporation Object detection system for vehicle
JP2006341641A (en) 2005-06-07 2006-12-21 Nissan Motor Co Ltd Image display apparatus and image display method
CN101535087B (en) 2005-11-01 2013-05-15 唐纳利公司 Interior rearview mirror with display
US7466227B2 (en) * 2006-03-17 2008-12-16 Alcatel-Lucent Usa Inc. Location based vehicle traffic signal alert system
US10083607B2 (en) * 2007-09-07 2018-09-25 Green Driver, Inc. Driver safety enhancement using intelligent traffic signals and GPS
US20110032119A1 (en) 2008-01-31 2011-02-10 Continental Teves Ag & Co. Ohg Driver assistance program
US8751154B2 (en) * 2008-04-24 2014-06-10 GM Global Technology Operations LLC Enhanced clear path detection in the presence of traffic infrastructure indicator
KR101502012B1 (en) 2008-10-06 2015-03-12 엘지전자 주식회사 Telematics terminal and method for notifying emrergency condition using the same
US9126525B2 (en) 2009-02-27 2015-09-08 Magna Electronics Inc. Alert system for vehicle
US9036026B2 (en) 2009-06-12 2015-05-19 Magna Electronics Scalable integrated electronic control unit for vehicle
US8773281B2 (en) * 2009-09-15 2014-07-08 Ohanes D. Ghazarian Intersection vehicle collision avoidance system
MY156130A (en) * 2010-03-30 2016-01-15 Ns Solutions Corp Information processing apparatus, system, vacant space guidance method and program
KR20120018005A (en) * 2010-08-20 2012-02-29 한국전자통신연구원 Method and apparatus for providing parking managemnt service, client device and server for parking management service
DE102011006347B4 (en) * 2011-03-29 2023-02-09 Bayerische Motoren Werke Aktiengesellschaft Process for outputting graphical driving instructions
US9146898B2 (en) 2011-10-27 2015-09-29 Magna Electronics Inc. Driver assist system with algorithm switching
WO2013084225A1 (en) * 2011-12-05 2013-06-13 Brightway Vision Ltd. Smart traffic sign system and method
DE102011089496A1 (en) * 2011-12-21 2013-06-27 Continental Automotive Gmbh System and method for transmission of transmissions
US9269263B2 (en) 2012-02-24 2016-02-23 Magna Electronics Inc. Vehicle top clearance alert system
US20130278441A1 (en) * 2012-04-24 2013-10-24 Zetta Research and Development, LLC - ForC Series Vehicle proxying
US9117371B2 (en) 2012-06-22 2015-08-25 Harman International Industries, Inc. Mobile autonomous surveillance
MX341453B (en) * 2012-07-18 2016-08-19 Jorge Antonio Triana Alvarado Electronic system for authorising and searching for parking spaces.
US9656690B2 (en) * 2012-10-30 2017-05-23 Robert Bosch Gmbh System and method for using gestures in autonomous parking
US20140218529A1 (en) 2013-02-04 2014-08-07 Magna Electronics Inc. Vehicle data recording system
US9092986B2 (en) * 2013-02-04 2015-07-28 Magna Electronics Inc. Vehicular vision system
US9153128B2 (en) * 2013-02-20 2015-10-06 Holzmac Llc Traffic signal device for driver/pedestrian/cyclist advisory message screen at signalized intersections
US9035799B2 (en) * 2013-03-14 2015-05-19 Verizon Patent And Licensing Inc. Providing parking availability information and parking alerts
US9260095B2 (en) 2013-06-19 2016-02-16 Magna Electronics Inc. Vehicle vision system with collision mitigation
US20140375476A1 (en) 2013-06-24 2014-12-25 Magna Electronics Inc. Vehicle alert system
US9330570B2 (en) * 2013-07-05 2016-05-03 Xerox Corporation Image assisted parking space availability searching and reservation method and system
US9881220B2 (en) 2013-10-25 2018-01-30 Magna Electronics Inc. Vehicle vision system utilizing communication system
US9499139B2 (en) 2013-12-05 2016-11-22 Magna Electronics Inc. Vehicle monitoring system
US9688199B2 (en) 2014-03-04 2017-06-27 Magna Electronics Inc. Vehicle alert system utilizing communication system
US20150352953A1 (en) 2014-06-04 2015-12-10 Magna Electronics Inc. Vehicle control system with mobile device interface

Also Published As

Publication number Publication date
US20150124096A1 (en) 2015-05-07
US10235581B2 (en) 2019-03-19
US20190213428A1 (en) 2019-07-11
US20180150706A1 (en) 2018-05-31
US9881220B2 (en) 2018-01-30

Similar Documents

Publication Publication Date Title
US20230113427A1 (en) Vehicular parking system
US12077153B2 (en) Vehicular control system with multiple exterior viewing cameras
US11184585B2 (en) Vehicular vision system with accelerated determination of an object of interest
US11618441B2 (en) Vehicular control system with remote processor
US11563919B2 (en) Vehicular vision system with dual processor control
US11308718B2 (en) Vehicular vision system
US20240013552A1 (en) Vehicular control system
US20140005907A1 (en) Vision-based adaptive cruise control system

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED