US20220137939A1 - Representation and analysis of workflows using abstract syntax trees - Google Patents

Representation and analysis of workflows using abstract syntax trees Download PDF

Info

Publication number
US20220137939A1
US20220137939A1 US17/577,366 US202217577366A US2022137939A1 US 20220137939 A1 US20220137939 A1 US 20220137939A1 US 202217577366 A US202217577366 A US 202217577366A US 2022137939 A1 US2022137939 A1 US 2022137939A1
Authority
US
United States
Prior art keywords
state
workflow
actions
transitions
transition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US17/577,366
Inventor
Tejas Viswanath
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chaldal Inc
Original Assignee
Chaldal Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chaldal Inc. filed Critical Chaldal Inc.
Priority to US17/577,366 priority Critical patent/US20220137939A1/en
Publication of US20220137939A1 publication Critical patent/US20220137939A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F8/00Arrangements for software engineering
    • G06F8/30Creation or generation of source code
    • G06F8/31Programming languages or programming paradigms
    • G06F8/311Functional or applicative languages; Rewrite languages
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F8/00Arrangements for software engineering
    • G06F8/40Transformation of program code
    • G06F8/41Compilation
    • G06F8/42Syntactic analysis
    • G06F8/427Parsing

Definitions

  • Non-code format such as Extensible Markup Language (XML).
  • XML Extensible Markup Language
  • States may be represented in the non-code format, but the use of a non-code language significantly limits the expressive power of transition functions. While some systems may allow writing custom functions as transitions, the custom functions are opaque and cannot be automatically analyzed in the same process as the state functions. It cannot be automatically determined what operations the custom functions perform, what variables they depend on, and other features.
  • FIG. 4 illustrates an exemplary method of tracking information from past iterations of a workflow and using that information to select actions to perform in the workflow.
  • FIG. 1 illustrates an exemplary method 100 performed by a computer system for generating an abstract syntax tree from computer code representing a workflow.
  • Step 101 comprises providing a file of computer instructions representing a workflow in a functional programming language.
  • a workflow may be defined using one or more recursive function calls of pure functions that have no side effects.
  • Providing different transitions, or different context, for employees or other parameters allows tracking and analyzing the workflow according to performance by the employees or based on the other parameters.
  • the employee or other parameters may affect the success probability of successfully completing the transition and the time it takes to complete the transition in the workflow. Some employees may perform more successfully or more quickly at certain tasks in the workflow than others.
  • other variables such as the identity of the warehouse, may also affect the success rate and time taken.
  • the result of the code path generation is a set of code paths having a target state and one or more conditions that must be true for a transition to occur to the target state, where each condition may depend on one or more input variables of the source state, action, and context (S 1 , A, C 1 ). If a condition does not depend on any input variable, then the condition can be evaluated to a constant during code path generation and eliminated.
  • the code path generation process 302 need only occur once during runtime so long as the underlying code and abstract syntax tree do not change.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Software Systems (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computing Systems (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

A workflow for an operational process may be defined using a functional programming language. A computer system may parse the workflow to generate an abstract syntax tree, which may include states of the workflow and transitions from one workflow state to another. The computer system may generate code paths from the abstract syntax tree representing sequences of execution. Reflection on the workflow may be performed using the abstract syntax tree and code paths to allow intelligent decision-making.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation of U.S. application Ser. No. 16/421,686, filed May 54, 2019, which claims the benefit of U.S. Provisional Patent Application No. 62/676,240, filed May 24, 2018, which are hereby incorporated by reference in their entirety.
  • FIELD OF THE INVENTION
  • The present invention relates to the use of abstract syntax trees to represent workflows and to analyze said workflows.
  • BACKGROUND
  • The background description provided here is for the purpose of generally presenting the context of the disclosure. Work of the presently named inventors, to the extent it is described in this background section, as well as aspects of the description that may not otherwise qualify as prior art at the time of filing, are neither expressly nor impliedly admitted as prior art against the present disclosure.
  • Workflows can be used to represent operations in a wide variety of industries from logistics to software development. A workflow helps organize information about processes and allows analysis and reasoning about the processes. Existing methods of representing workflows have several major disadvantages.
  • One method of representing workflows is not formalize them as state machines and instead describe the workflows ad hoc in software code. Automated analysis of the workflow is generally not possible in this case. Analysis would have to be designed separately for each use case.
  • Other methods of representing workflows are to represent the workflow as state machines but without full encodings of the transitions between states. Although the basic states of the workflow may be known, the transitions are not identified with precision, and it is not possible to determine the free and bound variables involved in a state machine transition. Because of the lack of transition information, limited analysis can be performed automatically on these workflows.
  • Another existing method of representing workflows is to do so with a non-code format, such as Extensible Markup Language (XML). States may be represented in the non-code format, but the use of a non-code language significantly limits the expressive power of transition functions. While some systems may allow writing custom functions as transitions, the custom functions are opaque and cannot be automatically analyzed in the same process as the state functions. It cannot be automatically determined what operations the custom functions perform, what variables they depend on, and other features.
  • It would be desirable to develop a more effective representation of workflows using abstract syntax trees that allows more effective reasoning and analysis of the workflows.
  • SUMMARY OF THE INVENTION
  • Embodiments of the invention relate to representing workflows using abstract syntax trees. The abstract syntax tree may be used for various forms of reflection and analysis of the workflow in a seamless manner.
  • One embodiment relates to a method for building an abstract syntax tree and code paths. A computer file may be provided representing a workflow in a functional programming language. A computer system may parse the file, identify workflow states, and generate state transition functions that specify transitions from one workflow state to another workflow state. The computer system may generate an abstract syntax tree from the workflow states and transition functions. From the abstract syntax tree, the computer system may generate code paths representing sequences of execution. The workflow may be executed as code, and the code paths updated as new input values are bound to input variables of functions.
  • The code paths may be used for reflection and analysis about what code paths are available or what actions can be performed. Moreover, historical data may be provide from past runs of the workflow to allow the system to automatically choose optimal actions to perform.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 illustrates an exemplary method for generating an abstract syntax tree from a workflow defined in a programming language.
  • FIG. 2 illustrates an exemplary abstract syntax tree representing a workflow.
  • FIG. 3 illustrates an exemplary method for generating code paths from an abstract syntax tree at runtime.
  • FIG. 4 illustrates an exemplary method of tracking information from past iterations of a workflow and using that information to select actions to perform in the workflow.
  • FIG. 5 illustrates an example of reflection performed on a workflow using code paths.
  • DETAILED DESCRIPTION
  • In this specification, reference is made in detail to specific embodiments of the invention. Some of the embodiments or their aspects are illustrated in the drawings.
  • For clarity in explanation, the invention has been described with reference to specific embodiments, however it should be understood that the invention is not limited to the described embodiments. On the contrary, the invention covers alternatives, modifications, and equivalents as may be included within its scope as defined by any patent claims. The following embodiments of the invention are set forth without any loss of generality to, and without imposing limitations on, the claimed invention. In the following description, specific details are set forth in order to provide a thorough understanding of the present invention. The present invention may be practiced without some or all of these specific details. In addition, well known features may not have been described in detail to avoid unnecessarily obscuring the invention.
  • In addition, it should be understood that steps of the exemplary methods set forth in this exemplary patent can be performed in different orders than the order presented in this specification. Furthermore, some steps of the exemplary methods may be performed in parallel rather than being performed sequentially. Also, the steps of the exemplary methods may be performed in a network environment in which some steps are performed by different computers in the networked environment.
  • Embodiments herein relate to representing a workflow in an abstract syntax tree. An operator may define the workflow in a programming language, such as a functional programming language. Functional programming languages are programming languages that treat computer programs as the evaluation of mathematical functions and avoids state changes and side effects. Side effects refer to the storage of data and causing of effects other than the return of data from a function. Functional languages that may be used herein include Lisp, Scheme, Haskell, Erlang, OCaml, and others. Alternatively, an operator may define a workflow using a visual interface, and a computer program may translate the visually defined workflow into a programming language.
  • FIG. 1 illustrates an exemplary method 100 performed by a computer system for generating an abstract syntax tree from computer code representing a workflow. Step 101 comprises providing a file of computer instructions representing a workflow in a functional programming language. Optionally, such a workflow may be defined using one or more recursive function calls of pure functions that have no side effects.
  • In step 102, the computer system parses the file comprising the instructions representing the workflow. During parsing, the file may be tokenized into tokens. The computer system may iterate over the tokens and operate on them.
  • In step 103, during parsing, the computer system may identify one or more workflow states from the file. States define a state of the workflow after functions or operations have been performed. During parsing, the computer system may also generate one or more state transition functions that specify the transitions from one workflow state to another workflow state.
  • State transition functions may be pure functions in the form S1->A->C1->R<Option(S2*C2)>. Each state transition function takes as input a source state S1, an action A, and context data C1 and returns a new state S2 and updated context C2 with the result value wrapped inside a container of type R. A state transition function may output the empty set if no transition is possible. State transitions may be thought of as actions, whose output depends on the current state and context.
  • Pure functions have two properties. First, they always evaluate to the same return value given the same argument value(s). The function result value cannot depend on any hidden information or state that may change while program execution proceeds or between different executions of the program, nor can it depend on any external input from I/O devices. Second, the evaluation of the function does not cause any semantically observable side effect or output; in other words, there are no mutations of mutable objects or output to I/O devices.
  • In step 104, the computer system generates an abstract syntax tree based on the workflow states and the one or more state transition functions. An abstract syntax tree may be represented in the same functional programming language as the workflow or in other programming languages. Classes and structs may be used as data structures for representing the abstract syntax tree.
  • FIG. 2 illustrates an exemplary abstract syntax tree 200 that may be generated using method 100 and represents an exemplary workflow for receiving an e-commerce order and delivering it to the customer. The abstract syntax tree includes nodes, such as nodes 201, 203, 205, 207, and 209, and transitions, such as transitions 202, 204, 206, and 208. An initial, or root, state 201 is provided where the workflow starts. Some states may have a single outgoing transition, and other states may have multiple outgoing transitions to other states. In state 201, one transition 202 is receiving an order for a soda, which brings the workflow to state 203 defining a state where an order for soda has been received. In state 203, one transition 204 is finding the soda in a warehouse, which brings the workflow to state 205 defining a state where the soda has been located. In state 205, one transition 206 is picking up soda from the shelf, which brings the workflow to state 207 defining a state where the soda has been picked up. Further transitions and states may follow until a final transition 208 of delivering the soda to a customer bringing the system to state 209, an end state where the order is complete. State 209 is a leaf or end state with no further outgoing transitions. While the abstract syntax tree 200 has only a small number of nodes it should be understood that, in practice, an abstract syntax tree for a workflow may have many states and transitions. For example, in at least some embodiments, the workflows may have 30 to 50 states and actions. In some embodiments, the workflows may have more than 50 states and actions.
  • Transitions may be defined not just for particular actions but may also include other information, such as the employee performing the action or other parameters related to the action. In one embodiment, different transitions may be provided from a state for different employees performing the action, such as “Charles picks up the soda from the shelf” or “Anne picks up the soda from the shelf.” Alternatively, a single transition may be provided with different context information that may be provided to identify the employee performing the action.
  • In one embodiment, other parameters related to the action may be represented with different transitions, such as providing a first transition from a state for finding soda in warehouse A and a second transition from said state for finding soda in warehouse B. Alternatively, a single transition may be provided with different context information that may be provided to specify the different parameters such as the identity of the warehouse.
  • Providing different transitions, or different context, for employees or other parameters allows tracking and analyzing the workflow according to performance by the employees or based on the other parameters. For example, the employee or other parameters may affect the success probability of successfully completing the transition and the time it takes to complete the transition in the workflow. Some employees may perform more successfully or more quickly at certain tasks in the workflow than others. Moreover, other variables, such as the identity of the warehouse, may also affect the success rate and time taken.
  • Once a workflow has been represented as an abstract syntax tree, the workflow can reflect upon itself and various operations may be automatically performed, such as automatically finding the most efficient path from a source state to a desired target state. Artificial intelligence may be applied to the abstract syntax tree to determine optimal paths or actions to take.
  • FIG. 3 illustrates an exemplary method 300 that may be performed by a computer system at runtime of the code representing the workflow. The method 300 may allow analysis of the workflow during runtime. In step 301, execution of the code is initiated. In step 302, the computer system may build, from the abstract syntax tree, one or more code paths. Each code path represents a potential sequence of execution in the workflow. A sequence of execution is a series of statements that are executed starting from the input values to a function and resulting in the return values of the function.
  • Two potential types of code paths may exist, depending on whether a function branches or not due to control flow statements such as IF/THEN/ELSE statements. If a function has no control flow statements that evaluate to a jump instruction based on a condition, such as IF/THEN/ELSE statements, for loops, while loops, and ternary operators, then only one code path exists, which includes all the statements within the function. If a function has control flow statements, then the computer system forks and generates a code path for each conditional path based on each condition outcome. The number of code paths generated depends on the number of control flow statements within the abstract syntax tree.
  • The result of the code path generation is a set of code paths having a target state and one or more conditions that must be true for a transition to occur to the target state, where each condition may depend on one or more input variables of the source state, action, and context (S1, A, C1). If a condition does not depend on any input variable, then the condition can be evaluated to a constant during code path generation and eliminated. The code path generation process 302 need only occur once during runtime so long as the underlying code and abstract syntax tree do not change.
  • In step 303, one or more steps of the workflow may be performed. Some steps of the workflow may be automatically completed by the computer system, such as assigning a task to a human worker or charging a credit card. Others may require human input or interaction, such as waiting to receive an order from an e-commerce website or payment information from a customer. Still others may require input from sensors or other computer systems in the environment, for example a confirmation from a sensor or computer system that a product was picked up in a warehouse or sent out for delivery. The workflow may naturally pause at points where human input or input from sensors or other computer systems is needed and resume when the appropriate input is received.
  • In step 304, additional inputs may be determined, such as from the execution of the workflow, from environmental sensors, or from user inputs. The input values may be used to update the code paths. The input variables in the code paths may be replaced with the input values (in other words, input values are bound to the input variables) and re-evaluation may be performed on the code paths. For example, some conditions on the code paths that had been unknown may now be determined to be true or false based on the new input values.
  • In step 305, the workflow may be analyzed by using the code paths and the abstract syntax tree. In one form of reflection on the abstract syntax tree, a source state may be provided, and the computer system may determine all potential code paths from the source state to a target state and the required conditions that must be met for each code path to reach the desired target state. In another from of reflection, a source state may be provided and, optionally, context data. The computer system may filter the potential actions available to determine which actions may be performed from the source state based on the context and the code paths from the source state.
  • In some embodiments, analysis of the workflow may be performed to influence choices made by the system in progressing in the workflow. When presented with an option of a plurality of actions to perform in the workflow, the computer system may use determinations of potential code paths and actions to perform, as well as their likelihood of success, likely time to completion, and other metrics to select an action from the plurality of actions to perform. The computer system may select appropriate actions to optimize probability of success and time to completion.
  • The process ends when the workflow completes at step 306.
  • FIG. 4 illustrates an exemplary method 400 that may be performed by a computer system to automatically optimize the performance of a workflow through analysis of historical data from prior iterations of the workflow.
  • In step 401, the computer system may store tracked information about prior iterations of the workflow. For example, the computer system may store information about whether the workflow was successful or unsuccessful and how long it took to complete the workflow. A database may be provided, and the computer system may store in the database information about success rates and completion time. In some embodiments, the database may store information per transition to identify the past historical success rate of that transition and the time to complete that transition. The historical information may be provided as averages, means, medians, modes, or other statistical information or metrics.
  • In step 402, the workflow may be run and one or more code paths of the workflow may be updated during runtime. The time to completion and success of each action may be monitored and then updated in the database. At some point during execution, a fork may be reached at a state where a plurality of actions are available and the computer system must decide which action to perform (step 403).
  • In step 404, the tracked historical information may be retrieved from the database to analyze historical information about the available actions. The computer system may compute a predicted success rate or time to completion to transition from the present state to a target state for each of the available actions by using the stored information about the success rate or time to completion for each transition on the code path involving the action from the present state to the target state.
  • In step 405, an action may be selected from the available actions based on the predicted success rate or time to completion.
  • In some embodiments, the computer system may use historical information or past configuration to determine when the workflow has reached an exceptional situation and send an alert to an operator.
  • FIG. 5 illustrates an example of how success rates and time to completion may be predicted based on different available actions. At state 501, the computer system is presented with two options in a workflow, to find a product for delivery from Warehouse A or Warehouse B. Based on the choice of Warehouse A or Warehouse B, different future actions are available, such as assigning the picking of the product to Charles, who works in Warehouse A, or to Anne, who works in Warehouse B. Likewise, the warehouses are served by different trucking companies. In this example, each transition is associated with a success rate and a completion time, which provides the probability of success of the transition and the historical time to complete transition. By combining the success rate and completion time for each transition on path A and path B to traverse a path from start state 501 to end state 502 a success rate and completion time for the entire process on path A and path B may be determined. The overall success rate is determined by multiplying the probabilities of each transition on the path, and the overall time to completion is determined by adding the times to complete each transition on the path. The computer system may choose follow path A or path B based on their predicted success rates or completion times.
  • In additional embodiments, a computer system may be used to generate a user interface from the abstract syntax tree and code paths. The computer system iterates over the states of the abstract syntax tree and code paths and determines the states at which user input is required. The computer system then automatically generates a user interface with user interface elements to receive the user input identified in the workflow. The user interface is then presented at the appropriate times in the workflow with the user interface elements for receiving the necessary user input. The user interface may automatically disappear at steps of the workflow where user input is not required.
  • The terminology used herein is for the purpose of describing particular aspects only and is not intended to be limiting of the disclosure. As used herein, the singular forms “a,” “an,” and “the” are intended to comprise the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
  • While the invention has been particularly shown and described with reference to specific embodiments thereof, it should be understood that changes in the form and details of the disclosed embodiments may be made without departing from the scope of the invention. Although various advantages, aspects, and objects of the present invention have been discussed herein with reference to various embodiments, it will be understood that the scope of the invention should not be limited by reference to such advantages, aspects, and objects. Rather, the scope of the invention should be determined with reference to patent claims.

Claims (21)

1. (canceled)
2. A method, comprising:
providing a file comprising computer instructions representing a workflow in a functional programming language;
parsing the file to identify workflow states;
generating an abstract syntax tree based on the workflow states and one or more transitions between the workflow states;
building, from the abstract syntax tree, one or more code paths, each code path representing a potential sequence of execution in the workflow;
receiving one or more new input values for the workflow; and
iteratively executing the workflow and updating the one or more code paths based on the new input values.
3. The method of claim 2, wherein the file defines the workflow using one or more recursive function calls that have no side effects.
4. The method of claim 2, further comprising:
generating one or more state transition functions that specify the transitions between the workflow states,
wherein the transitions are based on an action and a context, and
wherein generating the abstract syntax tree is further based on the one or more state transition functions.
5. The method of claim 4, wherein the one or more state transition functions are pure functions that have no side effects.
6. The method of claim 2, wherein the abstract syntax tree is represented in the same functional programming language as the file representing the workflow.
7. The method of claim 2, further comprising:
providing a source state and a target state; and
determining one or more code paths and required conditions to reach the target state from the source state.
8. The method of claim 2, further comprising:
providing a source state and a context; and
determining a set of actions that may be performed in the source state based on the context and the one or more code paths.
9. The method of claim 2, further comprising:
providing one or more environmental sensors,
wherein the new input values comprise one or more inputs from the environment sensors.
10. The method of claim 2, further comprising:
storing information about the success rate of transitions between states in the abstract syntax tree, where the transitions are associated with actions;
iteratively executing the workflow and updating the one or more code paths until a first state is reached where a plurality of actions are available;
computing a predicted success rate to transition from the first state to a second state for each of the plurality of available actions by using the stored information about the success rate of transitions for each transition on the code path involving the action from the first state to the second state; and
selecting an action from the plurality of actions based on the predicted success rates.
11. The method of claim 2, further comprising:
storing information about the time for transitions between states in the abstract syntax tree, where the transitions are associated with actions;
iteratively executing the workflow and updating the one or more code paths until a first state is reached where a plurality of actions are available;
computing a predicted time to transition from the first state to a second state for each of the plurality of available actions by using the stored information about the time to transition for each transition on the code path involving the action from the first state to the second state; and
selecting an action from the plurality of actions based on the predicted times.
12. A non-transitory computer-readable medium, the non-transitory computer-readable medium comprising instructions for:
providing a file comprising computer instructions representing a workflow in a functional programming language;
parsing the file to identify workflow states;
generating an abstract syntax tree based on the workflow states and one or more transitions between the workflow states;
building, from the abstract syntax tree, one or more code paths, each code path representing a potential sequence of execution in the workflow;
receiving one or more new input values for the workflow; and
iteratively executing the workflow and updating the one or more code paths based on the new input values.
13. The non-transitory computer-readable medium of claim 12, further comprising instructions for:
automatically generating, based on the abstract syntax tree, a user interface to receive the one or more new input values for the workflow as user inputs.
14. The non-transitory computer-readable medium of claim 12, further comprising instructions for:
generating one or more state transition functions that specify the transitions between the workflow states,
wherein the transitions are based on an action and a context, and
wherein generating the abstract syntax tree is further based on the one or more state transition functions.
15. The non-transitory computer-readable medium of claim 12, wherein the abstract syntax tree is represented in the same functional programming language as the file representing the workflow.
16. The non-transitory computer-readable medium of claim 12, further comprising instructions for:
providing a source state and a target state; and
determining one or more code paths and required conditions to reach the target state from the source state.
17. The non-transitory computer-readable medium of claim 12, further comprising instructions for:
providing a source state and a context; and
determining a set of actions that may be performed in the source state based on the context and the one or more code paths.
18. The non-transitory computer-readable medium of claim 12, further comprising instructions for:
providing one or more environmental sensors,
wherein the new input values comprise one or more inputs from the environment sensors.
19. The non-transitory computer-readable medium of claim 12, further comprising instructions for:
storing information about the success rate of transitions between states in the abstract syntax tree, where the transitions are associated with actions;
iteratively executing the workflow and updating the one or more code paths until a first state is reached where a plurality of actions are available;
computing a predicted success rate to transition from the first state to a second state for each of the plurality of available actions by using the stored information about the success rate of transitions for each transition on the code path involving the action from the first state to the second state; and
selecting an action from the plurality of actions based on the predicted success rates.
20. The non-transitory computer-readable medium of claim 12, further comprising instructions for:
storing information about the time for transitions between states in the abstract syntax tree, where the transitions are associated with actions;
iteratively executing the workflow and updating the one or more code paths until a first state is reached where a plurality of actions are available; and
computing a predicted time to transition from the first state to a second state for each of the plurality of available actions by using the stored information about the time to transition for each transition on the code path involving the action from the first state to the second state;
selecting an action from the plurality of actions based on the predicted times.
21. The non-transitory computer-readable medium of claim 12, further comprising instructions for:
identifying the workflow states from the file representing the workflow.
US17/577,366 2018-05-24 2022-01-17 Representation and analysis of workflows using abstract syntax trees Abandoned US20220137939A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/577,366 US20220137939A1 (en) 2018-05-24 2022-01-17 Representation and analysis of workflows using abstract syntax trees

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201862676240P 2018-05-24 2018-05-24
US16/421,686 US11226797B2 (en) 2018-05-24 2019-05-24 Representation and analysis of workflows using abstract syntax trees
US17/577,366 US20220137939A1 (en) 2018-05-24 2022-01-17 Representation and analysis of workflows using abstract syntax trees

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US16/421,686 Continuation US11226797B2 (en) 2018-05-24 2019-05-24 Representation and analysis of workflows using abstract syntax trees

Publications (1)

Publication Number Publication Date
US20220137939A1 true US20220137939A1 (en) 2022-05-05

Family

ID=68614551

Family Applications (2)

Application Number Title Priority Date Filing Date
US16/421,686 Active 2040-01-16 US11226797B2 (en) 2018-05-24 2019-05-24 Representation and analysis of workflows using abstract syntax trees
US17/577,366 Abandoned US20220137939A1 (en) 2018-05-24 2022-01-17 Representation and analysis of workflows using abstract syntax trees

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US16/421,686 Active 2040-01-16 US11226797B2 (en) 2018-05-24 2019-05-24 Representation and analysis of workflows using abstract syntax trees

Country Status (1)

Country Link
US (2) US11226797B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12086629B1 (en) * 2020-07-10 2024-09-10 Descartes Labs, Inc. Geospatial data workflow platform

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11973780B2 (en) * 2020-10-14 2024-04-30 Palo Alto Networks, Inc. Deobfuscating and decloaking web-based malware with abstract execution
CN113342343B (en) * 2021-04-20 2022-05-27 山东师范大学 Code abstract generation method and system based on multi-hop inference mechanism

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5777869A (en) * 1994-12-09 1998-07-07 The University Of Akron Relay ladder control system for simulation and monitoring
US6038378A (en) * 1993-07-29 2000-03-14 Digital Esquipment Corporation Method and apparatus for testing implementations of software specifications
US20030005413A1 (en) * 2001-06-01 2003-01-02 Siemens Ag Osterreich Method for testing of software
US20060241927A1 (en) * 2005-04-25 2006-10-26 Shubha Kadambe System and method for signal prediction
US7152229B2 (en) * 2002-01-18 2006-12-19 Symbol Technologies, Inc Workflow code generator
US7200838B2 (en) * 2000-12-20 2007-04-03 National Instruments Corporation System and method for automatically generating a graphical program in response to a state diagram
US20070263544A1 (en) * 2006-05-15 2007-11-15 Ipflex Inc. System and method for finding shortest paths between nodes included in a network
US20090327317A1 (en) * 2008-05-13 2009-12-31 Sap Ag Method and apparatus for a fuzzy distributed decision support system
US20100106551A1 (en) * 2008-10-24 2010-04-29 Oskari Koskimies Method, system, and apparatus for process management
US20120323889A1 (en) * 2011-06-14 2012-12-20 International Business Machines Corporation Systems and methods for using graphical representations to manage query results
US20140049411A1 (en) * 2011-03-14 2014-02-20 Pallavi Reddy State metrics based stopping criterion for turbo-decoding
US20150309813A1 (en) * 2012-08-31 2015-10-29 iAppSecure Solutions Pvt. Ltd A System for analyzing applications in order to find security and quality issues
US9372846B1 (en) * 2013-11-20 2016-06-21 Dmitry Potapov Method for abstract syntax tree building for large-scale data analysis
US20160350447A1 (en) * 2015-06-01 2016-12-01 Assurant Design Automation LLC Generating path execution times
US20170004405A1 (en) * 2015-07-05 2017-01-05 Sas Institute Inc. Stress testing by avoiding simulations
US20170293477A1 (en) * 2014-10-14 2017-10-12 Nippon Telegraph And Telephone Corporation Analysis device, analysis method, and analysis program
US9792443B1 (en) * 2015-03-12 2017-10-17 Whitehat Security, Inc. Position analysis of source code vulnerabilities
US20170310723A1 (en) * 2016-04-22 2017-10-26 Home Box Office, Inc. Streaming media state machine
US10521197B1 (en) * 2016-12-02 2019-12-31 The Mathworks, Inc. Variant modeling elements in graphical programs

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8417489B2 (en) * 2008-01-08 2013-04-09 International Business Machines Corporation Duration estimation of repeated directed graph traversal
US8458662B2 (en) * 2008-02-27 2013-06-04 Accenture Global Services Limited Test script transformation analyzer with economic cost engine
US8516458B2 (en) * 2008-02-29 2013-08-20 Iti Scotland Limited System representation and handling techniques
US9152668B1 (en) * 2010-01-29 2015-10-06 Asana, Inc. Asynchronous computation batching
US8572570B2 (en) * 2010-06-10 2013-10-29 Accenture Global Services Limited Assisted compositional reasoning for test scripts
US8776029B2 (en) * 2011-03-23 2014-07-08 Zerodee, Inc. System and method of software execution path identification
US10515093B2 (en) * 2015-11-30 2019-12-24 Tableau Software, Inc. Systems and methods for interactive visual analysis using a specialized virtual machine
US9891982B2 (en) * 2015-12-04 2018-02-13 Microsoft Technology Licensing, Llc Error handling during onboarding of a service
US20170220455A1 (en) * 2016-01-29 2017-08-03 Mentor Graphics Corporation Test case generation using a constraint graph solver
KR102128571B1 (en) * 2016-03-23 2020-06-30 포그혼 시스템스 인코포레이티드 Efficient state machine for real-time dataflow programming
US10884902B2 (en) * 2017-05-23 2021-01-05 Uatc, Llc Software version verification for autonomous vehicles
CN107844415B (en) * 2017-09-28 2021-02-05 西安电子科技大学 Model detection path reduction method based on interpolation and computer

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6038378A (en) * 1993-07-29 2000-03-14 Digital Esquipment Corporation Method and apparatus for testing implementations of software specifications
US5777869A (en) * 1994-12-09 1998-07-07 The University Of Akron Relay ladder control system for simulation and monitoring
US7200838B2 (en) * 2000-12-20 2007-04-03 National Instruments Corporation System and method for automatically generating a graphical program in response to a state diagram
US20030005413A1 (en) * 2001-06-01 2003-01-02 Siemens Ag Osterreich Method for testing of software
US7152229B2 (en) * 2002-01-18 2006-12-19 Symbol Technologies, Inc Workflow code generator
US20060241927A1 (en) * 2005-04-25 2006-10-26 Shubha Kadambe System and method for signal prediction
US20070263544A1 (en) * 2006-05-15 2007-11-15 Ipflex Inc. System and method for finding shortest paths between nodes included in a network
US20090327317A1 (en) * 2008-05-13 2009-12-31 Sap Ag Method and apparatus for a fuzzy distributed decision support system
US20100106551A1 (en) * 2008-10-24 2010-04-29 Oskari Koskimies Method, system, and apparatus for process management
US20140049411A1 (en) * 2011-03-14 2014-02-20 Pallavi Reddy State metrics based stopping criterion for turbo-decoding
US20120323889A1 (en) * 2011-06-14 2012-12-20 International Business Machines Corporation Systems and methods for using graphical representations to manage query results
US20150309813A1 (en) * 2012-08-31 2015-10-29 iAppSecure Solutions Pvt. Ltd A System for analyzing applications in order to find security and quality issues
US9372846B1 (en) * 2013-11-20 2016-06-21 Dmitry Potapov Method for abstract syntax tree building for large-scale data analysis
US20170293477A1 (en) * 2014-10-14 2017-10-12 Nippon Telegraph And Telephone Corporation Analysis device, analysis method, and analysis program
US9792443B1 (en) * 2015-03-12 2017-10-17 Whitehat Security, Inc. Position analysis of source code vulnerabilities
US20160350447A1 (en) * 2015-06-01 2016-12-01 Assurant Design Automation LLC Generating path execution times
US20170004405A1 (en) * 2015-07-05 2017-01-05 Sas Institute Inc. Stress testing by avoiding simulations
US20170310723A1 (en) * 2016-04-22 2017-10-26 Home Box Office, Inc. Streaming media state machine
US10521197B1 (en) * 2016-12-02 2019-12-31 The Mathworks, Inc. Variant modeling elements in graphical programs

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12086629B1 (en) * 2020-07-10 2024-09-10 Descartes Labs, Inc. Geospatial data workflow platform

Also Published As

Publication number Publication date
US20190361685A1 (en) 2019-11-28
US11226797B2 (en) 2022-01-18

Similar Documents

Publication Publication Date Title
US20220137939A1 (en) Representation and analysis of workflows using abstract syntax trees
Weinzierl et al. Prescriptive business process monitoring for recommending next best actions
CN112394922A (en) Decision configuration method, business decision method and decision engine system
Voorberg et al. Decisions for information or information for decisions? Optimizing information gathering in decision-intensive processes
Baty et al. Combinatorial optimization-enriched machine learning to solve the dynamic vehicle routing problem with time windows
US20110202496A1 (en) Method, apparatus or software for construction of rules for use in a complex event processing system
US20200356871A1 (en) Declarative rule-based decision support system
US20210304073A1 (en) Method and system for developing a machine learning model
US11216761B2 (en) System and method for supply chain optimization
Mason et al. Assurance in reinforcement learning using quantitative verification
US11256748B2 (en) Complex modeling computational engine optimized to reduce redundant calculations
CN114722171A (en) Multi-turn conversation processing method and device, electronic equipment and storage medium
Popova et al. Discovering unbounded synchronization conditions in artifact-centric process models
Catalkaya et al. Enriching business process models with decision rules
Ryan et al. Digitalisation for organisations in industry 4.0: A working example
Bemthuis Business logic for resilient supply chain logistics
Comuzzi Ant-colony optimisation for path recommendation in business process execution
Navaei et al. Machine Learning in Software Development Life Cycle: A Comprehensive Review.
AU2019229462B2 (en) Monitoring an artificial intelligence (ai) based process
Lager et al. Task roadmaps: speeding up task replanning
Comuzzi Optimal paths in business processes: Framework and applications
Krause et al. AutoGRAMS: Autonomous Graphical Agent Modeling Software
Yahya et al. Process discovery by synthesizing activity proximity and user’s domain knowledge
US11886965B1 (en) Artificial-intelligence-assisted construction of integration processes
Li et al. Towards foundation models for mixed integer linear programming

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE