US20220151492A1 - Pulse oximeter with cellular communication capability - Google Patents
Pulse oximeter with cellular communication capability Download PDFInfo
- Publication number
- US20220151492A1 US20220151492A1 US17/517,841 US202117517841A US2022151492A1 US 20220151492 A1 US20220151492 A1 US 20220151492A1 US 202117517841 A US202117517841 A US 202117517841A US 2022151492 A1 US2022151492 A1 US 2022151492A1
- Authority
- US
- United States
- Prior art keywords
- user
- individual
- pulse oximeter
- light
- pulse
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000010267 cellular communication Effects 0.000 title 1
- 230000004913 activation Effects 0.000 claims abstract description 27
- 238000000034 method Methods 0.000 claims abstract description 18
- 230000008569 process Effects 0.000 claims abstract description 8
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 52
- 229910052760 oxygen Inorganic materials 0.000 claims description 52
- 239000001301 oxygen Substances 0.000 claims description 52
- 210000004369 blood Anatomy 0.000 claims description 43
- 239000008280 blood Substances 0.000 claims description 43
- 238000002106 pulse oximetry Methods 0.000 description 62
- 230000001413 cellular effect Effects 0.000 description 24
- 210000001519 tissue Anatomy 0.000 description 24
- 108010054147 Hemoglobins Proteins 0.000 description 10
- 102000001554 Hemoglobins Human genes 0.000 description 10
- 230000002452 interceptive effect Effects 0.000 description 10
- 230000009471 action Effects 0.000 description 9
- 230000004044 response Effects 0.000 description 9
- 239000000523 sample Substances 0.000 description 9
- 238000010521 absorption reaction Methods 0.000 description 8
- 238000010586 diagram Methods 0.000 description 7
- 241000238558 Eucarida Species 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- 230000003287 optical effect Effects 0.000 description 6
- 108010061951 Methemoglobin Proteins 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 238000012544 monitoring process Methods 0.000 description 4
- 238000006213 oxygenation reaction Methods 0.000 description 4
- 108010003320 Carboxyhemoglobin Proteins 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 238000004891 communication Methods 0.000 description 3
- 229940079593 drug Drugs 0.000 description 3
- 239000003814 drug Substances 0.000 description 3
- 241000894007 species Species 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 2
- 208000006545 Chronic Obstructive Pulmonary Disease Diseases 0.000 description 2
- 206010019280 Heart failures Diseases 0.000 description 2
- 206010021143 Hypoxia Diseases 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 239000012491 analyte Substances 0.000 description 2
- 238000013473 artificial intelligence Methods 0.000 description 2
- 230000036772 blood pressure Effects 0.000 description 2
- 229910002091 carbon monoxide Inorganic materials 0.000 description 2
- 239000003086 colorant Substances 0.000 description 2
- 238000003745 diagnosis Methods 0.000 description 2
- 230000003205 diastolic effect Effects 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 208000018875 hypoxemia Diseases 0.000 description 2
- 230000031700 light absorption Effects 0.000 description 2
- 238000002483 medication Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000011282 treatment Methods 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- INGWEZCOABYORO-UHFFFAOYSA-N 2-(furan-2-yl)-7-methyl-1h-1,8-naphthyridin-4-one Chemical compound N=1C2=NC(C)=CC=C2C(O)=CC=1C1=CC=CO1 INGWEZCOABYORO-UHFFFAOYSA-N 0.000 description 1
- 206010007559 Cardiac failure congestive Diseases 0.000 description 1
- 208000002330 Congenital Heart Defects Diseases 0.000 description 1
- 208000010496 Heart Arrest Diseases 0.000 description 1
- 206010058467 Lung neoplasm malignant Diseases 0.000 description 1
- 102000010750 Metalloproteins Human genes 0.000 description 1
- 108010063312 Metalloproteins Proteins 0.000 description 1
- 108010064719 Oxyhemoglobins Proteins 0.000 description 1
- 206010035664 Pneumonia Diseases 0.000 description 1
- 206010038669 Respiratory arrest Diseases 0.000 description 1
- 238000002083 X-ray spectrum Methods 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 208000007502 anemia Diseases 0.000 description 1
- 208000006673 asthma Diseases 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000008033 biological extinction Effects 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 230000000747 cardiac effect Effects 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 208000028831 congenital heart disease Diseases 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 108010002255 deoxyhemoglobin Proteins 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 108010076316 dyshemoglobins Proteins 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005670 electromagnetic radiation Effects 0.000 description 1
- 210000003743 erythrocyte Anatomy 0.000 description 1
- 230000001605 fetal effect Effects 0.000 description 1
- 210000001061 forehead Anatomy 0.000 description 1
- 230000005251 gamma ray Effects 0.000 description 1
- 150000003278 haem Chemical group 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000012623 in vivo measurement Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 230000004941 influx Effects 0.000 description 1
- 238000002329 infrared spectrum Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 201000005202 lung cancer Diseases 0.000 description 1
- 208000020816 lung neoplasm Diseases 0.000 description 1
- 238000002044 microwave spectrum Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012806 monitoring device Methods 0.000 description 1
- 208000010125 myocardial infarction Diseases 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 238000002640 oxygen therapy Methods 0.000 description 1
- 230000010412 perfusion Effects 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000000541 pulsatile effect Effects 0.000 description 1
- 230000000241 respiratory effect Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 230000000391 smoking effect Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
- 238000002211 ultraviolet spectrum Methods 0.000 description 1
- 238000001429 visible spectrum Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0002—Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
- A61B5/0015—Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by features of the telemetry system
- A61B5/0022—Monitoring a patient using a global network, e.g. telephone networks, internet
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
- A61B5/024—Detecting, measuring or recording pulse rate or heart rate
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
- A61B5/024—Detecting, measuring or recording pulse rate or heart rate
- A61B5/02416—Detecting, measuring or recording pulse rate or heart rate using photoplethysmograph signals, e.g. generated by infrared radiation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/145—Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
- A61B5/1455—Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
- A61B5/14551—Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/145—Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
- A61B5/1455—Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
- A61B5/14551—Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases
- A61B5/14552—Details of sensors specially adapted therefor
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/74—Details of notification to user or communication with user or patient ; user input means
- A61B5/7405—Details of notification to user or communication with user or patient ; user input means using sound
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/74—Details of notification to user or communication with user or patient ; user input means
- A61B5/742—Details of notification to user or communication with user or patient ; user input means using visual displays
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/74—Details of notification to user or communication with user or patient ; user input means
- A61B5/742—Details of notification to user or communication with user or patient ; user input means using visual displays
- A61B5/7445—Display arrangements, e.g. multiple display units
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/74—Details of notification to user or communication with user or patient ; user input means
- A61B5/7475—User input or interface means, e.g. keyboard, pointing device, joystick
- A61B5/749—Voice-controlled interfaces
Definitions
- the field of the invention and its embodiments relate to a pulse oximeter. More specifically, the field of the invention and its embodiments relate to a pulse oximeter that can interact with a mobile device over a network.
- Pulse oximetry is a test used to measure the oxygen level (oxygen saturation) of the blood. It is an easy measure of how well oxygen is being sent to parts of one's body, such as the arms and legs.
- a pulse oximeter may be used to monitor the health of individuals with any type of condition that can affect blood oxygen levels, such as: chronic obstructive pulmonary disease (COPD), asthma, pneumonia, lung cancer, anemia, heart attack or heart failure, and congenital heart defects, among others.
- COPD chronic obstructive pulmonary disease
- COPD chronic obstructive pulmonary disease
- asthma asthma
- pneumonia pneumonia
- lung cancer anemia
- heart attack or heart failure a congenital heart defects
- congenital heart defects among others.
- COPD chronic obstructive pulmonary disease
- congestive heart failure one may need a device that can continuously monitor ones's oxygen saturation.
- U.S. Pat. No. 6,912,413 B2 relates to pulse oximeter devices used to measure blood oxygenation.
- the current trend towards mobile oximeters has brought the problem of how to minimize power consumption without compromising on the performance of the device.
- this reference provides a method for controlling optical power in a pulse oximeter.
- the signal-to-noise ratio of the received baseband signal is monitored, and the duty cycle of the driving pulses is controlled in dependence on the monitored signal-to-noise ratio, preferably so that the optical power is minimized within the confines of a predetermined lower threshold set for the signal-to-noise ratio.
- the optical power is made dependent on the perfusion level of the subject, whereby the power can be controlled to a level which does not exceed that needed for the subject.
- the pulse oximeter also includes a microphone that is configured to receive an audio input from the individual. Further, the pulse oximeter includes a display that is configured to show/display the physiological parameters and other data to the individual. Further, the voice activation component includes one or more algorithms that are configured to: analyze the audio input received via the microphone, compare the audio input to commands stored in the memory, determine that the audio input corresponds to a command of the commands stored in the memory based on the comparison, and process and execute the command. It should be appreciated that the pulse oximeter may also communicate with a mobile device via a network.
- Pulse oximetry is the current standard of care for the continuous monitoring of arterial oxygen saturation (SpO 2 ). Pulse oximeters provide instantaneous in vivo measurements of arterial oxygenation, and thereby provide early warning of arterial hypoxemia, for example.
- a typical pulse oximeter comprises a computerized measuring unit and a probe attached to the patient, typically to his or her finger. The probe includes a light source for sending an optical signal through the tissue and a photodetector for receiving the signal after transmission through the tissue. On the basis of the transmitted and received signals, light absorption by the tissue can be determined.
- Pulse oximeters focus the measurement on this arterial blood portion by determining the difference between the peak absorption during the systolic phase and the constant absorption during the diastolic phase. As such, pulse oximetry is based on the assumption that the pulsatile component of the absorption is due to arterial blood only.
- the encoder 42 may contain information specific to the patient 40 . Such information may include: the patient's age, the patient's gender, the patient's weight, and/or the patient's diagnosis, among other information. This information may allow the monitor 14 to determine patient-specific threshold ranges in which the patient's physiological parameter measurements should fall and to enable or disable additional physiological parameter algorithms.
- the encoder 42 may, for instance, be a coded resistor that stores values corresponding to the type of the sensor 12 , the wavelengths of light emitted by the emitter 16 , and/or the patient's characteristics. These coded values may be communicated to the monitor 14 , which determines how to calculate the patient's physiological parameters and alarm threshold ranges.
- the encoder 42 may also contain the patient-specific alarm thresholds if the alarm values are determined on a workstation separate from the monitor 14 .
- the user inputs 56 may also be used to enter information about the patient, such the patient's age, the patient's gender, the patient's height, the patient's weight, medications the patient is taking, treatments the patient is engaging in, and/or the patient's diagnosis, among others.
- the display 20 may exhibit a list of values that may generally apply to the patient, such as, for example, age ranges or medication families, which the user may select using the user inputs 56 .
- the microprocessor 48 may then determine the proper thresholds using the user input data and algorithms stored in the ROM 52 .
- the patient-specific thresholds may be stored on the RAM 54 for comparison to measured physiological characteristics.
- the ROM 52 and the RAM 54 may also store information for use in selection of a power consumption mode based on the data generated by the sensor 12 and/or monitor 14 .
- the pulse oximetry system 10 may communicate directly or indirectly with mobile device 80 via the network 92 .
- the pulse oximetry system 10 may comprise a cellular modem (not shown) to communicate and/or transmit measurement results to the mobile device 80 or another computing device, such as a smartphone, a laptop computer, a tablet, or another suitable computing device.
- the cellular modem is a device that adds cellular connectivity to laptops, desktop computers, tablets, and other similar devices.
- the cellular modem replaces the existing BLE module in the Bluetooth devices described herein.
- the cellular modem may be embedded within the pulse oximetry system 10 or may be a standalone device that is connected to the pulse oximetry system 10 through various means, including, but not limited to, a USB connection.
- cellular modems include, but are not limited to, AT&T Momentum, Verizon 551 L, USB cellular modems and motherboard mounted cellular chipsets manufactured by Novatel Wireless, Sierra Wireless, Huawei, and the like.
- the cellular modem may operate by switching between cellular and satellite communications.
- an application 88 is executed on the mobile device 80 .
- the application 88 may be an engine, a software program, a service, or a software platform executable on the mobile device 80 .
- the second user 94 may input information into the application 88 , such as blood oxygen saturation readings, pulse rate readings, age, weight, medications that the user is currently taking, treatments the user is currently undergoing, etc.
- the application 88 also allows the second user 94 to share data and progress with another user.
- profiles may be stored in the memory of the pulse oximetry system 10 (e.g., the ROM 52 and/or the RAM 54 ) and the memory 90 of the mobile device 80 and the quantity of the profiles is not limited to two.
- each of the user profiles may include a unique identifier associated with the user of the profile.
- a first identifier 100 may be associated with the first user and may be stored in the first user profile A 96 and a second identifier 102 may be associated with the second user and may be stored in the second user profile B 98 .
- the unique identifier may be a numerical code, an alphanumeric code, a username, etc.
- Each of the first user profile A 96 and the second user profile B 98 may also include the blood oxygen saturation readings and the pulse rate readings.
- the first user profile A 96 may include the blood oxygen saturation reading 108 and the pulse rate reading 112 and the second user profile B 98 may include the blood oxygen saturation reading 110 and the pulse rate reading 124 . It should be appreciated that the blood oxygen saturation readings and the pulse rate readings may be updated with a new entry every time a particular individual uses the pulse oximetry system 10 .
- FIG. 5 An interactive display 20 of the pulse oximetry system 10 is depicted in FIG. 5 , FIG. 6 , and FIG. 7 . It should be appreciated that the interactive display 20 may have additional or fewer features from the ones described and depicted herein. In one embodiment, the interactive display 20 is touch-enabled.
- the interactive display 20 allows the first user 40 , the second user 94 , or another user to view data described herein in numerous ways.
- the interactive display 20 provides a screen that changes based on user selection of a button, such as a first button 114 , a second button 116 , and/or a third button 118 .
- the interactive display 20 displays the user profile associated with the given user.
- the interactive display 20 displays the first user profile A 96 of the first user 40 , which includes the first identifier 100 associated with the first user 40 , the current blood oxygen saturation reading 108 of the first user 40 , and the current pulse rate reading 112 of the first user 40 .
- Other raw scale data could also be displayed.
- the pulse oximetry system 10 may include a switch component 122 (of FIG. 5 , FIG. 6 , and FIG. 7 ).
- the switch component 122 may receive an action, such as a touch or tap action, indicating that a given user wishes to switch information displayed via the interactive display 20 to another profile or to other information.
- the processor of the pulse oximetry system 10 may include a voice activation component 76 . Further, the pulse oximetry system 10 may also include a microphone 120 . The voice activation component 76 may include one or more algorithms 78 . In an example, the first user 40 provides an audio input to the microphone 120 (of FIG. 6 and FIG. 7 ) of the pulse oximetry system 10 . The microphone 120 may receive the login credentials from the first user 40 via the audio input.
- the one or more algorithms 78 of the voice activation component 76 of the pulse oximetry system 10 analyze the login credentials to determine whether the login credentials corresponds to login credentials associated with a user profile stored in the memory (e.g., the ROM 52 and/or the RAM 54 ) of the pulse oximetry system 10 (such as a first user profile A 96 associated with the first user or a second user profile B 98 associated with the second user of FIG. 5 ).
- the one or more algorithms 78 of the voice activation component 76 confirm the identity of the user as the first user.
- the second user 94 may provide the login credentials via a physical input to the mobile device 80 .
- voice activation may be used to prompt the pulse oximetry system 10 to perform an action, such as display the first user profile A 96 associated with the first user 40 or display different items or information associated with the first user profile A 96 on the interactive display 20 .
- Voice activation may also be used to perform actions on the mobile device 80 .
- the pulse oximetry system 10 comprises the voice activation component 76 (or module) and the mobile device 80 comprises the voice activation component 84 (or module).
- the voice activation component 76 may be used to control actions of the pulse oximetry system 10 and the voice activation component 84 may be used to control actions of the mobile device 80 , respectively.
- the voice activation component 76 of the pulse oximetry system 10 comprises the one or more algorithms 78 and the voice activation component 84 of the mobile device 80 comprises the one or more algorithms 86 .
- the one or more algorithms 78 of the voice activation component 76 analyze the audio input to determine whether the audio input corresponds to a command recognizable by the voice activation component 76 .
- Such recognizable commands are stored in the memory of the pulse oximetry system 10 . In other examples, the recognizable commands are stored in a data store (not shown). If the voice input corresponds to a recognizable command, the pulse oximetry system 10 may process and execute the command.
- a microphone (not shown) of the mobile device 80 receives the audio input from the user.
- the one or more algorithms 86 of the voice activation component 84 of the mobile device 80 analyze the audio input to determine whether the audio input corresponds to a command recognizable by the voice activation component 84 .
- Such recognizable commands are stored in the memory or a data store (not shown) of the mobile device 80 . If the voice input corresponds to a recognizable command, the mobile device 80 may process and execute the command.
- the command can include any of a number of functions or operations supported by pulse oximetry system 10 or the mobile device 80 .
- the recognizable commands may include: turn on the device, turn off the device, awake the device from a sleep mode, put the device into the sleep mode, display the first user profile A 96 , and/or display the second user profile B 98 , etc.
- the pulse oximetry system 10 or the mobile device 80 may utilize user input devices to replace or supplement voice commands.
- the mobile device 80 may comprise an intelligent personal assistant and knowledge manager, such as Siri, and/or a virtual assistant artificial intelligence (AI) technology developed by Amazon, Amazon Alexa.
- the mobile device 80 may first receive an action on a physical button, icon, or display of the mobile device 80 .
- the mobile device 80 may launch Siri or Amazon Alexa.
- the user may provide audio input, via the microphone, to the mobile device 80 .
- Siri or Amazon Alexa may process the audio input and provide an audio response via a speaker of the mobile device 80 or a visual response via the display 82 of the mobile device 80 .
- the audio or visual response may be transmitted to the pulse oximetry system 10 for storage and/or display to the user.
- Siri is a software application, and more particularly, an intelligent personal assistant and knowledge manager. Siri is part of Apple Inc.'s iOS, iPadOS, watchOS, macOS, and tvOS operating systems.
- the assistant uses voice queries, gesture based control, focus-tracking and a natural-language user interface to answer questions, make recommendations, and perform actions by delegating requests to a set of Internet services.
- the software adapts to users' individual language usages, searches, and preferences, with continuing use. Returned results are individualized. Siri supports a wide range of user commands, including performing phone actions, checking basic information, scheduling events and reminders, handling device settings, searching the Internet, navigating areas, finding information on entertainment, and is able to engage with iOS-integrated apps.
- Alexa is a virtual assistant AI technology developed by Amazon. Alexa is capable of voice interaction, music playback, making to-do lists, setting alarms, streaming podcasts, playing audiobooks, and providing weather, traffic, sports, and other real-time information, such as news. Alexa can also control several smart devices using itself as a home automation system. Users are able to extend the Alexa capabilities by installing “skills” (additional functionality developed by third-party vendors, in other settings more commonly called apps such as weather programs and audio features).
- the one or more indicators 104 , 106 may flash, strobe, or change color.
- the first user 40 associated with the first user profile A 96 may be assigned a color of green and the second user 94 associated with the second user profile B 98 may be assigned a color of red. Such colors may be stored in the respective user profile. If the first user 40 , for example, fails to use the pulse oximetry system 10 for more than a specified time period (e.g., a week), the one or more indicators 104 , 106 may flash the color green at a low duty-cycle.
- a specified time period e.g., a week
- the mobile device 80 may send a user-identifying signal to the pulse oximetry system 10 when the mobile device 80 is in proximity to pulse oximetry system 10 .
- the one or more indicators 104 , 106 may also include audio indicators.
- the one or more indicators 104 , 106 illuminate or sound (e.g., a tone, a beep, an alarm, etc.) when mobile device 110 is in proximity to the pulse oximetry system 10 .
- the one or more indicators 104 , 106 are located on a same surface as the display 20 .
- the one or more indicators 104 , 106 may be located on a different surface of the pulse oximetry system 10 .
- Another embodiment of the invention provides a method that performs the process steps on a subscription, advertising, and/or fee basis. That is, a service provider can offer to assist in the method steps described herein. In this case, the service provider can create, maintain, and/or support, etc. a computer infrastructure that performs the process steps for one or more customers. In return, the service provider can receive payment from the customer(s) under a subscription and/or fee agreement, and/or the service provider can receive payment from the sale of advertising content to one or more third parties.
- the articles “a,” “an,” and “the” are intended to mean that there are one or more of the elements.
- the adjective “another,” when used to introduce an element, is intended to mean one or more elements.
- the terms “including” and “having” are intended to be inclusive such that there may be additional elements other than the listed elements.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- General Health & Medical Sciences (AREA)
- Pathology (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Veterinary Medicine (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- Biophysics (AREA)
- Public Health (AREA)
- Cardiology (AREA)
- Computer Networks & Wireless Communication (AREA)
- Physiology (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Optics & Photonics (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
Abstract
A pulse oximeter is described. The pulse oximeter includes at least a sensor component, an engine, a display, and a microphone. The sensor component includes a receiving portion configured to receive a finger of an individual therein, an emitter component configured to emit light at one or more wavelengths into a tissue of the finger of the individual, and a detector component configured to detect the light originating from the emitter component that emanates from the tissue of the finger of the individual after passing through the tissue. The engine is configured to calculate physiological parameters for the individual based on data received from the sensor component. The engine includes a memory housing a first user profile associated with a first user and a second user profile associated with a second user and a processor connected to the memory. The processor includes a voice activation component, which uses algorithms to: analyze the audio input, compare the audio input to commands stored in the memory, determine that the audio input corresponds to a command of the commands stored in the memory based on the comparison, and process and execute the command. The display is configured to display the physiological parameters and other data to the individual.
Description
- This application is a U.S. Non-Provisional Patent Application that claims priority to U.S. Provisional Patent Application Ser. No. 63/115,935 filed on Nov. 19, 2020, the entire contents of which are hereby incorporated by reference in their entirety.
- The field of the invention and its embodiments relate to a pulse oximeter. More specifically, the field of the invention and its embodiments relate to a pulse oximeter that can interact with a mobile device over a network.
- Pulse oximetry is a test used to measure the oxygen level (oxygen saturation) of the blood. It is an easy measure of how well oxygen is being sent to parts of one's body, such as the arms and legs. A pulse oximeter may be used to monitor the health of individuals with any type of condition that can affect blood oxygen levels, such as: chronic obstructive pulmonary disease (COPD), asthma, pneumonia, lung cancer, anemia, heart attack or heart failure, and congenital heart defects, among others. However, for some conditions, such as COPD and congestive heart failure, one may need a device that can continuously monitor ones's oxygen saturation.
- U.S. Pat. No. 6,912,413 B2 relates to pulse oximeter devices used to measure blood oxygenation. The current trend towards mobile oximeters has brought the problem of how to minimize power consumption without compromising on the performance of the device. To tackle this problem, this reference provides a method for controlling optical power in a pulse oximeter. The signal-to-noise ratio of the received baseband signal is monitored, and the duty cycle of the driving pulses is controlled in dependence on the monitored signal-to-noise ratio, preferably so that the optical power is minimized within the confines of a predetermined lower threshold set for the signal-to-noise ratio. In this way the optical power is made dependent on the perfusion level of the subject, whereby the power can be controlled to a level which does not exceed that needed for the subject.
- U.S. Pat. No. 6,963,767 B2 relates to pulse oximeters used to measure blood oxygenation. The current trend towards lower power consumption has brought a problem of erroneous readings caused by intrachannel crosstalk, i.e. errors due to the coupling of undesired capacitive, inductive, or conductive (resistive) pulse power from the emitting side of the pulse oximeter directly to the detecting side of the oximeter. The pulse oximeter of the reference includes a means for detecting whether intrachannel crosstalk is present and whether it will cause erroneous results in the oxygenation measurements.
- U.S. Pat. No. 7,349,726 B2 relates to a system and method for measuring blood oxygen saturation. Specifically, embodiments of the reference include emitting light having a wavelength spectrum that is optimized for an oxygen saturation reading less than 80 percent, detecting the light, and transmitting signals based on the detected light.
- U.S. Pat. No. 6,711,425 B1 relates to an improved pulse oximeter (sensor and monitor) that uses a plurality of wavelengths selected to provide sensitivity to both oxygen saturation and deviations in tissue site characteristic(s) from conditions at calibration. The monitor detects and/or removes the effects of deviations on SpO2 calibration, of particular value in fetal/newborn monitoring.
- Various pulse oximeter devices and systems exist. However, their means of operation are substantially different from the present disclosure, as the other inventions fail to solve all the problems taught by the present disclosure.
- The present invention and its embodiments relate to a pulse oximeter. More specifically, the field of the invention and its embodiments relate to a pulse oximeter that can interact with a mobile device over a network.
- A first embodiment of the present invention describes a system. The system includes numerous components, such as: a network, a pulse oximeter, and a mobile device. The pulse oximeter includes a sensor component and an engine. The sensor component includes a first side disposed opposite a second side and a receiving portion configured to receive a finger of an individual therein. The first side of the sensor component comprises an emitter component that is configured to emit light at one or more wavelengths into a tissue of the finger of the individual. The second side of the sensor component comprises a detector component that is configured to detect the light originating from the emitter component that emanates from the tissue of the finger of the individual after passing through the tissue.
- The engine is connected to the sensor component and is configured to calculate physiological parameters for the individual (e.g., blood oxygen saturation readings and/or pulse rate readings, among others) based on data received from the sensor component. The engine includes numerous components, such as: a memory and a processor connected to the memory and including a voice activation component. The memory is configured to house a first user profile associated with a first user and a second user profile associated with a second user. The first user profile comprises blood oxygen saturation readings for the first user, pulse rate readings for the first user, and/or a unique identifier for the first user, among other information or data. The second user profile comprises blood oxygen saturation readings for the second user, pulse rate readings for the second user, and/or a unique identifier for the second user, among other information or data.
- The pulse oximeter also includes a microphone that is configured to receive an audio input from the individual. Further, the voice activation component includes one or more algorithms. The one or more algorithms are configured to: analyze the audio input received via the microphone, compare the audio input to commands stored in the memory, determine that the audio input corresponds to a command of the commands stored in the memory based on the comparison, and process and execute the command. The pulse oximeter may further include a display that shows/displays the physiological parameters and other data to the individual and a data input device configured to receive a physical input from the individual.
- The mobile device is configured to interact with the pulse oximeter via the network. In an example, the mobile device comprises an application executable on the mobile device, where the application is configured to track blood oxygen saturation readings and/or pulse rate readings for the first user or the second user.
- In some examples, the mobile device is configured to: send a signal via the network to the processor when the mobile device is in proximity to the pulse oximeter. In response to receiving the signal, the processor is configured to: select a user profile from the memory corresponding to an owner of the mobile device, and store a blood oxygen saturation reading and/or a pulse rate reading of the individual in the first user profile if the owner of the mobile device is the first user or store the blood oxygen saturation reading and/or a pulse rate reading in the second user profile if the owner of the mobile device is the second user.
- In another example, the system may include a key fob that contains wireless signal capabilities. The key fob is configured to transmit a signal to the processor when the key fob is in proximity of the pulse oximeter. In response to receiving the signal from the key fob, the processor is configured to: select a user profile from the memory corresponding to an owner of the key fob, and store a blood oxygen saturation reading and/or a pulse rate reading of the individual in the first user profile if the owner of the key fob is the first user or store the blood oxygen saturation reading and/or a pulse rate reading in the second user profile if the owner of the key fob is the second user.
- A second embodiment of the present invention describes a pulse oximeter. The pulse oximeter includes a sensor component. The sensor component includes a first side disposed opposite a second side and a receiving portion configured to receive a finger of an individual therein. The first side of the sensor component comprises an emitter component configured to emit light at one or more wavelengths into a tissue of the finger of the individual. The second side of the sensor component comprises a detector component configured to detect the light originating from the emitter component that emanates from the tissue of the finger of the individual after passing through the tissue.
- The pulse oximeter also includes an engine that is configured to calculate physiological parameters for the individual (e.g., blood oxygen saturation readings and/or pulse rate readings, among others) based on data received from the sensor component. Specifically, the engine includes: a memory and a processor coupled to the memory and including a voice activation component. The memory is configured to house a first user profile associated with a first user and a second user profile associated with a second user. The first user profile comprises blood oxygen saturation readings for the first user, pulse rate readings for the first user, and/or a unique identifier for the first user, among other information/data. The user profile comprises blood oxygen saturation readings for the second user, pulse rate readings for the second user, and/or a unique identifier for the second user, among other information/data.
- The pulse oximeter also includes a microphone that is configured to receive an audio input from the individual. Further, the pulse oximeter includes a display that is configured to show/display the physiological parameters and other data to the individual. Further, the voice activation component includes one or more algorithms that are configured to: analyze the audio input received via the microphone, compare the audio input to commands stored in the memory, determine that the audio input corresponds to a command of the commands stored in the memory based on the comparison, and process and execute the command. It should be appreciated that the pulse oximeter may also communicate with a mobile device via a network.
- The display may further include one or more indicators configured to encourage use of the pulse oximeter. Such indicators may comprise one or more light-emitting diodes (LEDs). The first user is associated with a first color of light configured to be emitted from the one or more indicators and the second user is associated with a second color of light configured to be emitted from the one or more indicators. The first color of light differs from the second color of light. The first color of light is stored in the first user profile and the second color of light is stored in the second user profile.
- Further, the one or more indicators are configured to project or flash the first color of light if the first user fails to use the pulse oximeter for a predetermined period of time. The one or more indicators are configured to project or flash the second color of light if the second user fails to use the pulse oximeter for the predetermined period of time. In other examples, the one or more indicators comprise an audio functionality such that the one or more indicators project or flash light and/or emanate a sound when the individual is within a proximity of the pulse oximeter.
- In general, the present invention succeeds in conferring the following benefits and objectives.
- The present invention describes a pulse oximeter that can interact with a mobile device over a network.
- The present invention describes a pulse oximeter that has multi-user functionality.
- The present invention describes a pulse oximeter that has voice activation capabilities.
-
FIG. 1 depicts a schematic diagram of a traditional pulse oximetry system known in the art field, according to at least some embodiments disclosed herein. -
FIG. 2 depicts a block diagram of a traditional pulse oximetry system known in the art field, according to at least some embodiments disclosed herein. -
FIG. 3 depicts a schematic diagram of a pulse oximetry system of the present invention, according to at least some embodiments disclosed herein. -
FIG. 4 depicts a schematic diagram of a pulse oximetry system configured to interact with a mobile device over a network, according to at least some embodiments disclosed herein. -
FIG. 5 -FIG. 7 depict block diagrams of a display of a pulse oximetry system, according to at least some embodiments disclosed herein. - The preferred embodiments of the present invention will now be described with reference to the drawings. Identical elements in the various figures are identified with the same reference numerals.
- Reference will now be made in detail to each embodiment of the present invention. Such embodiments are provided by way of explanation of the present invention, which is not intended to be limited thereto. In fact, those of ordinary skill in the art may appreciate upon reading the present specification and viewing the present drawings that various modifications and variations can be made thereto.
- As described herein, pulse oximetry is a non-invasive method for monitoring a person's oxygen saturation. Oxygen saturation is the fraction of oxygen-saturated hemoglobin relative to total hemoglobin in the blood. The human body requires and regulates a precise and specific balance of oxygen in the blood. Normal arterial blood oxygen saturation levels in humans are between 95 percent to 100 percent. If the level is below 90 percent, it is considered low and is called hypoxemia. Arterial blood oxygen levels below 80 percent may compromise organ function, such as the brain and heart, and should be promptly addressed. Continued low oxygen levels may lead to respiratory or cardiac arrest. Oxygen therapy may be used to assist in raising blood oxygen levels.
- Pulse oximetry is the current standard of care for the continuous monitoring of arterial oxygen saturation (SpO2). Pulse oximeters provide instantaneous in vivo measurements of arterial oxygenation, and thereby provide early warning of arterial hypoxemia, for example. A typical pulse oximeter comprises a computerized measuring unit and a probe attached to the patient, typically to his or her finger. The probe includes a light source for sending an optical signal through the tissue and a photodetector for receiving the signal after transmission through the tissue. On the basis of the transmitted and received signals, light absorption by the tissue can be determined.
- During each cardiac cycle, light absorption by the tissue varies cyclically. During the diastolic phase, absorption is caused by venous blood, tissue, bone, and pigments, whereas during the systolic phase, there is an increase in absorption, which is caused by the influx of arterial blood into the tissue. Pulse oximeters focus the measurement on this arterial blood portion by determining the difference between the peak absorption during the systolic phase and the constant absorption during the diastolic phase. As such, pulse oximetry is based on the assumption that the pulsatile component of the absorption is due to arterial blood only.
- Light transmission through an ideal absorbing sample is determined by the Lambert-Beer equation, which includes the following:
-
I out =I in e −εDC, [Equation 1] - where Iin refers to the light intensity entering the sample,
- Iout refers to the light intensity received from the sample,
- D is the path length through the sample,
- ε is the extinction coefficient of the analyte in the sample at a specific wavelength, and f
- C is the concentration of the analyte.
- When Iin, D, and ε are known, and Iout is measured, the concentration C can be calculated.
- In pulse oximetry, in order to distinguish between the two species of hemoglobin, oxyhemoglobin (HbO2) (or the oxygen-loaded form of hemoglobin) and deoxyhemoglobin (RHb) (or the form of hemoglobin without oxygen), absorption must be measured at two different wavelengths. As such, the probe includes two different light emitting diodes (LEDs). The wavelength values commonly used are 660 nm and 940 nm, since the two species of hemoglobin have substantially different absorption values at these wavelengths. Each LED is illuminated in turn at a frequency which is typically several hundred Hz.
- The accuracy of pulse oximeter readings is affected by several factors. First, dyshemoglobins that do not participate in oxygen transport (e.g., methemoglobin (MetHb) and carboxyhemoglobin (CoHb)) absorb light at the wavelengths used in the measurement. As described herein, “MetHb” is a hemoglobin in the form of metalloprotein, in which the iron in the heme group is in the Fe3+ state, not the Fe2+ of normal hemoglobin. Methemoglobin cannot bind oxygen, which means it cannot carry oxygen to tissues. As described herein, “CoHb” is a stable complex of carbon monoxide and hemoglobin that forms in red blood cells upon contact with carbon monoxide. Pulse oximeters are calibrated to measure oxygen saturation on the assumption that the patient's blood composition is the same as that of a healthy, non-smoking individual. Therefore, if these species of hemoglobin are present in higher concentrations than normal, a pulse oximeter may display erroneous data.
- Next, intravenous dyes used for diagnostic purposes may cause considerable deviation in pulse oximeter readings. Further, coatings, such as nail polish, may impair the accuracy of a pulse oximeter. Additionally, the optical signal may be degraded by both noise (such as from the ambient light received by the photodetector) and motion artifacts.
-
FIG. 1 is a perspective view of an embodiment of a traditionalpulse oximetry system 10 known in the art field. Thepulse oximetry system 10 ofFIG. 1 includes numerous components, such as: a sensor 12 (e.g., a probe) and/or apulse oximetry monitor 14, among others not explicitly depicted herein. It should be appreciated that thepulse oximetry system 10 may have multiple user functionality and may be beneficial for those individuals needing to consistently track health parameters, such as ones's oxygen saturation. - Moreover, the
sensor 12 includes anemitter 16 for emitting light at one or more wavelengths into a patient's tissue. Thesensor 12 also includes adetector 18 that detects the light originating from theemitter 16 that emanates from the patient's tissue after passing through the tissue. Theemitter 16 and thedetector 18 may be on opposite sides of a user's finger, which is received by thesensor 12, in which case the light that is emanating from the tissue has passed completely through the users finger. - The
sensor 12 may be connected to and draw power from themonitor 14. Alternatively, the sensor may 12 be wirelessly connected to themonitor 14 and include its own battery or power supply (not shown). Themonitor 14 may be configured to calculate physiological parameters based on data received from thesensor 12 relating to light emission and detection. - Further, the
monitor 14 includes adisplay 20 configured to display the physiological parameters and/or other data. In the embodiment shown, themonitor 14 also includes aspeaker 22 to provide an audible alarm in the event that the patient's physiological parameters are not within a predetermined range, as defined based on patient characteristics. As depicted, thesensor 12 is communicatively coupled to themonitor 14 via afirst cable 24 or other similar means. However, in other embodiments a wireless transmission device (not shown) or the like may be utilized instead of or in addition to thefirst cable 24. - In the illustrated embodiment of
FIG. 1 , thepulse oximetry system 10 also includes a multi-parameter patient monitor 26. The multi-parameter patient monitor 26 may be configured to calculate physiological parameters and to provide acentral display 28 for information from themonitor 14 and from other medical monitoring devices or systems (not shown). For example, the multiparameter patient monitor 26 may be configured to display a patient's oxygen saturation reading generated by the pulse oximetry monitor 14, pulse rate information from themonitor 14, and a blood pressure reading from a blood pressure monitor (not shown) on thedisplay 28. Additionally, the multi-parameter patient monitor 26 may emit a visible or audible alarm via thedisplay 28 and/or aspeaker 30 if the patient's physiological characteristics are found to be outside of the predetermined range defined as “normal.” - The
monitor 14 may be communicatively coupled to the multi-parameter patient monitor 26 via asecond cable 32 or athird cable 34 coupled to a sensor input port or a digital communications port, respectively. In addition, themonitor 14 and/or the multi-parameter patient monitor 26 may be connected to a network to enable the sharing of information with servers or other workstations (not shown). Themonitor 14 may be powered by a battery (not shown) or by a power source, such as a wall outlet. -
FIG. 2 is a block diagram of the traditionalpulse oximetry system 10 ofFIG. 1 known in the art field and coupled to a patient 40 in accordance with present embodiments. Specifically, thesensor 12 includes theemitter 16, thedetector 18, and anencoder 42. Theemitter 16 is configured to emit at least two wavelengths of light, e.g., RED and IR, into the patient'stissue 40. As such, theemitter 16 may include a RED light source (such as a RED LED 44) and an IR light source (such as an IR LED 46) for emitting light into the patient'stissue 40 at the wavelengths used to calculate the patient's physiological parameters. In some examples, the wavelength of theRED LED 44 may be between about 600 nm and about 700 nm and the wavelength of theIR LED 46 may be between about 800 nm and about 1000 nm. It should be appreciated that these ranges are provided for illustrative purposes only. Moreover, it should be appreciated that the quantity of the LED's is not limited to two and other quantities are contemplated herein. Alternative light sources may be used in other embodiments. For example, a single wide-spectrum light source may be used and thedetector 18 may be configured to detect light only at certain wavelengths. - It should be understood that, as used herein the term “light” may refer to one or more of ultrasound, radio, microwave, millimeter wave, infrared, visible, ultraviolet, gamma ray or X-ray electromagnetic radiation, and may also include any wavelength within the radio, microwave, infrared, visible, ultraviolet or X-ray spectra, and that any suitable wavelength of light may be appropriate for use with the present techniques.
- In an embodiment, the
detector 18 may be configured to detect the intensity of light at the RED and IR wavelengths. In operation, the light enters thedetector 18 after passing through the patient'stissue 40. Thedetector 18 converts the intensity of the received light into an electrical signal. The light intensity is directly related to the absorbance and/or reflectance of light in the patients'tissue 40. As such, when more light at a certain wavelength is absorbed or reflected, less light of that wavelength is received from the tissue by thedetector 18. After converting the received light to an electrical signal, thedetector 18 sends the signal to themonitor 14, where physiological parameters may be calculated based on the absorption of the RED and IR wavelengths in the patient'stissue 40. - The
encoder 42 may contain information about thesensor 12, such as an identification of what type of sensor it is (e.g., whether the sensor is intended for placement on a forehead or the finger of the user) and the wavelengths of light emitted by theemitter 16. This information may be used by themonitor 14 to select appropriate algorithms, lookup tables and/or calibration coefficients stored in themonitor 14 for calculating the patient's physiological parameters. - In addition, the
encoder 42 may contain information specific to thepatient 40. Such information may include: the patient's age, the patient's gender, the patient's weight, and/or the patient's diagnosis, among other information. This information may allow themonitor 14 to determine patient-specific threshold ranges in which the patient's physiological parameter measurements should fall and to enable or disable additional physiological parameter algorithms. Theencoder 42 may, for instance, be a coded resistor that stores values corresponding to the type of thesensor 12, the wavelengths of light emitted by theemitter 16, and/or the patient's characteristics. These coded values may be communicated to themonitor 14, which determines how to calculate the patient's physiological parameters and alarm threshold ranges. - In another embodiment, the
encoder 42 may include a memory that may store information, which is then communicated to themonitor 14. Such information may include: the type of thesensor 12, the wavelengths of light emitted by theemitter 16, the proper calibration coefficients and/or algorithms to be used for calculating the patient's physiological parameters and/or alarm threshold values, the patient characteristics to be used for calculating the alarm threshold values, and the patient-specific threshold values to be used for monitoring the physiological parameters. - Signals from the
detector 18 and theencoder 42 may be transmitted to themonitor 14. As shown inFIG. 2 , themonitor 14 includes a general-purpose microprocessor 48 connected to aninternal bus 50. The microprocessor 48 is adapted to execute software, which may include an operating system and one or more applications (such as avoice activation component 76 ofFIG. 3 ), as part of performing the functions described herein. A read-only memory (ROM) 52, a random access memory (RAM) 54,user inputs 56, thedisplay 20, and thespeaker 22 are also connected to theinterface bus 50. - The
RAM 54 andROM 52 are portrayed for illustrative purposes only. Any computer-readable media may be used in the system for data storage. Computer-readable media are capable of storing information that can be interpreted by the microprocessor 48. This information may be data or may take the form of computer-executable instructions, such as software applications, that cause the microprocessor to perform certain functions and/or computer-implemented methods. Depending on the embodiment, such computer-readable media may comprise computer storage media and communication media. Computer storage media includes volatile and non-volatile, removable and non-removable media implemented in any method or technology for storage of information such as computer-readable instructions, data structures, program modules or other data. Computer storage media includes, but is not limited to, RAM, ROM, EPROM, EEPROM, flash memory or other solid state memory technology, CD-ROM, DVD, or other optical storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to store the desired information and which can be accessed by components of the system. - As shown in
FIG. 2 , a time processing unit (TPU) 58 provides timing control signals to alight drive circuitry 60, which controls when theemitter 16 is illuminated and multiplexed timing for theRED LED 44 and theIR LED 46. The TPU 58 also controls the gating-in of signals fromdetector 18 through anamplifier 62 and aswitching circuit 64, as shown inFIG. 2 . These signals are sampled at the proper time, depending upon which light source is illuminated. The received signal from thedetector 18 may be passed through anamplifier 66, alow pass filter 68, and an analog-to-digital (A/D)converter 70. The digital data may then be stored in a queued serial module (QSM) 72 (or buffer) for later downloading to theRAM 54 as theQSM 72 fills up. In one embodiment, there may be multiple separate parallel paths having theamplifier 66, thefilter 68, and the A/D converter 70 for multiple light wavelengths or spectra received. - The microprocessor 48 may determine the patient's physiological parameters, such as SpO2 reading and the pulse rate, using various algorithms and/or look-up tables based on the value of the received signals corresponding to the light received by the
detector 18. Signals corresponding to information about thepatient 40, and particularly about the intensity of light emanating from a patient's tissue over time, may be transmitted from theencoder 42 to adecoder 74. These signals may include, for example, encoded information relating to patient characteristics. Thedecoder 74 may translate these signals to enable the microprocessor to determine the thresholds based on algorithms or look-up tables stored in theROM 52. - The
encoder 42 may also contain the patient-specific alarm thresholds if the alarm values are determined on a workstation separate from themonitor 14. Theuser inputs 56 may also be used to enter information about the patient, such the patient's age, the patient's gender, the patient's height, the patient's weight, medications the patient is taking, treatments the patient is engaging in, and/or the patient's diagnosis, among others. In some examples, thedisplay 20 may exhibit a list of values that may generally apply to the patient, such as, for example, age ranges or medication families, which the user may select using theuser inputs 56. The microprocessor 48 may then determine the proper thresholds using the user input data and algorithms stored in theROM 52. The patient-specific thresholds may be stored on theRAM 54 for comparison to measured physiological characteristics. TheROM 52 and theRAM 54 may also store information for use in selection of a power consumption mode based on the data generated by thesensor 12 and/or monitor 14. -
FIG. 3 depicts a schematic diagram of thepulse oximetry system 10 of the present invention. As shown inFIG. 3 , and similar to thepulse oximetry system 10 ofFIG. 1 andFIG. 2 , thepulse oximetry system 10 ofFIG. 3 includes thesensor 12, thedisplay 20, and/or thespeaker 22, among other components not explicitly listed herein. Differing from thepulse oximetry system 10 ofFIG. 1 andFIG. 2 , thepulse oximetry system 10 ofFIG. 3 may wirelessly interact with amobile device 80 vi anetwork 92, such as the Internet, as depicted inFIG. 4 . - A system is depicted in
FIG. 4 . The system ofFIG. 4 includes thepulse oximetry system 10 associated with afirst user 40, themobile device 80 associated with asecond user 94, and thenetwork 92, such as the Internet. In some examples, each of thefirst user 40 and thesecond user 94 may be a patient, a doctor, or a healthcare worker. - As shown in
FIG. 4 , thepulse oximetry system 10 may communicate directly or indirectly withmobile device 80 via thenetwork 92. In examples, thepulse oximetry system 10 may comprise a cellular modem (not shown) to communicate and/or transmit measurement results to themobile device 80 or another computing device, such as a smartphone, a laptop computer, a tablet, or another suitable computing device. It should be appreciated that, as described herein, the cellular modem is a device that adds cellular connectivity to laptops, desktop computers, tablets, and other similar devices. Furthermore, it should be appreciated that the cellular modem (not shown) replaces the existing BLE module in the Bluetooth devices described herein. - In examples, the cellular modem may be embedded within the
pulse oximetry system 10 or may be a standalone device that is connected to thepulse oximetry system 10 through various means, including, but not limited to, a USB connection. Examples of cellular modems include, but are not limited to, AT&T Momentum, Verizon 551 L, USB cellular modems and motherboard mounted cellular chipsets manufactured by Novatel Wireless, Sierra Wireless, Huawei, and the like. In other examples, the cellular modem may operate by switching between cellular and satellite communications. - Furthermore, the cellular modem may be configured to automatically connect to a slower network when the faster network is not available. The cellular modem may also monitor the reliability of all available connections. The reliability of a network can be determined from information collected by the cellular modem, which includes, but is not limited to, signal strength, quality, availability, packet loss, retransmits, packet latency, throughput speed, and other cell tower signaling quality factors. The cellular modem may then compare this information in various forms to a reliability threshold in order to determine whether or not to maintain or terminate a connection to a cellular network. The reliability threshold is often automatically set by the cellular carrier, or may be manually set by the user of the
pulse oximetry system 10. - Further, it should be appreciated that the cellular modem is also configured to establish a connection with cellular networks in which the cellular modem is located. The cellular modem is configured to monitor and detect all cellular networks as the cellular modem moves from one network coverage area to another network coverage area via a vehicle in which it is contained. The cellular modem can detect when a connection to a particular network is made, whether it is a 3G, 4G, or 5G network, as well as which cellular network provider (e.g., Verizon, T-Mobile, etc.) it has connected to.
- In an example, and as depicted in
FIG. 4 , anapplication 88 is executed on themobile device 80. It should be appreciated that in other examples, theapplication 88 may be an engine, a software program, a service, or a software platform executable on themobile device 80. Thesecond user 94 may input information into theapplication 88, such as blood oxygen saturation readings, pulse rate readings, age, weight, medications that the user is currently taking, treatments the user is currently undergoing, etc. Theapplication 88 also allows thesecond user 94 to share data and progress with another user. - The memory of the pulse oximetry system 10 (e.g., the
ROM 52 and/or the RAM 54) and thememory 90 of themobile device 80 store user data and information. The elements stored in memory of the pulse oximetry system 10 (e.g., theROM 52 and/or the RAM 54) and thememory 90 of themobile device 80 may also be synchronized and stored remotely in a cloud-based storage. It should be appreciated that numerous profiles (such as a first user profile A 96 associated with thefirst user 40 and a second user profile B 98 associated with the second user 94) may be stored in the memory of the pulse oximetry system 10 (e.g., theROM 52 and/or the RAM 54) and thememory 90 of themobile device 80 and the quantity of the profiles is not limited to two. - As shown in
FIG. 5 , each of the user profiles (e.g., the first user profile A 96 and the second user profile B 98) may include a unique identifier associated with the user of the profile. For example, afirst identifier 100 may be associated with the first user and may be stored in the first user profile A 96 and asecond identifier 102 may be associated with the second user and may be stored in the second user profile B 98. For illustrative purposes only, the unique identifier may be a numerical code, an alphanumeric code, a username, etc. Each of the first user profile A 96 and the second user profile B 98 may also include the blood oxygen saturation readings and the pulse rate readings. More specifically, the first user profile A 96 may include the blood oxygen saturation reading 108 and the pulse rate reading 112 and the second user profile B 98 may include the blood oxygen saturation reading 110 and the pulse rate reading 124. It should be appreciated that the blood oxygen saturation readings and the pulse rate readings may be updated with a new entry every time a particular individual uses thepulse oximetry system 10. - An
interactive display 20 of thepulse oximetry system 10 is depicted inFIG. 5 ,FIG. 6 , andFIG. 7 . It should be appreciated that theinteractive display 20 may have additional or fewer features from the ones described and depicted herein. In one embodiment, theinteractive display 20 is touch-enabled. - The
interactive display 20 allows thefirst user 40, thesecond user 94, or another user to view data described herein in numerous ways. In an example, theinteractive display 20 provides a screen that changes based on user selection of a button, such as afirst button 114, asecond button 116, and/or athird button 118. Upon user selection of thefirst button 114, as shown inFIG. 6 , theinteractive display 20 displays the user profile associated with the given user. For example, theinteractive display 20 displays the first user profile A 96 of thefirst user 40, which includes thefirst identifier 100 associated with thefirst user 40, the current blood oxygen saturation reading 108 of thefirst user 40, and the current pulse rate reading 112 of thefirst user 40. Other raw scale data could also be displayed. - In another example, the
pulse oximetry system 10 may include a switch component 122 (ofFIG. 5 ,FIG. 6 , andFIG. 7 ). Theswitch component 122 may receive an action, such as a touch or tap action, indicating that a given user wishes to switch information displayed via theinteractive display 20 to another profile or to other information. - The processor of the
pulse oximetry system 10 may include avoice activation component 76. Further, thepulse oximetry system 10 may also include amicrophone 120. Thevoice activation component 76 may include one ormore algorithms 78. In an example, thefirst user 40 provides an audio input to the microphone 120 (ofFIG. 6 andFIG. 7 ) of thepulse oximetry system 10. Themicrophone 120 may receive the login credentials from thefirst user 40 via the audio input. Next, the one ormore algorithms 78 of thevoice activation component 76 of thepulse oximetry system 10 analyze the login credentials to determine whether the login credentials corresponds to login credentials associated with a user profile stored in the memory (e.g., theROM 52 and/or the RAM 54) of the pulse oximetry system 10 (such as a first user profile A 96 associated with the first user or a second user profile B 98 associated with the second user ofFIG. 5 ). In response to a determination that the login credentials of the audio input correspond to the login credentials associated with the first user profile A 96, the one ormore algorithms 78 of thevoice activation component 76 confirm the identity of the user as the first user. In another example, thesecond user 94 may provide the login credentials via a physical input to themobile device 80. - In other examples, voice activation may be used to prompt the
pulse oximetry system 10 to perform an action, such as display the first user profile A 96 associated with thefirst user 40 or display different items or information associated with the first user profile A 96 on theinteractive display 20. Voice activation may also be used to perform actions on themobile device 80. As explained, thepulse oximetry system 10 comprises the voice activation component 76 (or module) and themobile device 80 comprises the voice activation component 84 (or module). Thevoice activation component 76 may be used to control actions of thepulse oximetry system 10 and thevoice activation component 84 may be used to control actions of themobile device 80, respectively. - Further, the
voice activation component 76 of thepulse oximetry system 10 comprises the one ormore algorithms 78 and thevoice activation component 84 of themobile device 80 comprises the one ormore algorithms 86. In an example, when themicrophone 120 of thepulse oximetry system 10 receives an audio input from the user, the one ormore algorithms 78 of thevoice activation component 76 analyze the audio input to determine whether the audio input corresponds to a command recognizable by thevoice activation component 76. Such recognizable commands are stored in the memory of thepulse oximetry system 10. In other examples, the recognizable commands are stored in a data store (not shown). If the voice input corresponds to a recognizable command, thepulse oximetry system 10 may process and execute the command. - In some examples, a microphone (not shown) of the
mobile device 80 receives the audio input from the user. In response, the one ormore algorithms 86 of thevoice activation component 84 of themobile device 80 analyze the audio input to determine whether the audio input corresponds to a command recognizable by thevoice activation component 84. Such recognizable commands are stored in the memory or a data store (not shown) of themobile device 80. If the voice input corresponds to a recognizable command, themobile device 80 may process and execute the command. - The command can include any of a number of functions or operations supported by
pulse oximetry system 10 or themobile device 80. It should be appreciated that the recognizable commands may include: turn on the device, turn off the device, awake the device from a sleep mode, put the device into the sleep mode, display the first user profile A 96, and/or display the second user profile B 98, etc. It should be appreciated that thepulse oximetry system 10 or themobile device 80 may utilize user input devices to replace or supplement voice commands. - It should be appreciated that in some implementations, the
mobile device 80 may comprise an intelligent personal assistant and knowledge manager, such as Siri, and/or a virtual assistant artificial intelligence (AI) technology developed by Amazon, Amazon Alexa. In this example, themobile device 80 may first receive an action on a physical button, icon, or display of themobile device 80. In response, themobile device 80 may launch Siri or Amazon Alexa. Then, the user may provide audio input, via the microphone, to themobile device 80. Siri or Amazon Alexa may process the audio input and provide an audio response via a speaker of themobile device 80 or a visual response via thedisplay 82 of themobile device 80. In some examples, the audio or visual response may be transmitted to thepulse oximetry system 10 for storage and/or display to the user. - As described herein, “Siri” is a software application, and more particularly, an intelligent personal assistant and knowledge manager. Siri is part of Apple Inc.'s iOS, iPadOS, watchOS, macOS, and tvOS operating systems. The assistant uses voice queries, gesture based control, focus-tracking and a natural-language user interface to answer questions, make recommendations, and perform actions by delegating requests to a set of Internet services. The software adapts to users' individual language usages, searches, and preferences, with continuing use. Returned results are individualized. Siri supports a wide range of user commands, including performing phone actions, checking basic information, scheduling events and reminders, handling device settings, searching the Internet, navigating areas, finding information on entertainment, and is able to engage with iOS-integrated apps.
- As described herein, “Amazon Alexa” or “Alexa” is a virtual assistant AI technology developed by Amazon. Alexa is capable of voice interaction, music playback, making to-do lists, setting alarms, streaming podcasts, playing audiobooks, and providing weather, traffic, sports, and other real-time information, such as news. Alexa can also control several smart devices using itself as a home automation system. Users are able to extend the Alexa capabilities by installing “skills” (additional functionality developed by third-party vendors, in other settings more commonly called apps such as weather programs and audio features).
- Moreover, the
interactive display 20 of thepulse oximetry system 10, as shown inFIG. 5 ,FIG. 6 , andFIG. 7 , may also include one ormore indicators pulse oximetry system 10 to take readings. Further, in examples, the one ormore indicators more indicators - The one or
more indicators first user 40 associated with the first user profile A 96 may be assigned a color of green and thesecond user 94 associated with the second user profile B 98 may be assigned a color of red. Such colors may be stored in the respective user profile. If thefirst user 40, for example, fails to use thepulse oximetry system 10 for more than a specified time period (e.g., a week), the one ormore indicators second user 94 fails to use thepulse oximetry system 10 for more than a specified time period, the one or more indicators 158A, 158B may flash the color red at a low duty-cycle. The duty-cycle may increase successively as more time elapses between consecutive weigh-ins by the scale user. - In another example, the
mobile device 80 may send a user-identifying signal to thepulse oximetry system 10 when themobile device 80 is in proximity topulse oximetry system 10. In an alternate embodiment, the one ormore indicators more indicators mobile device 110 is in proximity to thepulse oximetry system 10. - Furthermore, as depicted in at least
FIG. 5 ,FIG. 6 , andFIG. 7 , the one ormore indicators display 20. In another example, the one ormore indicators pulse oximetry system 10. - If a predetermined amount of time has passed (e.g., a week), the color of the one or
more indicators pulse oximetry system 10. The pulse could then turn into an on-off flashing pattern after a longer period of time has elapsed (e.g., two weeks). - In an embodiment, the system described herein may also include a key fob (not shown). The key fob may contain wireless signal capabilities. The key fob is configured to transmit a signal to the
pulse oximetry system 10 when the key fob is within a proximity to thepulse oximetry system 10. In response to receiving the signal from the key fob, the one ormore indicators pulse oximetry system 10 when the key fob is within the proximity to thepulse oximetry system 10, the one ormore indicators - Another embodiment of the invention provides a method that performs the process steps on a subscription, advertising, and/or fee basis. That is, a service provider can offer to assist in the method steps described herein. In this case, the service provider can create, maintain, and/or support, etc. a computer infrastructure that performs the process steps for one or more customers. In return, the service provider can receive payment from the customer(s) under a subscription and/or fee agreement, and/or the service provider can receive payment from the sale of advertising content to one or more third parties.
- The descriptions of the various embodiments of the present invention have been presented for purposes of illustration, but are not intended to be exhaustive or limited to the embodiments disclosed. Many modifications and variations will be apparent to those of ordinary skill in the art without departing from the scope and spirit of the described embodiments. The terminology used herein was chosen to best explain the principles of the embodiments, the practical application or technical improvement over technologies found in the marketplace, or to enable others or ordinary skill in the art to understand the embodiments disclosed herein.
- When introducing elements of the present disclosure or the embodiments thereof, the articles “a,” “an,” and “the” are intended to mean that there are one or more of the elements. Similarly, the adjective “another,” when used to introduce an element, is intended to mean one or more elements. The terms “including” and “having” are intended to be inclusive such that there may be additional elements other than the listed elements.
- Although this invention has been described with a certain degree of particularity, it is to be understood that the present disclosure has been made only by way of illustration and that numerous changes in the details of construction and arrangement of parts may be resorted to without departing from the spirit and the scope of the invention.
Claims (20)
1. A system comprising:
a network;
a pulse oximeter comprising:
a sensor component comprising:
a first side disposed opposite a second side; and
a receiving portion configured to receive a finger of an individual therein,
wherein the first side comprises an emitter component configured to emit light at one or more wavelengths into a tissue of the finger of the individual, and
wherein the second side comprises a detector component configured to detect the light originating from the emitter component that emanates from the tissue of the finger of the individual after passing through the tissue; and
an engine configured to calculate physiological parameters for the individual based on data received from the sensor component, the engine comprising:
a memory housing a first user profile associated with a first user and a second user profile associated with a second user; and
a processor connected to the memory, the processor comprising a voice activation component;
a microphone configured to receive an audio input from the individual; and
the voice activation component comprising one or more algorithms, the one or more algorithms being configured to:
analyze the audio input received via the microphone;
compare the audio input to commands stored in the memory;
determine that the audio input corresponds to a command of the commands stored in the memory based on the comparison; and
process and execute the command; and
a mobile device configured to interact with the pulse oximeter via the network.
2. The system of claim 1 , wherein the pulse oximeter further comprises:
a display configured to display the physiological parameters and other data to the individual.
3. The system of claim 1 , wherein the pulse oximeter further comprises:
a data input device configured to receive a physical input from the individual.
4. The system of claim 1 , wherein the physiological parameters for the individual are selected from the group consisting of: a blood oxygen saturation reading and a pulse rate reading.
5. The system of claim 1 , wherein the mobile device is configured to:
send a signal via the network to the processor when the mobile device is in proximity to the pulse oximeter.
6. The system of claim 5 , wherein the processor is configured to:
receive the signal from mobile device;
select a user profile from the memory corresponding to an owner of the mobile device; and
store a blood oxygen saturation reading and/or a pulse rate reading of the individual in the first user profile if the owner of the mobile device is the first user or store the blood oxygen saturation reading and/or a pulse rate reading in the second user profile if the owner of the mobile device is the second user.
7. The system of claim 1 , further comprising:
a key fob that contains wireless signal capabilities, wherein the key fob is configured to transmit a signal to the processor when the key fob is in proximity of the pulse oximeter.
8. The system of claim 7 , wherein the processor is configured to:
receive the signal from the key fob;
select a user profile from the memory corresponding to an owner of the key fob; and
store a blood oxygen saturation reading and/or a pulse rate reading of the individual in the first user profile if the owner of the key fob is the first user or store the blood oxygen saturation reading and/or a pulse rate reading in the second user profile if the owner of the key fob is the second user.
9. The system of claim 1 ,
wherein the first user profile comprises blood oxygen saturation readings for the first user, pulse rate readings for the first user, and a unique identifier for the first user, and
wherein the second user profile comprises blood oxygen saturation readings for the second user, pulse rate readings for the second user, and a unique identifier for the second user.
10. The system of claim 1 ,
wherein the mobile device comprises an application executed on the mobile device, and
wherein the application is configured to track blood oxygen saturation readings and pulse rate readings for the first user or the second user.
11. A pulse oximeter comprising:
a sensor component comprising:
a first side disposed opposite a second side; and
a receiving portion configured to receive a finger of an individual therein,
wherein the first side comprises an emitter component configured to emit light at one or more wavelengths into a tissue of the finger of the individual, and
wherein the second side comprises a detector component configured to detect the light originating from the emitter component that emanates from the tissue of the finger of the individual after passing through the tissue; and
an engine configured to calculate physiological parameters for the individual based on data received from the sensor component, the engine comprising:
a memory housing a first user profile associated with a first user and a second user profile associated with a second user; and
a processor connected to the memory, the processor comprising a voice activation component;
a display configured to display the physiological parameters and other data to the individual;
a microphone configured to receive an audio input from the individual; and
the voice activation component comprising one or more algorithms, the one or more algorithms being configured to:
analyze the audio input received via the microphone;
compare the audio input to commands stored in the memory;
determine that the audio input corresponds to a command of the commands stored in the memory based on the comparison; and
process and execute the command.
12. The pulse oximeter of claim 11 , wherein the physiological parameters for the individual are selected from the group consisting of: a blood oxygen saturation reading and a pulse rate reading.
13. The pulse oximeter of claim 11 , wherein the pulse oximeter is configured to communicate with a mobile device via a network.
14. The pulse oximeter of claim 11 ,
wherein the first user profile comprises blood oxygen saturation readings for the first user, pulse rate readings for the first user, and a unique identifier for the first user, and
wherein the second user profile comprises blood oxygen saturation readings for the second user, pulse rate readings for the second user, and a unique identifier for the second user.
15. The pulse oximeter of claim 11 , wherein the display comprises:
one or more indicators configured to encourage use of the pulse oximeter.
16. The pulse oximeter of claim 15 , wherein each of the one or more indicators comprise a light-emitting diode (LED).
17. The pulse oximeter of claim 16 ,
wherein the first user is associated with a first color of light configured to be emitted from the one or more indicators,
wherein the second user is associated with a second color of light configured to be emitted from the one or more indicators, and
wherein the first color of light differs from the second color of light.
18. The pulse oximeter of claim 17 ,
wherein the first color of light is stored in the first user profile, and
wherein the second color of light is stored in the second user profile.
19. The pulse oximeter of claim 18 ,
wherein the one or more indicators are configured to project or flash the first color of light if the first user fails to use the pulse oximeter for a predetermined period of time, and
wherein the one or more indicators are configured to project or flash the second color of light if the second user fails to use the pulse oximeter for the predetermined period of time.
20. The pulse oximeter of claim 15 , wherein the one or more indicators comprise an audio functionality such that the one or more indicators project or flash light and/or emanate a sound when the individual is within a proximity of the pulse oximeter.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/517,841 US20220151492A1 (en) | 2020-11-19 | 2021-11-03 | Pulse oximeter with cellular communication capability |
EP21895402.2A EP4247240A4 (en) | 2020-11-19 | 2021-11-15 | Pulse oximeter with cellular communication capability |
PCT/US2021/059301 WO2022108855A1 (en) | 2020-11-19 | 2021-11-15 | Pulse oximeter with cellular communication capability |
CA3199542A CA3199542A1 (en) | 2020-11-19 | 2021-11-15 | Pulse oximeter with cellular communication capability |
US18/139,326 US11872011B2 (en) | 2020-11-19 | 2023-04-25 | Pulse oximeter with cellular communication capability |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US202063115935P | 2020-11-19 | 2020-11-19 | |
US17/517,841 US20220151492A1 (en) | 2020-11-19 | 2021-11-03 | Pulse oximeter with cellular communication capability |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/139,326 Continuation US11872011B2 (en) | 2020-11-19 | 2023-04-25 | Pulse oximeter with cellular communication capability |
Publications (1)
Publication Number | Publication Date |
---|---|
US20220151492A1 true US20220151492A1 (en) | 2022-05-19 |
Family
ID=81588612
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/517,841 Pending US20220151492A1 (en) | 2020-11-19 | 2021-11-03 | Pulse oximeter with cellular communication capability |
US18/139,326 Active US11872011B2 (en) | 2020-11-19 | 2023-04-25 | Pulse oximeter with cellular communication capability |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/139,326 Active US11872011B2 (en) | 2020-11-19 | 2023-04-25 | Pulse oximeter with cellular communication capability |
Country Status (4)
Country | Link |
---|---|
US (2) | US20220151492A1 (en) |
EP (1) | EP4247240A4 (en) |
CA (1) | CA3199542A1 (en) |
WO (1) | WO2022108855A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
USD972731S1 (en) * | 2021-02-05 | 2022-12-13 | Hua Xie | Pulse oximeter |
US20220395180A1 (en) * | 2021-06-11 | 2022-12-15 | Smart Meter Corporation | Pulse oximeter with cellular communication capability and temperature reading capabalities |
USD973880S1 (en) * | 2021-09-10 | 2022-12-27 | Shenzhen Yimi Life Technology Co., Ltd. | Oximeter |
USD977649S1 (en) * | 2021-09-27 | 2023-02-07 | Shenzhen Yimi Life Technology Co., Ltd. | Fingertip pulse oximeter |
USD982758S1 (en) * | 2021-02-05 | 2023-04-04 | Peloton Interactive, Inc. | Heart rate monitor |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7254434B2 (en) * | 2003-10-14 | 2007-08-07 | Masimo Corporation | Variable pressure reusable sensor |
EP1860996B1 (en) * | 2005-03-01 | 2018-08-01 | Masimo Laboratories, Inc. | Multiple wavelength sensor drivers |
US7925511B2 (en) * | 2006-09-29 | 2011-04-12 | Nellcor Puritan Bennett Llc | System and method for secure voice identification in a medical device |
US8938279B1 (en) * | 2009-01-26 | 2015-01-20 | VioOptix, Inc. | Multidepth tissue oximeter |
WO2011025549A1 (en) * | 2009-08-31 | 2011-03-03 | Abbott Diabetes Care Inc. | Medical devices and methods |
US9554712B2 (en) * | 2013-02-27 | 2017-01-31 | Covidien Lp | Systems and methods for generating an artificial photoplethysmograph signal |
US9936916B2 (en) * | 2013-10-09 | 2018-04-10 | Nedim T. SAHIN | Systems, environment and methods for identification and analysis of recurring transitory physiological states and events using a portable data collection device |
CA2931973A1 (en) * | 2013-11-29 | 2015-06-04 | Motiv Inc. | Wearable computing device |
US11024339B2 (en) * | 2015-10-13 | 2021-06-01 | Richard A Rothschild | System and method for testing for COVID-19 |
US10430624B2 (en) * | 2017-02-24 | 2019-10-01 | Endotronix, Inc. | Wireless sensor reader assembly |
US10542937B2 (en) * | 2017-07-07 | 2020-01-28 | Hall Labs Llc | Intelligent health monitoring toilet system with wand sensors |
GB2566101A (en) * | 2017-09-05 | 2019-03-06 | B Secur Ltd | Wearable authentication device |
US12011297B2 (en) * | 2018-06-28 | 2024-06-18 | Board Of Trustees Of Michigan State University | Mobile device applications to measure blood pressure |
SG11202108546QA (en) * | 2019-02-22 | 2021-09-29 | Toi Labs Inc | User detection and identification in a bathroom setting |
-
2021
- 2021-11-03 US US17/517,841 patent/US20220151492A1/en active Pending
- 2021-11-15 EP EP21895402.2A patent/EP4247240A4/en active Pending
- 2021-11-15 CA CA3199542A patent/CA3199542A1/en active Pending
- 2021-11-15 WO PCT/US2021/059301 patent/WO2022108855A1/en unknown
-
2023
- 2023-04-25 US US18/139,326 patent/US11872011B2/en active Active
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
USD972731S1 (en) * | 2021-02-05 | 2022-12-13 | Hua Xie | Pulse oximeter |
USD982758S1 (en) * | 2021-02-05 | 2023-04-04 | Peloton Interactive, Inc. | Heart rate monitor |
US20220395180A1 (en) * | 2021-06-11 | 2022-12-15 | Smart Meter Corporation | Pulse oximeter with cellular communication capability and temperature reading capabalities |
USD973880S1 (en) * | 2021-09-10 | 2022-12-27 | Shenzhen Yimi Life Technology Co., Ltd. | Oximeter |
USD977649S1 (en) * | 2021-09-27 | 2023-02-07 | Shenzhen Yimi Life Technology Co., Ltd. | Fingertip pulse oximeter |
Also Published As
Publication number | Publication date |
---|---|
US20230255488A1 (en) | 2023-08-17 |
EP4247240A1 (en) | 2023-09-27 |
US11872011B2 (en) | 2024-01-16 |
WO2022108855A1 (en) | 2022-05-27 |
EP4247240A4 (en) | 2024-10-02 |
CA3199542A1 (en) | 2022-05-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11872011B2 (en) | Pulse oximeter with cellular communication capability | |
US11839470B2 (en) | Active-pulse blood analysis system | |
US20220218213A1 (en) | Patient monitor for determining microcirculation state | |
US9402573B2 (en) | System and method for detecting fluid responsiveness of a patient | |
US11918351B2 (en) | System and method for non-invasive monitoring of hemoglobin | |
US20100099964A1 (en) | Hemoglobin monitor | |
US8977348B2 (en) | Systems and methods for determining cardiac output | |
US20150297125A1 (en) | Oximetry sensor assembly and methodology for sensing blood oxygen concentration | |
CN113558589A (en) | Biosensor and method for measuring the same | |
US20140275825A1 (en) | Methods and systems for light signal control in a physiological monitor | |
US20090326347A1 (en) | Synchronous Light Detection Utilizing CMOS/CCD Sensors For Oximetry Sensing | |
CA3203811A1 (en) | Multiparameter noninvasive sepsis monitor | |
US20220395180A1 (en) | Pulse oximeter with cellular communication capability and temperature reading capabalities | |
US20140275938A1 (en) | System and method for determining repetitive airflow reductions | |
Finnerty | How to Design a Better Pulse Oximeter | |
JP2023518929A (en) | SYSTEM AND METHOD FOR MEASURING BIOLOGICAL INDICATORS AND VASCULAR SHAPE USING MULTI-PATH PHOTOVOLTICAL PSYCHOLOGY MEASUREMENT DEVICE | |
Kobayashi et al. | Gases | |
Mould | C zyxwvutsrqponmlkjihg |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |