US20210151630A1 - Pixel modules with controllers and light emitters - Google Patents

Pixel modules with controllers and light emitters Download PDF

Info

Publication number
US20210151630A1
US20210151630A1 US17/163,306 US202117163306A US2021151630A1 US 20210151630 A1 US20210151630 A1 US 20210151630A1 US 202117163306 A US202117163306 A US 202117163306A US 2021151630 A1 US2021151630 A1 US 2021151630A1
Authority
US
United States
Prior art keywords
module
light
controller
emitter
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
US17/163,306
Inventor
Christopher Andrew Bower
Matthew Alexander Meitl
Ronald S. Cok
Salvatore Bonafede
Brook Raymond
Andrew Tyler Pearson
Erik Paul Vick
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
X Display Company Technology Ltd
Original Assignee
X Display Company Technology Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by X Display Company Technology Ltd filed Critical X Display Company Technology Ltd
Priority to US17/163,306 priority Critical patent/US20210151630A1/en
Assigned to X DISPLAY COMPANY TECHNOLOGY LIMITED reassignment X DISPLAY COMPANY TECHNOLOGY LIMITED CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: X-Celeprint Limited
Assigned to X-Celeprint Limited reassignment X-Celeprint Limited ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BONAFEDE, SALVATORE, BOWER, CHRISTOPHER ANDREW, COK, RONALD S., MEITL, MATTHEW ALEXANDER, PEARSON, ANDREW TYLER, RAYMOND, BROOK, VICK, ERIK PAUL
Publication of US20210151630A1 publication Critical patent/US20210151630A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • H01L33/387Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape with a plurality of electrode regions in direct contact with the semiconductor body and being electrically interconnected by another electrode layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • H01L25/167Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits comprising optoelectronic devices, e.g. LED, photodiodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • H01L27/156Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars two-dimensional arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L2224/24Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector

Definitions

  • the present disclosure relates generally to physical pixel structures for use in a display and, in some embodiments, structures having stacked inorganic light emitters and pixel controllers.
  • Flat-panel displays comprise an array of pixels distributed in a display viewing area over a planar display substrate.
  • the pixels are electrically controlled using matrix addressing with the intersections of row and column wires on the substrate defining pixel locations. Rows of pixels in the array are sequentially provided with control signals and columns of pixels in the array are provided with data signals.
  • Passive-matrix control relies on row and column controllers external to the display viewing area to sequentially enable rows of pixels to emit light, so that only one row of pixels at a time emits light.
  • Active-matrix control relies on local storage and control provided in the display viewing area for each pixel, for example with a storage capacitor and driving transistor as disclosed in U.S. Pat. No. 9,117,940.
  • Data is provided from the external column controller to each pixel in a selected row of pixels and the rows are sequentially selected with the row controller.
  • the pixels in each selected row receive data on the column wires and store the data locally in the pixel.
  • the control circuitry in the pixel by providing power to the pixel control circuitry, for example transistors driving electrodes controlling a liquid crystal (in the case of a liquid crystal display) or an organic light-emitting diode (in the case of an OLED display).
  • Inorganic light-emitting diodes are also used in flat-panel displays.
  • Inorganic light-emitting diode (iLED) displays have many advantages, such as efficiency, color purity, and lifetime, and are found today in digital signage and large-format displays, for example in sporting venues.
  • the iLEDs in these displays are relatively large, for example having a dimension of one mm or more, are mounted in a display frame, for example in an array of tiles, and are controlled by circuitry external to the display frame. It is difficult, therefore, to construct a high-resolution iLED display with relatively smaller iLEDs.
  • Existing iLED displays often have pixel pitches of approximately 25 ppi, a relatively low resolution, especially compared to OLED or liquid crystal flat-panel displays.
  • Inorganic light-emitting diode displays using micro-transfer printing describes high-performance electronic control circuits and micro-LEDs distributed over a large display substrate.
  • small integrated circuits and micro-LEDs devices are formed over a sacrificial layer on the process side of corresponding crystalline semiconductor wafers, for example a silicon wafer for the integrated circuit and GaN or GaAs wafers for the micro-LEDs.
  • the small integrated circuits and micro-LEDs are released from the various wafers by etching the sacrificial layers formed beneath the devices.
  • a PDMS stamp is successively pressed against the process side of each wafer and the devices are adhered to the stamp.
  • the devices are then pressed against a display substrate coated with an adhesive and thereby adhered to the display substrate.
  • the adhesive is subsequently cured, electrodes are formed using photolithographic methods and materials, and the devices are encapsulated to form arrays of light-emitting pixels.
  • U.S. Pat. No. 9,818,725 entitled Inorganic-Light-Emitter Displays with Integrated Black Matrix describes, inter alia, an inorganic light-emitting display with micro-transfer printed light-emitting diodes and pixel controllers distributed over a flat-panel display substrate with an integrated black matrix. Certain embodiments of such approaches provide an LED display with improved optical performance but there remains a need for inorganic LED displays with improved manufacturability, increased resolution, reduced cost, and pixel structures that facilitate such improved manufacturability and increased resolution.
  • a pixel module comprising a module substrate having a light-emitter surface and a controller surface opposed to the light-emitter surface, one or more light emitters disposed on the light-emitter surface of the module substrate, a controller disposed on the controller surface of the module substrate, and module electrodes.
  • At least one module electrode can be electrically connected to the controller and at least one module electrode can be electrically connected to each light emitter of the one or more light emitters.
  • Module electrodes can electrically connect the controller to one or more light emitters so that the controller is operable to control the one or more light emitters (e.g., when provided with appropriate input, such as one or more signals).
  • One or more module electrodes can pass through a module substrate or wrap around an edge of a module substrate.
  • one or more light emitters comprise a red-light emitter operable to emit red light, a green-light emitter operable to emit green light, and a blue-light emitter operable to emit blue light.
  • One or more light emitters can be one or more horizontal inorganic light-emitting diodes that are disposed to emit light in a direction away from a light-emitter surface of a module substrate.
  • Horizontal inorganic light-emitting diodes can comprise a top side opposite a bottom side. Electrical conductors, such as module electrodes, can be electrically connected to the top side.
  • Horizontal inorganic light-emitting diodes can emit light through the top side or can emit light through the bottom side.
  • One or more light emitters can be one or more vertical inorganic light-emitting diodes that are disposed to emit light in a direction away from a light-emitter surface of a module substrate.
  • Each light emitter of the one or more light emitters can comprise one or more light-emitter connection posts each electrically connected to a module electrode.
  • a controller can comprise one or more controller assembly connection posts each electrically connected to a module electrode.
  • One or more module connection posts can be disposed on a controller surface of a module substrate and each module connection post can be electrically connected to a module electrode.
  • One or more module connection posts can protrude from a controller surface of a module substrate a distance that is greater than a thickness of the controller. The distance can be at least 1.1 times, at least 1.2 times, or at least 1.5 times the thickness of the controller.
  • one or more module connection posts are disposed on a light-emitter surface of a module substrate and each module connection post can be electrically connected to a module electrode.
  • One or more module connection posts can protrude from a light-emitter surface of a module substrate a distance that is greater than a thickness of each of the one or more light emitters. The distance can be at least 1.1 times, at least 1.2 times, or at least 1.5 times the thickness of the one or more light emitters.
  • One or more module connection posts can be disposed on a controller so that the controller is disposed between the one or more module connection posts and a module substrate.
  • a module connection post of the one or more module connection posts disposed on the controller can be electrically connected to a module electrode.
  • each light emitter of the one or more light emitters comprises a broken or separated light-emitter tether
  • a controller comprises a broken or separated controller tether
  • a module substrate comprises a module tether (e.g., a broken or separated tether or wherein the module tether is physically connected to an anchor portion of a source wafer), or (iv) any combination of (i), (ii), and (iii).
  • a module substrate can comprise a broken or separated module tether.
  • Each of the one or more light emitters can be non-native to the module substrate, the controller can be non-native to the module substrate, or both.
  • a dielectric is disposed between the controller and at least a portion of each of the at least one of the module electrodes directly electrically connected to the controller, (ii) a dielectric is disposed between the at least one light emitter and at least a portion of each of the at least one of the module electrodes directly electrically connected to the at least one light emitter, or (iii) both (i) and (ii).
  • An encapsulating layer can be disposed over the controller, an encapsulating layer can be disposed over the one or more light emitters, or both. Any one or more encapsulating layers can comprise a broken or separated module tether.
  • One or more module connection posts can protrude through any one or more encapsulating layers.
  • a pixel module can be fully encapsulated by any one or more encapsulating layers and, optionally, a module substrate.
  • a pixel module has at least one of: at least one of a width and a length of no more than 400 microns (e.g., no more than 300 microns, no more than 200 microns, or no more than 100 microns), and a thickness of no more than 150 microns (e.g., no more than 100 microns, no more than 75 microns, no more than 50 microns, or no more than 25 microns).
  • a width and a length of no more than 400 microns e.g., no more than 300 microns, no more than 200 microns, or no more than 100 microns
  • a thickness of no more than 150 microns e.g., no more than 100 microns, no more than 75 microns, no more than 50 microns, or no more than 25 microns.
  • a pixel-module wafer comprises a module source wafer comprising sacrificial portions and module anchors. Each sacrificial portion is laterally separated from an adjacent sacrificial portion by a module anchor and a pixel module is disposed entirely over each sacrificial portion.
  • Each pixel module can comprise a module substrate having a light-emitter surface and a controller surface opposed to the light-emitter surface, one or more light emitters disposed on the light-emitter surface of the module substrate, a controller disposed on the controller surface of the module substrate, and module electrodes, wherein at least one module electrode is electrically connected to the controller, at least one module electrode is electrically connected to at least one light emitter of the one or more light emitters, and at least one module tether physically connects each of the pixel modules to at least one of the module anchors.
  • a pixel-module display comprises a display substrate and one-or-more pixel modules disposed on the display substrate.
  • Each of the one or more pixel modules can comprise a module substrate having a light-emitter surface and a controller surface opposed to the light-emitter surface, one or more light emitters disposed on the light-emitter surface of the module substrate, a controller disposed on the controller surface of the module substrate, and module electrodes, wherein at least one module electrode is electrically connected to the controller and at least one module electrode is electrically connected to at least one light emitter of the one or more light emitters.
  • Display electrodes are disposed on the display substrate, each display electrode is electrically connected to a module electrode of the one-or-more pixel modules.
  • the one-or-more pixel modules can be non-native to the display substrate.
  • Each of the pixel modules can comprise a broken or separated module tether.
  • each pixel module comprises one or more module connection posts, where each module connection post of the one or more module connection posts is electrically connected to a display electrode.
  • the one-or-more pixel modules can be a plurality of pixel modules that are disposed in a regular array for example on a target substrate, such as a display substrate.
  • the regular array can be regular in one or two dimensions.
  • the one or more light emitters can be disposed between the display substrate and a module substrate.
  • the controller can be disposed between the display substrate and the module substrate.
  • a method of making a pixel module comprises providing (i) a light-emitter source wafer comprising a light emitter, (ii) a controller source wafer comprising a controller, and (iii) a module substrate having a controller surface and a light-emitter surface, transferring (i) the light emitter from the light-emitter source wafer to the light-emitter surface of the module substrate, (ii) the controller from the controller source wafer to the controller surface of the module substrate, or (iii) both (i) and (ii), and forming one or more vias through the module substrate and forming module electrodes electrically connecting the controller to the light emitter through the one or more vias.
  • Methods of the present disclosure can comprise (i) adhering a light-emitter source wafer to a module carrier (e.g., a handle substrate for a pixel module) and removing the light-emitter source wafer, (ii) adhering the controller source wafer to a module carrier and removing the controller source wafer, or (iii) both (i) and (ii).
  • Providing the controller source wafer can comprise providing the module substrate and the controller disposed on the controller surface of the module substrate, and the method comprises transferring the one or more light-emitters from a light-emitter source wafer onto the light-emitting side of the module substrate.
  • Providing the light-emitter source wafer can comprise providing the module substrate and the one or more light emitters disposed on the light-emitter surface of the module substrate and transferring the controller from a controller source wafer onto the controller surface of the module substrate.
  • Transferring the light emitter can comprise (i) micro-transfer printing the light emitter from the light-emitter source wafer to the light-emitter surface of the module substrate, (ii) transferring the controller comprises micro-transfer printing the controller from the controller source wafer to the controller surface of the module substrate, or (iii) both (i) and (ii).
  • Methods of the present disclosure can comprise providing a display substrate and transferring a pixel module to the display substrate. Transferring the pixel module to the display substrate can comprise micro-transfer printing the pixel module from a module carrier to the display substrate.
  • a light-emitter assembly comprises a dielectric light-emitter assembly substrate having a first side and a second side opposite the first side, one or more light emitters disposed on the light-emitter assembly substrate, wherein the one or more light emitters are non-native to the light-emitter assembly substrate, one or more light-emitter assembly connection posts disposed on the first side of the light-emitter assembly substrate, one or more module connection posts disposed on the second side of the light-emitter assembly substrate, and light-emitter electrodes that electrically connect the one or more light emitters to the one or more light-emitter assembly connection posts and to the one or more module connection posts.
  • One or more light emitters can be disposed on the second side of the light-emitter assembly substrate.
  • the light-emitter assembly substrate can comprise a broken or separated light-emitter assembly tether (e.g., a broken, fractured, or separated light-emitter tether or a light-emitter tether that is physically connected to an anchor portion of a source substrate).
  • the one or more light emitters can be each a micro-LED, the one or more light emitters can be horizontal light-emitting diodes, the one or more light emitters can be vertical light-emitting diodes, and each of the one or more light emitters can comprise a broken or separated light-emitter tether.
  • ones of the light-emitter electrodes pass through the light-emitter assembly substrate or ones of the light-emitter electrodes each wrap around an edge of the light-emitter assembly substrate.
  • Each of the one or more light-emitter assembly connection posts or each of the one or more module connection posts can be a multi-layer connection post or a single-layer connection post.
  • each of the one or more module connection posts or each of the light-emitter assembly connection posts can protrude from a light-emitter assembly substrate a distance that is greater than a thickest thickness of one or more light emitters.
  • the distance can be at least 1.1 times (e.g., at least 1.2 times) and no more than 3 times the thickest thickness.
  • a light-emitter assembly comprises a module substrate and one or more contact pads disposed on or in the module substrate and one or more light-emitter assembly connection posts is disposed in electrical connection with one of the one or more contact pads.
  • the module substrate can comprise a module tether (e.g., a broken or separated module tether or a module tether that is physically connected to an anchor portion of a source substrate).
  • a light-emitter assembly comprises a controller disposed on a side of the module substrate opposite the one or more light emitters, wherein the one or more light emitters are electrically connected to the controller.
  • the light-emitter assembly can have at least one of: at least one of a width and a length of no more than 400 microns (e.g., no more than 300 microns, no more than 200 microns, or no more than 100 microns), and a thickness of no more than 150 microns (e.g., no more than 100 microns, no more than 75 microns, no more than 50 microns, or no more than 25 microns).
  • a controller assembly comprises a controller assembly substrate having a first side and a second side opposite the first side, a controller disposed on or in the controller assembly substrate, one or more controller assembly connection posts disposed on the first side of the controller assembly substrate, one or more module connection posts disposed on the second side of the controller assembly substrate, and controller electrodes that electrically connect the controller to the one or more controller assembly connection posts and to the one or more module connection posts.
  • a controller can be disposed on a second side of a controller assembly substrate.
  • a controller assembly substrate can comprise a broken or separated controller assembly tether.
  • a controller assembly substrate can be a dielectric substrate or a semiconductor substrate.
  • a controller can be disposed on a controller assembly substrate and can be non-native to an assembly substrate.
  • a controller can comprise a broken or separated controller tether.
  • Ones of the controller electrodes can pass through a controller assembly substrate or can each wrap around an edge of the controller assembly substrate.
  • a controller assembly comprises a module substrate, wherein each of the one or more controller assembly connection posts is disposed in electrical connection with a contact pad disposed on or in the module substrate.
  • the module substrate can comprise a module tether (e.g., a broken or separated tether or wherein the module tether is physically connected to an anchor portion of a source substrate).
  • a controller assembly can comprise one or more light emitters disposed on a side of a module substrate opposite a controller, wherein one or more light emitters are electrically connected to the controller.
  • a controller assembly can have at least one of: at least one of a width and a length of no more than 400 microns (e.g., no more than 300 microns, no more than 200 microns, or no more than 100 microns) and a thickness of no more than 150 microns (e.g., no more than 100 microns, no more than 75 microns, no more than 50 microns, or no more than 25 microns).
  • a width and a length of no more than 400 microns e.g., no more than 300 microns, no more than 200 microns, or no more than 100 microns
  • a thickness of no more than 150 microns e.g., no more than 100 microns, no more than 75 microns, no more than 50 microns, or no more than 25 microns.
  • one or more module connection posts are disposed on a controller such that the controller is disposed between one or more module connection posts and a controller assembly substrate.
  • Each of the one or more controller assembly connection posts or module connection posts can be a multi-layer connection post or a single-layer connection post.
  • One or more module connection posts can protrude from a controller assembly substrate a distance that is greater than a thickness of the controller and the distance can be at least 1.1 times (e.g., at least 1.2 times), no more than 3 times the thickness, or both.
  • a controller assembly comprises a controller assembly substrate, a controller disposed on a first side of the controller assembly substrate, one or more module connection posts disposed on the controller, one or more controller assembly connection posts disposed on a second side of the controller assembly substrate that is opposite the first side, and controller electrodes disposed at least partially on the controller assembly substrate, wherein the controller electrodes are electrically connected to the controller, the one or more controller assembly connection posts, and the one or more module connection posts.
  • the controller assembly substrate can be a dielectric substrate, or a semiconductor substrate, and the controller can be non-native to the controller assembly substrate.
  • a controller can comprise a broken or separated controller tether.
  • a controller assembly substrate can comprise a broken or separated controller assembly tether.
  • a dielectric can be disposed between the controller and at least a portion of each of the controller electrodes. Ones of the controller electrodes can pass through a controller assembly substrate or wrap around an edge of the controller assembly substrate.
  • a pixel module comprises a dielectric module substrate having a light-emitter surface and a controller surface that is opposite the light-emitter surface, a controller assembly disposed on the controller surface of the module substrate, one or more light emitters disposed on or over the module substrate, and module electrodes that electrically connect the one or more light emitters to the controller.
  • One or more light emitters can be a light-emitter assembly.
  • an adhesive layer is disposed on a controller surface of a module substrate.
  • One or more controller assembly connection posts of a controller assembly can penetrate through an adhesive layer and each can physically contact a contact pad disposed on or in the module substrate.
  • the adhesive layer can be in direct contact with the controller assembly.
  • Ones of the module electrodes can pass through a module substrate or wrap around an edge of a module substrate.
  • a pixel module according to the present disclosure comprises an adhesive layer disposed on a light-emitter surface of a module substrate.
  • One or more light-emitter connection posts of each of the one or more light emitters can penetrate through an adhesive layer such that the one or more light emitters are electrically connected to a controller.
  • the adhesive layer can be disposed over ones of the module electrodes.
  • one or more light emitters each comprise a broken or separated light-emitter tether, one or more light emitters are horizontal light-emitting diodes, one or more light emitters are vertical light-emitting diodes, or each of the one or more light emitters comprises one or more light-emitter connection posts and the one or more light emitters are electrically connected to the controller in part through the one or more light-emitter connection posts.
  • a module substrate comprises a broken or separated module tether.
  • a light-emitter encapsulation layer can be disposed over the one or more light emitters and the light-emitter encapsulation layer can comprise a broken or separated module tether.
  • a controller encapsulation layer can be disposed over the controller assembly and one or more module connection posts can protrude through the controller encapsulation layer.
  • a pixel module comprises a target substrate, such as a display substrate.
  • One or more module connection posts of the controller assembly can be disposed in electrical contact with a corresponding one or more contact pads disposed on or in the target substrate.
  • An adhesive layer can be disposed on the target substrate and one or more module connection posts can penetrate through the adhesive layer such that the controller and the one or more light emitters are electrically connected to one or more module electrodes disposed on or in the target substrate.
  • the target substrate can be a display substrate and the pixel module can be a pixel in an array of pixels disposed on the display substrate that are operable to display information (e.g., an image and/or text) to a viewer.
  • a method of making a pixel module comprises providing a controller, module electrodes, and module connection posts disposed on a module substrate that is disposed on or in a module source wafer, wherein the module electrodes are in electrical contact with the controller, transferring the controller, the module electrodes, the module connection posts, and the module substrate to a carrier such that the controller is disposed between the carrier and the module substrate, removing the module source wafer without removing the module substrate, disposing a light emitter on the module substrate such that the module substrate is disposed between the controller and the light emitter, wherein the light emitter is non-native to the module substrate, and electrically connecting the light emitter to the controller in order to form the pixel module.
  • the providing step can comprise disposing the controller on the module substrate, wherein the controller is non-native to the module substrate, disposing a patterned first dielectric layer on the controller, disposing the module electrodes on the patterned first dielectric layer and in electrical contact with the controller, and disposing the module connection posts.
  • the providing step can further comprise disposing a second dielectric layer on the module electrodes such that the module connection posts protrude from the second dielectric layer.
  • the second dielectric layer and the dielectric substrate can together encapsulate the module electrodes and the controller.
  • Methods of the present disclosure can comprise forming a patterned sacrificial release layer on the second dielectric layer prior to the transferring step, wherein the patterned sacrificial release layer covers the one or more module connection posts.
  • the patterned sacrificial release layer can be at least partially removed, for example by etching, after disposing the light emitter.
  • a portion of the second dielectric layer can be disposed in a common plane with the module substrate such that the controller and the light emitter remain connected to the carrier by the portion of the second dielectric layer after the patterned sacrificial release layer is at least partially removed.
  • Methods of the present disclosure can comprise printing (e.g., micro-transfer printing) a pixel module from a carrier to a target substrate (e.g., a display substrate).
  • Methods of the present disclosure can comprise forming additional module electrodes on a surface of the module substrate opposite the controller.
  • a light emitter can be printed such that light emitter connection posts electrically connected to the light emitter come into electrical contact with the additional module electrodes.
  • An unpatterned adhesive layer can be provided on the additional module electrodes and the module substrate prior to disposing the light emitter and the adhesive layer can be patterned after disposing the light emitter such that the adhesive layer after patterning does not extend beyond the module substrate.
  • a light emitter comprises a broken or separated tether or a controller comprises a broken or separated tether.
  • Methods of the present disclosure can comprise providing a first encapsulating layer disposed on or over the controller such that the module substrate and the first encapsulating layer together encapsulate the controller and disposing a second encapsulating layer on or over the light emitter such that the module substrate and the second encapsulating layer together encapsulate the light emitter.
  • a controller can be electrically connected to the light emitter at least in part by one or more module electrodes that pass through or around the edge of the module substrate.
  • Methods of the present disclosure can comprise printing (e.g., micro-transfer printing) a pixel module from a carrier to a target substrate (e.g., a display substrate).
  • one or more light emitters, a controller, or both the one or more light emitters and the controller are bare, unpackaged die.
  • a controller comprises a controller top side and a controller bottom side.
  • the controller top side can be electrically connected to a module electrode or an electrical conductor electrically connected to a module electrode.
  • the controller bottom side can be in contact with the module substrate or layers disposed on the module substrate.
  • Certain embodiments of the present disclosure provide methods, devices, and structures for a highly-integrated module that incorporates high-performance crystalline semiconductor light emitters and controllers in a transfer-printable configuration suitable for printing to a display substrate to construct a high-performance and high-resolution display.
  • FIGS. 1-3 are cross sections of various pixel modules according to illustrative embodiments of the present disclosure
  • FIGS. 4A-4C are plan views of a module substrate according to illustrative embodiments of the present disclosure.
  • FIGS. 5-8 are cross sections of various light-emitter assemblies according to illustrative embodiments of the present disclosure.
  • FIGS. 9 and 10A-10C are cross sections of various controller assemblies according to illustrative embodiments of the present disclosure.
  • FIGS. 11A-11C are cross sections of printing structures from a source wafer according to illustrative embodiments of the present disclosure.
  • FIGS. 12A-12K are cross sections of a display comprising various printed pixel modules according to illustrative embodiments of the present disclosure
  • FIGS. 13A-13C are cross sections of a display comprising various printed pixel modules according to illustrative embodiments of the present disclosure
  • FIGS. 14A-14D are cross sections of a display comprising a plurality of printed pixel modules according to illustrative embodiments of the present disclosure
  • FIGS. 15A-15I are successive cross sections of structures according to illustrative methods and embodiments of the present disclosure.
  • FIGS. 16A-16M are successive cross sections of structures according to illustrative methods and embodiments of the present disclosure.
  • FIGS. 17A-17L are successive cross sections of structures according to illustrative embodiments of the present disclosure.
  • FIGS. 18A-18D are successive cross sections of structures according to illustrative embodiments of the present disclosure.
  • FIGS. 19A-19D are successive cross sections of structures according to illustrative embodiments of the present disclosure.
  • FIGS. 20-23 are flow charts of exemplary methods according to illustrative embodiments of the present disclosure.
  • FIGS. 24-25 are micrographs according to illustrative embodiments of the present disclosure.
  • a pixel module comprising one or more inorganic micro-light-emitting diodes (micro-iLEDs) and at least one integrated circuit controller that controls the one or more micro-iLEDs.
  • a pixel module can comprise (i) a single pixel with a single micro-iLED light emitter and a single controller, (ii) a single pixel with multiple micro-iLEDs and a single controller, for example emitting red, green, and blue light, (iii) multiple pixels comprising a common single controller, each pixel controlled by the same controller, or (iv) multiple pixels comprising multiple pixel controllers, for example one controller in each pixel.
  • a pixel module can comprise one or multiple pixels, each pixel comprising one or multiple micro-iLEDs.
  • pixel modules with multiple controllers and/or multiple light emitters (e.g., corresponding to a plurality of pixels) with similar relative arrangements of elements are also contemplated.
  • a pixel is a picture element in a display that is separately controlled from all other pixels to emit light corresponding to a picture element of an image.
  • a plurality of pixel modules can be mounted on a display substrate and electrically connected to form a display.
  • Each pixel module comprises a single module substrate that is separate and independent from other pixel module substrates, and that is separate and independent from, and non-native to, the display substrate.
  • Pixel modules can be constructed using printing techniques, for example micro-transfer printing, and can be assembled on a target substrate, such as a display substrate or a surface-mount device substrate, using similar methods, materials, and tools.
  • Flat-panel displays have improved performance compared to flat-panel displays using thin-film circuits disposed on the display substrate, e.g., low-temperature polysilicon or amorphous silicon thin-film circuits.
  • Micro-transfer printed pixel integrated-circuit controllers made in monocrystalline silicon, such as CMOS, can provide better performance in less space over a display substrate and micro-transfer printed micro-iLEDs can provide improved color saturation, lifetime, and efficiency in a flat-panel display.
  • Micro-iLEDs can be much smaller than conventional LEDs used in large-format displays and can therefore provide displays with much greater resolution.
  • micro-iLEDs and pixel controller integrated circuits have different, separate, independent, and distinct substrates comprising a variety of materials and are provided in different layers over the same area of the module substrate, thereby reducing the pixel area over the display substrate and facilitating increased display resolution and improved operational performance.
  • a pixel module 99 comprises a module substrate 10 having a module light-emitter surface 10 L and a module controller surface 10 C on a side of module substrate 10 opposite module light-emitter surface 10 L.
  • Module light-emitter surface 10 L can be a module light-emitter side 10 L of module substrate 10 and module controller surface 10 C can be a module controller side 10 C of module substrate 10 .
  • One or more light emitters 20 are disposed on module light-emitter surface 10 L of module substrate 10 . As shown in FIGS.
  • the one or more light emitters 20 comprises red-, green-, and blue-light emitters 20 R, 20 G, 20 B that emit red light 60 R, green light 60 G, and blue light 60 B, respectively.
  • Red-light, green-light, and blue-light emitters 20 R, 20 G, 20 B are collectively referred to as light emitters 20 and red light, green light, and blue light 60 R, 60 G, 60 B are collectively referred to as light 60 .
  • a controller 30 is disposed on module controller surface 10 C of module substrate 10 . Controller 30 is operable to and can control the one or more light emitters 20 , for example in response to one or more input signals, through module electrodes 18 .
  • Each module electrode 18 is an electrical conductor that conducts electrical signals, such as, for example, power, ground, or control signals. At least one module electrode 18 passes through module substrate 10 , for example through via 16 .
  • At least one module electrode 18 wraps around an edge of module substrate 10 (e.g., as shown in FIG. 2 ). At least one module electrode 18 is electrically connected to controller 30 . At least one module electrode 18 is electrically connected to at least one light emitter 20 of the one or more light emitters 20 .
  • Each pixel module 99 can be an individual (e.g., separate), discrete, and independent module with a separate, different, distinct, discrete, and individual module substrate 10 that is distinct and different from the module substrate 10 of any other pixel module 99 or any light-emitter assembly substrate 52 of a light-emitter assembly 80 or controller assembly substrate 54 of a controller assembly 82 , if present.
  • Each pixel module 99 can be a printable pixel module 99 , for example comprising at least a portion of a module tether 14 .
  • module electrodes 18 can be included in a pixel module 99 , for example four, a ground and a power control signal for each of the three light emitter 20 . Some module electrodes 18 can connect only to controller 30 , only to one or more light emitters 20 , or to an external power, ground, or signal source. Light emitters 20 can emit light 60 in a direction away from controller 30 and module substrate 10 , as shown in FIGS. 1-3 . Module substrate 10 can be at least partially coated with a black matrix to absorb ambient light and improve the contrast of light emitters 20 (not shown in the Figures). For example, module light-emitter surface 10 L of module substrate 10 can be at least partially coated with a black matrix, as can module controller surface 10 C.
  • Module substrate 10 can be any suitable substrate, for example as found in the display or integrated circuit industry.
  • module substrate 10 is glass, polymer, sapphire, quartz, or a semiconductor such as silicon and can be coated with, or comprise, an adhesive layer 19 (e.g., as shown in FIG. 6 , discussed below).
  • Module substrate 10 can be a free-standing substrate that is applied to or disposed on a surface, for example a wafer or other substrate surface or can be constructed or formed on a surface, for example a wafer or other substrate surface (e.g., for later transfer printing to a target substrate 70 ).
  • Module substrate 10 can comprise multiple layers, for example any combination of an oxide or nitride layer, a seed layer, and a semiconductor layer.
  • module substrate 10 has sufficient mechanical rigidity, strength, and thickness to support light emitters 20 and controllers 30 and to enable printing (e.g., micro-transfer printing) pixel module 99 , for example in the absence of other layers or structures that are co-extensive with module substrate 10 .
  • module substrate 10 has light emitters 20 and controller 30 are disposed thereon, rather than a layer coated over light emitters 20 or controller 30 .
  • Module light-emitter surface 10 L and module controller surface 10 C of module substrate 10 can each be substantially or effectively planar, can be substantially or effectively parallel to each other, or can be substantially or effectively both planar and parallel to each other.
  • Module substrate 10 can be relatively thin, for example a few microns (e.g., 1 to 100 microns) or relatively thick (e.g., 100 microns to 1 mm).
  • Light emitters 20 can be micro-iLEDs made in crystalline semiconductor materials, such as compound semiconductors GaN or GaAs with suitable dopants such as indium, aluminum, or phosphorus, using photolithographic methods and materials, and can emit light of various colors, such as red, green, blue, yellow, or cyan.
  • Light emitters 20 can be bare, unpackaged die with patterned insulating dielectric structures 50 insulating the bare, unpackaged die from electrodes (e.g., module electrodes 18 ).
  • Light emitters 20 can be relatively small, for example a few microns in length and/or width (e.g., 1 to 50 microns) or somewhat larger in length and/or width (e.g., 50 to 500 microns or even 1 mm) and, optionally, can be relatively thin, for example a few microns thick (e.g., 1-10 microns) or somewhat thicker (e.g., 10-100 microns).
  • Controller 30 can be an integrated circuit made using photolithographic methods and materials, for example CMOS circuits made using a semiconductor such as crystalline silicon. GaAs circuits or other compound semiconductors can also be used. Controller 30 can be a bare, unpackaged die with patterned insulating dielectric structures 50 insulating the bare, unpackaged die from electrodes (e.g., module electrodes 18 ).
  • Controller 30 can be relatively small, for example having at least one of a length and a width less than or equal to one mm (e.g., less than or equal to 750 microns, less than or equal to 500 microns, less than or equal to 250 microns, less than or equal to 100 microns, less than or equal to 50 microns, less than or equal to 25 microns, less than or equal to 10 microns, less than or equal to 5 microns, or less than or equal to 2 microns), and can be made at any suitable resolution, as is practiced in the integrated circuit arts. Controller 30 can have a controller top side 30 T and an opposing controller bottom side 30 S.
  • Controller 30 can have a controller top side 30 T and an opposing controller bottom side 30 S.
  • controller top side 30 T has electrical contact pads 40 (e.g., as shown in FIG. 9 ) or is otherwise electrically connected to electrodes (e.g., module electrodes 18 or electrical conductors electrically connected to module electrodes 18 ) and controller bottom side 30 S is in contact with module substrate 10 or layers disposed on module substrate 10 .
  • Module electrodes 18 can be electrically conductive traces or wires, for example constructed in a patterned metal layer using photolithographic processes, for example comprising metals such as aluminum, gold, silver, copper, titanium, tantalum, tin, or other metals or metal alloys, or transparent conductive oxides such as indium tin oxide. Module electrodes 18 can, for example, pass through or wrap around module substrate 10 , for example through vias 16 formed in module substrate 10 .
  • Module electrodes 18 can be at least partially disposed on a surface of module substrate 10 , for example module light-emitter surface 10 L and module controller surface 10 C, as well as on light emitters 20 or controller 30 (when suitably insulated from semiconductor materials or active components with patterned dielectric 50 ) or other layers (e.g., dielectric or cured adhesive layers 19 ) disposed on module substrate 10 .
  • module electrodes 18 can electrically connect controller 30 to one or more light emitters 20 so that controller 30 can control light emitters 20 with control, power, or ground signals.
  • Module electrodes 18 can also connect external controllers and power and ground signals to one or more elements in a pixel module 99 .
  • One module electrode 18 can electrically connect multiple light emitters 20 in common, for example providing a power or ground signal connection or can be individually connected to each light emitter 20 to provide individual control signals to corresponding light emitters 20 .
  • light-emitter assembly 80 comprises light emitter 20 , any light-emitter electrical contact pads 40 , light-emitter circuits, or light-emitter electrodes 28 (not shown in FIG. 1 , see FIG. 8 discussed further below) and portions of module electrodes 18 electrically connected to light emitters 20 .
  • Controller assembly 82 comprises controller 30 , any controller electrical contact pads 40 , controller circuits, or controller electrodes 38 (not shown in FIG. 1 , see FIGS. 10A-10C discussed below) and portions of module electrodes 18 electrically connected to light emitters 20 .
  • Pixel module 99 can comprise module tether 14 (e.g., which may be broken or separated) and also comprises module connection posts 12 , described further below with reference to different module connection post 12 embodiments illustrated in FIGS. 1, 2, and 3 .
  • light-emitter assemblies 80 can be disposed within a light-emitter area 20 A on module light-emitter surface 10 L of module substrate 10 , for example within an area or convex hull including all light emitters 20 such as red-, green-, and blue-light emitters 20 R, 20 G, 20 B.
  • Controller assembly 82 can be disposed within a controller area 30 A on module controller surface 10 C (not indicated) that is opposite light-emitter surface 10 L, for example within an area or convex hull including controller 30 .
  • Light-emitter area 20 A can overlap controller area 30 A on module substrate 10 when viewed from a vertical direction orthogonal to a surface of module substrate 10 (although light-emitter area 20 A is vertically displaced with respect to controller area 30 A in a direction orthogonal to module light-emitter surface 10 L or module controller surface 10 C because light emitters 20 are on module light-emitter surface 10 L and controller 30 is on module controller surface 10 C of module substrate 10 ).
  • light-emitter area 20 A is smaller than or equal to and disposed entirely within controller area 30 A (as shown in FIG. 4A ).
  • controller area 30 A is smaller than or equal to and disposed entirely within light-emitter area 20 A.
  • controller area 30 A and light-emitter area 20 A overlap but neither is entirely within the area of the other. (As intended herein, an area can be within another area if they have a common edge. For example, if light-emitter area 20 A is the same size as and congruent with controller area 30 A, light-emitter area 20 A is within controller area 30 A, and vice versa.)
  • pixels have a smaller area over a display substrate (e.g., display substrate 70 in FIG. 12A , discussed below) because light emitters 20 are vertically stacked over controller 30 , increasing the number of pixels that can be disposed on a display substrate 70 and improving the potential resolution of a display constructed with pixel modules 99 .
  • FIGS. 5-8 illustrate light-emitter assemblies 80 according to certain embodiments of the present disclosure that are disposed on module light-emitter surface 10 L of module substrate 10 .
  • Module electrodes 18 conduct electricity to light emitter 20 .
  • Micro-iLED light emitters 20 can comprise two conduction layers 21 (e.g., an n-doped electron-conduction layer and a p-doped hole-conduction layer) that are electrically connected to module electrodes 18 and a light-emission layer 23 disposed between the two conduction layers 21 from which light 60 is emitted in response to electrical current provided through module electrodes 18 .
  • Module electrodes 18 can be reflective, for example made of a metal or metal alloy, or partially or substantially transparent, for example made of a conductive oxide.
  • Light 60 can be emitted from either a light-emitter top side 20 T or a light-emitter bottom side 20 S opposite the light-emitter top side 20 T and can be emitted through module electrodes 18 if they are at
  • light emitter 20 is a horizontal light emitter 20 with electrical contacts (e.g., contact pads 40 ) spaced apart on a same light-emitter top side 20 T of light emitter 20 opposite light-emitter bottom side 20 S adjacent to or in contact with module light-emitter surface 10 L of module substrate 10 .
  • Module electrode 18 or an electrical conductor electrically connected to a module electrode 18 can be electrically connected to light-emitter top side 20 T.
  • One conduction layer 21 extends in a cantilever structure beyond the other conduction layer 21 to provide electrical contacts on light-emitter top side 20 T of light emitter 20 .
  • Light 60 can be emitted from light-emitter top side 20 T if module electrode 18 over light-emission layer 23 is effectively transparent, as shown in FIG. 5 with differentiated shading.
  • light-emitter top side 20 T is in contact with or adjacent to module light-emitter surface 10 L of module substrate 10 and light is emitted through light-emitter bottom side 20 S of light emitter 20 .
  • an orientation of light emitter 20 relative to module substrate 10 as shown in FIG. 6 is called an inverted configuration
  • FIG. 5 illustrates a non-inverted configuration of light emitter 20 relative to module substrate 10 .
  • light emitter 20 is in an inverted horizontal configuration and at least some module electrodes 18 are opaque and reflective.
  • a light emitter 20 is in a horizontal configuration and one or more light-emitter connection posts 26 are used to electrically connect light emitter 20 in a light-emitter assembly 80 of a pixel module 99 (e.g., as shown in FIG. 6 ).
  • FIG. 7 A vertical micro-iLED light emitter 20 with electrical contacts provided on opposite sides of light emitter 20 is illustrated in FIG. 7 .
  • one of the module electrodes 18 is effectively transparent, for example module electrode 18 on light-emitter top side 20 T, and the other on light-emitter bottom side 20 S adjacent to module light-emitter surface 10 L of module substrate 10 can be opaque and reflective, so that light 60 is efficiently emitted from light emitter 20 in a direction away from module substrate 10 and controller 30 .
  • modules substrate 10 When disposed (e.g., constructed or printed) on module substrate 10 , components such as light emitters 20 and controllers 30 can be electrically connected (for example to an external control device or power source) using photolithographically disposed and patterned module electrodes 18 . As shown in FIGS. 1, 2, 3, and 5 , photolithographically defined module electrodes 18 extend from module light-emitter surface 10 L over patterned dielectric structures 50 onto light emitters 20 . Module electrodes 18 can comprise an opaque material, such as a metal or metal alloy, a transparent conductive oxide, or a combination, as shown with the different module electrode shading in the cited figures.
  • electrical connections to light emitter 20 are made through one or more light-emitter connection posts 26 that extend from light emitter 20 (for example from a light-emitter contact pad, not shown) to module electrode 18 .
  • light-emitter connection posts 26 that extend from light emitter 20 (for example from a light-emitter contact pad, not shown) to module electrode 18 .
  • Such a configuration is useful, for example, when light-emitter top side 20 T is adjacent to module light-emitter surface 10 L of module substrate 10 (an inverted configuration).
  • Light-emitter connection posts 22 extending from light-emitter top side 20 A adjacent to module light-emitter surface 10 L enable light emitter 20 to emit light through light-emitter bottom side 20 S without requiring that light 60 emitted by light emitter 20 pass through a module electrode 18 or light-emitter contact pad, thereby possibly improving light-emission efficiency.
  • Light-emitter connection posts 26 disposed on a common light emitter 20 can have different lengths or sizes (e.g., as shown in FIG. 6 ). For example light-emitter connection posts 26 with different lengths or sizes can be used to accommodate electrical contacts on a horizontal light-emitting diode that are in different layers.
  • the light-emitter connection posts 26 can orient light emitter 20 so that light-emitter bottom side 20 S is approximately parallel to module light-emitter surface 10 L of module substrate 10 and the direction of light emission is more orthogonal to module light-emitter surface 10 L, improving uniformity of light emission for an array of such light emitters 20 .
  • Light-emitter connection posts 26 (or module connection posts 12 , controller assembly connection posts 32 , or light-emitter assembly connection posts 22 , described further below) can be constructed using photolithographic processes and examples are described in U.S. patent application Ser. No. 15/876,949, U.S. Pat. Nos. 10,153,256, and 10,224,231, referenced above, the disclosure of each of which is hereby incorporated by reference herein its entirety.
  • light-emitter assembly connection posts 22 have an advantage in that they enable electrical connections to be formed by printing (e.g., micro-transfer printing with a stamp 90 , see, e.g., FIG. 11C discussed below) light emitters 20 onto module light-emitter surface 10 L of module substrate 10 , thus precluding the need to photolithographically construct module electrodes 18 that extend over patterned dielectric structures 50 onto light emitters 20 .
  • printing e.g., micro-transfer printing with a stamp 90 , see, e.g., FIG. 11C discussed below
  • a light-emitter assembly 80 comprises light-emitter assembly connection posts 22 that extend from one side of a light-emitter assembly substrate 52 (comprising dielectric layer 50 ) and a light emitter 20 is disposed on an opposite side of dielectric layer 50 .
  • Light-emitter 20 can be disposed on light-emitter assembly substrate 52 (dielectric layer 50 ) by printing (e.g., micro-transfer printing) from a native light-emitter source wafer 25 (see, e.g., FIG. 11A , discussed below) to dielectric layer 50 , thereby breaking (e.g., fracturing) or separating light-emitter tether 24 .
  • Light-emitter electrodes 28 electrically connected to contact pads 40 for light emitter 20 electrically connect through vias 16 in dielectric 50 to light-emitter assembly connection posts 22 .
  • Light-emitter assembly connection posts 22 are in direct contact with, pierce, or otherwise form an electrical connection with contact pads 40 on module light-emitter surface 10 L of module substrate 10 and to module electrodes 18 .
  • Light-emitter assembly 80 can be constructed by photolithographically etching pyramidal depressions in a sacrificial portion 84 of a source wafer (see, e.g., FIGS.
  • Light-emitter assembly 80 can be printed, for example micro-transfer printed) to module substrate 10 , thereby breaking (e.g., fracturing) or separating light-emitter assembly tether 24 A.
  • some embodiments of the present disclosure comprise a light-emitter assembly 80 comprising a dielectric light-emitter assembly substrate 52 having a first side and a second side opposite the first side and one or more light emitters 20 disposed on light-emitter assembly substrate 52 .
  • the one or more light emitters 20 can be non-native to light-emitter assembly substrate 52 .
  • One or more light-emitter assembly connection posts 22 can be disposed on the first side of light-emitter assembly substrate 52 and one or more module connection posts 12 can be disposed on the second side of light-emitter assembly substrate 52 .
  • Light-emitter assembly 80 can comprise light-emitter assembly tethers 24 A (e.g., which are broken or separated upon transfer printing to a module substrate 10 ) and light-emitters 20 can comprise light-emitter tethers 24 .
  • Light-emitter electrodes 28 electrically connect the one or more light emitters 20 to one or more light-emitter assembly connection posts 22 and to one or more module connection posts 12 .
  • One or more module connection posts 12 are subsequently used to electrically connect a pixel module 99 , of which light-emitter assembly 80 is a part, to a target substrate 22 .
  • Light-emitter assembly connection posts 22 and module connection posts 12 can be single-layer connection posts (e.g., formed by building up conductive material) or multi-layer connection posts (e.g., comprising an electrically conductive outer layer disposed on a dielectric inner layer made of the same material as light-emitter assembly substrate 52 ).
  • Each of the one or more module connection posts 12 or each of the light-emitter assembly connection posts 22 of light-emitter assembly 80 can protrude from light-emitter assembly substrate 52 a distance that is greater than a thickest thickness of one or more light emitters 20 , so that light-emitter assembly 80 can be printed to a target substrate and the connection posts can make electrical contact with the target substrate.
  • the distance can be at least 1.1 times, and optionally no more than 3 times, the thickest thickness.
  • light-emitter assembly 80 comprises a module substrate 10 having one or more contact pads 40 disposed on or in module substrate 10 and each of the one or more light-emitter assembly connection posts 22 is disposed in electrical connection with one of the one or more contact pads 40 .
  • Module substrate 10 can comprises a module tether 14 (e.g., a broken or separated module tether 14 or a module tether 14 that is physically connected to a module anchor 17 of a source substrate).
  • light-emitter assembly 80 comprises a controller 30 disposed on a side of module substrate 10 opposite the one or more light emitters 20 and the one or more light emitters 20 are electrically connected to controller 30 .
  • Light-emitter assembly 80 can have at least one of a width and a length of no more than 400 microns (e.g., no more than 300 microns, no more than 200 microns, or no more than 100 microns) and a thickness of no more than 150 microns (e.g., no more than 100 microns, no more than 75 microns, no more than 50 microns, or no more than 25 microns).
  • a width and a length of no more than 400 microns e.g., no more than 300 microns, no more than 200 microns, or no more than 100 microns
  • a thickness of no more than 150 microns e.g., no more than 100 microns, no more than 75 microns, no more than 50 microns, or no more than 25 microns.
  • FIGS. 9 and 10A-10B illustrate certain embodiments of controller assemblies 82 .
  • controller 30 is disposed (e.g., constructed or printed) on module controller surface 10 C of module substrate 10 .
  • Module electrodes 18 are insulated from controller 30 with dielectric structure 50 and electrically connected to contact pads 40 of controller 30 and in vias 16 .
  • module electrodes 18 are photolithographically patterned after controller 30 is disposed on module substrate 10 and module connection posts 12 (discussed further below) are formed on or over controller 30 .
  • FIGS. 10A and 10B illustrate certain embodiments in which controller 30 is electrically connected with controller assembly connection posts 32 (similarly to light-emitter assembly connection posts 22 of FIG. 8 ), obviating the need for further photolithographic patterning after controller 30 is disposed on module substrate 10 .
  • a controller assembly 82 comprises controller assembly connection posts 32 that extend from a side of a dielectric layer 50 opposite a side on which a controller 30 is disposed. Controller electrodes 38 electrically connected to contact pads 40 for controller 30 electrically connect through vias 16 in dielectric 50 to controller assembly connection posts 32 .
  • Controller assembly connection posts 32 are in direct contact with, pierce, or otherwise form an electrical connection with contact pads 40 on module controller surface 10 C of module substrate 10 and to module electrodes 18 .
  • Controller assembly 82 can be constructed by photolithographically etching pyramidal depressions in a sacrificial portion 84 of a source wafer, patterning the depressions with metal to form controller assembly connection posts 32 , forming vias 16 in dielectric layer 50 , transfer printing (e.g., micro-transfer printing) light emitter 20 onto dielectric layer 50 (or an adhesive layer 19 on dielectric layer 50 , not shown) and forming controller electrodes 38 to electrically connect controller assembly connection posts 32 with contact pads 40 of controller 30 .
  • Module connection posts 12 are disposed on or over and extend away from dielectric layer 50 .
  • controller assembly 82 comprising a controller assembly substrate 54 having a first side and a second side opposite the first side and a controller 30 disposed on controller assembly substrate 54 .
  • Controller assembly substrate 54 can be a dielectric substrate or a semiconductor substrate.
  • Controller 30 can, for example, be constructed on controller assembly substrate 54 or transfer printed (e.g., micro-transfer printed) to controller assembly substrate 54 .
  • controller 30 can be non-native to controller assembly substrate 54 .
  • Controller 30 can be formed in controller assembly substrate 54 , for example if controller assembly substrate 54 is a semiconductor substrate or can be disposed on a dielectric controller assembly substrate 54 .
  • controller assembly connection posts 32 can be disposed on the first side of controller assembly substrate 54 and one or more module connection posts 12 can be disposed on the second side of controller assembly substrate 54 .
  • Controller electrodes 38 electrically connect controller 30 to one or more controller assembly connection posts 32 and to one or more module connection posts 12 .
  • One or more of the controller electrodes 38 can pass through controller assembly substrate 54 , for example through vias 16 , or can wrap around an edge of controller assembly substrate 54 .
  • Controller assembly connection posts 32 and module connection posts 12 can be single-layer connection posts (e.g., formed by building up conductive material) or multi-layer connection posts (e.g., comprising an electrically conductive outer layer disposed on a dielectric inner layer made of the same material as controller assembly substrate 54 ).
  • controller assembly 82 can protrude from controller assembly substrate 54 a distance that is greater than a thickest thickness of controller 30 , so that controller assembly 82 can be printed to a target substrate and the connection posts can contact the target substrate.
  • the distance can at least 1.1 times, and optionally no more than 3 times, the thickest thickness.
  • controller assembly 82 comprises a module substrate 10 having one or more contact pads 40 disposed on or in module substrate 10 and each of the one or more controller assembly connection posts 32 is disposed in electrical connection with one of the one or more contact pads 40 .
  • Module substrate 10 can comprises a module tether 14 (e.g., a broken or separated module tether 14 or a module tether 14 that is physically connected to a module anchor 17 of a source substrate).
  • controller assembly 82 comprises one or more light-emitters 20 disposed on a side of module substrate 10 opposite controller 30 and the one or more light emitters 20 are electrically connected to controller 30 .
  • Controller assembly 82 can have at least one of a width and a length of no more than 400 microns (e.g., no more than 300 microns, no more than 200 microns, or no more than 100 microns) and a thickness of no more than 150 microns (e.g., no more than 100 microns, no more than 75 microns, no more than 50 microns, or no more than 25 microns).
  • a width and a length of no more than 400 microns e.g., no more than 300 microns, no more than 200 microns, or no more than 100 microns
  • a thickness of no more than 150 microns e.g., no more than 100 microns, no more than 75 microns, no more than 50 microns, or no more than 25 microns.
  • the module connection post 12 configuration shown in FIG. 9 can also be applied to controller assembly 82 of FIG. 10A , as shown in FIG. 10B .
  • some embodiments of the present disclosure comprise a controller assembly 82 comprising a controller assembly substrate 54 and a controller 30 disposed on a first side of controller assembly substrate 54 .
  • One or more module connection posts 12 are disposed on controller 30 so that controller 30 is between the one or more module connection posts 12 and controller assembly substrate 54 .
  • One or more controller assembly connection posts 32 are disposed on a second side of controller assembly substrate 54 that is opposite the first side.
  • Controller electrodes 38 are disposed at least partially on controller assembly substrate 54 and are electrically connected to controller 30 , the one or more controller assembly connection posts 32 , and the one or more module connection posts 12 .
  • Controller assembly substrate 54 can be, for example, a dielectric substrate or a semiconductor substrate. Controller 30 can be non-native to controller assembly substrate 54 . Controller 30 can comprise a broken or separated controller tether 34 . Controller assembly substrate 54 can comprise a broken or separated controller assembly tether 34 A. A dielectric layer or structure can be disposed between controller 30 and at least a portion of each of the controller electrodes 38 (e.g., to prevent shorting). In some embodiments, one or more of the controller electrodes 38 pass through controller assembly substrate 54 or one or more of the controller electrodes 38 each wrap around an edge of controller assembly substrate 54 .
  • FIGS. 8 and 10A or 10B can be combined into a pixel module 99 , for example as shown in FIG. 10C , in which light-emitter assembly 80 is illustrated in FIG. 8 and controller assembly 82 is illustrated in either of FIG. 10A or 10B .
  • a controller assembly 82 in accordance with FIG. 9 is used in combination with a light-emitter assembly 80 in accordance with FIG. 8 (as further discussed below with reference to FIG. 12K ). As shown in FIG.
  • a pixel module 99 comprises a dielectric module substrate 10 having a module light-emitter surface 10 L and a module controller surface 10 C that is opposite module light-emitter surface 10 L.
  • a controller assembly 82 is disposed on module controller surface 10 C of module substrate 10 .
  • Controller assembly 82 can be any of the controller assemblies 82 described herein.
  • One or more light emitters 20 are disposed on or over module substrate 10 , for example on module light-emitter surface 10 L, and module electrodes 18 electrically connect the one or more light emitters 20 to controller 30 .
  • one or more light emitters 20 are a light-emitter assembly 80 that can be any of the light-emitter assemblies 80 described herein.
  • Module connection posts 12 are shown in the embodiments of FIG. 10C as projecting from controller 30 but, in similar embodiments, could project from controller assembly substrate 54 or, in the other direction, from light-emitter assembly substrate 52 . These alternative module connection posts 12 are illustratively shown in lighter shading with dashed outlining. Any one of these embodiments can be employed in pixel modules 99 of the present disclosure. Likewise, light emitters 20 are illustrated as non-inverted horizontal light emitters 20 (e.g., as in FIG. 5 ), but could be inverted light emitters 20 (e.g., as in FIG. 6 ), or vertical light emitters 20 (e.g., as in FIG. 7 ).
  • module electrodes 18 e.g., assembly substrates 52 , 54 , or module substrate 10
  • orientations and positions of elements e.g., of controller 30 , light emitters 20 , or module connection posts 12
  • a certain orientation position of module connection posts 12 and material may be chosen based on which direction light is to be emitted from pixel module 99 .
  • pixel module 99 comprises an adhesive layer (e.g., adhesive layer 19 , not shown in FIG. 10C for clarity) disposed on module controller surface 10 C of module substrate, 10 .
  • one or more controller assembly connection posts 32 of controller assembly 82 penetrate through adhesive layer 19 and each physically contact a contact pad 40 disposed on or in module substrate 10 .
  • Adhesive layer 19 can be in direct contact with controller assembly 82 .
  • one or more light-emitter assembly connection posts 22 of light-emitter assembly 80 penetrate through adhesive layer 19 and each physically contact a contact pad 40 disposed on or in module substrate 10 .
  • Adhesive layer 19 can be in direct contact with light-emitter assembly 80 . As can be understood from FIG.
  • an adhesive layer 19 can be provided on both controller surface 10 C and light-emitter surface 10 L of module substrate 10 to improve physical adherence of controller assembly 82 and light-emitter assembly 80 , respectively.
  • pixel module 99 comprises an adhesive layer (e.g., adhesive layer 19 , not shown in FIG. 10C for clarity) disposed on module light-emitter surface 10 L of module substrate 10 and one or more light-emitter assembly connection posts 22 of each of one or more light emitters 20 penetrate through adhesive layer 19 so that one or more light emitters 20 are electrically connected to controller 30 .
  • Adhesive layer 19 can be disposed at least partially on or over one or more module electrodes 18 .
  • ones of the module electrodes 18 pass through module substrate 10 or wrap around an edge of module substrate 10 .
  • the one or more light emitters 20 can each comprise a broken or separated light-emitter tether 24 , the one or more light emitters 20 are horizontal light-emitting diodes, or the one or more light emitters 20 are vertical light-emitting diodes.
  • Each of the one or more light emitters 20 can comprise one or more light-emitter connection posts 26 and the one or more light emitters 20 can be electrically connected to controller 30 in part through the one or more light-emitter connection posts 26 .
  • module substrate 10 comprises a broken or separated module tether 14 .
  • a light-emitter encapsulation layer 29 (not shown in FIG. 10C , but shown, for example, in FIGS. 16L and 16M ) can be disposed over one or more light emitters 20 and can comprise a broken or separated module tether 14 .
  • pixel module 99 can comprise a controller encapsulation layer 39 disposed over controller assembly 82 and one or more module connection posts 12 can protrude through controller encapsulation layer 39 (e.g., as shown in FIGS. 16L and 16M ).
  • one or more module connection posts 12 protrude through light-emitter encapsulation layer 29 .
  • Pixel module 99 can comprise a target substrate 70 (not shown in FIG. 10C , see FIGS. 12A-12K discussed below, for example), and one or more module connection posts 12 of controller assembly 82 are disposed in electrical contact with a corresponding one or more contact pads 40 disposed on or in target substrate 70 .
  • An adhesive layer 19 (not shown in FIG. 10C ) can be disposed on target substrate 70 , and one or more module connection posts 12 can penetrate through adhesive layer 19 so that controller 30 and one or more light emitters 20 are electrically connected to one or more module electrodes 18 disposed on or in the target substrate 70 .
  • Target substrate 70 can be a display substrate 70 and pixel module 99 can be a pixel in an array of pixels disposed on display substrate 70 that are operable to display information (e.g., an image and/or text) to a viewer.
  • Either light emitters 20 or controller(s) 30 , or both, can be formed or disposed on module substrate 10 .
  • Light emitters 20 can comprise micro-iLEDs that are advantageously made on compound semiconductor substrates such as GaN or GaAs.
  • controller 30 is typically (although not necessarily) formed in crystalline silicon.
  • pixel module 99 are desirably heterogeneous modules comprising components made in different materials that are disposed on opposite sides of module substrate 10 . According to some embodiments of the present disclosure, pixel modules 99 are therefore constructed using components printed (e.g., micro-transfer printed) from different component source wafers to module substrate 10 .
  • a light emitter 20 for example a micro-iLED, is formed on a light-emitter source wafer 25 (e.g., a compound semiconductor source wafer) and can be encapsulated with a light-emitter encapsulation layer 29 .
  • Encapsulation layer 29 can be a dielectric layer.
  • a sacrificial portion 84 of light-emitter source wafer 25 beneath light emitter 20 is etched to form a gap 84 so that light emitter 20 is suspended over gap 84 by light-emitter tether 24 .
  • Light-emitter tether 24 attaches light emitter 20 to light-emitter anchor 27 and holds light emitter 20 in position over light-emitter source wafer 25 .
  • a printing device for example a stamp 90 with one or more stamp posts 92 , contacts light emitter 20 (including light-emitter encapsulation layer 29 ), adheres light emitter 20 to stamp post 92 , and moves away from light-emitter source wafer 25 , fracturing light-emitter tether 24 at fracture line 11 to remove light emitter 20 from light-emitter source wafer 25 and making a broken (e.g., fractured) or separated light-emitter tether 24 .
  • Stamp 90 then travels to module substrate 10 and light emitter 20 is pressed against module light-emitter surface 10 L of module substrate 10 to adhere light emitter 20 to module substrate 10 (or to an adhesive layer 19 disposed on, or a part of, module substrate 10 ).
  • Multiple light emitters 20 can be printed (e.g., micro-transfer printed) from a light-emitter source wafer 25 in a single operation, for example using a stamp 90 having multiple stamp posts 92 .
  • a controller 30 for example a CMOS circuit formed in crystalline silicon, is formed on a controller source wafer 35 and can be encapsulated with a controller encapsulation layer 39 .
  • Encapsulation layer 39 can be a dielectric layer.
  • a sacrificial portion 84 of controller source wafer 35 beneath controller 30 is etched to form gap 84 so that controller 30 is suspended over gap 84 by controller tether 34 .
  • Controller tether 34 attaches controller 30 to controller anchor 37 and holds controller 30 in position over controller source wafer 35 .
  • a printing device for example stamp 90 with stamp post 92 , contacts controller 30 (including controller encapsulation layer 39 ), adheres controller 30 to stamp post 92 , and moves away from light-emitter source wafer 25 , fracturing controller tether 34 at fracture line 11 to remove controller 30 from controller source wafer 35 and making a broken (e.g., fractured) or separated controller tether 34 .
  • Stamp 90 then travels to module substrate 10 and controller 30 is pressed against module controller surface 10 C of module substrate 10 to adhere controller 30 to module substrate 10 (or to an adhesive layer 19 disposed on, or a part of, module substrate 10 ).
  • Multiple controllers 30 can be printed (e.g., micro-transfer printed) from a controller source wafer 35 in a single operation, for example using a stamp 90 having multiple stamp posts 92 .
  • a pixel-module wafer 97 comprises a module source wafer 15 that can comprise a plurality of pixel modules 99 , each pixel module 99 disposed over a sacrificial portion 84 or gap 84 in module source wafer 15 and physically connected to a module anchor 17 (an anchor portion of module source wafer 15 ) with a module tether 14 so that each sacrificial portion 84 is laterally separated from an adjacent sacrificial portion by a module anchor 17 .
  • An encapsulation layer (not shown) can be provided, as in FIGS. 11A and 11B , but is not necessarily required.
  • a printing device for example stamp 90 with stamp post 92 , contacts pixel module 99 , adheres pixel module 99 to stamp post 92 , and moves away from module source wafer 15 , fracturing module tether 14 at fracture line 11 to remove pixel module 99 from module source wafer 15 and making a broken (e.g., fractured) or separated module tether 14 .
  • a module tether 14 is separated, instead of fractured, during printing.
  • Stamp 90 then travels to a target substrate 70 , such as a display substrate 70 (discussed further below) or surface-mount device substrate, and pixel module 99 is pressed against the target substrate to adhere pixel module 99 to the target substrate (or to an adhesive layer 19 disposed on, or a part of, the target substrate).
  • a target substrate 70 such as a display substrate 70 (discussed further below) or surface-mount device substrate
  • pixel module 99 is pressed against the target substrate to adhere pixel module 99 to the target substrate (or to an adhesive layer 19 disposed on, or a part of, the target substrate).
  • one or more of light emitters 20 , controllers 30 , and pixel modules 99 can all be printed (e.g., micro-transfer printed) components.
  • pixel modules 99 are printed to a display substrate 70 to construct a pixel-module display 98 .
  • pixel modules 99 can be non-native to display substrate 70 , can be disposed in a regular array in either one or two dimensions (for example as shown in FIGS. 14A-14D and FIG. 24 discussed below), and can form pixels in a display.
  • module substrate 10 of each pixel module 99 is different, distinct, and separate from display substrate 70 so that each module substrate 10 is a different substrate from display substrate 70 .
  • Pixel modules 99 can include module connection posts 12 that are in electrical contact with contact pads 40 disposed on or in target substrate 70 , contact pads 40 being electrically connected to display electrodes 74 .
  • Contact pads 40 can be portions of display electrodes 74 that are sized and positioned to contact module connection posts 12 when pixel module 99 is disposed on target substrate 70 (e.g., as shown in FIGS. 121 and 12J ).
  • FIGS. 12A-12K show examples of pixel modules 99 where controller 30 is disposed between module substrate 10 and target substrate 70 .
  • the pixel modules 99 shown in FIGS. 12A and 12B do not include module connection posts 12 .
  • the pixel modules 99 shown in FIGS. 12C and 12D have module connection posts 12 disposed on controller 30 .
  • the pixel modules 99 shown in FIGS. 12E and 12F have module connection posts 12 disposed on module substrate 10 rather than on controller 30 .
  • the pixel modules 99 shown in FIGS. 12G and 12H include a controller assembly 82 that includes module connection posts 12 disposed on controller assembly substrate 54 .
  • the pixel module 99 shown in FIG. 12K includes a light-emitter assembly 80 and module connection posts disposed on controller 30 .
  • FIGS. 13A-13C show examples of pixel modules 99 where light emitters 20 are disposed between module substrate 10 and target substrate 70 .
  • the pixel modules 99 shown in FIGS. 13A-13C includes module connection posts 12 that extend beyond light emitters 20 .
  • the pixel modules 99 shown in FIGS. 13B and 13C include a controller assembly 82 .
  • the pixel modules 99 shown in FIGS. 13A-13C are disposed to emit light 60 through target substrate 70 .
  • Pixel modules 99 can be disposed on display substrate 70 , for example by micro-transfer printing onto display substrate 70 or onto a layer of adhesive 19 disposed on display substrate 70 , as shown in FIGS. 12A and 12B . (Adhesive 19 is omitted from FIGS. 12C-12K for clarity.) Because pixel modules 99 can be printed (e.g., micro-transfer printed), they can comprise module tethers 14 , for example broken (e.g., fractured) or separated module tethers 14 . As shown in FIG. 12A , after printing pixel modules 99 , module electrodes 18 can be electrically connected to electrical conductors (e.g., wires) such as photolithographically defined display electrodes 74 disposed on display substrate 70 .
  • electrical conductors e.g., wires
  • light emitters 20 are horizontal micro-iLEDs disposed with light-emitter bottom side 20 S adjacent to module light-emitter surface 10 L of module substrate 10 in a non-inverted configuration, as also shown in FIG. 5 .
  • light emitters 20 can be inverted, with light-emitter top side 20 T adjacent to module light-emitter surface 10 L of module substrate 10 .
  • light emitters 20 are vertical micro-iLEDs and can be printed (e.g., micro-transfer printed).
  • light emitters 20 , controllers 30 , or both are printed (e.g., micro-transfer printed) from a corresponding source wafer to module light-emitter surface 10 L and module controller surface 10 C, respectively, of module substrate 10 , as described above with respect to FIGS. 11A and 11B and as illustrated in FIGS. 8-10 .
  • module connection posts 12 can electrically connect module electrodes 18 to display electrodes 74 by printing (e.g., micro-transfer printing) pixel modules 99 to display substrate 70 or a surface-mount device substrate.
  • Module connection posts 12 can be provided in various configurations and in accordance with corresponding embodiments of the present disclosure.
  • module connection posts 12 are disposed on controller 30 and extend in a direction away from module substrate 10 .
  • Light emitters 20 are shown as horizontal emitters in a non-inverted configuration, as shown in FIG. 5 , but can be inverted, as shown in FIG. 12D .
  • module connection posts 12 are disposed on module electrodes 18 on module controller surface 10 C of module substrate 10 and extend in a direction away from module substrate 10 .
  • Module connection posts 12 can protrude from module controller surface 10 C of module substrate 10 a distance that is greater than a thickness of controller 30 to extend beyond controller 30 and enable electrical contact between module connection posts 12 and contact pads 40 on target substrate 70 without contacting controller 30 (or layers disposed on controller 30 ) to target substrate 70 .
  • the distance can be at least 1.1 times, at least 1.2 times, or at least 1.5 times the thickness of controller 30 (together with any layers disposed on controller 30 ).
  • the distance is less than or equal to 3 times or less than or equal to 2 times the thickness of controller 30 , to avoid making pixel module 99 too thick.
  • contact pads 40 on target substrate 70 have a thickness sufficient to allow electrical contact to pixel module 99 to be made when pixel module 99 is disposed on target substrate 70 even though module connection posts 12 do not extend beyond controller 30 or light emitters 20 (depending on which side of module substrate 10 module connection posts 12 are disposed).
  • Light emitters 20 can be horizontal emitters in a non-inverted configuration, as shown in FIG. 5 , but can alternatively be inverted, as shown in FIG. 12F and FIG. 6 .
  • module connection posts 12 are disposed on module electrodes 18 on module light-emitter surface 10 L of module substrate 10 and extend in a direction away from module substrate 10 .
  • Module connection posts 12 protrude from module light-emitter surface 10 L of module substrate 10 a distance that is greater than a thickness of light emitters 20 to extend beyond light emitters 20 and enable electrical contact between module connection posts 12 and contact pads 40 on target substrate 70 without contacting light emitters 20 (or layers disposed on light emitters 20 ) to target substrate 70 .
  • the distance can be at least 1.1 times, at least 1.2 times, or least 1.5 times the thickness of light emitters 20 (together with any layers disposed on light emitters 20 ). In some embodiments, the distance is less than or equal to 3 times or less than or equal to 2 times the thickness of light emitters 20 to avoid making pixel module 99 too thick.
  • controller 30 is disposed on a printable controller assembly 82 with a controller assembly substrate 54 (e.g., a dielectric layer 50 ) and controller electrodes 38 from which module connection posts 12 extend, as shown in FIGS. 10, 12G, 12H, and 19D .
  • module connection posts 12 are understood to extend from controller 30 .
  • light emitters 20 are provided in a printable light-emitter assembly 80 with a light-emitter assembly substrate 52 (e.g., a dielectric layer 50 ) and light-emitter electrodes 28 from which module connection posts 12 extend, as shown in FIG. 8 .
  • module connection posts 12 can be understood to extend from light-emitter assembly substrate 52 or light-emitter assembly 80 .
  • controller 30 is micro-transfer printed onto module substrate 10 with controller assembly connection posts 32 forming an electrical connection to module electrodes 18 .
  • module connection posts 12 are disposed on controller 30 and extend in a direction away from module substrate 10 .
  • Light emitters 20 are shown as horizontal emitters in a non-inverted configuration in FIG. 12G (e.g., in accordance with FIG. 5 ), but can be inverted, as shown in FIG. 12H and FIG. 6 .
  • module connection posts 12 are disposed on module electrodes 18 on module controller surface 10 C of module substrate 10 and extend in a direction away from module substrate 10 .
  • Light emitters 20 are shown as horizontal emitters in a non-inverted configuration in FIG. 12I and as shown in FIG. 5 , but can be non-inverted, as shown in FIG. 12J and FIG. 6 .
  • controller 30 is disposed on module controller surface 10 C of module substrate 10 and a light-emitter assembly 80 is transfer printed with light-emitter assembly connection posts 22 onto module light-emitter surface 10 L of module substrate 10 .
  • Light-emitter assembly 80 comprises red, green, and blue inverted light emitters 20 R, 20 G, 20 B on a common light-emitter assembly substrate 52 that emit light 60 R, 60 G, 60 B respectively, in a direction opposite module substrate 10 and display substrate 70 .
  • Controller 30 could be included in a controller assembly 82 that includes module connection posts 12 , for example as shown in FIGS. 10A-10C .
  • pixel module 99 is printed (e.g., micro-transfer printed) onto display substrate 70 so that module connection posts 12 are in electrical contact with (e.g., in direct contact with and can pierce) contact pads 40 on display substrate 70 .
  • Contact pads 40 on display substrate 70 can be electrically connected to display electrodes 74 formed on display substrate 70 using photolithographic methods and materials, such as are conventionally known in the display and integrated circuit arts. In general, and as illustrated in FIGS.
  • any of the light emitters 20 can be printed (e.g., micro-transfer printed) vertical micro-iLEDs or horizontal micro-iLEDs in an inverted or non-inverted configuration and can have, for appropriate configurations, light-emitter connection posts 26 .
  • controller 30 can be disposed by printing (e.g., micro-transfer printing) and can have controller assembly connection posts 32 , for example as shown in FIG. 10 , or not, as shown in FIGS. 1-3 .
  • FIGS. 12A-12K illustrate embodiments in which light 60 can be emitted in a direction opposite display substrate 70 (a top-emitter configuration) so that light 60 does not intentionally pass through and is not absorbed by display substrate 70 , improving efficiency.
  • controller 30 is disposed between module substrate 10 and display substrate 70 and pixel module 99 is non-native to display substrate 70 .
  • light 60 can be emitted through display substrate 70 in a bottom-emitter configuration in which display substrate 70 is at least partially transparent, for example at least 50% transparent (e.g., at least 75% 80%, 90%, or 95% transparent) to light emitted by light emitters 20 .
  • pixel modules 99 are on a side of display substrate 70 opposite the viewing side and are more protected from mechanical or environmental damage, particularly from users of a pixel-module display 98 , for example touch-screen users.
  • pixel modules 99 are printed to a display substrate 70 to construct a pixel-module display 98 .
  • Pixel modules 99 can be disposed on display substrate 70 , for example by micro-transfer printing onto display substrate 70 or a layer of adhesive 19 disposed on display substrate 70 (omitted from FIGS. 13A-13B for clarity but shown in FIGS. 12A and 12B ).
  • FIGS. 13A-13B for clarity but shown in FIGS. 12A and 12B .
  • light emitters 20 are horizontal micro-iLEDs disposed with light-emitter bottom side 20 S, for example as shown in FIG. 5 , adjacent to module light-emitter surface 10 L of module substrate 10 .
  • light emitters 20 can be inverted, as shown in FIG. 13C , with light-emitter top side 20 T adjacent to module light-emitter surface 10 L of module substrate 10 and in some embodiments, referring also to FIG. 7 , light emitters 20 are vertical micro-iLEDs.
  • Adhesive layer 19 and encapsulation layers can be used in any of these embodiments.
  • light emitters 20 , controllers 30 , or both are printed (e.g., micro-transfer printed) from a corresponding source wafer to module light-emitter surface 10 L and module controller surface 10 C, respectively, of module substrate 10 , as described above with respect to FIGS. 11A and 11B and as illustrated in FIGS. 8-10 .
  • pixel module 99 is printed (e.g., micro-transfer printed) onto display substrate 70 so that module connection posts 12 and module electrodes 18 are in electrical contact with (e.g., in direct contact with and can pierce) contact pads 40 on display substrate 70 .
  • light emitters 20 are disposed between module substrate 10 and display substrate 70 and pixel module 99 is non-native to display substrate 70 .
  • Contact pads 40 on display substrate 70 can be electrically connected to display electrodes 74 formed on display substrate 70 using photolithographic methods and materials, such as are conventionally known in the display and integrated circuit arts.
  • any of light emitters 20 can be printed (e.g., micro-transfer printed) vertical micro-iLEDs or horizontal micro-iLEDs in an inverted or non-inverted configuration and can have, for appropriate configurations, light-emitter connection posts 26 .
  • controller 30 can be disposed by printing (e.g., micro-transfer printing) and can have controller assembly connection posts 32 , for example as shown in FIG. 10 , or not, for example as shown in FIGS. 1-3 .
  • multiple pixel modules 99 can be printed (e.g., micro-transfer printed) in an array on display substrate 70 to construct a pixel-module display 98 with module connection posts 12 electrically connected to display substrate 70 contact pads 40 and display electrodes 74 .
  • the multiple pixel-module display 98 configuration illustrated in FIG. 14A corresponds to that of FIG. 12A (together with an encapsulating dielectric layer 50 that can, together with module substrate 10 , adhesive 19 , or display substrate 70 , fully encapsulate pixel modules 99 ), the multiple pixel-module display 98 configuration illustrated in FIG. 14B corresponds to that of FIG.
  • FIG. 14C the multiple pixel-module display 98 configuration illustrated in FIG. 14C corresponds to that of FIG. 12E
  • the multiple pixel-module display 98 configuration illustrated in FIG. 14D corresponds to that of FIG. 13A .
  • the embodiments illustrated in FIGS. 12B, 12D, 12F-12J , and FIG. 13B can also be used in a pixel-module display 98 with multiple pixel modules 99 but are not separately shown.
  • Module connection posts 12 for any of the embodiments described above can be constructed using photolithographic methods and materials, for example depositing a dielectric layer 50 , forming vias 16 in the layer at module connection post 12 locations, filling the vias 16 with a conductor, such as metal or a metal alloy, removing any unwanted excess conductor material, and stripping the dielectric layer.
  • a conductor such as metal or a metal alloy
  • components can be constructed on a component source wafer and printed to a target substrate in an inverted configuration using a flip-chip process.
  • light emitters 20 such as micro-iLEDs
  • module substrate 10 in an inverted configuration, for example to enable light-emission from light-emitter bottom side 20 S without requiring emitted light 60 to pass through a light-emitter electrode 28 or module electrode 18 .
  • component source substrates can be unsuitable for printing so that a flip-chip carrier substrate is necessary to enable printing (e.g., micro-transfer printing).
  • FIGS. 15A-15I and the flow diagram of FIG. 20 illustrate a generic process method for flip-chip printing that can be applied to any components, including light emitters 20 , controllers 30 , and pixel modules 99 .
  • source wafer 100 for a component is provided in step 310 .
  • a component 110 is formed on component source wafer 100 in step 320 .
  • source wafer 100 is a generic source wafer 100 that can be used as a source wafer for any of multiple light emitters 20 , controllers 30 , or pixel modules 99 and can comprise a substrate material (such as a semiconductor) and any layers (e.g., etch-stop layers, dielectric layers, adhesive layers, oxide layers, or seed layers) useful for forming components 110 on source wafer 100 or for receiving components 110 by printing onto source wafer 100 .
  • Component 110 is a generic component 110 that can be any one of light emitters 20 , controllers 30 , or pixel modules 99 .
  • Component 110 can comprise a patterned dielectric layer or structure 50 to insulate component 110 from component electrodes 118 (e.g., any of module electrodes 18 , light-emitter electrodes 28 , and controller electrodes 38 ) that provide power and signals to operate component 110 in order to prevent electrical shorting.
  • An optional layer of adhesive 19 e.g., a curable resin, not shown in FIG. 15B
  • adhesive 19 can be applied to component source wafer 100 , for example by coating, and cured after component 110 is disposed on component source wafer 100 , for example by heat or radiation.
  • a dielectric encapsulant (encapsulating layer) 112 can be applied to component 110 and can extend over component source wafer 100 .
  • a sacrificial release layer 120 for example comprising a differentially etchable material from dielectric encapsulant 112 , is disposed over dielectric encapsulant 112 .
  • Dielectric encapsulant 112 and sacrificial release layer 120 can be deposited and patterned by using photolithographic methods, for example coating, evaporation, or sputtering and pattern-wise etching with optical masks. As shown in FIG.
  • a layer of adhesive 19 is disposed over sacrificial release layer 120 and at least portions of dielectric encapsulant 112 and optionally component source wafer 100 , for example by coating.
  • Layer of adhesive 19 is adhered to carrier 102 to adhere component 110 and component source substrate to carrier 102 in step 350 and as shown in FIG. 15F .
  • adhesive 19 is first disposed on carrier 102 , for example by coating, and then adhered to sacrificial release layer 120 and at least portions of dielectric encapsulant 112 and optionally component source wafer 100 to adhere component 110 and component source substrate to carrier 102 in step 350 resulting in the structure shown in FIG. 15F .
  • Carrier 102 can be a substrate, for example a glass, polymer, or semiconductor substrate.
  • step 360 component source wafer 100 is removed, for example by back grinding or laser liftoff.
  • step 370 and as shown in FIG. 15H sacrificial release layer 120 is etched to release component 110 from carrier 102 so that component 110 is physically connected to component anchor 117 of carrier 102 (or adhesive 19 ) by component tether 114 .
  • the component structure with carrier 102 of FIG. 15H provides a printable (e.g., micro-transfer printable) component 110 that can be printed in an inverted configuration upside-down from the configuration in which component 110 was constructed on component source wafer 100 , as shown in FIG. 15I .
  • a printable (e.g., micro-transfer printable) component 110 can be printed in an inverted configuration upside-down from the configuration in which component 110 was constructed on component source wafer 100 , as shown in FIG. 15I .
  • Steps 310 - 370 as illustrated in FIGS. 15A-15H and as shown in FIG. 20 are collectively step 300 and can be applied to any desired component 110 , for example light emitters 20 , controllers 30 , or pixel modules 99 .
  • a method of making a pixel module 99 comprises providing a light-emitter source wafer 25 comprising a light emitter 20 , providing a controller source wafer 35 comprising a controller 30 , and providing a module substrate 10 having a module controller surface 10 C and an opposing module light-emitter surface 10 L.
  • a light emitter 20 is transferred from light-emitter source wafer 25 to module light-emitter surface 10 L of module substrate 10
  • controller 30 is transferred from controller source wafer 35 to module controller surface 10 C of module substrate 10 , or (iii) both (i) and (ii).
  • One or more vias 16 are formed through module substrate 10 and module electrodes 18 are formed to electrically connect controller 30 to light emitter 20 through the one or more vias 16 .
  • methods of the present disclosure can comprise (i) adhering light-emitter source wafer 25 to a light-emitter carrier 102 and removing light-emitter source wafer 25 , (ii) adhering controller source wafer 35 to a module carrier 102 , and removing controller source wafer 35 , or (iii) both (i) and (ii).
  • some embodiments of the present disclosure can be constructed by methods that comprise providing a source wafer 100 for a controller 30 in step 210 and as shown in FIG. 16A .
  • Module substrate 10 is disposed on source wafer 100 , in step 220 and as shown in FIG. 16B .
  • source wafer 100 is a controller source wafer 35 and also a module source wafer 15 and steps 210 and 220 can be a single step of providing a module source wafer 15 with a module substrate 10 .
  • module substrate 10 is formed on source wafer 100 or source wafer 100 is provided comprising module substrate 10 or provided with module substrate 10 disposed on source wafer 100 .
  • Module substrate 10 can be an oxide layer, for example a buried oxide layer such as silicon dioxide.
  • Controller 30 is formed (e.g., using photolithographic methods and materials) or disposed (e.g., by printing such as micro-transfer printing) on module substrate 10 in step 230 together with any one or more of module connection posts 12 , module electrodes 18 , patterned dielectric layers 50 , vias 16 , controller encapsulation layer 39 , and module substrate 10 structures in step 240 as shown in FIGS. 16C and 16D .
  • one or more module connection posts 12 extend through controller encapsulation layer 39 to allow electrical connection of pixel module 99 (e.g., controller 30 and light emitters 20 therein) to display electrodes 74 on target substrate 70 .
  • sacrificial release layer 120 is disposed over controller encapsulation layer 39 .
  • sacrificial release layer 120 extends through via 16 in module substrate 10 to contact source wafer 100 and also contacts controller encapsulation layer 39 where controller encapsulation layer 39 defines some or all of a module tether 14 .
  • One or more module connection posts 12 extend into sacrificial release layer 120 .
  • a layer of adhesive 19 adheres controller 30 with sacrificial release layer 120 to carrier 102 and source wafer 100 is removed, as shown in more detail in FIGS. 15E-15G , thereby exposing module substrate 10 and at least a portion of sacrificial release layer 120 .
  • Patterned module electrodes 18 are formed on the exposed module light-emitter surface 10 L of module substrate 10 in step 250 and as shown in FIG. 16G .
  • printable light emitters 20 are provided, for example horizontal or vertical light emitters 20 in an inverted or non-inverted configuration or as shown in any of FIGS. 5-8 and 11A .
  • FIGS. 16A-16M light emitters 20 are provided in an inverted configuration using step 300 (shown generically in FIG. 20 ).
  • step 260 and as shown in FIG. 16H light emitters 20 are printed (e.g., micro-transfer printed) from a light-emitter source wafer 25 (e.g., as shown in FIG.
  • step 270 an optional light-emitter encapsulation layer 29 is deposited, for example by sputtering or evaporation, and optionally patterned, for example photolithographically, to expose at least a portion of sacrificial release layer 120 .
  • module tether 14 in step 280 sacrificial release layer 120 is etched so that only module tether 14 physically connects pixel module 99 to carrier 102 by module anchor 17 .
  • module tether 14 can be a portion of an encapsulation layer, for example light-emitter encapsulation layer 29 , controller encapsulation layer 39 , a portion of a layer of adhesive 19 , a portion of module substrate 10 , or some other module encapsulation layer, or any combination of these.
  • module tether 14 comprises a combination of light-emitter encapsulation layer 29 and controller encapsulation layer 39 .
  • pixel module 99 can be micro-transfer printed (e.g., with stamp 90 and stamp post 92 ) from carrier 102 to display substrate 70 in step 290 , as shown in FIG. 16M , so that module connection posts 12 electrically contact pads 40 and display electrodes 74 on display substrate 70 .
  • display substrate 70 is a surface-mount substrate (e.g., comprising layers of polyimide and patterned surface-mount electrodes corresponding to display electrodes 74 ) and pixel module 99 is a part of a surface-mount device.
  • FIGS. 16A-16M illustrate module connection posts 12 corresponding to those illustrated in FIG. 1 but, according to some embodiments of the present disclosure, module connection posts 12 corresponding to those illustrated in FIG. 2, 9 , or 10 could be used.
  • FIGS. 16A-16M illustrate some methods of constructing a pixel-module display 98 in which pixel modules 99 emit light in a direction away from display substrate 70 (a top-emitter configuration).
  • FIGS. 17A-17L illustrate related steps and structures in which pixel modules 99 emit light through display substrate 70 (a bottom-emitter configuration).
  • some embodiments of the present disclosure can be constructed by providing a source wafer 100 for a light emitter 20 in step 410 and as shown in FIG. 17A .
  • Module substrate 10 is disposed on source wafer 100 in step 420 and as shown in FIG.
  • source wafer 100 is a light-emitter source wafer 25 and also a module source wafer 15 and steps 410 and 420 can be a single step of providing a module source wafer 15 with a module substrate 10 .
  • module substrate 10 is formed on source wafer 100 or source wafer 100 is provided comprising module substrate 10 or provided with module substrate 10 disposed on source wafer 100 .
  • Light emitter 20 is formed (e.g., using photolithographic methods and materials) or disposed (e.g., by printing, such as micro-transfer printing) on module substrate 10 in step 430 together with module connection posts 12 , module electrodes 18 , patterned dielectric layers 50 , vias 16 , light-emitter encapsulation layer 29 , and module substrate 10 structures in step 440 as shown in FIGS. 17C and 17D .
  • one or more module connection posts 12 extend through light-emitter encapsulation layer 29 to allow electrical connection of pixel module 99 (e.g., controller 30 and light emitters 20 therein) to display electrodes 74 on target substrate 70 .
  • pixel module 99 e.g., controller 30 and light emitters 20 therein
  • sacrificial release layer 120 is disposed over light-emitter encapsulation layer 29 .
  • sacrificial release layer 120 extends through via 16 in module substrate 10 to contact source wafer 100 and also contacts light-emitter encapsulation layer 29 where light-emitter encapsulation layer 29 defines a module tether 14 .
  • One or more module connection posts 12 can extend into sacrificial release layer 120 .
  • a layer of adhesive 19 adheres light emitter 20 with sacrificial release layer 120 to carrier 102 (shown in FIG. 17G ) and source wafer 100 is removed, as shown in FIG.
  • step 400 printable controller 30 is provided in any of the configurations of FIG. 9, 10 , or 11 B.
  • step 460 and as shown in inverted FIG. 17I controller 30 is printed (e.g., micro-transfer printed) from a controller source wafer 35 (shown in FIG. 11B ) to module controller surface 10 C of module substrate 10 .
  • controller 30 is electrically connected with photolithographically defined module electrodes 18 .
  • controller 30 is electrically connected with controller assembly connection posts 32 to form an electrical contact between controller 30 and module electrodes 18 .
  • An optional layer of adhesive 19 can adhere controller 30 to module substrate 10 and, if present, can be patterned to expose a portion of module sacrificial release layer 120 as shown in FIG. 17I .
  • an optional module encapsulation layer is deposited, for example by sputtering or evaporation, and optionally patterned, for example photolithographically, to expose sacrificial release layer 120 .
  • sacrificial release layer 120 is etched so that only module tether 14 physically connects pixel module 99 to carrier 102 by module anchor 17 .
  • module tether 14 can comprise an encapsulation layer, for example light-emitter encapsulation layer 29 , a controller encapsulation layer 39 (not included in FIGS. 17J-17L ), a portion of a layer of adhesive 19 , a portion of module substrate 10 , or some other module encapsulation layer, or any combination of these.
  • module tether 14 comprises only light-emitter encapsulation layer 29 .
  • pixel module 99 can be micro-transfer printed (e.g., with stamp 90 and stamp post 92 ) from carrier 102 to display substrate 70 in step 490 , as shown in FIG. 17L , so that module connection posts 12 and module electrodes 18 electrically contact pads 40 and display electrodes 74 on display substrate 70 .
  • display substrate 70 is a surface-mount substrate (e.g., comprising layers of polyimide and patterned surface-mount electrodes corresponding to display electrodes 74 ) and pixel module 99 is a part of a surface-mount device.
  • FIGS. 17A-17L illustrate module connection posts 12 corresponding to those illustrated in FIG. 3 but, according to some embodiments of the present disclosure (not shown), module connection posts 12 can be disposed directly on light emitters 20 (corresponding to FIG. 1 for controllers 30 ).
  • FIGS. 16A-16M and 17A-17L both illustrate a single light emitter 20 disposed on module substrate 10 and a single pixel module 99 disposed on display substrate 70 .
  • multiple light emitters 20 are disposed on module substrate 10 (a pixel module 99 comprises a plurality of light emitters 20 ), for example as shown in FIGS. 1-3 and 12A-13 and multiple pixel modules 99 disposed on display substrate 70 as shown in FIGS. 14A-14D .
  • FIGS. 16-16M and 17A-17M are illustrative and not limiting. Those knowledgeable in integrated circuit and display technologies will understand that variations of the described processes, structures, and materials can be applied within the context of the present disclosure and are included within embodiments of the present disclosure. For example, some steps can be done before, after, or at the same time as other steps.
  • components such as light emitters 20 or controllers 30 are constructed and native to module substrate 10 .
  • components such as light emitters 20 or controllers 30 are printed (e.g., micro-transfer printed) to module substrate 10 from a corresponding source wafer.
  • a printable light emitter 20 is provided using step 300 as described above.
  • printable light emitter 20 is provided in an inverted configuration (e.g., as shown in FIG. 6 ). In some other embodiments, printable light emitter 20 is provided in a non-inverted configuration (as shown in FIGS. 5, 7, and 8 ).
  • controller 30 is provided in a non-inverted printable configuration, for example as shown in FIGS. 9 and 10 .
  • a source wafer 100 for a pixel module 99 is provided and a module substrate 10 formed or disposed in step 206 as shown in FIG. 18B .
  • Any necessary vias 16 , dielectric structures 50 , and module electrodes 18 on module substrate 10 can be formed in step 241 and, in step 245 and, as shown in FIG. 18C , controller 30 is disposed (e.g., micro-transfer printed) from a controller source wafer 35 to module substrate 10 (or any layers or module electrodes 18 provided on module substrate 10 ).
  • any additional structures can be formed, as shown in FIG. 18D .
  • the module structure is then inverted with a carrier 102 in step 250 and as generally described in steps 330 - 360 .
  • a printable light emitter 20 (in either an inverted or non-inverted configuration) is then printed (e.g., micro-transfer printed) to module light-emitter surface 10 L or module substrate 10 in step 260 and any further processing done, as described with respect to 270 , for example such as module connection posts 12 , other module electrodes 18 , or light-emitter encapsulation layer 29 .
  • step 200 in step 200 a printable controller 30 is provided and in step 202 a printable light emitter 20 is provided so that light emitters 20 are first printed in step 245 and controller 30 is printed in step 260 .
  • controller 20 can be encapsulated and pixel module 99 printed as described in steps 470 - 490 .
  • encapsulation layers can be provided wherever useful for environmental protection or to provide a layer in which tethers can be defined, or both.
  • FIGS. 19A-19D illustrate steps of forming a pixel module 99 in which controller 30 is provided with controller assembly connection posts 32 .
  • FIGS. 19A-19C are similar to those of FIGS. 18A-18C , but in FIG. 19D , a controller assembly 82 including controller 30 and controller assembly connection posts 32 are printed (e.g., micro-transfer printed) to module substrate 10 and module electrodes 18 .
  • Module connection posts 12 can be formed on controller 30 either before or after printing.
  • a method of making a pixel module 99 comprises providing a controller 30 , module electrodes 18 , and module connection posts 12 disposed on a module substrate 10 that is disposed on or in a module source wafer 15 (e.g., a source wafer comprising module substrate 10 ), where module electrodes 18 are in electrical contact with controller 30 .
  • Controller 30 , module electrodes 18 , module connection posts 12 , and module substrate 10 are transferred to (e.g., adhered to with an adhesive 19 such as a resin) a carrier 102 (e.g., a handle substrate) so that controller 30 is disposed between the carrier 102 and module substrate 10 .
  • the module source wafer 15 can be removed, e.g., by grinding or laser lift-off.
  • a light emitter 20 is disposed on module substrate 10 so that module substrate 10 is disposed between controller 30 and light emitter 20 .
  • Light emitter 20 is non-native to module substrate 10 , and light emitter 20 is electrically connected to controller 30 (e.g., by micro-transfer printing light emitter 20 or a light-emitter assembly 80 to module substrate 10 ) in order to form pixel module 99 .
  • the providing step can comprise disposing controller 30 on module substrate 10 so that controller 30 is non-native to module substrate 10 , disposing a patterned first dielectric layer on controller 30 , disposing module electrodes 18 on the patterned first dielectric layer and in electrical contact with controller 30 , and disposing module connection posts 12 .
  • the providing step can further comprise disposing a second dielectric layer on module electrodes 18 so that module connection posts 12 protrude from the second dielectric layer.
  • the second dielectric layer and module substrate 10 can together encapsulate module electrodes 18 and controller 30 .
  • Some methods of the present disclosure comprise forming a patterned sacrificial release layer on the second dielectric layer prior to the transferring step, where the patterned sacrificial release layer covers the one or more module connection posts 12 .
  • the patterned sacrificial release layer can be sacrificed, for example by wet or dry etching, to release pixel module 99 from the carrier 102 and enable pixel module 99 to be transfer printed to a target substrate 70 .
  • the patterned sacrificial release layer is at least partially removed after source wafer 100 is removed.
  • At least a portion of the second dielectric layer can be disposed in a common plane with module substrate 10 so that controller 30 and light emitter 20 remain connected to the carrier 102 by the portion of the second dielectric layer after the patterned sacrificial release layer is at least partially removed.
  • the portion of the second dielectric layer can form or be a module tether 14 .
  • Pixel module 99 can then be transferred (e.g., by micro-transfer printing with a stamp 90 ) from the carrier 102 to a target substrate 70 (e.g., a display substrate 70 ).
  • Additional module electrodes 18 can be formed on a surface of module substrate 10 opposite controller 30 and light emitter 20 can be printed such that light-emitter connection posts 26 electrically connected to light emitter 20 come into electrical contact with the additional module electrodes 18 .
  • Methods of the present disclosure can comprise providing an unpatterned adhesive layer 19 on the additional module electrodes 18 and module substrate 10 prior to disposing light emitter 20 and patterning adhesive layer 19 after disposing light emitter 20 so that adhesive layer 19 after patterning does not extend beyond module substrate 10 .
  • Light emitters 20 can comprise a broken (e.g., fractured) or separated light-emitter tether 24 and controller 30 can comprises a broken or separated controller tether 34 .
  • Methods of the present disclosure can comprise providing a first encapsulating layer (e.g., controller encapsulation layer 39 ) disposed on or over controller 30 so that module substrate 10 and the first encapsulating layer together encapsulate controller 30 and disposing a second encapsulating layer (e.g., light-emitter encapsulation layer 29 ) on or over light emitter 20 so that module substrate 10 and the second encapsulating layer together encapsulate light emitter 20 .
  • a first encapsulating layer e.g., controller encapsulation layer 39
  • a second encapsulating layer e.g., light-emitter encapsulation layer 29
  • Controller 30 can be electrically connected to light emitter 20 at least in part by one or more module electrodes 18 that pass through or around the edge of module substrate 10 .
  • Pixel modules 99 and methods of the present disclosure dispose a controller 30 (or controller assembly 82 ) and one or more light emitters 20 (or light-emitter assembly 80 ) on opposing sides of a module substrate 10 .
  • controller 30 or controller assembly 82 are exposed, that is it is not covered or supported by another substrate or structure.
  • light emitters 20 or light-emitter assembly 80 are exposed, that is they are not covered or supported by another substrate or structure.
  • Module substrate 10 can provide the mechanical structure necessary for supporting any one or more of light emitters 20 , light-emitter assembly 80 , controller 30 , and controller assembly 82 .
  • Pixel modules 99 of the present disclosure can be operated by providing power and signals to module electrodes 18 , causing controller 30 to operate and control light emitters 20 , for example through vias 16 where present.
  • Power and signals can be provided to pixel modules 99 through module connection posts 12 , if present, or through photolithographically defined wires disposed on a substrate, for example display electrodes 74 on display substrate 70 , on which pixel modules 99 are disposed.
  • power and signals can be provided to light emitters 20 through light-emitter connection posts 26 , if present, or through photolithographically defined wires (e.g., module electrodes 18 ) disposed on module substrate 10 on which light emitters 20 are disposed.
  • power and signals can be provided to controller 30 through controller assembly connection posts 32 , if present, or through photolithographically defined wires (e.g., module electrodes 18 ) disposed on module substrate 10 on controller 30 is disposed.
  • a module source wafer 15 comprises a plurality of pixel modules 99 shown in more detail in FIG. 25 .
  • the incomplete pixel module 99 of FIG. 25 corresponds to FIG. 16E , viewed from the sacrificial release layer 120 side of the structure. Sacrificial release layer 120 is largely transparent and FIG.
  • Controller 30 is largely beneath and obscured by module electrodes 18 but a perimeter of controller 30 can be seen as a dark rectangular outline.
  • Controller 30 is a CMOS silicon integrated circuit approximately 40 by 35 microns in length and width and is disposed on an oxide layer that serves as module substrate 10 beneath controller 30 .
  • Module substrate 10 is thus a buried oxide layer until module source wafer 15 is removed (as shown in FIGS. 15G and 16F ).
  • Module tether 14 and module anchor 17 are outlined on the left of FIG. 25 in dashed white rectangles.
  • Module connection posts 12 are located at the four corners of rectangular controller 30 .
  • Controller vias 16 C provide electrical connections between module connection posts 12 and controller 30 and between controller 30 and light emitters 20 (micro-iLEDs, disposed as in FIG. 16H ) through module electrodes 18 .
  • Light-emitter vias 16 L electrically connect module electrodes 18 through module substrate 10 to control light emitters 20 and are relatively large to conduct sufficient current.
  • ground via 16 G provides a ground connection to light emitters 20 and controller 30 .
  • Ground and light-emitter vias 16 G, 16 L connect through an additional dielectric layer 50 (not shown in the micrograph) and therefore comprise two vias 16 , one above controller 30 and one adjacent to controller 30 .
  • controller 30 can provide a selective voltage though light-emitter vias 16 L to control light emitters 20 that returns through ground via 16 G or, with inverted logic, ground via 16 G can provide a voltage that is selectively returned through light-emitter vias 16 G as a ground connection to control light emitters 20 .
  • a display substrate 70 or target substrate on which pixel modules 99 are disposed can be any material having two opposing side and a surface suitable for supporting electrical components, electrical conductors, and integrated circuits, for example as found in the flat-panel display industry.
  • Display substrates 70 or target substrates 70 such as surface-mount device substrates can be flexible or rigid and can be or comprise, for example, one or more of glass, plastic, metal, or ceramic, polymer, resin, polyimide, PEN, PET, metal, metal foil, glass, a semiconductor, and sapphire.
  • Module substrate 10 can be a semiconductor substrate in or on which a light emitter 20 or controller 30 is formed, or a separate substrate defined on a module wafer.
  • Module substrate 10 can be a glass, polymer, or dielectric layer, for example silicon dioxide or nitride, can comprise a seed layer, and can be a layer deposited on a subsequently removed substrate or wafer.
  • Controllers 30 can be integrated circuits comprising light-emitter control circuits formed in a semiconductor structure or substrate, for example bare-die semiconductor circuits made in monocrystalline silicon using integrated circuit and photolithographic materials and methods.
  • the semiconductor can be, for example, silicon, CMOS, or a compound semiconductor such as GaAs.
  • Controllers 30 can be micro-sized devices, for example having at least one of a length and a width less than 1000 microns (e.g., less than 500 microns, less than 250 microns, less than 100 microns, less than 50 microns, less than 20 microns, or less than 10 microns) and, optionally, a thickness less than 100 microns (e.g., less than 50 microns, less than 20 microns, less than 10 microns, or less than 5 microns).
  • a length and a width less than 1000 microns (e.g., less than 500 microns, less than 250 microns, less than 100 microns, less than 50 microns, less than 20 microns, or less than 10 microns) and, optionally, a thickness less than 100 microns (e.g., less than 50 microns, less than 20 microns, less than 10 microns, or less than 5 microns).
  • light emitters 20 can be integrated circuits, for example micro-iLEDs, formed in a semiconductor structure or substrate, for example bare-die semiconductor circuits made in monocrystalline materials such as compound semiconductors using integrated circuit and photolithographic materials and methods.
  • the semiconductor can be, for example, silicon, CMOS, or a compound semiconductor such as GaN or GaAs.
  • Light emitters 20 can be micro-sized devices, for example having at least one of a length and a width less than 1000 microns (e.g., less than 500 microns, less than 250 microns, less than 100 microns, less than 50 microns, less than 20 microns, or less than 10 microns) and, optionally, a thickness less than 100 microns (e.g., less than 50 microns, less than 20 microns, less than 10 microns, or less than 5 microns).
  • Such monocrystalline materials can provide faster switching speeds, greater efficiency, and reduced size compared to thin-film materials found in conventional flat-panel displays.
  • displays having devices and structures constructed according to various embodiments of the present disclosure can have improved performance and resolution.
  • Each light emitter 20 can be, according to various embodiments, for example, a light-emitting diode (LED), an organic light-emitting diode (OLED), a micro-LED, a laser, a diode laser, or a vertical cavity surface emitting laser and can include known light-emitting diode and/or laser materials and structures.
  • Light emitters 20 can comprise an inorganic solid single-crystal direct bandgap light emitter, can emit visible light, such as red, green, blue, yellow, or cyan light, violet, or ultra-violet light, and can emit either coherent or incoherent light and can include phosphors, quantum dots, or other color conversion materials.
  • Light emitters 20 used herein can have at least one of a width from 2 to 50 ⁇ m (e.g., 2 to 5 ⁇ m, 5 to 10 ⁇ m, 10 to 20 ⁇ m, or 20 to 50 ⁇ m), a length from 2 to 50 ⁇ m (e.g., 2 to 5 ⁇ m, 5 to 10 ⁇ m, 10 to 20 ⁇ m, or 20 to 50 ⁇ m), and a height from 2 to 50 ⁇ m (e.g., 2 to 5 ⁇ m, 5 to 10 ⁇ m, 10 to 20 ⁇ m, or 20 to 50 ⁇ m).
  • a light emitter 20 or light-emitter assembly 80 can include one or more associated color filters, for example as described in U.S. Pat. No. 10,153,735, or one or more associated color conversion materials or articles, for example as described in U.S. patent application Ser. No. 14/930,363, filed on Nov. 2, 2015.
  • micro-iLEDs and micro-LED displays can be found in U.S. Pat. No. 9,520,537, issued Dec. 13, 2016, entitled Micro Assembled Micro LED Displays and Lighting Elements, the disclosure of which is hereby incorporated by reference in its entirety.
  • Micro-transfer methods are described in U.S. Pat. Nos. 8,722,458, 7,622,367 and 8,506,867, the disclosure of each of which is hereby incorporated by reference.
  • Pixel modules 99 or controller 30 in accordance with certain embodiments of the present disclosure can be constructed using compound micro-assembly techniques (e.g., can be compound micro-systems).
  • compound micro-assembly techniques e.g., can be compound micro-systems.
  • a discussion of compound micro-assembly structures and methods is provided in U.S. patent application Ser. No. 14/822,868, filed Sep. 25, 2014, entitled Compound Micro-Assembly Strategies and Devices, the disclosure of which is hereby incorporated by reference in its entirety.
  • structures, features, and elements of the present disclosure can be made using photolithographic methods and materials found in the integrated circuit arts, and the light-emitting diode arts, for example including doped or undoped semiconductor materials, conductors, passivation layers, patterned dielectric layers, electrical contacts, and controllers.
  • a first layer or device on a second layer in some implementations means a first layer or device directly on and in contact with a second layer.
  • a first layer or device on a second layer includes a first layer or device and a second layer with another layer therebetween.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Theoretical Computer Science (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Electroluminescent Light Sources (AREA)
  • Led Device Packages (AREA)
  • Optical Communication System (AREA)

Abstract

An example of a pixel module comprises a module substrate having light emitters disposed on a light-emitter surface and a controller disposed on a controller surface opposed to the light-emitter surface. At least one module electrode is electrically connected to the controller and at least one module electrode is electrically connected to each light emitter. An example of a pixel-module wafer comprises a module source wafer comprising sacrificial portions and module anchors, each sacrificial portion laterally separated from an adjacent sacrificial portion by a module anchor and a pixel module disposed entirely over each sacrificial portion. At least one module tether physically connects each of the pixel modules to at least one of the module anchors. An example of a pixel-module display comprises a display substrate, pixel modules disposed on the display substrate and display electrodes disposed on the display substrate, each display electrode electrically connected to a module electrode.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • Reference is made to U.S. Pat. No. 10,153,256 filed Dec. 9, 2016 entitled Micro-Transfer Printable Electronic Component by Cok et al, to U.S. Pat. No. 10,224,231 filed Nov. 14, 2017 entitled Micro-Transfer Printable Flip-Chip Structures and Methods by Bower et al, to U.S. patent application Ser. No. 15/876,949 filed Jan. 22, 2018 entitled Stacked Pixel Structures by Cok et al, to U.S. Pat. No. 9,368,683 filed Jul. 23, 2015 entitled Printable Inorganic Semiconductor Method by Meitl et al, to U.S. Pat. No. 10,074,768 filed Jun. 10, 2016 entitled Printable Inorganic Semiconductor Method by Meitl et al, to U.S. Pat. No. 10,224,231 filed Nov. 14, 2017 entitled Micro-Transfer Printable Flip-Chip Structures and Methods by Meitl et al, to U.S. patent application Ser. No. 16/192,779 filed Nov. 15, 2018 entitled Micro-Transfer Printable Flip-Chip Structures and Methods by Meitl et al, and to U.S. patent application Ser. No. 15/944,223 filed Apr. 3, 2018 entitled Micro-Transfer Printable Flip-Chip Structures and Methods by Meitl et al, the relevant contents of each of which are incorporated by reference herein.
  • TECHNICAL FIELD
  • The present disclosure relates generally to physical pixel structures for use in a display and, in some embodiments, structures having stacked inorganic light emitters and pixel controllers.
  • BACKGROUND
  • Flat-panel displays comprise an array of pixels distributed in a display viewing area over a planar display substrate. The pixels are electrically controlled using matrix addressing with the intersections of row and column wires on the substrate defining pixel locations. Rows of pixels in the array are sequentially provided with control signals and columns of pixels in the array are provided with data signals. Passive-matrix control relies on row and column controllers external to the display viewing area to sequentially enable rows of pixels to emit light, so that only one row of pixels at a time emits light. Active-matrix control relies on local storage and control provided in the display viewing area for each pixel, for example with a storage capacitor and driving transistor as disclosed in U.S. Pat. No. 9,117,940. Data is provided from the external column controller to each pixel in a selected row of pixels and the rows are sequentially selected with the row controller. The pixels in each selected row receive data on the column wires and store the data locally in the pixel. Once the data is received and stored, it is displayed at each pixel by the control circuitry in the pixel by providing power to the pixel control circuitry, for example transistors driving electrodes controlling a liquid crystal (in the case of a liquid crystal display) or an organic light-emitting diode (in the case of an OLED display). Inorganic light-emitting diodes are also used in flat-panel displays.
  • Inorganic light-emitting diode (iLED) displays have many advantages, such as efficiency, color purity, and lifetime, and are found today in digital signage and large-format displays, for example in sporting venues. The iLEDs in these displays are relatively large, for example having a dimension of one mm or more, are mounted in a display frame, for example in an array of tiles, and are controlled by circuitry external to the display frame. It is difficult, therefore, to construct a high-resolution iLED display with relatively smaller iLEDs. Existing iLED displays often have pixel pitches of approximately 25 ppi, a relatively low resolution, especially compared to OLED or liquid crystal flat-panel displays.
  • Approaches to providing high-performance electronic devices distributed over a substrate are described in U.S. Pat. No. 8,722,458 entitled Optical Systems Fabricated by Printing-Based Assembly. This patent teaches, inter alia, transferring light-emitting, light-sensing, or light-collecting semiconductor elements from a wafer substrate to a destination substrate or backplane. U.S. Pat. No. 7,972,875 entitled Optical Systems Fabricated by Printing Based Assembly discloses, inter alia, assembling printable semiconductor elements on a substrate by way of contact printing. Inorganic light-emitting diode displays using micro-transfer printing (Journal of the Society for Information Display, 2017, DOI #10.1002/jsid.610, 1071-0922/17/2510-0610, pages 589-609) describes high-performance electronic control circuits and micro-LEDs distributed over a large display substrate. In an example from this paper, small integrated circuits and micro-LEDs (devices) are formed over a sacrificial layer on the process side of corresponding crystalline semiconductor wafers, for example a silicon wafer for the integrated circuit and GaN or GaAs wafers for the micro-LEDs. The small integrated circuits and micro-LEDs are released from the various wafers by etching the sacrificial layers formed beneath the devices. A PDMS stamp is successively pressed against the process side of each wafer and the devices are adhered to the stamp. The devices are then pressed against a display substrate coated with an adhesive and thereby adhered to the display substrate. The adhesive is subsequently cured, electrodes are formed using photolithographic methods and materials, and the devices are encapsulated to form arrays of light-emitting pixels.
  • U.S. Pat. No. 9,818,725 entitled Inorganic-Light-Emitter Displays with Integrated Black Matrix describes, inter alia, an inorganic light-emitting display with micro-transfer printed light-emitting diodes and pixel controllers distributed over a flat-panel display substrate with an integrated black matrix. Certain embodiments of such approaches provide an LED display with improved optical performance but there remains a need for inorganic LED displays with improved manufacturability, increased resolution, reduced cost, and pixel structures that facilitate such improved manufacturability and increased resolution.
  • SUMMARY
  • The present disclosure provides, inter alia, a pixel module comprising a module substrate having a light-emitter surface and a controller surface opposed to the light-emitter surface, one or more light emitters disposed on the light-emitter surface of the module substrate, a controller disposed on the controller surface of the module substrate, and module electrodes. At least one module electrode can be electrically connected to the controller and at least one module electrode can be electrically connected to each light emitter of the one or more light emitters. Module electrodes can electrically connect the controller to one or more light emitters so that the controller is operable to control the one or more light emitters (e.g., when provided with appropriate input, such as one or more signals). One or more module electrodes can pass through a module substrate or wrap around an edge of a module substrate.
  • In some embodiments of the present disclosure, one or more light emitters comprise a red-light emitter operable to emit red light, a green-light emitter operable to emit green light, and a blue-light emitter operable to emit blue light. One or more light emitters can be one or more horizontal inorganic light-emitting diodes that are disposed to emit light in a direction away from a light-emitter surface of a module substrate. Horizontal inorganic light-emitting diodes can comprise a top side opposite a bottom side. Electrical conductors, such as module electrodes, can be electrically connected to the top side. Horizontal inorganic light-emitting diodes can emit light through the top side or can emit light through the bottom side. One or more light emitters can be one or more vertical inorganic light-emitting diodes that are disposed to emit light in a direction away from a light-emitter surface of a module substrate.
  • Each light emitter of the one or more light emitters can comprise one or more light-emitter connection posts each electrically connected to a module electrode. A controller can comprise one or more controller assembly connection posts each electrically connected to a module electrode. One or more module connection posts can be disposed on a controller surface of a module substrate and each module connection post can be electrically connected to a module electrode. One or more module connection posts can protrude from a controller surface of a module substrate a distance that is greater than a thickness of the controller. The distance can be at least 1.1 times, at least 1.2 times, or at least 1.5 times the thickness of the controller.
  • In some embodiments of the disclosure, one or more module connection posts are disposed on a light-emitter surface of a module substrate and each module connection post can be electrically connected to a module electrode. One or more module connection posts can protrude from a light-emitter surface of a module substrate a distance that is greater than a thickness of each of the one or more light emitters. The distance can be at least 1.1 times, at least 1.2 times, or at least 1.5 times the thickness of the one or more light emitters.
  • One or more module connection posts can be disposed on a controller so that the controller is disposed between the one or more module connection posts and a module substrate. A module connection post of the one or more module connection posts disposed on the controller can be electrically connected to a module electrode.
  • In some embodiments of the present disclosure, (i) each light emitter of the one or more light emitters comprises a broken or separated light-emitter tether, (ii) a controller comprises a broken or separated controller tether, (iii) a module substrate comprises a module tether (e.g., a broken or separated tether or wherein the module tether is physically connected to an anchor portion of a source wafer), or (iv) any combination of (i), (ii), and (iii). A module substrate can comprise a broken or separated module tether.
  • Each of the one or more light emitters can be non-native to the module substrate, the controller can be non-native to the module substrate, or both.
  • In some embodiments, (i) a dielectric is disposed between the controller and at least a portion of each of the at least one of the module electrodes directly electrically connected to the controller, (ii) a dielectric is disposed between the at least one light emitter and at least a portion of each of the at least one of the module electrodes directly electrically connected to the at least one light emitter, or (iii) both (i) and (ii). An encapsulating layer can be disposed over the controller, an encapsulating layer can be disposed over the one or more light emitters, or both. Any one or more encapsulating layers can comprise a broken or separated module tether. One or more module connection posts can protrude through any one or more encapsulating layers. A pixel module can be fully encapsulated by any one or more encapsulating layers and, optionally, a module substrate.
  • According to some embodiments, a pixel module has at least one of: at least one of a width and a length of no more than 400 microns (e.g., no more than 300 microns, no more than 200 microns, or no more than 100 microns), and a thickness of no more than 150 microns (e.g., no more than 100 microns, no more than 75 microns, no more than 50 microns, or no more than 25 microns).
  • According to some embodiments of the present disclosure, a pixel-module wafer comprises a module source wafer comprising sacrificial portions and module anchors. Each sacrificial portion is laterally separated from an adjacent sacrificial portion by a module anchor and a pixel module is disposed entirely over each sacrificial portion. Each pixel module can comprise a module substrate having a light-emitter surface and a controller surface opposed to the light-emitter surface, one or more light emitters disposed on the light-emitter surface of the module substrate, a controller disposed on the controller surface of the module substrate, and module electrodes, wherein at least one module electrode is electrically connected to the controller, at least one module electrode is electrically connected to at least one light emitter of the one or more light emitters, and at least one module tether physically connects each of the pixel modules to at least one of the module anchors.
  • According to some embodiments of the present disclosure, a pixel-module display comprises a display substrate and one-or-more pixel modules disposed on the display substrate. Each of the one or more pixel modules can comprise a module substrate having a light-emitter surface and a controller surface opposed to the light-emitter surface, one or more light emitters disposed on the light-emitter surface of the module substrate, a controller disposed on the controller surface of the module substrate, and module electrodes, wherein at least one module electrode is electrically connected to the controller and at least one module electrode is electrically connected to at least one light emitter of the one or more light emitters. Display electrodes are disposed on the display substrate, each display electrode is electrically connected to a module electrode of the one-or-more pixel modules. The one-or-more pixel modules can be non-native to the display substrate. Each of the pixel modules can comprise a broken or separated module tether.
  • In some embodiments, each pixel module comprises one or more module connection posts, where each module connection post of the one or more module connection posts is electrically connected to a display electrode. The one-or-more pixel modules can be a plurality of pixel modules that are disposed in a regular array for example on a target substrate, such as a display substrate. The regular array can be regular in one or two dimensions. The one or more light emitters can be disposed between the display substrate and a module substrate. The controller can be disposed between the display substrate and the module substrate.
  • According to some embodiments of the present disclosure, a method of making a pixel module comprises providing (i) a light-emitter source wafer comprising a light emitter, (ii) a controller source wafer comprising a controller, and (iii) a module substrate having a controller surface and a light-emitter surface, transferring (i) the light emitter from the light-emitter source wafer to the light-emitter surface of the module substrate, (ii) the controller from the controller source wafer to the controller surface of the module substrate, or (iii) both (i) and (ii), and forming one or more vias through the module substrate and forming module electrodes electrically connecting the controller to the light emitter through the one or more vias.
  • Methods of the present disclosure can comprise (i) adhering a light-emitter source wafer to a module carrier (e.g., a handle substrate for a pixel module) and removing the light-emitter source wafer, (ii) adhering the controller source wafer to a module carrier and removing the controller source wafer, or (iii) both (i) and (ii). Providing the controller source wafer can comprise providing the module substrate and the controller disposed on the controller surface of the module substrate, and the method comprises transferring the one or more light-emitters from a light-emitter source wafer onto the light-emitting side of the module substrate. Providing the light-emitter source wafer can comprise providing the module substrate and the one or more light emitters disposed on the light-emitter surface of the module substrate and transferring the controller from a controller source wafer onto the controller surface of the module substrate. Transferring the light emitter can comprise (i) micro-transfer printing the light emitter from the light-emitter source wafer to the light-emitter surface of the module substrate, (ii) transferring the controller comprises micro-transfer printing the controller from the controller source wafer to the controller surface of the module substrate, or (iii) both (i) and (ii).
  • Methods of the present disclosure can comprise providing a display substrate and transferring a pixel module to the display substrate. Transferring the pixel module to the display substrate can comprise micro-transfer printing the pixel module from a module carrier to the display substrate.
  • According to some embodiments of the present disclosure a light-emitter assembly comprises a dielectric light-emitter assembly substrate having a first side and a second side opposite the first side, one or more light emitters disposed on the light-emitter assembly substrate, wherein the one or more light emitters are non-native to the light-emitter assembly substrate, one or more light-emitter assembly connection posts disposed on the first side of the light-emitter assembly substrate, one or more module connection posts disposed on the second side of the light-emitter assembly substrate, and light-emitter electrodes that electrically connect the one or more light emitters to the one or more light-emitter assembly connection posts and to the one or more module connection posts. One or more light emitters can be disposed on the second side of the light-emitter assembly substrate. The light-emitter assembly substrate can comprise a broken or separated light-emitter assembly tether (e.g., a broken, fractured, or separated light-emitter tether or a light-emitter tether that is physically connected to an anchor portion of a source substrate). The one or more light emitters can be each a micro-LED, the one or more light emitters can be horizontal light-emitting diodes, the one or more light emitters can be vertical light-emitting diodes, and each of the one or more light emitters can comprise a broken or separated light-emitter tether.
  • In some embodiments, ones of the light-emitter electrodes pass through the light-emitter assembly substrate or ones of the light-emitter electrodes each wrap around an edge of the light-emitter assembly substrate. Each of the one or more light-emitter assembly connection posts or each of the one or more module connection posts can be a multi-layer connection post or a single-layer connection post.
  • In some embodiments, each of the one or more module connection posts or each of the light-emitter assembly connection posts can protrude from a light-emitter assembly substrate a distance that is greater than a thickest thickness of one or more light emitters. The distance can be at least 1.1 times (e.g., at least 1.2 times) and no more than 3 times the thickest thickness.
  • In some embodiments, a light-emitter assembly comprises a module substrate and one or more contact pads disposed on or in the module substrate and one or more light-emitter assembly connection posts is disposed in electrical connection with one of the one or more contact pads. The module substrate can comprise a module tether (e.g., a broken or separated module tether or a module tether that is physically connected to an anchor portion of a source substrate).
  • In some embodiments, a light-emitter assembly comprises a controller disposed on a side of the module substrate opposite the one or more light emitters, wherein the one or more light emitters are electrically connected to the controller. The light-emitter assembly can have at least one of: at least one of a width and a length of no more than 400 microns (e.g., no more than 300 microns, no more than 200 microns, or no more than 100 microns), and a thickness of no more than 150 microns (e.g., no more than 100 microns, no more than 75 microns, no more than 50 microns, or no more than 25 microns).
  • According to some embodiments of the present disclosure, a controller assembly comprises a controller assembly substrate having a first side and a second side opposite the first side, a controller disposed on or in the controller assembly substrate, one or more controller assembly connection posts disposed on the first side of the controller assembly substrate, one or more module connection posts disposed on the second side of the controller assembly substrate, and controller electrodes that electrically connect the controller to the one or more controller assembly connection posts and to the one or more module connection posts. A controller can be disposed on a second side of a controller assembly substrate. A controller assembly substrate can comprise a broken or separated controller assembly tether. A controller assembly substrate can be a dielectric substrate or a semiconductor substrate. A controller can be disposed on a controller assembly substrate and can be non-native to an assembly substrate. A controller can comprise a broken or separated controller tether. Ones of the controller electrodes can pass through a controller assembly substrate or can each wrap around an edge of the controller assembly substrate.
  • In some embodiments, a controller assembly comprises a module substrate, wherein each of the one or more controller assembly connection posts is disposed in electrical connection with a contact pad disposed on or in the module substrate. The module substrate can comprise a module tether (e.g., a broken or separated tether or wherein the module tether is physically connected to an anchor portion of a source substrate). A controller assembly can comprise one or more light emitters disposed on a side of a module substrate opposite a controller, wherein one or more light emitters are electrically connected to the controller. A controller assembly can have at least one of: at least one of a width and a length of no more than 400 microns (e.g., no more than 300 microns, no more than 200 microns, or no more than 100 microns) and a thickness of no more than 150 microns (e.g., no more than 100 microns, no more than 75 microns, no more than 50 microns, or no more than 25 microns).
  • In some embodiments, one or more module connection posts are disposed on a controller such that the controller is disposed between one or more module connection posts and a controller assembly substrate. Each of the one or more controller assembly connection posts or module connection posts can be a multi-layer connection post or a single-layer connection post. One or more module connection posts can protrude from a controller assembly substrate a distance that is greater than a thickness of the controller and the distance can be at least 1.1 times (e.g., at least 1.2 times), no more than 3 times the thickness, or both.
  • In some embodiments of the present disclosure, a controller assembly comprises a controller assembly substrate, a controller disposed on a first side of the controller assembly substrate, one or more module connection posts disposed on the controller, one or more controller assembly connection posts disposed on a second side of the controller assembly substrate that is opposite the first side, and controller electrodes disposed at least partially on the controller assembly substrate, wherein the controller electrodes are electrically connected to the controller, the one or more controller assembly connection posts, and the one or more module connection posts. The controller assembly substrate can be a dielectric substrate, or a semiconductor substrate, and the controller can be non-native to the controller assembly substrate. A controller can comprise a broken or separated controller tether. A controller assembly substrate can comprise a broken or separated controller assembly tether. A dielectric can be disposed between the controller and at least a portion of each of the controller electrodes. Ones of the controller electrodes can pass through a controller assembly substrate or wrap around an edge of the controller assembly substrate.
  • According to some embodiments of the present disclosure, a pixel module comprises a dielectric module substrate having a light-emitter surface and a controller surface that is opposite the light-emitter surface, a controller assembly disposed on the controller surface of the module substrate, one or more light emitters disposed on or over the module substrate, and module electrodes that electrically connect the one or more light emitters to the controller. One or more light emitters can be a light-emitter assembly.
  • In some embodiments, an adhesive layer is disposed on a controller surface of a module substrate. One or more controller assembly connection posts of a controller assembly can penetrate through an adhesive layer and each can physically contact a contact pad disposed on or in the module substrate. The adhesive layer can be in direct contact with the controller assembly. Ones of the module electrodes can pass through a module substrate or wrap around an edge of a module substrate. In some embodiments, a pixel module according to the present disclosure comprises an adhesive layer disposed on a light-emitter surface of a module substrate. One or more light-emitter connection posts of each of the one or more light emitters can penetrate through an adhesive layer such that the one or more light emitters are electrically connected to a controller. The adhesive layer can be disposed over ones of the module electrodes.
  • In some embodiments of the present disclosure, one or more light emitters each comprise a broken or separated light-emitter tether, one or more light emitters are horizontal light-emitting diodes, one or more light emitters are vertical light-emitting diodes, or each of the one or more light emitters comprises one or more light-emitter connection posts and the one or more light emitters are electrically connected to the controller in part through the one or more light-emitter connection posts.
  • According to some embodiments, a module substrate comprises a broken or separated module tether. A light-emitter encapsulation layer can be disposed over the one or more light emitters and the light-emitter encapsulation layer can comprise a broken or separated module tether. A controller encapsulation layer can be disposed over the controller assembly and one or more module connection posts can protrude through the controller encapsulation layer.
  • In some embodiments of the present disclosure, a pixel module comprises a target substrate, such as a display substrate. One or more module connection posts of the controller assembly can be disposed in electrical contact with a corresponding one or more contact pads disposed on or in the target substrate. An adhesive layer can be disposed on the target substrate and one or more module connection posts can penetrate through the adhesive layer such that the controller and the one or more light emitters are electrically connected to one or more module electrodes disposed on or in the target substrate. The target substrate can be a display substrate and the pixel module can be a pixel in an array of pixels disposed on the display substrate that are operable to display information (e.g., an image and/or text) to a viewer.
  • According to embodiments of the present disclosure, a method of making a pixel module comprises providing a controller, module electrodes, and module connection posts disposed on a module substrate that is disposed on or in a module source wafer, wherein the module electrodes are in electrical contact with the controller, transferring the controller, the module electrodes, the module connection posts, and the module substrate to a carrier such that the controller is disposed between the carrier and the module substrate, removing the module source wafer without removing the module substrate, disposing a light emitter on the module substrate such that the module substrate is disposed between the controller and the light emitter, wherein the light emitter is non-native to the module substrate, and electrically connecting the light emitter to the controller in order to form the pixel module. The providing step can comprise disposing the controller on the module substrate, wherein the controller is non-native to the module substrate, disposing a patterned first dielectric layer on the controller, disposing the module electrodes on the patterned first dielectric layer and in electrical contact with the controller, and disposing the module connection posts. The providing step can further comprise disposing a second dielectric layer on the module electrodes such that the module connection posts protrude from the second dielectric layer. The second dielectric layer and the dielectric substrate can together encapsulate the module electrodes and the controller. Methods of the present disclosure can comprise forming a patterned sacrificial release layer on the second dielectric layer prior to the transferring step, wherein the patterned sacrificial release layer covers the one or more module connection posts. The patterned sacrificial release layer can be at least partially removed, for example by etching, after disposing the light emitter. A portion of the second dielectric layer can be disposed in a common plane with the module substrate such that the controller and the light emitter remain connected to the carrier by the portion of the second dielectric layer after the patterned sacrificial release layer is at least partially removed. Methods of the present disclosure can comprise printing (e.g., micro-transfer printing) a pixel module from a carrier to a target substrate (e.g., a display substrate).
  • Methods of the present disclosure can comprise forming additional module electrodes on a surface of the module substrate opposite the controller. A light emitter can be printed such that light emitter connection posts electrically connected to the light emitter come into electrical contact with the additional module electrodes. An unpatterned adhesive layer can be provided on the additional module electrodes and the module substrate prior to disposing the light emitter and the adhesive layer can be patterned after disposing the light emitter such that the adhesive layer after patterning does not extend beyond the module substrate.
  • According to some embodiments, a light emitter comprises a broken or separated tether or a controller comprises a broken or separated tether.
  • Methods of the present disclosure can comprise providing a first encapsulating layer disposed on or over the controller such that the module substrate and the first encapsulating layer together encapsulate the controller and disposing a second encapsulating layer on or over the light emitter such that the module substrate and the second encapsulating layer together encapsulate the light emitter.
  • A controller can be electrically connected to the light emitter at least in part by one or more module electrodes that pass through or around the edge of the module substrate. Methods of the present disclosure can comprise printing (e.g., micro-transfer printing) a pixel module from a carrier to a target substrate (e.g., a display substrate).
  • According to some embodiments of the present disclosure, one or more light emitters, a controller, or both the one or more light emitters and the controller are bare, unpackaged die.
  • According to some embodiments of the present disclosure, a controller comprises a controller top side and a controller bottom side. The controller top side can be electrically connected to a module electrode or an electrical conductor electrically connected to a module electrode. The controller bottom side can be in contact with the module substrate or layers disposed on the module substrate.
  • Certain embodiments of the present disclosure provide methods, devices, and structures for a highly-integrated module that incorporates high-performance crystalline semiconductor light emitters and controllers in a transfer-printable configuration suitable for printing to a display substrate to construct a high-performance and high-resolution display.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The foregoing and other objects, aspects, features, and advantages of the present disclosure will become more apparent and better understood by referring to the following description taken in conjunction with the accompanying drawings, in which:
  • FIGS. 1-3 are cross sections of various pixel modules according to illustrative embodiments of the present disclosure;
  • FIGS. 4A-4C are plan views of a module substrate according to illustrative embodiments of the present disclosure;
  • FIGS. 5-8 are cross sections of various light-emitter assemblies according to illustrative embodiments of the present disclosure;
  • FIGS. 9 and 10A-10C are cross sections of various controller assemblies according to illustrative embodiments of the present disclosure;
  • FIGS. 11A-11C are cross sections of printing structures from a source wafer according to illustrative embodiments of the present disclosure;
  • FIGS. 12A-12K are cross sections of a display comprising various printed pixel modules according to illustrative embodiments of the present disclosure;
  • FIGS. 13A-13C are cross sections of a display comprising various printed pixel modules according to illustrative embodiments of the present disclosure;
  • FIGS. 14A-14D are cross sections of a display comprising a plurality of printed pixel modules according to illustrative embodiments of the present disclosure;
  • FIGS. 15A-15I are successive cross sections of structures according to illustrative methods and embodiments of the present disclosure;
  • FIGS. 16A-16M are successive cross sections of structures according to illustrative methods and embodiments of the present disclosure;
  • FIGS. 17A-17L are successive cross sections of structures according to illustrative embodiments of the present disclosure;
  • FIGS. 18A-18D are successive cross sections of structures according to illustrative embodiments of the present disclosure;
  • FIGS. 19A-19D are successive cross sections of structures according to illustrative embodiments of the present disclosure;
  • FIGS. 20-23 are flow charts of exemplary methods according to illustrative embodiments of the present disclosure; and
  • FIGS. 24-25 are micrographs according to illustrative embodiments of the present disclosure.
  • The features and advantages of the present disclosure will become more apparent from the detailed description set forth below when taken in conjunction with the drawings, in which like reference characters identify corresponding elements throughout. In the drawings, like reference numbers generally indicate identical, functionally similar, and/or structurally similar elements. The figures are not drawn to scale since the variation in size of various elements in the Figures is too great to permit depiction to scale.
  • DETAILED DESCRIPTION OF CERTAIN EMBODIMENTS
  • Certain embodiments of the present disclosure provide an integrated pixel module comprising one or more inorganic micro-light-emitting diodes (micro-iLEDs) and at least one integrated circuit controller that controls the one or more micro-iLEDs. A pixel module can comprise (i) a single pixel with a single micro-iLED light emitter and a single controller, (ii) a single pixel with multiple micro-iLEDs and a single controller, for example emitting red, green, and blue light, (iii) multiple pixels comprising a common single controller, each pixel controlled by the same controller, or (iv) multiple pixels comprising multiple pixel controllers, for example one controller in each pixel. Thus, a pixel module can comprise one or multiple pixels, each pixel comprising one or multiple micro-iLEDs. Where certain examples of pixel modules are shown and described herein below with reference to a single controller and a single light emitter or multiple light emitters, pixel modules with multiple controllers and/or multiple light emitters (e.g., corresponding to a plurality of pixels) with similar relative arrangements of elements are also contemplated. In some embodiments, a pixel is a picture element in a display that is separately controlled from all other pixels to emit light corresponding to a picture element of an image. A plurality of pixel modules can be mounted on a display substrate and electrically connected to form a display. Each pixel module comprises a single module substrate that is separate and independent from other pixel module substrates, and that is separate and independent from, and non-native to, the display substrate. Pixel modules can be constructed using printing techniques, for example micro-transfer printing, and can be assembled on a target substrate, such as a display substrate or a surface-mount device substrate, using similar methods, materials, and tools.
  • Flat-panel displays according to certain embodiments of the present disclosure have improved performance compared to flat-panel displays using thin-film circuits disposed on the display substrate, e.g., low-temperature polysilicon or amorphous silicon thin-film circuits. Micro-transfer printed pixel integrated-circuit controllers (pixel control circuits) made in monocrystalline silicon, such as CMOS, can provide better performance in less space over a display substrate and micro-transfer printed micro-iLEDs can provide improved color saturation, lifetime, and efficiency in a flat-panel display. Micro-iLEDs can be much smaller than conventional LEDs used in large-format displays and can therefore provide displays with much greater resolution. According to certain embodiments of the present disclosure, micro-iLEDs and pixel controller integrated circuits have different, separate, independent, and distinct substrates comprising a variety of materials and are provided in different layers over the same area of the module substrate, thereby reducing the pixel area over the display substrate and facilitating increased display resolution and improved operational performance.
  • Referring to FIGS. 1-3, and according to some embodiments of the present disclosure, a pixel module 99 comprises a module substrate 10 having a module light-emitter surface 10L and a module controller surface 10C on a side of module substrate 10 opposite module light-emitter surface 10L. Module light-emitter surface 10L can be a module light-emitter side 10L of module substrate 10 and module controller surface 10C can be a module controller side 10C of module substrate 10. One or more light emitters 20 are disposed on module light-emitter surface 10L of module substrate 10. As shown in FIGS. 1-3, the one or more light emitters 20 comprises red-, green-, and blue- light emitters 20R, 20G, 20B that emit red light 60R, green light 60G, and blue light 60B, respectively. Red-light, green-light, and blue- light emitters 20R, 20G, 20B are collectively referred to as light emitters 20 and red light, green light, and blue light 60R, 60G, 60B are collectively referred to as light 60. (It is noted that reference herein to light emitters 20 herein does not necessarily imply that the light emitters 20 comprise a red-, green-, or blue- light emitter 20R, 20G, 20B and reference herein to light 60 does not necessarily imply that the light 60 comprises a distinct red, green, or blue frequency.) A controller 30 is disposed on module controller surface 10C of module substrate 10. Controller 30 is operable to and can control the one or more light emitters 20, for example in response to one or more input signals, through module electrodes 18. Each module electrode 18 is an electrical conductor that conducts electrical signals, such as, for example, power, ground, or control signals. At least one module electrode 18 passes through module substrate 10, for example through via 16. In some embodiments, at least one module electrode 18 wraps around an edge of module substrate 10 (e.g., as shown in FIG. 2). At least one module electrode 18 is electrically connected to controller 30. At least one module electrode 18 is electrically connected to at least one light emitter 20 of the one or more light emitters 20. Each pixel module 99 can be an individual (e.g., separate), discrete, and independent module with a separate, different, distinct, discrete, and individual module substrate 10 that is distinct and different from the module substrate 10 of any other pixel module 99 or any light-emitter assembly substrate 52 of a light-emitter assembly 80 or controller assembly substrate 54 of a controller assembly 82, if present. Each pixel module 99 can be a printable pixel module 99, for example comprising at least a portion of a module tether 14.
  • Any number of module electrodes 18 can be included in a pixel module 99, for example four, a ground and a power control signal for each of the three light emitter 20. Some module electrodes 18 can connect only to controller 30, only to one or more light emitters 20, or to an external power, ground, or signal source. Light emitters 20 can emit light 60 in a direction away from controller 30 and module substrate 10, as shown in FIGS. 1-3. Module substrate 10 can be at least partially coated with a black matrix to absorb ambient light and improve the contrast of light emitters 20 (not shown in the Figures). For example, module light-emitter surface 10L of module substrate 10 can be at least partially coated with a black matrix, as can module controller surface 10C.
  • Module substrate 10 can be any suitable substrate, for example as found in the display or integrated circuit industry. In some embodiments, module substrate 10 is glass, polymer, sapphire, quartz, or a semiconductor such as silicon and can be coated with, or comprise, an adhesive layer 19 (e.g., as shown in FIG. 6, discussed below). Module substrate 10 can be a free-standing substrate that is applied to or disposed on a surface, for example a wafer or other substrate surface or can be constructed or formed on a surface, for example a wafer or other substrate surface (e.g., for later transfer printing to a target substrate 70). Module substrate 10 can comprise multiple layers, for example any combination of an oxide or nitride layer, a seed layer, and a semiconductor layer. Useful semiconductor layers can be any one or combination of silicon, crystalline silicon, and anisotropically etchable silicon. In some embodiments of the present disclosure, module substrate 10 has sufficient mechanical rigidity, strength, and thickness to support light emitters 20 and controllers 30 and to enable printing (e.g., micro-transfer printing) pixel module 99, for example in the absence of other layers or structures that are co-extensive with module substrate 10. For example, module substrate 10 has light emitters 20 and controller 30 are disposed thereon, rather than a layer coated over light emitters 20 or controller 30. Module light-emitter surface 10L and module controller surface 10C of module substrate 10 can each be substantially or effectively planar, can be substantially or effectively parallel to each other, or can be substantially or effectively both planar and parallel to each other. Module substrate 10 can be relatively thin, for example a few microns (e.g., 1 to 100 microns) or relatively thick (e.g., 100 microns to 1 mm).
  • Light emitters 20 can be micro-iLEDs made in crystalline semiconductor materials, such as compound semiconductors GaN or GaAs with suitable dopants such as indium, aluminum, or phosphorus, using photolithographic methods and materials, and can emit light of various colors, such as red, green, blue, yellow, or cyan. Light emitters 20 can be bare, unpackaged die with patterned insulating dielectric structures 50 insulating the bare, unpackaged die from electrodes (e.g., module electrodes 18). Light emitters 20 can be relatively small, for example a few microns in length and/or width (e.g., 1 to 50 microns) or somewhat larger in length and/or width (e.g., 50 to 500 microns or even 1 mm) and, optionally, can be relatively thin, for example a few microns thick (e.g., 1-10 microns) or somewhat thicker (e.g., 10-100 microns).
  • Controller 30 can be an integrated circuit made using photolithographic methods and materials, for example CMOS circuits made using a semiconductor such as crystalline silicon. GaAs circuits or other compound semiconductors can also be used. Controller 30 can be a bare, unpackaged die with patterned insulating dielectric structures 50 insulating the bare, unpackaged die from electrodes (e.g., module electrodes 18). Controller 30 can be relatively small, for example having at least one of a length and a width less than or equal to one mm (e.g., less than or equal to 750 microns, less than or equal to 500 microns, less than or equal to 250 microns, less than or equal to 100 microns, less than or equal to 50 microns, less than or equal to 25 microns, less than or equal to 10 microns, less than or equal to 5 microns, or less than or equal to 2 microns), and can be made at any suitable resolution, as is practiced in the integrated circuit arts. Controller 30 can have a controller top side 30T and an opposing controller bottom side 30S. In some embodiments, controller top side 30T has electrical contact pads 40 (e.g., as shown in FIG. 9) or is otherwise electrically connected to electrodes (e.g., module electrodes 18 or electrical conductors electrically connected to module electrodes 18) and controller bottom side 30S is in contact with module substrate 10 or layers disposed on module substrate 10.
  • Module electrodes 18 can be electrically conductive traces or wires, for example constructed in a patterned metal layer using photolithographic processes, for example comprising metals such as aluminum, gold, silver, copper, titanium, tantalum, tin, or other metals or metal alloys, or transparent conductive oxides such as indium tin oxide. Module electrodes 18 can, for example, pass through or wrap around module substrate 10, for example through vias 16 formed in module substrate 10. Module electrodes 18 can be at least partially disposed on a surface of module substrate 10, for example module light-emitter surface 10L and module controller surface 10C, as well as on light emitters 20 or controller 30 (when suitably insulated from semiconductor materials or active components with patterned dielectric 50) or other layers (e.g., dielectric or cured adhesive layers 19) disposed on module substrate 10. Thus, module electrodes 18 can electrically connect controller 30 to one or more light emitters 20 so that controller 30 can control light emitters 20 with control, power, or ground signals. Module electrodes 18 can also connect external controllers and power and ground signals to one or more elements in a pixel module 99. One module electrode 18 can electrically connect multiple light emitters 20 in common, for example providing a power or ground signal connection or can be individually connected to each light emitter 20 to provide individual control signals to corresponding light emitters 20.
  • Referring to FIG. 1, light-emitter assembly 80 comprises light emitter 20, any light-emitter electrical contact pads 40, light-emitter circuits, or light-emitter electrodes 28 (not shown in FIG. 1, see FIG. 8 discussed further below) and portions of module electrodes 18 electrically connected to light emitters 20. Controller assembly 82 comprises controller 30, any controller electrical contact pads 40, controller circuits, or controller electrodes 38 (not shown in FIG. 1, see FIGS. 10A-10C discussed below) and portions of module electrodes 18 electrically connected to light emitters 20. Pixel module 99 can comprise module tether 14 (e.g., which may be broken or separated) and also comprises module connection posts 12, described further below with reference to different module connection post 12 embodiments illustrated in FIGS. 1, 2, and 3.
  • Referring to FIGS. 4A-4C, light-emitter assemblies 80 can be disposed within a light-emitter area 20A on module light-emitter surface 10L of module substrate 10, for example within an area or convex hull including all light emitters 20 such as red-, green-, and blue- light emitters 20R, 20G, 20B. Controller assembly 82 can be disposed within a controller area 30A on module controller surface 10C (not indicated) that is opposite light-emitter surface 10L, for example within an area or convex hull including controller 30. Light-emitter area 20A can overlap controller area 30A on module substrate 10 when viewed from a vertical direction orthogonal to a surface of module substrate 10 (although light-emitter area 20A is vertically displaced with respect to controller area 30A in a direction orthogonal to module light-emitter surface 10L or module controller surface 10C because light emitters 20 are on module light-emitter surface 10L and controller 30 is on module controller surface 10C of module substrate 10). In some embodiments, light-emitter area 20A is smaller than or equal to and disposed entirely within controller area 30A (as shown in FIG. 4A). In some embodiments, controller area 30A is smaller than or equal to and disposed entirely within light-emitter area 20A. In some embodiments, controller area 30A and light-emitter area 20A overlap but neither is entirely within the area of the other. (As intended herein, an area can be within another area if they have a common edge. For example, if light-emitter area 20A is the same size as and congruent with controller area 30A, light-emitter area 20A is within controller area 30A, and vice versa.) Thus, in some embodiments of the present disclosure, pixels have a smaller area over a display substrate (e.g., display substrate 70 in FIG. 12A, discussed below) because light emitters 20 are vertically stacked over controller 30, increasing the number of pixels that can be disposed on a display substrate 70 and improving the potential resolution of a display constructed with pixel modules 99.
  • FIGS. 5-8 illustrate light-emitter assemblies 80 according to certain embodiments of the present disclosure that are disposed on module light-emitter surface 10L of module substrate 10. Module electrodes 18 conduct electricity to light emitter 20. Micro-iLED light emitters 20 can comprise two conduction layers 21 (e.g., an n-doped electron-conduction layer and a p-doped hole-conduction layer) that are electrically connected to module electrodes 18 and a light-emission layer 23 disposed between the two conduction layers 21 from which light 60 is emitted in response to electrical current provided through module electrodes 18. Module electrodes 18 can be reflective, for example made of a metal or metal alloy, or partially or substantially transparent, for example made of a conductive oxide. Light 60 can be emitted from either a light-emitter top side 20T or a light-emitter bottom side 20S opposite the light-emitter top side 20T and can be emitted through module electrodes 18 if they are at least partially transparent.
  • Referring to FIG. 5, light emitter 20 is a horizontal light emitter 20 with electrical contacts (e.g., contact pads 40) spaced apart on a same light-emitter top side 20T of light emitter 20 opposite light-emitter bottom side 20S adjacent to or in contact with module light-emitter surface 10L of module substrate 10. Module electrode 18 or an electrical conductor electrically connected to a module electrode 18 (e.g., light-emitter electrode 28 shown in FIG. 8) can be electrically connected to light-emitter top side 20T. One conduction layer 21 extends in a cantilever structure beyond the other conduction layer 21 to provide electrical contacts on light-emitter top side 20T of light emitter 20. Light 60 can be emitted from light-emitter top side 20T if module electrode 18 over light-emission layer 23 is effectively transparent, as shown in FIG. 5 with differentiated shading. Referring to FIG. 6, light-emitter top side 20T is in contact with or adjacent to module light-emitter surface 10L of module substrate 10 and light is emitted through light-emitter bottom side 20S of light emitter 20. In this disclosure, an orientation of light emitter 20 relative to module substrate 10 as shown in FIG. 6 is called an inverted configuration, whereas FIG. 5 illustrates a non-inverted configuration of light emitter 20 relative to module substrate 10. In some embodiments, light emitter 20 is in an inverted horizontal configuration and at least some module electrodes 18 are opaque and reflective. In some embodiments, and as discussed further below, a light emitter 20 is in a horizontal configuration and one or more light-emitter connection posts 26 are used to electrically connect light emitter 20 in a light-emitter assembly 80 of a pixel module 99 (e.g., as shown in FIG. 6).
  • A vertical micro-iLED light emitter 20 with electrical contacts provided on opposite sides of light emitter 20 is illustrated in FIG. 7. Typically, one of the module electrodes 18 is effectively transparent, for example module electrode 18 on light-emitter top side 20T, and the other on light-emitter bottom side 20S adjacent to module light-emitter surface 10L of module substrate 10 can be opaque and reflective, so that light 60 is efficiently emitted from light emitter 20 in a direction away from module substrate 10 and controller 30.
  • When disposed (e.g., constructed or printed) on module substrate 10, components such as light emitters 20 and controllers 30 can be electrically connected (for example to an external control device or power source) using photolithographically disposed and patterned module electrodes 18. As shown in FIGS. 1, 2, 3, and 5, photolithographically defined module electrodes 18 extend from module light-emitter surface 10L over patterned dielectric structures 50 onto light emitters 20. Module electrodes 18 can comprise an opaque material, such as a metal or metal alloy, a transparent conductive oxide, or a combination, as shown with the different module electrode shading in the cited figures.
  • In some embodiments, referring to FIG. 6, electrical connections to light emitter 20 are made through one or more light-emitter connection posts 26 that extend from light emitter 20 (for example from a light-emitter contact pad, not shown) to module electrode 18. Such a configuration is useful, for example, when light-emitter top side 20T is adjacent to module light-emitter surface 10L of module substrate 10 (an inverted configuration). Light-emitter connection posts 22 extending from light-emitter top side 20A adjacent to module light-emitter surface 10L enable light emitter 20 to emit light through light-emitter bottom side 20S without requiring that light 60 emitted by light emitter 20 pass through a module electrode 18 or light-emitter contact pad, thereby possibly improving light-emission efficiency. Light-emitter connection posts 26 disposed on a common light emitter 20 can have different lengths or sizes (e.g., as shown in FIG. 6). For example light-emitter connection posts 26 with different lengths or sizes can be used to accommodate electrical contacts on a horizontal light-emitting diode that are in different layers. In some such embodiments, the light-emitter connection posts 26 can orient light emitter 20 so that light-emitter bottom side 20S is approximately parallel to module light-emitter surface 10L of module substrate 10 and the direction of light emission is more orthogonal to module light-emitter surface 10L, improving uniformity of light emission for an array of such light emitters 20. Light-emitter connection posts 26 (or module connection posts 12, controller assembly connection posts 32, or light-emitter assembly connection posts 22, described further below) can be constructed using photolithographic processes and examples are described in U.S. patent application Ser. No. 15/876,949, U.S. Pat. Nos. 10,153,256, and 10,224,231, referenced above, the disclosure of each of which is hereby incorporated by reference herein its entirety.
  • According to some embodiments of the present disclosure, light-emitter assembly connection posts 22 have an advantage in that they enable electrical connections to be formed by printing (e.g., micro-transfer printing with a stamp 90, see, e.g., FIG. 11C discussed below) light emitters 20 onto module light-emitter surface 10L of module substrate 10, thus precluding the need to photolithographically construct module electrodes 18 that extend over patterned dielectric structures 50 onto light emitters 20. Referring to FIG. 8, according to some embodiments of the present disclosure, a light-emitter assembly 80 comprises light-emitter assembly connection posts 22 that extend from one side of a light-emitter assembly substrate 52 (comprising dielectric layer 50) and a light emitter 20 is disposed on an opposite side of dielectric layer 50. Light-emitter 20 can be disposed on light-emitter assembly substrate 52 (dielectric layer 50) by printing (e.g., micro-transfer printing) from a native light-emitter source wafer 25 (see, e.g., FIG. 11A, discussed below) to dielectric layer 50, thereby breaking (e.g., fracturing) or separating light-emitter tether 24. Light-emitter electrodes 28 electrically connected to contact pads 40 for light emitter 20 electrically connect through vias 16 in dielectric 50 to light-emitter assembly connection posts 22. Light-emitter assembly connection posts 22 are in direct contact with, pierce, or otherwise form an electrical connection with contact pads 40 on module light-emitter surface 10L of module substrate 10 and to module electrodes 18. Light-emitter assembly 80 can be constructed by photolithographically etching pyramidal depressions in a sacrificial portion 84 of a source wafer (see, e.g., FIGS. 11A-11C), patterning the depressions with metal to form light-emitter assembly connection posts 22, forming vias 16 in dielectric layer 50, transfer printing (e.g., micro-transfer printing) light emitter 20 onto dielectric layer 50 (or an adhesive layer on dielectric layer 50, not shown) and forming light-emitter electrodes 28 to electrically connect light-emitter assembly connection posts 22 with contact pads 40 of light emitters 20. Light-emitter assembly 80 can be printed, for example micro-transfer printed) to module substrate 10, thereby breaking (e.g., fracturing) or separating light-emitter assembly tether 24A.
  • Thus, some embodiments of the present disclosure comprise a light-emitter assembly 80 comprising a dielectric light-emitter assembly substrate 52 having a first side and a second side opposite the first side and one or more light emitters 20 disposed on light-emitter assembly substrate 52. The one or more light emitters 20 can be non-native to light-emitter assembly substrate 52. One or more light-emitter assembly connection posts 22 can be disposed on the first side of light-emitter assembly substrate 52 and one or more module connection posts 12 can be disposed on the second side of light-emitter assembly substrate 52. Light-emitter assembly 80 can comprise light-emitter assembly tethers 24A (e.g., which are broken or separated upon transfer printing to a module substrate 10) and light-emitters 20 can comprise light-emitter tethers 24. Light-emitter electrodes 28 electrically connect the one or more light emitters 20 to one or more light-emitter assembly connection posts 22 and to one or more module connection posts 12. One or more module connection posts 12 are subsequently used to electrically connect a pixel module 99, of which light-emitter assembly 80 is a part, to a target substrate 22. One or more of the light-emitter electrodes 28 can pass through light-emitter assembly substrate 52, for example through vias 16, or can wrap around an edge of light-emitter assembly substrate 52. Light-emitter assembly connection posts 22 and module connection posts 12 can be single-layer connection posts (e.g., formed by building up conductive material) or multi-layer connection posts (e.g., comprising an electrically conductive outer layer disposed on a dielectric inner layer made of the same material as light-emitter assembly substrate 52). Each of the one or more module connection posts 12 or each of the light-emitter assembly connection posts 22 of light-emitter assembly 80 can protrude from light-emitter assembly substrate 52 a distance that is greater than a thickest thickness of one or more light emitters 20, so that light-emitter assembly 80 can be printed to a target substrate and the connection posts can make electrical contact with the target substrate. The distance can be at least 1.1 times, and optionally no more than 3 times, the thickest thickness. In some embodiments, light-emitter assembly 80 comprises a module substrate 10 having one or more contact pads 40 disposed on or in module substrate 10 and each of the one or more light-emitter assembly connection posts 22 is disposed in electrical connection with one of the one or more contact pads 40. Module substrate 10 can comprises a module tether 14 (e.g., a broken or separated module tether 14 or a module tether 14 that is physically connected to a module anchor 17 of a source substrate). In some embodiments, light-emitter assembly 80 comprises a controller 30 disposed on a side of module substrate 10 opposite the one or more light emitters 20 and the one or more light emitters 20 are electrically connected to controller 30. Light-emitter assembly 80 can have at least one of a width and a length of no more than 400 microns (e.g., no more than 300 microns, no more than 200 microns, or no more than 100 microns) and a thickness of no more than 150 microns (e.g., no more than 100 microns, no more than 75 microns, no more than 50 microns, or no more than 25 microns).
  • FIGS. 9 and 10A-10B illustrate certain embodiments of controller assemblies 82. Referring to FIG. 9, controller 30 is disposed (e.g., constructed or printed) on module controller surface 10C of module substrate 10. Module electrodes 18 are insulated from controller 30 with dielectric structure 50 and electrically connected to contact pads 40 of controller 30 and in vias 16. module electrodes 18 are photolithographically patterned after controller 30 is disposed on module substrate 10 and module connection posts 12 (discussed further below) are formed on or over controller 30.
  • FIGS. 10A and 10B illustrate certain embodiments in which controller 30 is electrically connected with controller assembly connection posts 32 (similarly to light-emitter assembly connection posts 22 of FIG. 8), obviating the need for further photolithographic patterning after controller 30 is disposed on module substrate 10. Referring to FIG. 10A, according to some embodiments of the present disclosure, a controller assembly 82 comprises controller assembly connection posts 32 that extend from a side of a dielectric layer 50 opposite a side on which a controller 30 is disposed. Controller electrodes 38 electrically connected to contact pads 40 for controller 30 electrically connect through vias 16 in dielectric 50 to controller assembly connection posts 32. Controller assembly connection posts 32 are in direct contact with, pierce, or otherwise form an electrical connection with contact pads 40 on module controller surface 10C of module substrate 10 and to module electrodes 18. Controller assembly 82 can be constructed by photolithographically etching pyramidal depressions in a sacrificial portion 84 of a source wafer, patterning the depressions with metal to form controller assembly connection posts 32, forming vias 16 in dielectric layer 50, transfer printing (e.g., micro-transfer printing) light emitter 20 onto dielectric layer 50 (or an adhesive layer 19 on dielectric layer 50, not shown) and forming controller electrodes 38 to electrically connect controller assembly connection posts 32 with contact pads 40 of controller 30. Module connection posts 12 are disposed on or over and extend away from dielectric layer 50.
  • Thus, some embodiments of the present disclosure comprise a controller assembly 82 comprising a controller assembly substrate 54 having a first side and a second side opposite the first side and a controller 30 disposed on controller assembly substrate 54. Controller assembly substrate 54 can be a dielectric substrate or a semiconductor substrate. Controller 30 can, for example, be constructed on controller assembly substrate 54 or transfer printed (e.g., micro-transfer printed) to controller assembly substrate 54. Thus, in some embodiments, controller 30 can be non-native to controller assembly substrate 54. Controller 30 can be formed in controller assembly substrate 54, for example if controller assembly substrate 54 is a semiconductor substrate or can be disposed on a dielectric controller assembly substrate 54. One or more controller assembly connection posts 32 can be disposed on the first side of controller assembly substrate 54 and one or more module connection posts 12 can be disposed on the second side of controller assembly substrate 54. Controller electrodes 38 electrically connect controller 30 to one or more controller assembly connection posts 32 and to one or more module connection posts 12. One or more of the controller electrodes 38 can pass through controller assembly substrate 54, for example through vias 16, or can wrap around an edge of controller assembly substrate 54. Controller assembly connection posts 32 and module connection posts 12 can be single-layer connection posts (e.g., formed by building up conductive material) or multi-layer connection posts (e.g., comprising an electrically conductive outer layer disposed on a dielectric inner layer made of the same material as controller assembly substrate 54). Each of the one or more module connection posts 12 or each of the controller assembly connection posts 32 of controller assembly 82 can protrude from controller assembly substrate 54 a distance that is greater than a thickest thickness of controller 30, so that controller assembly 82 can be printed to a target substrate and the connection posts can contact the target substrate. The distance can at least 1.1 times, and optionally no more than 3 times, the thickest thickness. In some embodiments, controller assembly 82 comprises a module substrate 10 having one or more contact pads 40 disposed on or in module substrate 10 and each of the one or more controller assembly connection posts 32 is disposed in electrical connection with one of the one or more contact pads 40. Module substrate 10 can comprises a module tether 14 (e.g., a broken or separated module tether 14 or a module tether 14 that is physically connected to a module anchor 17 of a source substrate). In some embodiments, controller assembly 82 comprises one or more light-emitters 20 disposed on a side of module substrate 10 opposite controller 30 and the one or more light emitters 20 are electrically connected to controller 30. Controller assembly 82 can have at least one of a width and a length of no more than 400 microns (e.g., no more than 300 microns, no more than 200 microns, or no more than 100 microns) and a thickness of no more than 150 microns (e.g., no more than 100 microns, no more than 75 microns, no more than 50 microns, or no more than 25 microns).
  • The module connection post 12 configuration shown in FIG. 9 can also be applied to controller assembly 82 of FIG. 10A, as shown in FIG. 10B. Thus, some embodiments of the present disclosure comprise a controller assembly 82 comprising a controller assembly substrate 54 and a controller 30 disposed on a first side of controller assembly substrate 54. One or more module connection posts 12 are disposed on controller 30 so that controller 30 is between the one or more module connection posts 12 and controller assembly substrate 54. One or more controller assembly connection posts 32 are disposed on a second side of controller assembly substrate 54 that is opposite the first side. Controller electrodes 38 are disposed at least partially on controller assembly substrate 54 and are electrically connected to controller 30, the one or more controller assembly connection posts 32, and the one or more module connection posts 12. Controller assembly substrate 54 can be, for example, a dielectric substrate or a semiconductor substrate. Controller 30 can be non-native to controller assembly substrate 54. Controller 30 can comprise a broken or separated controller tether 34. Controller assembly substrate 54 can comprise a broken or separated controller assembly tether 34A. A dielectric layer or structure can be disposed between controller 30 and at least a portion of each of the controller electrodes 38 (e.g., to prevent shorting). In some embodiments, one or more of the controller electrodes 38 pass through controller assembly substrate 54 or one or more of the controller electrodes 38 each wrap around an edge of controller assembly substrate 54.
  • Assemblies in accordance with FIGS. 8 and 10A or 10B can be combined into a pixel module 99, for example as shown in FIG. 10C, in which light-emitter assembly 80 is illustrated in FIG. 8 and controller assembly 82 is illustrated in either of FIG. 10A or 10B. In some embodiments, a controller assembly 82 in accordance with FIG. 9 is used in combination with a light-emitter assembly 80 in accordance with FIG. 8 (as further discussed below with reference to FIG. 12K). As shown in FIG. 10C, according to some embodiments of the present disclosure, a pixel module 99 comprises a dielectric module substrate 10 having a module light-emitter surface 10L and a module controller surface 10C that is opposite module light-emitter surface 10L. A controller assembly 82 is disposed on module controller surface 10C of module substrate 10. Controller assembly 82 can be any of the controller assemblies 82 described herein. One or more light emitters 20 are disposed on or over module substrate 10, for example on module light-emitter surface 10L, and module electrodes 18 electrically connect the one or more light emitters 20 to controller 30. In some embodiments of the present disclosure, one or more light emitters 20 are a light-emitter assembly 80 that can be any of the light-emitter assemblies 80 described herein.
  • Module connection posts 12 are shown in the embodiments of FIG. 10C as projecting from controller 30 but, in similar embodiments, could project from controller assembly substrate 54 or, in the other direction, from light-emitter assembly substrate 52. These alternative module connection posts 12 are illustratively shown in lighter shading with dashed outlining. Any one of these embodiments can be employed in pixel modules 99 of the present disclosure. Likewise, light emitters 20 are illustrated as non-inverted horizontal light emitters 20 (e.g., as in FIG. 5), but could be inverted light emitters 20 (e.g., as in FIG. 6), or vertical light emitters 20 (e.g., as in FIG. 7). It is contemplated that the particular choice of materials (e.g., for module electrodes 18, assembly substrates 52, 54, or module substrate 10) as well as orientations and positions of elements (e.g., of controller 30, light emitters 20, or module connection posts 12) can be interdependent and vary depending on a particular application for which pixel module 99 is to be used. For example, a certain orientation position of module connection posts 12 and material may be chosen based on which direction light is to be emitted from pixel module 99.
  • In some embodiments, pixel module 99 comprises an adhesive layer (e.g., adhesive layer 19, not shown in FIG. 10C for clarity) disposed on module controller surface 10C of module substrate, 10. In some embodiments, one or more controller assembly connection posts 32 of controller assembly 82 penetrate through adhesive layer 19 and each physically contact a contact pad 40 disposed on or in module substrate 10. Adhesive layer 19 can be in direct contact with controller assembly 82. In some embodiments, one or more light-emitter assembly connection posts 22 of light-emitter assembly 80 penetrate through adhesive layer 19 and each physically contact a contact pad 40 disposed on or in module substrate 10. Adhesive layer 19 can be in direct contact with light-emitter assembly 80. As can be understood from FIG. 10C, an adhesive layer 19 can be provided on both controller surface 10C and light-emitter surface 10L of module substrate 10 to improve physical adherence of controller assembly 82 and light-emitter assembly 80, respectively. In some embodiments, pixel module 99 comprises an adhesive layer (e.g., adhesive layer 19, not shown in FIG. 10C for clarity) disposed on module light-emitter surface 10L of module substrate 10 and one or more light-emitter assembly connection posts 22 of each of one or more light emitters 20 penetrate through adhesive layer 19 so that one or more light emitters 20 are electrically connected to controller 30. Adhesive layer 19 can be disposed at least partially on or over one or more module electrodes 18.
  • In some embodiments, ones of the module electrodes 18 pass through module substrate 10 or wrap around an edge of module substrate 10. In some embodiments of the present disclosure, the one or more light emitters 20 can each comprise a broken or separated light-emitter tether 24, the one or more light emitters 20 are horizontal light-emitting diodes, or the one or more light emitters 20 are vertical light-emitting diodes. Each of the one or more light emitters 20 can comprise one or more light-emitter connection posts 26 and the one or more light emitters 20 can be electrically connected to controller 30 in part through the one or more light-emitter connection posts 26.
  • In some embodiments of the present disclosure, module substrate 10 comprises a broken or separated module tether 14. A light-emitter encapsulation layer 29 (not shown in FIG. 10C, but shown, for example, in FIGS. 16L and 16M) can be disposed over one or more light emitters 20 and can comprise a broken or separated module tether 14. Similarly, pixel module 99 can comprise a controller encapsulation layer 39 disposed over controller assembly 82 and one or more module connection posts 12 can protrude through controller encapsulation layer 39 (e.g., as shown in FIGS. 16L and 16M). In some embodiments, one or more module connection posts 12 protrude through light-emitter encapsulation layer 29. Pixel module 99 can comprise a target substrate 70 (not shown in FIG. 10C, see FIGS. 12A-12K discussed below, for example), and one or more module connection posts 12 of controller assembly 82 are disposed in electrical contact with a corresponding one or more contact pads 40 disposed on or in target substrate 70. An adhesive layer 19 (not shown in FIG. 10C) can be disposed on target substrate 70, and one or more module connection posts 12 can penetrate through adhesive layer 19 so that controller 30 and one or more light emitters 20 are electrically connected to one or more module electrodes 18 disposed on or in the target substrate 70. Target substrate 70 can be a display substrate 70 and pixel module 99 can be a pixel in an array of pixels disposed on display substrate 70 that are operable to display information (e.g., an image and/or text) to a viewer.
  • Either light emitters 20 or controller(s) 30, or both, can be formed or disposed on module substrate 10. Light emitters 20 can comprise micro-iLEDs that are advantageously made on compound semiconductor substrates such as GaN or GaAs. In contrast, controller 30 is typically (although not necessarily) formed in crystalline silicon. Thus, some embodiments of pixel module 99 are desirably heterogeneous modules comprising components made in different materials that are disposed on opposite sides of module substrate 10. According to some embodiments of the present disclosure, pixel modules 99 are therefore constructed using components printed (e.g., micro-transfer printed) from different component source wafers to module substrate 10.
  • Referring to FIG. 11A, a light emitter 20, for example a micro-iLED, is formed on a light-emitter source wafer 25 (e.g., a compound semiconductor source wafer) and can be encapsulated with a light-emitter encapsulation layer 29. Encapsulation layer 29 can be a dielectric layer. A sacrificial portion 84 of light-emitter source wafer 25 beneath light emitter 20 is etched to form a gap 84 so that light emitter 20 is suspended over gap 84 by light-emitter tether 24. Light-emitter tether 24 attaches light emitter 20 to light-emitter anchor 27 and holds light emitter 20 in position over light-emitter source wafer 25. A printing device, for example a stamp 90 with one or more stamp posts 92, contacts light emitter 20 (including light-emitter encapsulation layer 29), adheres light emitter 20 to stamp post 92, and moves away from light-emitter source wafer 25, fracturing light-emitter tether 24 at fracture line 11 to remove light emitter 20 from light-emitter source wafer 25 and making a broken (e.g., fractured) or separated light-emitter tether 24. Stamp 90 then travels to module substrate 10 and light emitter 20 is pressed against module light-emitter surface 10L of module substrate 10 to adhere light emitter 20 to module substrate 10 (or to an adhesive layer 19 disposed on, or a part of, module substrate 10). Multiple light emitters 20 can be printed (e.g., micro-transfer printed) from a light-emitter source wafer 25 in a single operation, for example using a stamp 90 having multiple stamp posts 92.
  • Similarly, with respect to FIG. 11B, a controller 30, for example a CMOS circuit formed in crystalline silicon, is formed on a controller source wafer 35 and can be encapsulated with a controller encapsulation layer 39. Encapsulation layer 39 can be a dielectric layer. A sacrificial portion 84 of controller source wafer 35 beneath controller 30 is etched to form gap 84 so that controller 30 is suspended over gap 84 by controller tether 34. Controller tether 34 attaches controller 30 to controller anchor 37 and holds controller 30 in position over controller source wafer 35. A printing device, for example stamp 90 with stamp post 92, contacts controller 30 (including controller encapsulation layer 39), adheres controller 30 to stamp post 92, and moves away from light-emitter source wafer 25, fracturing controller tether 34 at fracture line 11 to remove controller 30 from controller source wafer 35 and making a broken (e.g., fractured) or separated controller tether 34. Stamp 90 then travels to module substrate 10 and controller 30 is pressed against module controller surface 10C of module substrate 10 to adhere controller 30 to module substrate 10 (or to an adhesive layer 19 disposed on, or a part of, module substrate 10). Multiple controllers 30 can be printed (e.g., micro-transfer printed) from a controller source wafer 35 in a single operation, for example using a stamp 90 having multiple stamp posts 92.
  • Just as either light emitter 20 or controller 30, or both, can be printed to module substrate 10, pixel module 99 can also be printed, for example micro-transfer printed, to a target substrate 70, for example a display substrate 70. As shown in FIG. 11C, a pixel-module wafer 97 comprises a module source wafer 15 that can comprise a plurality of pixel modules 99, each pixel module 99 disposed over a sacrificial portion 84 or gap 84 in module source wafer 15 and physically connected to a module anchor 17 (an anchor portion of module source wafer 15) with a module tether 14 so that each sacrificial portion 84 is laterally separated from an adjacent sacrificial portion by a module anchor 17. An encapsulation layer (not shown) can be provided, as in FIGS. 11A and 11B, but is not necessarily required. A printing device, for example stamp 90 with stamp post 92, contacts pixel module 99, adheres pixel module 99 to stamp post 92, and moves away from module source wafer 15, fracturing module tether 14 at fracture line 11 to remove pixel module 99 from module source wafer 15 and making a broken (e.g., fractured) or separated module tether 14. In some embodiments, a module tether 14 is separated, instead of fractured, during printing. Stamp 90 then travels to a target substrate 70, such as a display substrate 70 (discussed further below) or surface-mount device substrate, and pixel module 99 is pressed against the target substrate to adhere pixel module 99 to the target substrate (or to an adhesive layer 19 disposed on, or a part of, the target substrate).
  • As shown in FIGS. 8-10 and 11A-11C, one or more of light emitters 20, controllers 30, and pixel modules 99 can all be printed (e.g., micro-transfer printed) components. Referring to FIGS. 12A-12K, 13A-13B, and 14A-14D, in some embodiments of the disclosure pixel modules 99 are printed to a display substrate 70 to construct a pixel-module display 98. Thus, pixel modules 99 can be non-native to display substrate 70, can be disposed in a regular array in either one or two dimensions (for example as shown in FIGS. 14A-14D and FIG. 24 discussed below), and can form pixels in a display. Moreover, module substrate 10 of each pixel module 99 is different, distinct, and separate from display substrate 70 so that each module substrate 10 is a different substrate from display substrate 70. Pixel modules 99 can include module connection posts 12 that are in electrical contact with contact pads 40 disposed on or in target substrate 70, contact pads 40 being electrically connected to display electrodes 74. Contact pads 40 can be portions of display electrodes 74 that are sized and positioned to contact module connection posts 12 when pixel module 99 is disposed on target substrate 70 (e.g., as shown in FIGS. 121 and 12J).
  • FIGS. 12A-12K show examples of pixel modules 99 where controller 30 is disposed between module substrate 10 and target substrate 70. The pixel modules 99 shown in FIGS. 12A and 12B do not include module connection posts 12. The pixel modules 99 shown in FIGS. 12C and 12D have module connection posts 12 disposed on controller 30. The pixel modules 99 shown in FIGS. 12E and 12F have module connection posts 12 disposed on module substrate 10 rather than on controller 30. The pixel modules 99 shown in FIGS. 12G and 12H include a controller assembly 82 that includes module connection posts 12 disposed on controller assembly substrate 54. The pixel modules 99 shown in FIGS. 121 and 12J include module connection posts 12 disposed on module substrate 10 and a controller assembly 82 that does not include module connection posts 12. The pixel module 99 shown in FIG. 12K includes a light-emitter assembly 80 and module connection posts disposed on controller 30.
  • FIGS. 13A-13C show examples of pixel modules 99 where light emitters 20 are disposed between module substrate 10 and target substrate 70. The pixel modules 99 shown in FIGS. 13A-13C includes module connection posts 12 that extend beyond light emitters 20. The pixel modules 99 shown in FIGS. 13B and 13C include a controller assembly 82. The pixel modules 99 shown in FIGS. 13A-13C are disposed to emit light 60 through target substrate 70.
  • Pixel modules 99 can be disposed on display substrate 70, for example by micro-transfer printing onto display substrate 70 or onto a layer of adhesive 19 disposed on display substrate 70, as shown in FIGS. 12A and 12B. (Adhesive 19 is omitted from FIGS. 12C-12K for clarity.) Because pixel modules 99 can be printed (e.g., micro-transfer printed), they can comprise module tethers 14, for example broken (e.g., fractured) or separated module tethers 14. As shown in FIG. 12A, after printing pixel modules 99, module electrodes 18 can be electrically connected to electrical conductors (e.g., wires) such as photolithographically defined display electrodes 74 disposed on display substrate 70. Electrical connections can be made through vias 16 made in any layer of adhesive 19. In FIG. 12A, light emitters 20 (red-light emitter 20R, green-light emitter 20G, and blue-light emitter 20B) are horizontal micro-iLEDs disposed with light-emitter bottom side 20S adjacent to module light-emitter surface 10L of module substrate 10 in a non-inverted configuration, as also shown in FIG. 5. In some embodiments, and as shown in FIG. 12B and FIG. 6, light emitters 20 can be inverted, with light-emitter top side 20T adjacent to module light-emitter surface 10L of module substrate 10. In some embodiments, referring to FIG. 7, light emitters 20 are vertical micro-iLEDs and can be printed (e.g., micro-transfer printed). In some embodiments, and as shown in FIGS. 12A and 12B, light emitters 20, controllers 30, or both, are printed (e.g., micro-transfer printed) from a corresponding source wafer to module light-emitter surface 10L and module controller surface 10C, respectively, of module substrate 10, as described above with respect to FIGS. 11A and 11B and as illustrated in FIGS. 8-10.
  • As with light emitters 20 and controllers 30 and as shown in FIGS. 12C-12K and 13A-13B, module connection posts 12 can electrically connect module electrodes 18 to display electrodes 74 by printing (e.g., micro-transfer printing) pixel modules 99 to display substrate 70 or a surface-mount device substrate. Module connection posts 12 can be provided in various configurations and in accordance with corresponding embodiments of the present disclosure.
  • Referring to FIGS. 1, 9, 11C, and 12C, module connection posts 12 are disposed on controller 30 and extend in a direction away from module substrate 10. Light emitters 20 are shown as horizontal emitters in a non-inverted configuration, as shown in FIG. 5, but can be inverted, as shown in FIG. 12D. Referring to FIGS. 2 and 12E, module connection posts 12 are disposed on module electrodes 18 on module controller surface 10C of module substrate 10 and extend in a direction away from module substrate 10. Module connection posts 12 can protrude from module controller surface 10C of module substrate 10 a distance that is greater than a thickness of controller 30 to extend beyond controller 30 and enable electrical contact between module connection posts 12 and contact pads 40 on target substrate 70 without contacting controller 30 (or layers disposed on controller 30) to target substrate 70. For example, the distance can be at least 1.1 times, at least 1.2 times, or at least 1.5 times the thickness of controller 30 (together with any layers disposed on controller 30). In some embodiments, the distance is less than or equal to 3 times or less than or equal to 2 times the thickness of controller 30, to avoid making pixel module 99 too thick. In some embodiments, contact pads 40 on target substrate 70 have a thickness sufficient to allow electrical contact to pixel module 99 to be made when pixel module 99 is disposed on target substrate 70 even though module connection posts 12 do not extend beyond controller 30 or light emitters 20 (depending on which side of module substrate 10 module connection posts 12 are disposed).
  • Light emitters 20 can be horizontal emitters in a non-inverted configuration, as shown in FIG. 5, but can alternatively be inverted, as shown in FIG. 12F and FIG. 6. Referring to FIGS. 3, 13A-13B, and 17C-17L, module connection posts 12 are disposed on module electrodes 18 on module light-emitter surface 10L of module substrate 10 and extend in a direction away from module substrate 10. Module connection posts 12 protrude from module light-emitter surface 10L of module substrate 10 a distance that is greater than a thickness of light emitters 20 to extend beyond light emitters 20 and enable electrical contact between module connection posts 12 and contact pads 40 on target substrate 70 without contacting light emitters 20 (or layers disposed on light emitters 20) to target substrate 70. As non-limiting examples, the distance can be at least 1.1 times, at least 1.2 times, or least 1.5 times the thickness of light emitters 20 (together with any layers disposed on light emitters 20). In some embodiments, the distance is less than or equal to 3 times or less than or equal to 2 times the thickness of light emitters 20 to avoid making pixel module 99 too thick.
  • In some embodiments, controller 30 is disposed on a printable controller assembly 82 with a controller assembly substrate 54 (e.g., a dielectric layer 50) and controller electrodes 38 from which module connection posts 12 extend, as shown in FIGS. 10, 12G, 12H, and 19D. In some such embodiments, module connection posts 12 are understood to extend from controller 30. Similarly, in some embodiments, light emitters 20 are provided in a printable light-emitter assembly 80 with a light-emitter assembly substrate 52 (e.g., a dielectric layer 50) and light-emitter electrodes 28 from which module connection posts 12 extend, as shown in FIG. 8. In some such embodiments, module connection posts 12 can be understood to extend from light-emitter assembly substrate 52 or light-emitter assembly 80.
  • The electrical connections (e.g., with module electrodes 18) shown in the Figures are illustrative and do not necessarily represent actual circuit connections. Those knowledgeable in electrical circuit design will understand that a variety of circuits connecting controller 30 to light emitters 20 can be employed to provide appropriate electrical connections to control light emitters 20.
  • Referring to FIGS. 12G-12J, controller 30 is micro-transfer printed onto module substrate 10 with controller assembly connection posts 32 forming an electrical connection to module electrodes 18. As shown in FIGS. 12G and 12H, module connection posts 12 are disposed on controller 30 and extend in a direction away from module substrate 10. Light emitters 20 are shown as horizontal emitters in a non-inverted configuration in FIG. 12G (e.g., in accordance with FIG. 5), but can be inverted, as shown in FIG. 12H and FIG. 6. As shown in FIGS. 121 and 12J, module connection posts 12 are disposed on module electrodes 18 on module controller surface 10C of module substrate 10 and extend in a direction away from module substrate 10. Light emitters 20 are shown as horizontal emitters in a non-inverted configuration in FIG. 12I and as shown in FIG. 5, but can be non-inverted, as shown in FIG. 12J and FIG. 6.
  • Referring to FIG. 12K, controller 30 is disposed on module controller surface 10C of module substrate 10 and a light-emitter assembly 80 is transfer printed with light-emitter assembly connection posts 22 onto module light-emitter surface 10L of module substrate 10. Light-emitter assembly 80 comprises red, green, and blue inverted light emitters 20R, 20G, 20B on a common light-emitter assembly substrate 52 that emit light 60R, 60G, 60B respectively, in a direction opposite module substrate 10 and display substrate 70. Controller 30 could be included in a controller assembly 82 that includes module connection posts 12, for example as shown in FIGS. 10A-10C.
  • Referring to FIGS. 12C-12K, pixel module 99 is printed (e.g., micro-transfer printed) onto display substrate 70 so that module connection posts 12 are in electrical contact with (e.g., in direct contact with and can pierce) contact pads 40 on display substrate 70. Contact pads 40 on display substrate 70 can be electrically connected to display electrodes 74 formed on display substrate 70 using photolithographic methods and materials, such as are conventionally known in the display and integrated circuit arts. In general, and as illustrated in FIGS. 12A-12K, any of the light emitters 20 can be printed (e.g., micro-transfer printed) vertical micro-iLEDs or horizontal micro-iLEDs in an inverted or non-inverted configuration and can have, for appropriate configurations, light-emitter connection posts 26. Similarly, controller 30 can be disposed by printing (e.g., micro-transfer printing) and can have controller assembly connection posts 32, for example as shown in FIG. 10, or not, as shown in FIGS. 1-3.
  • FIGS. 12A-12K illustrate embodiments in which light 60 can be emitted in a direction opposite display substrate 70 (a top-emitter configuration) so that light 60 does not intentionally pass through and is not absorbed by display substrate 70, improving efficiency. In these illustrated embodiments, controller 30 is disposed between module substrate 10 and display substrate 70 and pixel module 99 is non-native to display substrate 70. In some embodiments, for example as shown in FIGS. 13A-13C, light 60 can be emitted through display substrate 70 in a bottom-emitter configuration in which display substrate 70 is at least partially transparent, for example at least 50% transparent (e.g., at least 75% 80%, 90%, or 95% transparent) to light emitted by light emitters 20. In some such configurations, pixel modules 99 are on a side of display substrate 70 opposite the viewing side and are more protected from mechanical or environmental damage, particularly from users of a pixel-module display 98, for example touch-screen users. Referring to FIGS. 13A and 13B, pixel modules 99 are printed to a display substrate 70 to construct a pixel-module display 98. Pixel modules 99 can be disposed on display substrate 70, for example by micro-transfer printing onto display substrate 70 or a layer of adhesive 19 disposed on display substrate 70 (omitted from FIGS. 13A-13B for clarity but shown in FIGS. 12A and 12B). In FIGS. 13A and 13B, light emitters 20 (red-light emitter 20R, green-light emitter 20G, and blue-light emitter 20B) are horizontal micro-iLEDs disposed with light-emitter bottom side 20S, for example as shown in FIG. 5, adjacent to module light-emitter surface 10L of module substrate 10. In some embodiments, light emitters 20 can be inverted, as shown in FIG. 13C, with light-emitter top side 20T adjacent to module light-emitter surface 10L of module substrate 10 and in some embodiments, referring also to FIG. 7, light emitters 20 are vertical micro-iLEDs. Adhesive layer 19 and encapsulation layers (not shown in FIG. 13C) can be used in any of these embodiments.
  • In some embodiments, for example as shown in FIGS. 13A-13B, light emitters 20, controllers 30, or both, are printed (e.g., micro-transfer printed) from a corresponding source wafer to module light-emitter surface 10L and module controller surface 10C, respectively, of module substrate 10, as described above with respect to FIGS. 11A and 11B and as illustrated in FIGS. 8-10. As shown in FIGS. 13A-13B, pixel module 99 is printed (e.g., micro-transfer printed) onto display substrate 70 so that module connection posts 12 and module electrodes 18 are in electrical contact with (e.g., in direct contact with and can pierce) contact pads 40 on display substrate 70. In these illustrated embodiments, light emitters 20 are disposed between module substrate 10 and display substrate 70 and pixel module 99 is non-native to display substrate 70. Contact pads 40 on display substrate 70 can be electrically connected to display electrodes 74 formed on display substrate 70 using photolithographic methods and materials, such as are conventionally known in the display and integrated circuit arts. As with the embodiments illustrated in FIG. 12A-12K, any of light emitters 20 can be printed (e.g., micro-transfer printed) vertical micro-iLEDs or horizontal micro-iLEDs in an inverted or non-inverted configuration and can have, for appropriate configurations, light-emitter connection posts 26. Similarly, controller 30 can be disposed by printing (e.g., micro-transfer printing) and can have controller assembly connection posts 32, for example as shown in FIG. 10, or not, for example as shown in FIGS. 1-3.
  • Referring to FIGS. 14A-14D, and according to some embodiments of the present disclosure, multiple pixel modules 99 can be printed (e.g., micro-transfer printed) in an array on display substrate 70 to construct a pixel-module display 98 with module connection posts 12 electrically connected to display substrate 70 contact pads 40 and display electrodes 74. The multiple pixel-module display 98 configuration illustrated in FIG. 14A corresponds to that of FIG. 12A (together with an encapsulating dielectric layer 50 that can, together with module substrate 10, adhesive 19, or display substrate 70, fully encapsulate pixel modules 99), the multiple pixel-module display 98 configuration illustrated in FIG. 14B corresponds to that of FIG. 12C, the multiple pixel-module display 98 configuration illustrated in FIG. 14C corresponds to that of FIG. 12E, and the multiple pixel-module display 98 configuration illustrated in FIG. 14D corresponds to that of FIG. 13A. The embodiments illustrated in FIGS. 12B, 12D, 12F-12J, and FIG. 13B can also be used in a pixel-module display 98 with multiple pixel modules 99 but are not separately shown.
  • Module connection posts 12 for any of the embodiments described above can be constructed using photolithographic methods and materials, for example depositing a dielectric layer 50, forming vias 16 in the layer at module connection post 12 locations, filling the vias 16 with a conductor, such as metal or a metal alloy, removing any unwanted excess conductor material, and stripping the dielectric layer.
  • In some embodiments of the present disclosure, components can be constructed on a component source wafer and printed to a target substrate in an inverted configuration using a flip-chip process. For example, light emitters 20, such as micro-iLEDs, are typically constructed in a non-inverted configuration but, as illustrated in FIG. 6, can be disposed on module substrate 10 in an inverted configuration, for example to enable light-emission from light-emitter bottom side 20S without requiring emitted light 60 to pass through a light-emitter electrode 28 or module electrode 18. Moreover, in some embodiments, component source substrates can be unsuitable for printing so that a flip-chip carrier substrate is necessary to enable printing (e.g., micro-transfer printing). The successive structures of FIGS. 15A-15I and the flow diagram of FIG. 20 illustrate a generic process method for flip-chip printing that can be applied to any components, including light emitters 20, controllers 30, and pixel modules 99.
  • Referring to FIG. 15A, a source wafer 100 for a component is provided in step 310. Referring to FIG. 15B, a component 110 is formed on component source wafer 100 in step 320. As described with reference to FIGS. 15A-15I, source wafer 100 is a generic source wafer 100 that can be used as a source wafer for any of multiple light emitters 20, controllers 30, or pixel modules 99 and can comprise a substrate material (such as a semiconductor) and any layers (e.g., etch-stop layers, dielectric layers, adhesive layers, oxide layers, or seed layers) useful for forming components 110 on source wafer 100 or for receiving components 110 by printing onto source wafer 100. Component 110 is a generic component 110 that can be any one of light emitters 20, controllers 30, or pixel modules 99. Component 110 can comprise a patterned dielectric layer or structure 50 to insulate component 110 from component electrodes 118 (e.g., any of module electrodes 18, light-emitter electrodes 28, and controller electrodes 38) that provide power and signals to operate component 110 in order to prevent electrical shorting. An optional layer of adhesive 19 (e.g., a curable resin, not shown in FIG. 15B) can be applied to component source wafer 100, for example by coating, and cured after component 110 is disposed on component source wafer 100, for example by heat or radiation.
  • Referring to FIG. 15C, in step 330 a dielectric encapsulant (encapsulating layer) 112 can be applied to component 110 and can extend over component source wafer 100. In step 340 and as shown in FIG. 15D, a sacrificial release layer 120, for example comprising a differentially etchable material from dielectric encapsulant 112, is disposed over dielectric encapsulant 112. Dielectric encapsulant 112 and sacrificial release layer 120 can be deposited and patterned by using photolithographic methods, for example coating, evaporation, or sputtering and pattern-wise etching with optical masks. As shown in FIG. 15E, a layer of adhesive 19 is disposed over sacrificial release layer 120 and at least portions of dielectric encapsulant 112 and optionally component source wafer 100, for example by coating. Layer of adhesive 19 is adhered to carrier 102 to adhere component 110 and component source substrate to carrier 102 in step 350 and as shown in FIG. 15F. In some embodiments, adhesive 19 is first disposed on carrier 102, for example by coating, and then adhered to sacrificial release layer 120 and at least portions of dielectric encapsulant 112 and optionally component source wafer 100 to adhere component 110 and component source substrate to carrier 102 in step 350 resulting in the structure shown in FIG. 15F. Carrier 102 can be a substrate, for example a glass, polymer, or semiconductor substrate.
  • Referring to FIG. 15G, in step 360, component source wafer 100 is removed, for example by back grinding or laser liftoff. In step 370 and as shown in FIG. 15H, sacrificial release layer 120 is etched to release component 110 from carrier 102 so that component 110 is physically connected to component anchor 117 of carrier 102 (or adhesive 19) by component tether 114. The component structure with carrier 102 of FIG. 15H provides a printable (e.g., micro-transfer printable) component 110 that can be printed in an inverted configuration upside-down from the configuration in which component 110 was constructed on component source wafer 100, as shown in FIG. 15I. Referring to FIG. 15I, stamp 90 and stamp post 92 fracture component tether 114 from component anchor 117 at fracture line 11 when removing component 110 from component source wafer 100. Steps 310-370 as illustrated in FIGS. 15A-15H and as shown in FIG. 20 are collectively step 300 and can be applied to any desired component 110, for example light emitters 20, controllers 30, or pixel modules 99.
  • According to some embodiments of the present disclosure, a method of making a pixel module 99 comprises providing a light-emitter source wafer 25 comprising a light emitter 20, providing a controller source wafer 35 comprising a controller 30, and providing a module substrate 10 having a module controller surface 10C and an opposing module light-emitter surface 10L. In some embodiments, (i) a light emitter 20 is transferred from light-emitter source wafer 25 to module light-emitter surface 10L of module substrate 10, (ii) controller 30 is transferred from controller source wafer 35 to module controller surface 10C of module substrate 10, or (iii) both (i) and (ii). One or more vias 16 are formed through module substrate 10 and module electrodes 18 are formed to electrically connect controller 30 to light emitter 20 through the one or more vias 16. As noted above with respect to FIGS. 15A-15H, methods of the present disclosure can comprise (i) adhering light-emitter source wafer 25 to a light-emitter carrier 102 and removing light-emitter source wafer 25, (ii) adhering controller source wafer 35 to a module carrier 102, and removing controller source wafer 35, or (iii) both (i) and (ii).
  • Referring to the successive structures illustrated in FIGS. 16A-16M and the flow diagram of FIG. 21, some embodiments of the present disclosure can be constructed by methods that comprise providing a source wafer 100 for a controller 30 in step 210 and as shown in FIG. 16A. Module substrate 10 is disposed on source wafer 100, in step 220 and as shown in FIG. 16B. Thus, in some embodiments, source wafer 100 is a controller source wafer 35 and also a module source wafer 15 and steps 210 and 220 can be a single step of providing a module source wafer 15 with a module substrate 10. In some embodiments, module substrate 10 is formed on source wafer 100 or source wafer 100 is provided comprising module substrate 10 or provided with module substrate 10 disposed on source wafer 100. Module substrate 10 can be an oxide layer, for example a buried oxide layer such as silicon dioxide. Controller 30 is formed (e.g., using photolithographic methods and materials) or disposed (e.g., by printing such as micro-transfer printing) on module substrate 10 in step 230 together with any one or more of module connection posts 12, module electrodes 18, patterned dielectric layers 50, vias 16, controller encapsulation layer 39, and module substrate 10 structures in step 240 as shown in FIGS. 16C and 16D. Referring to FIG. 16D, one or more module connection posts 12 extend through controller encapsulation layer 39 to allow electrical connection of pixel module 99 (e.g., controller 30 and light emitters 20 therein) to display electrodes 74 on target substrate 70. As shown in FIG. 16E, sacrificial release layer 120 is disposed over controller encapsulation layer 39. In particular, sacrificial release layer 120 extends through via 16 in module substrate 10 to contact source wafer 100 and also contacts controller encapsulation layer 39 where controller encapsulation layer 39 defines some or all of a module tether 14. One or more module connection posts 12 extend into sacrificial release layer 120. Referring to inverted FIG. 16F, a layer of adhesive 19 adheres controller 30 with sacrificial release layer 120 to carrier 102 and source wafer 100 is removed, as shown in more detail in FIGS. 15E-15G, thereby exposing module substrate 10 and at least a portion of sacrificial release layer 120. Patterned module electrodes 18 are formed on the exposed module light-emitter surface 10L of module substrate 10 in step 250 and as shown in FIG. 16G. In step 200, printable light emitters 20 are provided, for example horizontal or vertical light emitters 20 in an inverted or non-inverted configuration or as shown in any of FIGS. 5-8 and 11A. As illustrated in FIGS. 16A-16M, light emitters 20 are provided in an inverted configuration using step 300 (shown generically in FIG. 20). In step 260 and as shown in FIG. 16H, light emitters 20 are printed (e.g., micro-transfer printed) from a light-emitter source wafer 25 (e.g., as shown in FIG. 11A) to module light-emitter surface 10L of module substrate 10. In FIG. 16H, light-emitter connection posts 26 form an electrical contact between light emitter 20 and module electrodes 18. An optional layer of adhesive 19 can adhere light emitter 20 to module substrate 10 and, if present, can be patterned to expose a portion of module sacrificial release layer 120, as shown in FIG. 16I. In step 270, and as shown in FIG. 16J, an optional light-emitter encapsulation layer 29 is deposited, for example by sputtering or evaporation, and optionally patterned, for example photolithographically, to expose at least a portion of sacrificial release layer 120. Referring to FIG. 16K, in step 280 sacrificial release layer 120 is etched so that only module tether 14 physically connects pixel module 99 to carrier 102 by module anchor 17. In various embodiments of the present disclosure, module tether 14 can be a portion of an encapsulation layer, for example light-emitter encapsulation layer 29, controller encapsulation layer 39, a portion of a layer of adhesive 19, a portion of module substrate 10, or some other module encapsulation layer, or any combination of these. In the embodiments illustrated in FIG. 16K-16M, module tether 14 comprises a combination of light-emitter encapsulation layer 29 and controller encapsulation layer 39.
  • Referring to FIG. 16L, pixel module 99 can be micro-transfer printed (e.g., with stamp 90 and stamp post 92) from carrier 102 to display substrate 70 in step 290, as shown in FIG. 16M, so that module connection posts 12 electrically contact pads 40 and display electrodes 74 on display substrate 70. In some embodiments of the present disclosure, display substrate 70 is a surface-mount substrate (e.g., comprising layers of polyimide and patterned surface-mount electrodes corresponding to display electrodes 74) and pixel module 99 is a part of a surface-mount device. FIGS. 16A-16M illustrate module connection posts 12 corresponding to those illustrated in FIG. 1 but, according to some embodiments of the present disclosure, module connection posts 12 corresponding to those illustrated in FIG. 2, 9, or 10 could be used.
  • FIGS. 16A-16M illustrate some methods of constructing a pixel-module display 98 in which pixel modules 99 emit light in a direction away from display substrate 70 (a top-emitter configuration). FIGS. 17A-17L illustrate related steps and structures in which pixel modules 99 emit light through display substrate 70 (a bottom-emitter configuration). Referring to the successive structures illustrated in FIGS. 17A-17M and the flow diagram of FIG. 22 (in which the steps involving light emitter 20 and controller 30 are exchanged with respect to FIG. 21), some embodiments of the present disclosure can be constructed by providing a source wafer 100 for a light emitter 20 in step 410 and as shown in FIG. 17A. Module substrate 10 is disposed on source wafer 100 in step 420 and as shown in FIG. 17B. Thus, in some embodiments, source wafer 100 is a light-emitter source wafer 25 and also a module source wafer 15 and steps 410 and 420 can be a single step of providing a module source wafer 15 with a module substrate 10. In some embodiments, module substrate 10 is formed on source wafer 100 or source wafer 100 is provided comprising module substrate 10 or provided with module substrate 10 disposed on source wafer 100. Light emitter 20 is formed (e.g., using photolithographic methods and materials) or disposed (e.g., by printing, such as micro-transfer printing) on module substrate 10 in step 430 together with module connection posts 12, module electrodes 18, patterned dielectric layers 50, vias 16, light-emitter encapsulation layer 29, and module substrate 10 structures in step 440 as shown in FIGS. 17C and 17D. Referring to FIG. 17D, one or more module connection posts 12 extend through light-emitter encapsulation layer 29 to allow electrical connection of pixel module 99 (e.g., controller 30 and light emitters 20 therein) to display electrodes 74 on target substrate 70. As shown in FIG. 17E, sacrificial release layer 120 is disposed over light-emitter encapsulation layer 29. In particular, sacrificial release layer 120 extends through via 16 in module substrate 10 to contact source wafer 100 and also contacts light-emitter encapsulation layer 29 where light-emitter encapsulation layer 29 defines a module tether 14. One or more module connection posts 12 can extend into sacrificial release layer 120. Referring to FIG. 17F, a layer of adhesive 19 adheres light emitter 20 with sacrificial release layer 120 to carrier 102 (shown in FIG. 17G) and source wafer 100 is removed, as shown in FIG. 17H, thereby exposing module controller surface 10C of module substrate 10 in step 450 and as described in steps 330-360. In step 400, printable controller 30 is provided in any of the configurations of FIG. 9, 10, or 11B. In step 460 and as shown in inverted FIG. 17I, controller 30 is printed (e.g., micro-transfer printed) from a controller source wafer 35 (shown in FIG. 11B) to module controller surface 10C of module substrate 10. In the embodiment of FIG. 17I, controller 30 is electrically connected with photolithographically defined module electrodes 18. In some embodiments, controller 30 is electrically connected with controller assembly connection posts 32 to form an electrical contact between controller 30 and module electrodes 18. An optional layer of adhesive 19 can adhere controller 30 to module substrate 10 and, if present, can be patterned to expose a portion of module sacrificial release layer 120 as shown in FIG. 17I. In step 470, an optional module encapsulation layer is deposited, for example by sputtering or evaporation, and optionally patterned, for example photolithographically, to expose sacrificial release layer 120. Referring to FIG. 17J, in step 480 sacrificial release layer 120 is etched so that only module tether 14 physically connects pixel module 99 to carrier 102 by module anchor 17. In various embodiments of the present disclosure, module tether 14 can comprise an encapsulation layer, for example light-emitter encapsulation layer 29, a controller encapsulation layer 39 (not included in FIGS. 17J-17L), a portion of a layer of adhesive 19, a portion of module substrate 10, or some other module encapsulation layer, or any combination of these. In the embodiments illustrate in FIG. 17J-17L, module tether 14 comprises only light-emitter encapsulation layer 29.
  • Referring to FIG. 17K, pixel module 99 can be micro-transfer printed (e.g., with stamp 90 and stamp post 92) from carrier 102 to display substrate 70 in step 490, as shown in FIG. 17L, so that module connection posts 12 and module electrodes 18 electrically contact pads 40 and display electrodes 74 on display substrate 70. In some embodiments of the present disclosure, display substrate 70 is a surface-mount substrate (e.g., comprising layers of polyimide and patterned surface-mount electrodes corresponding to display electrodes 74) and pixel module 99 is a part of a surface-mount device. FIGS. 17A-17L illustrate module connection posts 12 corresponding to those illustrated in FIG. 3 but, according to some embodiments of the present disclosure (not shown), module connection posts 12 can be disposed directly on light emitters 20 (corresponding to FIG. 1 for controllers 30).
  • The embodiments illustrated in FIGS. 16A-16M and 17A-17L both illustrate a single light emitter 20 disposed on module substrate 10 and a single pixel module 99 disposed on display substrate 70. In some embodiments, multiple light emitters 20 are disposed on module substrate 10 (a pixel module 99 comprises a plurality of light emitters 20), for example as shown in FIGS. 1-3 and 12A-13 and multiple pixel modules 99 disposed on display substrate 70 as shown in FIGS. 14A-14D.
  • The embodiments illustrated in FIGS. 16-16M and 17A-17M are illustrative and not limiting. Those knowledgeable in integrated circuit and display technologies will understand that variations of the described processes, structures, and materials can be applied within the context of the present disclosure and are included within embodiments of the present disclosure. For example, some steps can be done before, after, or at the same time as other steps.
  • In some embodiments of the present disclosure, components such as light emitters 20 or controllers 30 are constructed and native to module substrate 10. Referring to FIGS. 18A-18D and 19A-19D, components such as light emitters 20 or controllers 30 are printed (e.g., micro-transfer printed) to module substrate 10 from a corresponding source wafer. Referring to FIGS. 18A-18D and the flow diagram of FIG. 23, in step 200 a printable light emitter 20 is provided using step 300 as described above. In this illustration, printable light emitter 20 is provided in an inverted configuration (e.g., as shown in FIG. 6). In some other embodiments, printable light emitter 20 is provided in a non-inverted configuration (as shown in FIGS. 5, 7, and 8). In step 202, controller 30 is provided in a non-inverted printable configuration, for example as shown in FIGS. 9 and 10. Referring to step 204 and FIG. 18A, a source wafer 100 for a pixel module 99 is provided and a module substrate 10 formed or disposed in step 206 as shown in FIG. 18B. Any necessary vias 16, dielectric structures 50, and module electrodes 18 on module substrate 10 can be formed in step 241 and, in step 245 and, as shown in FIG. 18C, controller 30 is disposed (e.g., micro-transfer printed) from a controller source wafer 35 to module substrate 10 (or any layers or module electrodes 18 provided on module substrate 10). In step 247, any additional structures (such as module connection posts 12 or other module electrodes 18) can be formed, as shown in FIG. 18D. The module structure is then inverted with a carrier 102 in step 250 and as generally described in steps 330-360. A printable light emitter 20 (in either an inverted or non-inverted configuration) is then printed (e.g., micro-transfer printed) to module light-emitter surface 10L or module substrate 10 in step 260 and any further processing done, as described with respect to 270, for example such as module connection posts 12, other module electrodes 18, or light-emitter encapsulation layer 29. In some embodiments of the present disclosure, in step 200 a printable controller 30 is provided and in step 202 a printable light emitter 20 is provided so that light emitters 20 are first printed in step 245 and controller 30 is printed in step 260. In some such embodiments, controller 20 can be encapsulated and pixel module 99 printed as described in steps 470-490. In general, encapsulation layers can be provided wherever useful for environmental protection or to provide a layer in which tethers can be defined, or both.
  • FIGS. 19A-19D illustrate steps of forming a pixel module 99 in which controller 30 is provided with controller assembly connection posts 32. In some such embodiments, FIGS. 19A-19C are similar to those of FIGS. 18A-18C, but in FIG. 19D, a controller assembly 82 including controller 30 and controller assembly connection posts 32 are printed (e.g., micro-transfer printed) to module substrate 10 and module electrodes 18. Module connection posts 12 can be formed on controller 30 either before or after printing.
  • In some embodiments of the present disclosure, a method of making a pixel module 99 comprises providing a controller 30, module electrodes 18, and module connection posts 12 disposed on a module substrate 10 that is disposed on or in a module source wafer 15 (e.g., a source wafer comprising module substrate 10), where module electrodes 18 are in electrical contact with controller 30. Controller 30, module electrodes 18, module connection posts 12, and module substrate 10 (e.g., with the module source wafer 15) are transferred to (e.g., adhered to with an adhesive 19 such as a resin) a carrier 102 (e.g., a handle substrate) so that controller 30 is disposed between the carrier 102 and module substrate 10. The module source wafer 15 can be removed, e.g., by grinding or laser lift-off. A light emitter 20 is disposed on module substrate 10 so that module substrate 10 is disposed between controller 30 and light emitter 20. Light emitter 20 is non-native to module substrate 10, and light emitter 20 is electrically connected to controller 30 (e.g., by micro-transfer printing light emitter 20 or a light-emitter assembly 80 to module substrate 10) in order to form pixel module 99.
  • The providing step can comprise disposing controller 30 on module substrate 10 so that controller 30 is non-native to module substrate 10, disposing a patterned first dielectric layer on controller 30, disposing module electrodes 18 on the patterned first dielectric layer and in electrical contact with controller 30, and disposing module connection posts 12. The providing step can further comprise disposing a second dielectric layer on module electrodes 18 so that module connection posts 12 protrude from the second dielectric layer. The second dielectric layer and module substrate 10 can together encapsulate module electrodes 18 and controller 30.
  • Some methods of the present disclosure comprise forming a patterned sacrificial release layer on the second dielectric layer prior to the transferring step, where the patterned sacrificial release layer covers the one or more module connection posts 12. The patterned sacrificial release layer can be sacrificed, for example by wet or dry etching, to release pixel module 99 from the carrier 102 and enable pixel module 99 to be transfer printed to a target substrate 70. Thus, according to some embodiments, the patterned sacrificial release layer is at least partially removed after source wafer 100 is removed.
  • At least a portion of the second dielectric layer can be disposed in a common plane with module substrate 10 so that controller 30 and light emitter 20 remain connected to the carrier 102 by the portion of the second dielectric layer after the patterned sacrificial release layer is at least partially removed. Thus, the portion of the second dielectric layer can form or be a module tether 14. Pixel module 99 can then be transferred (e.g., by micro-transfer printing with a stamp 90) from the carrier 102 to a target substrate 70 (e.g., a display substrate 70). Additional module electrodes 18 can be formed on a surface of module substrate 10 opposite controller 30 and light emitter 20 can be printed such that light-emitter connection posts 26 electrically connected to light emitter 20 come into electrical contact with the additional module electrodes 18. Methods of the present disclosure can comprise providing an unpatterned adhesive layer 19 on the additional module electrodes 18 and module substrate 10 prior to disposing light emitter 20 and patterning adhesive layer 19 after disposing light emitter 20 so that adhesive layer 19 after patterning does not extend beyond module substrate 10. Light emitters 20 can comprise a broken (e.g., fractured) or separated light-emitter tether 24 and controller 30 can comprises a broken or separated controller tether 34.
  • Methods of the present disclosure can comprise providing a first encapsulating layer (e.g., controller encapsulation layer 39) disposed on or over controller 30 so that module substrate 10 and the first encapsulating layer together encapsulate controller 30 and disposing a second encapsulating layer (e.g., light-emitter encapsulation layer 29) on or over light emitter 20 so that module substrate 10 and the second encapsulating layer together encapsulate light emitter 20.
  • Controller 30 can be electrically connected to light emitter 20 at least in part by one or more module electrodes 18 that pass through or around the edge of module substrate 10.
  • Pixel modules 99 and methods of the present disclosure dispose a controller 30 (or controller assembly 82) and one or more light emitters 20 (or light-emitter assembly 80) on opposing sides of a module substrate 10. In some embodiments, controller 30 or controller assembly 82 are exposed, that is it is not covered or supported by another substrate or structure. Similarly, in some embodiments, light emitters 20 or light-emitter assembly 80 are exposed, that is they are not covered or supported by another substrate or structure. Module substrate 10 can provide the mechanical structure necessary for supporting any one or more of light emitters 20, light-emitter assembly 80, controller 30, and controller assembly 82.
  • Pixel modules 99 of the present disclosure can be operated by providing power and signals to module electrodes 18, causing controller 30 to operate and control light emitters 20, for example through vias 16 where present. Power and signals can be provided to pixel modules 99 through module connection posts 12, if present, or through photolithographically defined wires disposed on a substrate, for example display electrodes 74 on display substrate 70, on which pixel modules 99 are disposed. Likewise, power and signals can be provided to light emitters 20 through light-emitter connection posts 26, if present, or through photolithographically defined wires (e.g., module electrodes 18) disposed on module substrate 10 on which light emitters 20 are disposed. Similarly, power and signals can be provided to controller 30 through controller assembly connection posts 32, if present, or through photolithographically defined wires (e.g., module electrodes 18) disposed on module substrate 10 on controller 30 is disposed.
  • Some embodiments of the present disclosure have been constructed using photolithographic methods and micro-transfer printing, for example, the structures illustrated in FIGS. 1, 6, 8, 9, 11A-11C, 12B, and 14B. Methods and structures of the present disclosure have also been implemented, for example as shown in FIGS. 15A-15I, FIGS. 16A-16M, FIGS. 18A-18D, and FIG. 21. Referring to FIG. 24, a module source wafer 15 comprises a plurality of pixel modules 99 shown in more detail in FIG. 25. The incomplete pixel module 99 of FIG. 25 corresponds to FIG. 16E, viewed from the sacrificial release layer 120 side of the structure. Sacrificial release layer 120 is largely transparent and FIG. 25 is focused on the module electrode 18 layer. Controller 30 is largely beneath and obscured by module electrodes 18 but a perimeter of controller 30 can be seen as a dark rectangular outline. (Dielectric structure 50 is largely transparent and is not indicated but insulates bare-die controller 30 from module electrodes 18 except at controller vias 16C. Controller 30 is a CMOS silicon integrated circuit approximately 40 by 35 microns in length and width and is disposed on an oxide layer that serves as module substrate 10 beneath controller 30. Module substrate 10 is thus a buried oxide layer until module source wafer 15 is removed (as shown in FIGS. 15G and 16F). Module tether 14 and module anchor 17 are outlined on the left of FIG. 25 in dashed white rectangles. Module connection posts 12 are located at the four corners of rectangular controller 30. Controller vias 16C provide electrical connections between module connection posts 12 and controller 30 and between controller 30 and light emitters 20 (micro-iLEDs, disposed as in FIG. 16H) through module electrodes 18. Light-emitter vias 16L electrically connect module electrodes 18 through module substrate 10 to control light emitters 20 and are relatively large to conduct sufficient current. Similarly, ground via 16G provides a ground connection to light emitters 20 and controller 30. Ground and light- emitter vias 16G, 16L connect through an additional dielectric layer 50 (not shown in the micrograph) and therefore comprise two vias 16, one above controller 30 and one adjacent to controller 30. As those knowledgeable in the electronic arts will understand, controller 30 can provide a selective voltage though light-emitter vias 16L to control light emitters 20 that returns through ground via 16G or, with inverted logic, ground via 16G can provide a voltage that is selectively returned through light-emitter vias 16G as a ground connection to control light emitters 20.
  • According to various embodiments of the present disclosure, a display substrate 70 or target substrate on which pixel modules 99 are disposed can be any material having two opposing side and a surface suitable for supporting electrical components, electrical conductors, and integrated circuits, for example as found in the flat-panel display industry. Display substrates 70 or target substrates 70 such as surface-mount device substrates can be flexible or rigid and can be or comprise, for example, one or more of glass, plastic, metal, or ceramic, polymer, resin, polyimide, PEN, PET, metal, metal foil, glass, a semiconductor, and sapphire.
  • Module substrate 10 can be a semiconductor substrate in or on which a light emitter 20 or controller 30 is formed, or a separate substrate defined on a module wafer. Module substrate 10 can be a glass, polymer, or dielectric layer, for example silicon dioxide or nitride, can comprise a seed layer, and can be a layer deposited on a subsequently removed substrate or wafer.
  • Controllers 30 can be integrated circuits comprising light-emitter control circuits formed in a semiconductor structure or substrate, for example bare-die semiconductor circuits made in monocrystalline silicon using integrated circuit and photolithographic materials and methods. The semiconductor can be, for example, silicon, CMOS, or a compound semiconductor such as GaAs. Controllers 30 can be micro-sized devices, for example having at least one of a length and a width less than 1000 microns (e.g., less than 500 microns, less than 250 microns, less than 100 microns, less than 50 microns, less than 20 microns, or less than 10 microns) and, optionally, a thickness less than 100 microns (e.g., less than 50 microns, less than 20 microns, less than 10 microns, or less than 5 microns).
  • Similarly, light emitters 20 can be integrated circuits, for example micro-iLEDs, formed in a semiconductor structure or substrate, for example bare-die semiconductor circuits made in monocrystalline materials such as compound semiconductors using integrated circuit and photolithographic materials and methods. The semiconductor can be, for example, silicon, CMOS, or a compound semiconductor such as GaN or GaAs. Light emitters 20 can be micro-sized devices, for example having at least one of a length and a width less than 1000 microns (e.g., less than 500 microns, less than 250 microns, less than 100 microns, less than 50 microns, less than 20 microns, or less than 10 microns) and, optionally, a thickness less than 100 microns (e.g., less than 50 microns, less than 20 microns, less than 10 microns, or less than 5 microns). Such monocrystalline materials can provide faster switching speeds, greater efficiency, and reduced size compared to thin-film materials found in conventional flat-panel displays. Thus, displays having devices and structures constructed according to various embodiments of the present disclosure can have improved performance and resolution.
  • Each light emitter 20 can be, according to various embodiments, for example, a light-emitting diode (LED), an organic light-emitting diode (OLED), a micro-LED, a laser, a diode laser, or a vertical cavity surface emitting laser and can include known light-emitting diode and/or laser materials and structures. Light emitters 20 can comprise an inorganic solid single-crystal direct bandgap light emitter, can emit visible light, such as red, green, blue, yellow, or cyan light, violet, or ultra-violet light, and can emit either coherent or incoherent light and can include phosphors, quantum dots, or other color conversion materials. Light emitters 20 used herein can have at least one of a width from 2 to 50 μm (e.g., 2 to 5 μm, 5 to 10 μm, 10 to 20 μm, or 20 to 50 μm), a length from 2 to 50 μm (e.g., 2 to 5 μm, 5 to 10 μm, 10 to 20 μm, or 20 to 50 μm), and a height from 2 to 50 μm (e.g., 2 to 5 μm, 5 to 10 μm, 10 to 20 μm, or 20 to 50 μm). A light emitter 20 or light-emitter assembly 80 can include one or more associated color filters, for example as described in U.S. Pat. No. 10,153,735, or one or more associated color conversion materials or articles, for example as described in U.S. patent application Ser. No. 14/930,363, filed on Nov. 2, 2015.
  • A discussion of micro-iLEDs and micro-LED displays can be found in U.S. Pat. No. 9,520,537, issued Dec. 13, 2016, entitled Micro Assembled Micro LED Displays and Lighting Elements, the disclosure of which is hereby incorporated by reference in its entirety. Micro-transfer methods are described in U.S. Pat. Nos. 8,722,458, 7,622,367 and 8,506,867, the disclosure of each of which is hereby incorporated by reference.
  • Pixel modules 99 or controller 30 in accordance with certain embodiments of the present disclosure can be constructed using compound micro-assembly techniques (e.g., can be compound micro-systems). A discussion of compound micro-assembly structures and methods is provided in U.S. patent application Ser. No. 14/822,868, filed Sep. 25, 2014, entitled Compound Micro-Assembly Strategies and Devices, the disclosure of which is hereby incorporated by reference in its entirety.
  • In general, structures, features, and elements of the present disclosure can be made using photolithographic methods and materials found in the integrated circuit arts, and the light-emitting diode arts, for example including doped or undoped semiconductor materials, conductors, passivation layers, patterned dielectric layers, electrical contacts, and controllers.
  • As is understood by those skilled in the art, the terms “over” and “under” are relative terms and can be interchanged in reference to different orientations of the layers, elements, and substrates included in the present disclosure. For example, a first layer or device on a second layer, in some implementations means a first layer or device directly on and in contact with a second layer. In other implementations a first layer or device on a second layer includes a first layer or device and a second layer with another layer therebetween.
  • Having described certain implementations of embodiments, it will now become apparent to one of skill in the art that other implementations incorporating the concepts of the disclosure may be used. Therefore, the disclosure should not be limited to the described embodiment, but rather should be limited only by the spirit and scope of the following claims.
  • Throughout the description, where apparatus and systems are described as having, including, or comprising specific components, or where processes and methods are described as having, including, or comprising specific steps, it is contemplated that, additionally, there are apparatus, and systems of the disclosed technology that consist essentially of, or consist of, the recited components, and that there are processes and methods according to the disclosed technology that consist essentially of, or consist of, the recited processing steps.
  • It should be understood that the order of steps or order for performing certain action is immaterial so long as the disclosed technology remains operable. Moreover, two or more steps or actions in some circumstances (e.g., in some embodiments) can be conducted simultaneously. The disclosure has been described in detail with particular reference to certain embodiments thereof, but it will be understood that variations and modifications can be effected within the spirit and scope of the disclosure.
  • PARTS LIST
    • 10 module substrate
    • 10L module light-emitter surface/module light-emitter side
    • 10C module controller surface/module controller side
    • 11 fracture line
    • 12 module connection post
    • 14 module tether
    • 15 module source wafer
    • 16 via
    • 16L light-emitter via
    • 16C controller via
    • 16G ground via
    • 17 module anchor
    • 18 module electrode
    • 19 adhesive/adhesive layer
    • 20 light emitter
    • 20A light-emitter area
    • 20S light-emitter bottom side
    • 20T light-emitter top side
    • 20R red-light emitter
    • 20G green-light emitter
    • 20B blue-light emitter
    • 21 conduction layer
    • 22 light-emitter assembly connection post
    • 23 light-emission layer
    • 24 light-emitter tether
    • 24A light-emitter assembly tether
    • 25 light-emitter source wafer
    • 26 light-emitter connection post
    • 27 light-emitter anchor
    • 28 light-emitter electrode
    • 29 light-emitter encapsulation layer
    • 30 controller
    • 30A controller area
    • 30S controller bottom side
    • 30T controller top side
    • 32 controller assembly connection post
    • 34 controller tether
    • 34A controller assembly tether
    • 35 controller source wafer
    • 37 controller anchor
    • 38 controller electrode
    • 39 controller encapsulation layer
    • 40 contact pad
    • 50 dielectric/dielectric structure/dielectric layer/dielectric substrate
    • 52 light-emitter assembly substrate
    • 54 controller assembly substrate
    • 60 light
    • 60R red light
    • 60G green light
    • 60B blue light
    • 70 display substrate/target substrate
    • 74 display electrode
    • 80 light-emitter assembly
    • 82 controller assembly
    • 84 sacrificial portion/gap
    • 90 stamp
    • 92 stamp post
    • 97 pixel-module wafer
    • 98 pixel-module display
    • 99 pixel module
    • 100 source wafer
    • 102 carrier
    • 110 component
    • 112 dielectric encapsulant
    • 114 component tether
    • 117 component anchor
    • 118 component electrode
    • 120 sacrificial release layer
    • 200 provide printable light emitter step
    • 202 provide printable controller step
    • 204 provide module source wafer step
    • 206 provide module substrate step
    • 210 provide controller source wafer step
    • 220 dispose module on controller source wafer step
    • 230 dispose controller on module substrate step
    • 240 form vias and electrodes on module substrate step
    • 241 form vias and electrodes on module substrate step
    • 245 micro-transfer print controller onto module substrate step
    • 247 form vias and electrodes on module substrate step
    • 250 form module carrier and electrodes step
    • 260 micro-transfer print light emitter onto module substrate step
    • 270 encapsulate light emitter on module substrate step
    • 280 etch sacrificial release layer to release module step
    • 290 micro-transfer print module onto target substrate step
    • 300 provide printable light emitter step
    • 310 provide component source wafer step
    • 320 form component on component source wafer step
    • 330 provide component source wafer step
    • 340 encapsulate component on component source wafer step
    • 350 adhere component to component carrier step
    • 360 remove component source wafer step
    • 370 etch sacrificial release layer to release component step
    • 400 provide printable light emitter step
    • 410 provide controller source wafer step
    • 420 dispose module on controller source wafer step
    • 430 dispose controller on module substrate step
    • 440 form vias and electrodes on module substrate step
    • 450 form module carrier and electrodes step
    • 460 micro-transfer print light emitter onto module substrate step
    • 470 encapsulate light emitter on module substrate step
    • 480 etch sacrificial release layer to release module step
    • 490 micro-transfer print module onto target substrate step

Claims (26)

1. A pixel module, comprising:
a module substrate having a light-emitter surface and a controller surface opposed to the light-emitter surface;
one or more light emitters disposed on the light-emitter surface of the module substrate;
a controller native to the module substrate and constructed in or on the controller surface of the module substrate; and
module electrodes, wherein at least one of the module electrodes is electrically connected to the controller and at least one of the module electrodes is electrically connected to each light emitter of the one or more light emitters.
2. The pixel module of claim 1, wherein the module electrodes electrically connect the controller to the one or more light emitters so that the controller is operable to control the one or more light emitters.
3. The pixel module of claim 1, wherein one or more of the module electrodes pass through the module substrate or wrap around an edge of the module substrate.
4. (canceled)
5. The pixel module of claim 1, wherein the one or more light emitters comprise a red-light emitter operable to emit red light, a green-light emitter operable to emit green light, and a blue-light emitter operable to emit blue light.
6. The pixel module of claim 1, wherein the one or more light emitters are one or more horizontal inorganic light-emitting diodes that are disposed to emit light in a direction away from the light-emitter surface of the module substrate.
7. The pixel module of claim 6, wherein the horizontal inorganic light-emitting diodes comprise a top side opposite a bottom side and emit light through the top side, wherein light-emitter electrodes are electrically connected to the top side.
8. The pixel module of claim 6, wherein the horizontal inorganic light-emitting diodes comprise a bottom side opposite a top side and emit light through the bottom side, wherein light-emitter electrodes are electrically connected to the top side.
9. The pixel module of claim 1, wherein the one or more light emitters are one or more vertical inorganic light-emitting diodes that are disposed to emit light in a direction away from the light-emitter surface of the module substrate.
10. The pixel module of claim 1, wherein each light emitter of the one or more light emitters comprises one or more light-emitter connection posts each electrically connected to one of the module electrodes.
11. (canceled)
12. The pixel module of claim 1, comprising one or more module connection posts disposed on the controller surface of the module substrate, each of the one or more module connection posts electrically connected to one of the module electrodes.
13-14. (canceled)
15. The pixel module of claim 1, comprising one or more module connection posts disposed on and protruding from the light-emitter surface of the module substrate, each of the one or more module connection posts electrically connected to one of the module electrodes.
16-19. (canceled)
20. The pixel module of claim 1, wherein (i) each light emitter of the one or more light emitters comprises a broken or separated light-emitter tether, (ii) the module substrate comprises a module tether, or (iii) (i) and (ii).
21. The pixel module of claim 1, wherein the module substrate comprises a broken or separated module tether.
22. The pixel module of claim 1, wherein each of the one or more light emitters is non-native to the module substrate.
23. The pixel module of claim 1, wherein a dielectric is disposed between the at least one light emitter and at least a portion of each of the at least one of the module electrodes.
24. The pixel module of claim 1, comprising (i) an encapsulating layer disposed over the controller, (ii) an encapsulating layer disposed over the one or more light emitters, or (iii) both (i) and (ii).
25. The pixel module of claim 24, wherein any one or more of the encapsulating layers comprises a broken or separated module tether.
26. The pixel module of claim 24, comprising one or more module connection posts disposed on and protruding from the module substrate and wherein the one or more module connection posts protrude through any one or more of the encapsulating layer disposed over the controller and the encapsulating layer disposed over the one or more light emitters.
27. The pixel module of claim 24, wherein the pixel module is fully encapsulated by any one or more of the encapsulating layers.
28. The pixel module of claim 1, wherein the pixel module has at least one of:
at least one of a width and a length of no more than 400 microns, and
a thickness of no more than 150 microns.
29-128. (canceled)
129. The pixel module of claim 27, wherein the pixel module is fully encapsulated by any one or more of the encapsulating layers and the module substrate.
US17/163,306 2019-06-14 2021-01-29 Pixel modules with controllers and light emitters Pending US20210151630A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/163,306 US20210151630A1 (en) 2019-06-14 2021-01-29 Pixel modules with controllers and light emitters

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16/442,142 US10944027B2 (en) 2019-06-14 2019-06-14 Pixel modules with controllers and light emitters
US17/163,306 US20210151630A1 (en) 2019-06-14 2021-01-29 Pixel modules with controllers and light emitters

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US16/442,142 Continuation US10944027B2 (en) 2019-06-14 2019-06-14 Pixel modules with controllers and light emitters

Publications (1)

Publication Number Publication Date
US20210151630A1 true US20210151630A1 (en) 2021-05-20

Family

ID=71130951

Family Applications (2)

Application Number Title Priority Date Filing Date
US16/442,142 Active US10944027B2 (en) 2019-06-14 2019-06-14 Pixel modules with controllers and light emitters
US17/163,306 Pending US20210151630A1 (en) 2019-06-14 2021-01-29 Pixel modules with controllers and light emitters

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US16/442,142 Active US10944027B2 (en) 2019-06-14 2019-06-14 Pixel modules with controllers and light emitters

Country Status (7)

Country Link
US (2) US10944027B2 (en)
EP (1) EP3984065A1 (en)
JP (3) JP7432625B2 (en)
KR (2) KR20230145242A (en)
CN (1) CN114450789A (en)
TW (1) TWI823010B (en)
WO (1) WO2020249800A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11488943B2 (en) 2019-06-14 2022-11-01 X Display Company Technology Limited Modules with integrated circuits and devices

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102601950B1 (en) * 2018-11-16 2023-11-14 삼성전자주식회사 Light emitting diode, manufacturing method of light emitting diode and display device including light emitting diode
US11189771B2 (en) 2019-12-11 2021-11-30 Mikro Mesa Technology Co., Ltd. Breathable micro light emitting diode display
US12027649B2 (en) 2019-12-11 2024-07-02 Mikro Mesa Technology Co., Ltd. Breathable micro light emitting diode display
US11387178B2 (en) * 2020-03-06 2022-07-12 X-Celeprint Limited Printable 3D electronic components and structures
US11088093B1 (en) * 2020-05-28 2021-08-10 X-Celeprint Limited Micro-component anti-stiction structures
US11538849B2 (en) * 2020-05-28 2022-12-27 X Display Company Technology Limited Multi-LED structures with reduced circuitry
US11735569B2 (en) 2020-06-03 2023-08-22 Seoul Viosys Co., Ltd. Light emitting device module and display apparatus having the same
US11476296B2 (en) * 2020-08-31 2022-10-18 Hong Kong Beida Jade Bird Display Limited Double color micro LED display panel
TWI821986B (en) * 2021-08-30 2023-11-11 友達光電股份有限公司 Display assembly, display device including the same and manufacturing method of display device
DE102021125416A1 (en) * 2021-09-30 2023-03-30 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung OPTOELECTRONIC COMPONENT, OPTOELECTRONIC DEVICE AND METHOD FOR MANUFACTURING OPTOELECTRONIC COMPONENTS OR OPTOELECTRONIC DEVICES
FR3129246B1 (en) * 2021-11-16 2024-02-23 Commissariat Energie Atomique Interactive display device and method of manufacturing such a device
TWI842468B (en) * 2023-04-07 2024-05-11 晶呈科技股份有限公司 Light-emitting diode package structure and manufacturing method thereof
TWI842637B (en) * 2023-06-19 2024-05-11 台灣愛司帝科技股份有限公司 Hidden display device and manufacturing method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170256522A1 (en) * 2016-03-03 2017-09-07 X-Celeprint Limited Micro-printed display
US20170256521A1 (en) * 2016-03-03 2017-09-07 X-Celeprint Limited Micro-transfer printable electronic component
US20200043401A1 (en) * 2018-08-03 2020-02-06 Kyocera Display Corporation Display apparatus
US20200168777A1 (en) * 2018-11-23 2020-05-28 Lg Display Co., Ltd. Display device and method of manufacturing the same

Family Cites Families (76)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08123337A (en) * 1994-10-26 1996-05-17 Nagoya Denki Kogyo Kk Display unit for road information display board
US6142358A (en) 1997-05-31 2000-11-07 The Regents Of The University Of California Wafer-to-wafer transfer of microstructures using break-away tethers
US6608370B1 (en) 2002-01-28 2003-08-19 Motorola, Inc. Semiconductor wafer having a thin die and tethers and methods of making the same
WO2005054119A2 (en) 2003-12-01 2005-06-16 The Board Of Trustees Of The University Of Illinois Methods and devices for fabricating three-dimensional nanoscale structures
CN101427182B (en) 2004-04-27 2011-10-19 伊利诺伊大学评议会 Composite patterning devices for soft lithography
CA2565360C (en) 2004-04-30 2012-01-10 Research In Motion Limited System and method for securing data
US7799699B2 (en) 2004-06-04 2010-09-21 The Board Of Trustees Of The University Of Illinois Printable semiconductor structures and related methods of making and assembling
US7521292B2 (en) 2004-06-04 2009-04-21 The Board Of Trustees Of The University Of Illinois Stretchable form of single crystal silicon for high performance electronics on rubber substrates
KR101260981B1 (en) 2004-06-04 2013-05-10 더 보오드 오브 트러스티스 오브 더 유니버시티 오브 일리노이즈 Methods and devices for fabricating and assembling printable semiconductor elements
JP4801337B2 (en) 2004-09-21 2011-10-26 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
US7662545B2 (en) 2004-10-14 2010-02-16 The Board Of Trustees Of The University Of Illinois Decal transfer lithography
MY149190A (en) 2006-09-20 2013-07-31 Univ Illinois Release strategies for making transferable semiconductor structures, devices and device components
CN102176486B (en) 2007-01-17 2015-06-24 伊利诺伊大学评议会 Optical systems fabricated by printing-based assembly
US8354674B2 (en) * 2007-06-29 2013-01-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device wherein a property of a first semiconductor layer is different from a property of a second semiconductor layer
WO2009067635A1 (en) 2007-11-20 2009-05-28 Board Of Regents, The University Of Texas System Method and apparatus for detethering mesoscale, microscale, and nanoscale components and devices
US8030674B2 (en) 2008-04-28 2011-10-04 Lextar Electronics Corp. Light-emitting diode package with roughened surface portions of the lead-frame
US20100060553A1 (en) 2008-08-21 2010-03-11 Zimmerman Scott M LED display utilizing freestanding epitaxial LEDs
US9123614B2 (en) 2008-10-07 2015-09-01 Mc10, Inc. Methods and applications of non-planar imaging arrays
WO2010059781A1 (en) 2008-11-19 2010-05-27 Semprius, Inc. Printing semiconductor elements by shear-assisted elastomeric stamp transfer
CN102388464B (en) 2009-02-09 2016-09-07 森普留斯公司 Concentrate type photoelectricity (CPV) module, receptor and sub-receiver and forming method thereof
WO2010111601A2 (en) 2009-03-26 2010-09-30 Semprius, Inc. Methods of forming printable integrated circuit devices and devices formed thereby
US8865489B2 (en) 2009-05-12 2014-10-21 The Board Of Trustees Of The University Of Illinois Printed assemblies of ultrathin, microscale inorganic light emitting diodes for deformable and semitransparent displays
WO2011034586A2 (en) 2009-09-16 2011-03-24 Semprius, Inc. High-yield fabrication of large-format substrates with distributed, independent control elements
US8642363B2 (en) 2009-12-09 2014-02-04 Nano And Advanced Materials Institute Limited Monolithic full-color LED micro-display on an active matrix panel manufactured using flip-chip technology
US9496155B2 (en) 2010-03-29 2016-11-15 Semprius, Inc. Methods of selectively transferring active components
DE112011101135B4 (en) 2010-03-29 2021-02-11 X-Celeprint Limited Electrically connected fields of active components in transfer printing technology
TWI478319B (en) 2010-07-20 2015-03-21 Epistar Corp An integrated lighting apparatus and method of manufacturing the same
JP6076903B2 (en) 2010-08-06 2017-02-08 セムプリウス インコーポレイテッド Materials and processes for releasing printable compound semiconductor devices
US9142468B2 (en) 2010-08-26 2015-09-22 Semprius, Inc. Structures and methods for testing printable integrated circuits
EP2649005B1 (en) 2010-12-07 2020-02-05 SPTS Technologies Limited Process for manufacturing electro-mechanical systems
JP5966412B2 (en) 2011-04-08 2016-08-10 ソニー株式会社 Pixel chip, display panel, lighting panel, display device and lighting device
US8889485B2 (en) 2011-06-08 2014-11-18 Semprius, Inc. Methods for surface attachment of flipped active componenets
US9412727B2 (en) 2011-09-20 2016-08-09 Semprius, Inc. Printing transferable components using microstructured elastomeric surfaces with pressure modulated reversible adhesion
US9620478B2 (en) 2011-11-18 2017-04-11 Apple Inc. Method of fabricating a micro device transfer head
US8426227B1 (en) 2011-11-18 2013-04-23 LuxVue Technology Corporation Method of forming a micro light emitting diode array
KR101891257B1 (en) 2012-04-02 2018-08-24 삼성전자주식회사 Light Emitting Device and Manufacturing Method thereof
US8933433B2 (en) 2012-07-30 2015-01-13 LuxVue Technology Corporation Method and structure for receiving a micro device
US8941215B2 (en) 2012-09-24 2015-01-27 LuxVue Technology Corporation Micro device stabilization post
US8835940B2 (en) 2012-09-24 2014-09-16 LuxVue Technology Corporation Micro device stabilization post
US9029880B2 (en) 2012-12-10 2015-05-12 LuxVue Technology Corporation Active matrix display panel with ground tie lines
US9166114B2 (en) 2012-12-11 2015-10-20 LuxVue Technology Corporation Stabilization structure including sacrificial release layer and staging cavity
US9153171B2 (en) 2012-12-17 2015-10-06 LuxVue Technology Corporation Smart pixel lighting and display microcontroller
US8791474B1 (en) 2013-03-15 2014-07-29 LuxVue Technology Corporation Light emitting diode display with redundancy scheme
WO2014152617A1 (en) 2013-03-15 2014-09-25 Semprius, Inc. Engineered substrates for semiconductor epitaxy and methods of fabricating the same
US9252375B2 (en) 2013-03-15 2016-02-02 LuxVue Technology Corporation Method of fabricating a light emitting diode display with integrated defect detection test
US9217541B2 (en) 2013-05-14 2015-12-22 LuxVue Technology Corporation Stabilization structure including shear release posts
US8987765B2 (en) 2013-06-17 2015-03-24 LuxVue Technology Corporation Reflective bank structure and method for integrating a light emitting device
US9111464B2 (en) 2013-06-18 2015-08-18 LuxVue Technology Corporation LED display with wavelength conversion layer
US9087764B2 (en) 2013-07-26 2015-07-21 LuxVue Technology Corporation Adhesive wafer bonding with controlled thickness variation
US9367094B2 (en) 2013-12-17 2016-06-14 Apple Inc. Display module and system applications
US9831387B2 (en) 2014-06-14 2017-11-28 Hiphoton Co., Ltd. Light engine array
US10224460B2 (en) 2014-06-18 2019-03-05 X-Celeprint Limited Micro assembled LED displays and lighting elements
US9818725B2 (en) 2015-06-01 2017-11-14 X-Celeprint Limited Inorganic-light-emitter display with integrated black matrix
US20160093600A1 (en) 2014-09-25 2016-03-31 X-Celeprint Limited Compound micro-assembly strategies and devices
US9640715B2 (en) 2015-05-15 2017-05-02 X-Celeprint Limited Printable inorganic semiconductor structures
US10255834B2 (en) 2015-07-23 2019-04-09 X-Celeprint Limited Parallel redundant chiplet system for controlling display pixels
US10468363B2 (en) 2015-08-10 2019-11-05 X-Celeprint Limited Chiplets with connection posts
US9640108B2 (en) 2015-08-25 2017-05-02 X-Celeprint Limited Bit-plane pulse width modulated digital display system
US10380930B2 (en) * 2015-08-24 2019-08-13 X-Celeprint Limited Heterogeneous light emitter display system
CN108475712B (en) 2015-12-01 2021-11-09 夏普株式会社 Image forming element
US9930277B2 (en) 2015-12-23 2018-03-27 X-Celeprint Limited Serial row-select matrix-addressed system
US10091446B2 (en) 2015-12-23 2018-10-02 X-Celeprint Limited Active-matrix displays with common pixel control
JP6668455B2 (en) * 2016-04-01 2020-03-18 株式会社半導体エネルギー研究所 Method for manufacturing oxide semiconductor film
GB2551103B (en) 2016-04-11 2022-03-23 Filtronic Broadband Ltd A method of optimising a mm wave power amplifier
CN109844848A (en) 2016-10-19 2019-06-04 奥加诺电路股份有限公司 Active matrix LED display
EP3542394A1 (en) 2016-11-15 2019-09-25 X-Celeprint Limited Micro-transfer-printable flip-chip structures and methods
US10395966B2 (en) 2016-11-15 2019-08-27 X-Celeprint Limited Micro-transfer-printable flip-chip structures and methods
DE102016124983A1 (en) 2016-12-20 2018-06-21 Osram Opto Semiconductors Gmbh VIDEO WALL MODULE
US10332868B2 (en) 2017-01-26 2019-06-25 X-Celeprint Limited Stacked pixel structures
US10468391B2 (en) 2017-02-08 2019-11-05 X-Celeprint Limited Inorganic light-emitting-diode displays with multi-ILED pixels
JP6781087B2 (en) * 2017-02-28 2020-11-04 京セラ株式会社 Display device
US10224432B2 (en) * 2017-03-10 2019-03-05 Applied Materials, Inc. Surface treatment process performed on devices for TFT applications
CN117116946A (en) * 2017-05-19 2023-11-24 株式会社半导体能源研究所 Semiconductor device, display device, and method for manufacturing semiconductor device
KR102495930B1 (en) * 2017-09-12 2023-02-03 삼성디스플레이 주식회사 Display device and method of manufacturing the same
US10690920B2 (en) * 2018-02-28 2020-06-23 X Display Company Technology Limited Displays with transparent bezels
US10505079B2 (en) * 2018-05-09 2019-12-10 X-Celeprint Limited Flexible devices and methods using laser lift-off

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170256522A1 (en) * 2016-03-03 2017-09-07 X-Celeprint Limited Micro-printed display
US20170256521A1 (en) * 2016-03-03 2017-09-07 X-Celeprint Limited Micro-transfer printable electronic component
US20200043401A1 (en) * 2018-08-03 2020-02-06 Kyocera Display Corporation Display apparatus
US20200168777A1 (en) * 2018-11-23 2020-05-28 Lg Display Co., Ltd. Display device and method of manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11488943B2 (en) 2019-06-14 2022-11-01 X Display Company Technology Limited Modules with integrated circuits and devices
US11881475B2 (en) 2019-06-14 2024-01-23 X Display Company Technology Limited Modules with integrated circuits and devices

Also Published As

Publication number Publication date
WO2020249800A4 (en) 2021-02-18
EP3984065A1 (en) 2022-04-20
WO2020249800A1 (en) 2020-12-17
JP2022537701A (en) 2022-08-29
CN114450789A (en) 2022-05-06
US10944027B2 (en) 2021-03-09
KR102586903B1 (en) 2023-10-06
US20200395510A1 (en) 2020-12-17
JP7432625B2 (en) 2024-02-16
KR20220017947A (en) 2022-02-14
JP2024069399A (en) 2024-05-21
TW202115862A (en) 2021-04-16
TWI823010B (en) 2023-11-21
KR20230145242A (en) 2023-10-17
JP2023105138A (en) 2023-07-28

Similar Documents

Publication Publication Date Title
US20210151630A1 (en) Pixel modules with controllers and light emitters
US10332868B2 (en) Stacked pixel structures
US10453826B2 (en) Voltage-balanced serial iLED pixel and display
US9997501B2 (en) Micro-transfer-printed light-emitting diode device
US20220320061A1 (en) Modules with integrated circuits and devices
US9343448B2 (en) Active matrix emissive micro LED display
US20230110862A1 (en) Display apparatus using semiconductor light-emitting device
KR102700205B1 (en) Display device using semiconductor light emitting device
EP4095915A1 (en) Display device using semiconductor light-emitting element and manufacturing method thereof
KR102385091B1 (en) Display device using semiconductor light emitting device and method for manufacturing
US10497682B2 (en) Backplane LED integration and functionalization structures
US11538849B2 (en) Multi-LED structures with reduced circuitry
KR20200002733A (en) Display device using light emitting device and manufacturing method thereof
EP4105998A1 (en) Display device using semiconductor light-emitting devices
CN113228288A (en) Display device using semiconductor light emitting device and method of manufacturing the same
EP3872846A1 (en) Apparatus and method for self-assembling semiconductor light-emitting device
KR102357645B1 (en) Display device using semiconductor light emitting device
KR20160092396A (en) Display device using semiconductor light emitting device
CN112567522B (en) Display device using semiconductor light emitting diode and method of manufacturing the same
KR20230002650A (en) Semiconductor light emitting device and display device using the semiconductor light emitting device
KR20200006843A (en) Display device using semiconductor light emitting device

Legal Events

Date Code Title Description
AS Assignment

Owner name: X DISPLAY COMPANY TECHNOLOGY LIMITED, IRELAND

Free format text: CHANGE OF NAME;ASSIGNOR:X-CELEPRINT LIMITED;REEL/FRAME:055088/0220

Effective date: 20191223

Owner name: X-CELEPRINT LIMITED, IRELAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BOWER, CHRISTOPHER ANDREW;MEITL, MATTHEW ALEXANDER;COK, RONALD S.;AND OTHERS;SIGNING DATES FROM 20190618 TO 20190619;REEL/FRAME:055088/0207

STPP Information on status: patent application and granting procedure in general

Free format text: APPLICATION DISPATCHED FROM PREEXAM, NOT YET DOCKETED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED