US20190365788A1 - Cyclic phosphate substituted nucleoside derivatives for the treatment of liver diseases - Google Patents
Cyclic phosphate substituted nucleoside derivatives for the treatment of liver diseases Download PDFInfo
- Publication number
- US20190365788A1 US20190365788A1 US16/462,779 US201716462779A US2019365788A1 US 20190365788 A1 US20190365788 A1 US 20190365788A1 US 201716462779 A US201716462779 A US 201716462779A US 2019365788 A1 US2019365788 A1 US 2019365788A1
- Authority
- US
- United States
- Prior art keywords
- formula
- compound
- hydrogen
- alkyl
- cancer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 208000019423 liver disease Diseases 0.000 title claims description 14
- 238000011282 treatment Methods 0.000 title description 38
- 150000003833 nucleoside derivatives Chemical class 0.000 title description 15
- 229910019142 PO4 Inorganic materials 0.000 title description 6
- 239000010452 phosphate Substances 0.000 title description 5
- 150000001875 compounds Chemical class 0.000 claims abstract description 277
- 150000003839 salts Chemical class 0.000 claims abstract description 74
- 239000012453 solvate Substances 0.000 claims abstract description 61
- 239000008194 pharmaceutical composition Substances 0.000 claims abstract description 16
- 229910052739 hydrogen Inorganic materials 0.000 claims description 109
- 239000001257 hydrogen Substances 0.000 claims description 109
- 239000003814 drug Substances 0.000 claims description 84
- 238000000034 method Methods 0.000 claims description 74
- 229940124597 therapeutic agent Drugs 0.000 claims description 64
- 239000000203 mixture Substances 0.000 claims description 62
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 49
- 150000002431 hydrogen Chemical class 0.000 claims description 42
- -1 —OR13 Chemical group 0.000 claims description 39
- 125000001153 fluoro group Chemical group F* 0.000 claims description 34
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 30
- 208000015181 infectious disease Diseases 0.000 claims description 30
- 125000001309 chloro group Chemical group Cl* 0.000 claims description 28
- 229910052736 halogen Inorganic materials 0.000 claims description 24
- 150000002367 halogens Chemical group 0.000 claims description 23
- 208000014018 liver neoplasm Diseases 0.000 claims description 23
- 201000007270 liver cancer Diseases 0.000 claims description 22
- 125000000217 alkyl group Chemical group 0.000 claims description 21
- 201000011001 Ebola Hemorrhagic Fever Diseases 0.000 claims description 19
- 125000000171 (C1-C6) haloalkyl group Chemical group 0.000 claims description 17
- 229910052799 carbon Inorganic materials 0.000 claims description 16
- 229910052760 oxygen Inorganic materials 0.000 claims description 16
- 229910052717 sulfur Inorganic materials 0.000 claims description 15
- 125000004169 (C1-C6) alkyl group Chemical group 0.000 claims description 14
- 125000000753 cycloalkyl group Chemical group 0.000 claims description 14
- 125000000882 C2-C6 alkenyl group Chemical group 0.000 claims description 12
- 125000003118 aryl group Chemical group 0.000 claims description 12
- 125000006577 C1-C6 hydroxyalkyl group Chemical group 0.000 claims description 11
- 125000003601 C2-C6 alkynyl group Chemical group 0.000 claims description 10
- 125000000304 alkynyl group Chemical group 0.000 claims description 9
- 239000003937 drug carrier Substances 0.000 claims description 9
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 9
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 claims description 9
- 125000003342 alkenyl group Chemical group 0.000 claims description 8
- 125000001188 haloalkyl group Chemical group 0.000 claims description 8
- 150000001721 carbon Chemical group 0.000 claims description 6
- 239000003085 diluting agent Substances 0.000 claims description 4
- 125000005843 halogen group Chemical group 0.000 claims 1
- 238000002560 therapeutic procedure Methods 0.000 abstract description 29
- IAZDPXIOMUYVGZ-WFGJKAKNSA-N Dimethyl sulfoxide Chemical compound [2H]C([2H])([2H])S(=O)C([2H])([2H])[2H] IAZDPXIOMUYVGZ-WFGJKAKNSA-N 0.000 description 92
- 235000002639 sodium chloride Nutrition 0.000 description 71
- 239000000243 solution Substances 0.000 description 60
- 0 *P1(=C)OCC(OCB)CO1.*P1(=C)OCc2([V])*[C@@H](B)[C@]([2*])([3*])[C@]2([4*])O1 Chemical compound *P1(=C)OCC(OCB)CO1.*P1(=C)OCc2([V])*[C@@H](B)[C@]([2*])([3*])[C@]2([4*])O1 0.000 description 54
- 206010028980 Neoplasm Diseases 0.000 description 52
- 239000011541 reaction mixture Substances 0.000 description 51
- 241000700721 Hepatitis B virus Species 0.000 description 47
- 201000011510 cancer Diseases 0.000 description 45
- 239000000543 intermediate Substances 0.000 description 41
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 39
- 239000003795 chemical substances by application Substances 0.000 description 39
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical class OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 38
- 210000004027 cell Anatomy 0.000 description 36
- 239000002904 solvent Substances 0.000 description 35
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 32
- 125000004432 carbon atom Chemical group C* 0.000 description 32
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 31
- 238000002360 preparation method Methods 0.000 description 30
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 29
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 27
- 229910052757 nitrogen Inorganic materials 0.000 description 26
- 210000003494 hepatocyte Anatomy 0.000 description 25
- 238000004679 31P NMR spectroscopy Methods 0.000 description 24
- 239000002777 nucleoside Substances 0.000 description 24
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 24
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 23
- YMWUJEATGCHHMB-UHFFFAOYSA-N dichloromethane Natural products ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 23
- 230000002829 reductive effect Effects 0.000 description 23
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 23
- 208000024891 symptom Diseases 0.000 description 21
- 238000005160 1H NMR spectroscopy Methods 0.000 description 20
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 20
- 229940079322 interferon Drugs 0.000 description 20
- 125000000592 heterocycloalkyl group Chemical group 0.000 description 19
- 239000003112 inhibitor Substances 0.000 description 19
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 19
- 208000036142 Viral infection Diseases 0.000 description 18
- 208000035475 disorder Diseases 0.000 description 18
- 206010073071 hepatocellular carcinoma Diseases 0.000 description 18
- 230000009385 viral infection Effects 0.000 description 18
- 231100000844 hepatocellular carcinoma Toxicity 0.000 description 17
- 229940002612 prodrug Drugs 0.000 description 17
- 239000000651 prodrug Substances 0.000 description 17
- 125000006413 ring segment Chemical group 0.000 description 17
- 108010050904 Interferons Proteins 0.000 description 16
- 102000014150 Interferons Human genes 0.000 description 16
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 16
- HEDRZPFGACZZDS-MICDWDOJSA-N Trichloro(2H)methane Chemical compound [2H]C(Cl)(Cl)Cl HEDRZPFGACZZDS-MICDWDOJSA-N 0.000 description 16
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 16
- 230000003612 virological effect Effects 0.000 description 16
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 15
- 102100040678 Programmed cell death protein 1 Human genes 0.000 description 15
- 239000000523 sample Substances 0.000 description 15
- 241001115402 Ebolavirus Species 0.000 description 13
- 241000700605 Viruses Species 0.000 description 13
- 235000019441 ethanol Nutrition 0.000 description 13
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 13
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 13
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 12
- 101000611936 Homo sapiens Programmed cell death protein 1 Proteins 0.000 description 11
- 102100024216 Programmed cell death 1 ligand 1 Human genes 0.000 description 11
- 101710089372 Programmed cell death protein 1 Proteins 0.000 description 11
- 238000006243 chemical reaction Methods 0.000 description 11
- 230000010076 replication Effects 0.000 description 11
- 239000000725 suspension Substances 0.000 description 11
- VHYFNPMBLIVWCW-UHFFFAOYSA-N 4-Dimethylaminopyridine Chemical compound CN(C)C1=CC=NC=C1 VHYFNPMBLIVWCW-UHFFFAOYSA-N 0.000 description 10
- 101001117317 Homo sapiens Programmed cell death 1 ligand 1 Proteins 0.000 description 10
- 102100024213 Programmed cell death 1 ligand 2 Human genes 0.000 description 10
- 235000019439 ethyl acetate Nutrition 0.000 description 10
- 230000005764 inhibitory process Effects 0.000 description 10
- 239000012044 organic layer Substances 0.000 description 10
- 230000002265 prevention Effects 0.000 description 10
- HBAQYPYDRFILMT-UHFFFAOYSA-N 8-[3-(1-cyclopropylpyrazol-4-yl)-1H-pyrazolo[4,3-d]pyrimidin-5-yl]-3-methyl-3,8-diazabicyclo[3.2.1]octan-2-one Chemical class C1(CC1)N1N=CC(=C1)C1=NNC2=C1N=C(N=C2)N1C2C(N(CC1CC2)C)=O HBAQYPYDRFILMT-UHFFFAOYSA-N 0.000 description 9
- 206010061902 Pancreatic neoplasm Diseases 0.000 description 9
- 210000004369 blood Anatomy 0.000 description 9
- 239000008280 blood Substances 0.000 description 9
- 238000002648 combination therapy Methods 0.000 description 9
- 201000010099 disease Diseases 0.000 description 9
- 208000032839 leukemia Diseases 0.000 description 9
- 208000015486 malignant pancreatic neoplasm Diseases 0.000 description 9
- 201000002528 pancreatic cancer Diseases 0.000 description 9
- 208000008443 pancreatic carcinoma Diseases 0.000 description 9
- 230000000069 prophylactic effect Effects 0.000 description 9
- 239000007858 starting material Substances 0.000 description 9
- 239000003643 water by type Substances 0.000 description 9
- 238000004293 19F NMR spectroscopy Methods 0.000 description 8
- GQHTUMJGOHRCHB-UHFFFAOYSA-N 2,3,4,6,7,8,9,10-octahydropyrimido[1,2-a]azepine Chemical compound C1CCCCN2CCCN=C21 GQHTUMJGOHRCHB-UHFFFAOYSA-N 0.000 description 8
- 206010006187 Breast cancer Diseases 0.000 description 8
- 208000026310 Breast neoplasm Diseases 0.000 description 8
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 8
- SHGAZHPCJJPHSC-NUEINMDLSA-N Isotretinoin Chemical compound OC(=O)C=C(C)/C=C/C=C(C)C=CC1=C(C)CCCC1(C)C SHGAZHPCJJPHSC-NUEINMDLSA-N 0.000 description 8
- 206010058467 Lung neoplasm malignant Diseases 0.000 description 8
- 206010025323 Lymphomas Diseases 0.000 description 8
- 229960005475 antiinfective agent Drugs 0.000 description 8
- 239000004599 antimicrobial Substances 0.000 description 8
- 239000012267 brine Substances 0.000 description 8
- 208000006990 cholangiocarcinoma Diseases 0.000 description 8
- 230000001684 chronic effect Effects 0.000 description 8
- UUVWYPNAQBNQJQ-UHFFFAOYSA-N hexamethylmelamine Chemical compound CN(C)C1=NC(N(C)C)=NC(N(C)C)=N1 UUVWYPNAQBNQJQ-UHFFFAOYSA-N 0.000 description 8
- 238000000338 in vitro Methods 0.000 description 8
- 201000005202 lung cancer Diseases 0.000 description 8
- 208000020816 lung neoplasm Diseases 0.000 description 8
- 238000000746 purification Methods 0.000 description 8
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 8
- 239000000126 substance Substances 0.000 description 8
- 125000001424 substituent group Chemical group 0.000 description 8
- 229940123066 Polymerase inhibitor Drugs 0.000 description 7
- IWUCXVSUMQZMFG-AFCXAGJDSA-N Ribavirin Chemical compound N1=C(C(=O)N)N=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 IWUCXVSUMQZMFG-AFCXAGJDSA-N 0.000 description 7
- 125000002947 alkylene group Chemical group 0.000 description 7
- 239000002775 capsule Substances 0.000 description 7
- 238000003818 flash chromatography Methods 0.000 description 7
- 235000019253 formic acid Nutrition 0.000 description 7
- 238000004128 high performance liquid chromatography Methods 0.000 description 7
- 102000048362 human PDCD1 Human genes 0.000 description 7
- 230000002401 inhibitory effect Effects 0.000 description 7
- 238000002347 injection Methods 0.000 description 7
- 239000007924 injection Substances 0.000 description 7
- 239000007788 liquid Substances 0.000 description 7
- 238000004895 liquid chromatography mass spectrometry Methods 0.000 description 7
- 239000003208 petroleum Substances 0.000 description 7
- 239000000741 silica gel Substances 0.000 description 7
- 229910002027 silica gel Inorganic materials 0.000 description 7
- 239000007787 solid Substances 0.000 description 7
- 239000006228 supernatant Substances 0.000 description 7
- 239000003826 tablet Substances 0.000 description 7
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 6
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 6
- 108010074708 B7-H1 Antigen Proteins 0.000 description 6
- 208000003174 Brain Neoplasms Diseases 0.000 description 6
- PTOAARAWEBMLNO-KVQBGUIXSA-N Cladribine Chemical compound C1=NC=2C(N)=NC(Cl)=NC=2N1[C@H]1C[C@H](O)[C@@H](CO)O1 PTOAARAWEBMLNO-KVQBGUIXSA-N 0.000 description 6
- UHDGCWIWMRVCDJ-CCXZUQQUSA-N Cytarabine Chemical compound O=C1N=C(N)C=CN1[C@H]1[C@@H](O)[C@H](O)[C@@H](CO)O1 UHDGCWIWMRVCDJ-CCXZUQQUSA-N 0.000 description 6
- 206010018338 Glioma Diseases 0.000 description 6
- 206010033128 Ovarian cancer Diseases 0.000 description 6
- 206010061535 Ovarian neoplasm Diseases 0.000 description 6
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 6
- 229940124158 Protease/peptidase inhibitor Drugs 0.000 description 6
- 206010039491 Sarcoma Diseases 0.000 description 6
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- 239000002253 acid Substances 0.000 description 6
- 229960000473 altretamine Drugs 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 6
- 239000002246 antineoplastic agent Substances 0.000 description 6
- 201000009036 biliary tract cancer Diseases 0.000 description 6
- 208000020790 biliary tract neoplasm Diseases 0.000 description 6
- 229960004132 diethyl ether Drugs 0.000 description 6
- 229940079593 drug Drugs 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 239000000706 filtrate Substances 0.000 description 6
- 208000002672 hepatitis B Diseases 0.000 description 6
- 102000048776 human CD274 Human genes 0.000 description 6
- 230000002519 immonomodulatory effect Effects 0.000 description 6
- 239000002955 immunomodulating agent Substances 0.000 description 6
- 229940121354 immunomodulator Drugs 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 239000000137 peptide hydrolase inhibitor Substances 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- WYURNTSHIVDZCO-UHFFFAOYSA-N tetrahydrofuran Substances C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 6
- 229910052720 vanadium Inorganic materials 0.000 description 6
- FPQQSJJWHUJYPU-UHFFFAOYSA-N 3-(dimethylamino)propyliminomethylidene-ethylazanium;chloride Chemical compound Cl.CCN=C=NCCCN(C)C FPQQSJJWHUJYPU-UHFFFAOYSA-N 0.000 description 5
- WFDIJRYMOXRFFG-UHFFFAOYSA-N Acetic anhydride Chemical compound CC(=O)OC(C)=O WFDIJRYMOXRFFG-UHFFFAOYSA-N 0.000 description 5
- 108010024976 Asparaginase Proteins 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 5
- AOJJSUZBOXZQNB-TZSSRYMLSA-N Doxorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 AOJJSUZBOXZQNB-TZSSRYMLSA-N 0.000 description 5
- 208000017604 Hodgkin disease Diseases 0.000 description 5
- 101001117312 Homo sapiens Programmed cell death 1 ligand 2 Proteins 0.000 description 5
- 241001115401 Marburgvirus Species 0.000 description 5
- 241001465754 Metazoa Species 0.000 description 5
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-dimethylformamide Substances CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 5
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 5
- RJURFGZVJUQBHK-UHFFFAOYSA-N actinomycin D Natural products CC1OC(=O)C(C(C)C)N(C)C(=O)CN(C)C(=O)C2CCCN2C(=O)C(C(C)C)NC(=O)C1NC(=O)C1=C(N)C(=O)C(C)=C2OC(C(C)=CC=C3C(=O)NC4C(=O)NC(C(N5CCCC5C(=O)N(C)CC(=O)N(C)C(C(C)C)C(=O)OC4C)=O)C(C)C)=C3N=C21 RJURFGZVJUQBHK-UHFFFAOYSA-N 0.000 description 5
- 230000000840 anti-viral effect Effects 0.000 description 5
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 5
- 239000003153 chemical reaction reagent Substances 0.000 description 5
- 238000004587 chromatography analysis Methods 0.000 description 5
- 125000004122 cyclic group Chemical group 0.000 description 5
- 125000001072 heteroaryl group Chemical group 0.000 description 5
- HAWPXGHAZFHHAD-UHFFFAOYSA-N mechlorethamine Chemical compound ClCCN(C)CCCl HAWPXGHAZFHHAD-UHFFFAOYSA-N 0.000 description 5
- SGDBTWWWUNNDEQ-LBPRGKRZSA-N melphalan Chemical compound OC(=O)[C@@H](N)CC1=CC=C(N(CCCl)CCCl)C=C1 SGDBTWWWUNNDEQ-LBPRGKRZSA-N 0.000 description 5
- 125000002950 monocyclic group Chemical group 0.000 description 5
- 125000006578 monocyclic heterocycloalkyl group Chemical group 0.000 description 5
- 235000021317 phosphate Nutrition 0.000 description 5
- 229960000329 ribavirin Drugs 0.000 description 5
- HZCAHMRRMINHDJ-DBRKOABJSA-N ribavirin Natural products O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1N=CN=C1 HZCAHMRRMINHDJ-DBRKOABJSA-N 0.000 description 5
- 238000004808 supercritical fluid chromatography Methods 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 238000004809 thin layer chromatography Methods 0.000 description 5
- 238000004704 ultra performance liquid chromatography Methods 0.000 description 5
- 125000004178 (C1-C4) alkyl group Chemical group 0.000 description 4
- FDKXTQMXEQVLRF-ZHACJKMWSA-N (E)-dacarbazine Chemical compound CN(C)\N=N\c1[nH]cnc1C(N)=O FDKXTQMXEQVLRF-ZHACJKMWSA-N 0.000 description 4
- 201000009030 Carcinoma Diseases 0.000 description 4
- 206010009944 Colon cancer Diseases 0.000 description 4
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 4
- 208000021309 Germ cell tumor Diseases 0.000 description 4
- 208000032612 Glial tumor Diseases 0.000 description 4
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerol Natural products OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 4
- 108700024845 Hepatitis B virus P Proteins 0.000 description 4
- 239000005511 L01XE05 - Sorafenib Substances 0.000 description 4
- BZLVMXJERCGZMT-UHFFFAOYSA-N Methyl tert-butyl ether Chemical compound COC(C)(C)C BZLVMXJERCGZMT-UHFFFAOYSA-N 0.000 description 4
- 101100407308 Mus musculus Pdcd1lg2 gene Proteins 0.000 description 4
- NWIBSHFKIJFRCO-WUDYKRTCSA-N Mytomycin Chemical compound C1N2C(C(C(C)=C(N)C3=O)=O)=C3[C@@H](COC(N)=O)[C@@]2(OC)[C@@H]2[C@H]1N2 NWIBSHFKIJFRCO-WUDYKRTCSA-N 0.000 description 4
- JGFZNNIVVJXRND-UHFFFAOYSA-N N,N-Diisopropylethylamine (DIPEA) Chemical compound CCN(C(C)C)C(C)C JGFZNNIVVJXRND-UHFFFAOYSA-N 0.000 description 4
- 208000034176 Neoplasms, Germ Cell and Embryonal Diseases 0.000 description 4
- 229940124060 PD-1 antagonist Drugs 0.000 description 4
- 206010035226 Plasma cell myeloma Diseases 0.000 description 4
- 108700030875 Programmed Cell Death 1 Ligand 2 Proteins 0.000 description 4
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 4
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 4
- FOCVUCIESVLUNU-UHFFFAOYSA-N Thiotepa Chemical compound C1CN1P(N1CC1)(=S)N1CC1 FOCVUCIESVLUNU-UHFFFAOYSA-N 0.000 description 4
- 108010073929 Vascular Endothelial Growth Factor A Proteins 0.000 description 4
- 102000005789 Vascular Endothelial Growth Factors Human genes 0.000 description 4
- 108010019530 Vascular Endothelial Growth Factors Proteins 0.000 description 4
- WOZSCQDILHKSGG-UHFFFAOYSA-N adefovir depivoxil Chemical compound N1=CN=C2N(CCOCP(=O)(OCOC(=O)C(C)(C)C)OCOC(=O)C(C)(C)C)C=NC2=C1N WOZSCQDILHKSGG-UHFFFAOYSA-N 0.000 description 4
- 239000012298 atmosphere Substances 0.000 description 4
- 125000004429 atom Chemical group 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 210000001124 body fluid Anatomy 0.000 description 4
- 239000010839 body fluid Substances 0.000 description 4
- STQGQHZAVUOBTE-VGBVRHCVSA-N daunorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(C)=O)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 STQGQHZAVUOBTE-VGBVRHCVSA-N 0.000 description 4
- 239000002552 dosage form Substances 0.000 description 4
- 238000000132 electrospray ionisation Methods 0.000 description 4
- VJJPUSNTGOMMGY-MRVIYFEKSA-N etoposide Chemical compound COC1=C(O)C(OC)=CC([C@@H]2C3=CC=4OCOC=4C=C3[C@@H](O[C@H]3[C@@H]([C@@H](O)[C@@H]4O[C@H](C)OC[C@H]4O3)O)[C@@H]3[C@@H]2C(OC3)=O)=C1 VJJPUSNTGOMMGY-MRVIYFEKSA-N 0.000 description 4
- 125000002768 hydroxyalkyl group Chemical group 0.000 description 4
- 230000002267 hypothalamic effect Effects 0.000 description 4
- JMMWKPVZQRWMSS-UHFFFAOYSA-N isopropanol acetate Natural products CC(C)OC(C)=O JMMWKPVZQRWMSS-UHFFFAOYSA-N 0.000 description 4
- 229940011051 isopropyl acetate Drugs 0.000 description 4
- GWYFCOCPABKNJV-UHFFFAOYSA-N isovaleric acid Chemical compound CC(C)CC(O)=O GWYFCOCPABKNJV-UHFFFAOYSA-N 0.000 description 4
- JTEGQNOMFQHVDC-NKWVEPMBSA-N lamivudine Chemical compound O=C1N=C(N)C=CN1[C@H]1O[C@@H](CO)SC1 JTEGQNOMFQHVDC-NKWVEPMBSA-N 0.000 description 4
- 239000010410 layer Substances 0.000 description 4
- 210000004185 liver Anatomy 0.000 description 4
- 239000002609 medium Substances 0.000 description 4
- 125000003835 nucleoside group Chemical group 0.000 description 4
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 230000035935 pregnancy Effects 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 229910052938 sodium sulfate Inorganic materials 0.000 description 4
- 235000011152 sodium sulphate Nutrition 0.000 description 4
- 239000011550 stock solution Substances 0.000 description 4
- 235000000346 sugar Nutrition 0.000 description 4
- 238000001356 surgical procedure Methods 0.000 description 4
- 230000002195 synergetic effect Effects 0.000 description 4
- 238000003786 synthesis reaction Methods 0.000 description 4
- IQFYYKKMVGJFEH-CSMHCCOUSA-N telbivudine Chemical compound O=C1NC(=O)C(C)=CN1[C@H]1O[C@@H](CO)[C@H](O)C1 IQFYYKKMVGJFEH-CSMHCCOUSA-N 0.000 description 4
- 230000001225 therapeutic effect Effects 0.000 description 4
- AQRLNPVMDITEJU-UHFFFAOYSA-N triethylsilane Chemical compound CC[SiH](CC)CC AQRLNPVMDITEJU-UHFFFAOYSA-N 0.000 description 4
- 238000000825 ultraviolet detection Methods 0.000 description 4
- LMDZBCPBFSXMTL-UHFFFAOYSA-N 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide Substances CCN=C=NCCCN(C)C LMDZBCPBFSXMTL-UHFFFAOYSA-N 0.000 description 3
- XBNGYFFABRKICK-UHFFFAOYSA-N 2,3,4,5,6-pentafluorophenol Chemical compound OC1=C(F)C(F)=C(F)C(F)=C1F XBNGYFFABRKICK-UHFFFAOYSA-N 0.000 description 3
- XAUDJQYHKZQPEU-KVQBGUIXSA-N 5-aza-2'-deoxycytidine Chemical compound O=C1N=C(N)N=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 XAUDJQYHKZQPEU-KVQBGUIXSA-N 0.000 description 3
- STQGQHZAVUOBTE-UHFFFAOYSA-N 7-Cyan-hept-2t-en-4,6-diinsaeure Natural products C1=2C(O)=C3C(=O)C=4C(OC)=CC=CC=4C(=O)C3=C(O)C=2CC(O)(C(C)=O)CC1OC1CC(N)C(O)C(C)O1 STQGQHZAVUOBTE-UHFFFAOYSA-N 0.000 description 3
- 208000030507 AIDS Diseases 0.000 description 3
- 208000032484 Accidental exposure to product Diseases 0.000 description 3
- 102000015790 Asparaginase Human genes 0.000 description 3
- 206010003571 Astrocytoma Diseases 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- COVZYZSDYWQREU-UHFFFAOYSA-N Busulfan Chemical compound CS(=O)(=O)OCCCCOS(C)(=O)=O COVZYZSDYWQREU-UHFFFAOYSA-N 0.000 description 3
- CMSMOCZEIVJLDB-UHFFFAOYSA-N Cyclophosphamide Chemical compound ClCCN(CCCl)P1(=O)NCCCO1 CMSMOCZEIVJLDB-UHFFFAOYSA-N 0.000 description 3
- 108010092160 Dactinomycin Proteins 0.000 description 3
- YZCKVEUIGOORGS-OUBTZVSYSA-N Deuterium Chemical compound [2H] YZCKVEUIGOORGS-OUBTZVSYSA-N 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 3
- XDXDZDZNSLXDNA-TZNDIEGXSA-N Idarubicin Chemical compound C1[C@H](N)[C@H](O)[C@H](C)O[C@H]1O[C@@H]1C2=C(O)C(C(=O)C3=CC=CC=C3C3=O)=C3C(O)=C2C[C@@](O)(C(C)=O)C1 XDXDZDZNSLXDNA-TZNDIEGXSA-N 0.000 description 3
- 206010069803 Injury associated with device Diseases 0.000 description 3
- 108010078049 Interferon alpha-2 Proteins 0.000 description 3
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 description 3
- GQYIWUVLTXOXAJ-UHFFFAOYSA-N Lomustine Chemical compound ClCCN(N=O)C(=O)NC1CCCCC1 GQYIWUVLTXOXAJ-UHFFFAOYSA-N 0.000 description 3
- 206010027476 Metastases Diseases 0.000 description 3
- 150000001204 N-oxides Chemical class 0.000 description 3
- 241000288906 Primates Species 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 229920002472 Starch Polymers 0.000 description 3
- BPEGJWRSRHCHSN-UHFFFAOYSA-N Temozolomide Chemical compound O=C1N(C)N=NC2=C(C(N)=O)N=CN21 BPEGJWRSRHCHSN-UHFFFAOYSA-N 0.000 description 3
- RJURFGZVJUQBHK-IIXSONLDSA-N actinomycin D Chemical compound C[C@H]1OC(=O)[C@H](C(C)C)N(C)C(=O)CN(C)C(=O)[C@@H]2CCCN2C(=O)[C@@H](C(C)C)NC(=O)[C@H]1NC(=O)C1=C(N)C(=O)C(C)=C2OC(C(C)=CC=C3C(=O)N[C@@H]4C(=O)N[C@@H](C(N5CCC[C@H]5C(=O)N(C)CC(=O)N(C)[C@@H](C(C)C)C(=O)O[C@@H]4C)=O)C(C)C)=C3N=C21 RJURFGZVJUQBHK-IIXSONLDSA-N 0.000 description 3
- 239000004480 active ingredient Substances 0.000 description 3
- 230000001154 acute effect Effects 0.000 description 3
- 229960001997 adefovir Drugs 0.000 description 3
- 125000001931 aliphatic group Chemical group 0.000 description 3
- SHGAZHPCJJPHSC-YCNIQYBTSA-N all-trans-retinoic acid Chemical compound OC(=O)\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C SHGAZHPCJJPHSC-YCNIQYBTSA-N 0.000 description 3
- 125000000266 alpha-aminoacyl group Chemical group 0.000 description 3
- 150000001413 amino acids Chemical class 0.000 description 3
- 239000005557 antagonist Substances 0.000 description 3
- 239000000427 antigen Substances 0.000 description 3
- 108091007433 antigens Proteins 0.000 description 3
- 102000036639 antigens Human genes 0.000 description 3
- 239000003443 antiviral agent Substances 0.000 description 3
- 239000007640 basal medium Substances 0.000 description 3
- 239000002585 base Substances 0.000 description 3
- 125000002619 bicyclic group Chemical group 0.000 description 3
- LTEJRLHKIYCEOX-OCCSQVGLSA-N brivanib alaninate Chemical compound C1=C2NC(C)=CC2=C(F)C(OC2=NC=NN3C=C(C(=C32)C)OC[C@@H](C)OC(=O)[C@H](C)N)=C1 LTEJRLHKIYCEOX-OCCSQVGLSA-N 0.000 description 3
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 3
- 150000001732 carboxylic acid derivatives Chemical group 0.000 description 3
- 208000002458 carcinoid tumor Diseases 0.000 description 3
- 208000029742 colonic neoplasm Diseases 0.000 description 3
- 229940125904 compound 1 Drugs 0.000 description 3
- 238000013270 controlled release Methods 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 125000002993 cycloalkylene group Chemical group 0.000 description 3
- 229910052805 deuterium Inorganic materials 0.000 description 3
- 150000002148 esters Chemical class 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 108020001507 fusion proteins Proteins 0.000 description 3
- 102000037865 fusion proteins Human genes 0.000 description 3
- 230000002496 gastric effect Effects 0.000 description 3
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 3
- 230000002458 infectious effect Effects 0.000 description 3
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 3
- 230000000155 isotopic effect Effects 0.000 description 3
- 229960001627 lamivudine Drugs 0.000 description 3
- 230000003211 malignant effect Effects 0.000 description 3
- 229960004961 mechlorethamine Drugs 0.000 description 3
- 201000001441 melanoma Diseases 0.000 description 3
- 230000009401 metastasis Effects 0.000 description 3
- KKZJGLLVHKMTCM-UHFFFAOYSA-N mitoxantrone Chemical compound O=C1C2=C(O)C=CC(O)=C2C(=O)C2=C1C(NCCNCCO)=CC=C2NCCNCCO KKZJGLLVHKMTCM-UHFFFAOYSA-N 0.000 description 3
- 201000005962 mycosis fungoides Diseases 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- FEHUTHGOLLQBNW-UHFFFAOYSA-N n-[chloro-[di(propan-2-yl)amino]phosphanyl]-n-propan-2-ylpropan-2-amine Chemical compound CC(C)N(C(C)C)P(Cl)N(C(C)C)C(C)C FEHUTHGOLLQBNW-UHFFFAOYSA-N 0.000 description 3
- 125000004433 nitrogen atom Chemical group N* 0.000 description 3
- 238000001959 radiotherapy Methods 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 230000028327 secretion Effects 0.000 description 3
- 238000009097 single-agent therapy Methods 0.000 description 3
- 201000000849 skin cancer Diseases 0.000 description 3
- IVDHYUQIDRJSTI-UHFFFAOYSA-N sorafenib tosylate Chemical compound [H+].CC1=CC=C(S([O-])(=O)=O)C=C1.C1=NC(C(=O)NC)=CC(OC=2C=CC(NC(=O)NC=3C=C(C(Cl)=CC=3)C(F)(F)F)=CC=2)=C1 IVDHYUQIDRJSTI-UHFFFAOYSA-N 0.000 description 3
- 238000010561 standard procedure Methods 0.000 description 3
- 239000008107 starch Substances 0.000 description 3
- 235000019698 starch Nutrition 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 201000008205 supratentorial primitive neuroectodermal tumor Diseases 0.000 description 3
- NRUKOCRGYNPUPR-QBPJDGROSA-N teniposide Chemical compound COC1=C(O)C(OC)=CC([C@@H]2C3=CC=4OCOC=4C=C3[C@@H](O[C@H]3[C@@H]([C@@H](O)[C@@H]4O[C@@H](OC[C@H]4O3)C=3SC=CC=3)O)[C@@H]3[C@@H]2C(OC3)=O)=C1 NRUKOCRGYNPUPR-QBPJDGROSA-N 0.000 description 3
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 3
- 210000001519 tissue Anatomy 0.000 description 3
- 210000002845 virion Anatomy 0.000 description 3
- 210000000239 visual pathway Anatomy 0.000 description 3
- 230000004400 visual pathway Effects 0.000 description 3
- NTXSNTMUQLZBJV-JTQLQIEISA-N (2S)-2-methyl-4-phenylmethoxybutanoic acid Chemical compound C(C1=CC=CC=C1)OCC[C@@H](C(=O)O)C NTXSNTMUQLZBJV-JTQLQIEISA-N 0.000 description 2
- NTXSNTMUQLZBJV-SNVBAGLBSA-N (2r)-2-methyl-4-phenylmethoxybutanoic acid Chemical compound OC(=O)[C@H](C)CCOCC1=CC=CC=C1 NTXSNTMUQLZBJV-SNVBAGLBSA-N 0.000 description 2
- VNTHYLVDGVBPOU-QQYBVWGSSA-N (7s,9s)-9-acetyl-7-[(2r,4s,5s,6s)-4-amino-5-hydroxy-6-methyloxan-2-yl]oxy-6,9,11-trihydroxy-4-methoxy-8,10-dihydro-7h-tetracene-5,12-dione;2-hydroxypropane-1,2,3-tricarboxylic acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O.O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(C)=O)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 VNTHYLVDGVBPOU-QQYBVWGSSA-N 0.000 description 2
- 125000000008 (C1-C10) alkyl group Chemical group 0.000 description 2
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 2
- 239000004912 1,5-cyclooctadiene Substances 0.000 description 2
- 102100025573 1-alkyl-2-acetylglycerophosphocholine esterase Human genes 0.000 description 2
- MCTWTZJPVLRJOU-UHFFFAOYSA-N 1-methyl-1H-imidazole Chemical compound CN1C=CN=C1 MCTWTZJPVLRJOU-UHFFFAOYSA-N 0.000 description 2
- KJUGUADJHNHALS-UHFFFAOYSA-N 1H-tetrazole Chemical compound C=1N=NNN=1 KJUGUADJHNHALS-UHFFFAOYSA-N 0.000 description 2
- NMUSYJAQQFHJEW-KVTDHHQDSA-N 5-azacytidine Chemical compound O=C1N=C(N)N=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 NMUSYJAQQFHJEW-KVTDHHQDSA-N 0.000 description 2
- MLDQJTXFUGDVEO-UHFFFAOYSA-N BAY-43-9006 Chemical compound C1=NC(C(=O)NC)=CC(OC=2C=CC(NC(=O)NC=3C=C(C(Cl)=CC=3)C(F)(F)F)=CC=2)=C1 MLDQJTXFUGDVEO-UHFFFAOYSA-N 0.000 description 2
- KXDAEFPNCMNJSK-UHFFFAOYSA-N Benzamide Chemical compound NC(=O)C1=CC=CC=C1 KXDAEFPNCMNJSK-UHFFFAOYSA-N 0.000 description 2
- 206010004593 Bile duct cancer Diseases 0.000 description 2
- 241000884921 Bundibugyo ebolavirus Species 0.000 description 2
- DAEGMVCJKBFGPW-UTYVVCPNSA-N C=C1NC(=O)N([C@H]2C[C@@H]3OP(=O)(OCCC(C)C(=O)OC(C)C)OC[C@H]3O2)C=C1C.CC1=NC2=C(N=CN2[C@H]2C[C@@H]3OP(=O)(OCC[C@H](C)C(=O)OC(C)C)OC[C@H]3O2)C(N)=N1.CC1=NC2=C(N=CN2[C@H]2C[C@@H]3O[P@@](=O)(OCC[C@H](C)C(=O)OC(C)C)OC[C@H]3O2)C(N)=N1.CC1=NC2=C(N=CN2[C@H]2C[C@@H]3O[P@](=O)(OCC[C@H](C)C(=O)OC(C)C)OC[C@H]3O2)C(N)=N1.CCOC(=O)[C@H](C)CCO[P@]1(=O)OC[C@H]2S[C@@H](N3C=CC(C)=NC3=O)[C@@H](F)[C@@H]2O1.COC1=NC(C)=NC2=C1N=CN2[C@@H]1O[C@@H]2COP(=O)(OCC[C@@H](C)C(=O)OC(C)C)O[C@H]2[C@@H]1O.COC1=NC(C)=NC2=C1N=CN2[C@@H]1O[C@@H]2CO[P@@](=O)(OCC[C@@H](C)C(=O)OC(C)C)O[C@H]2[C@@H]1O.COC1=NC(C)=NC2=C1N=CN2[C@@H]1O[C@@H]2CO[P@](=O)(OCC[C@@H](C)C(=O)OC(C)C)O[C@H]2[C@@H]1O Chemical compound C=C1NC(=O)N([C@H]2C[C@@H]3OP(=O)(OCCC(C)C(=O)OC(C)C)OC[C@H]3O2)C=C1C.CC1=NC2=C(N=CN2[C@H]2C[C@@H]3OP(=O)(OCC[C@H](C)C(=O)OC(C)C)OC[C@H]3O2)C(N)=N1.CC1=NC2=C(N=CN2[C@H]2C[C@@H]3O[P@@](=O)(OCC[C@H](C)C(=O)OC(C)C)OC[C@H]3O2)C(N)=N1.CC1=NC2=C(N=CN2[C@H]2C[C@@H]3O[P@](=O)(OCC[C@H](C)C(=O)OC(C)C)OC[C@H]3O2)C(N)=N1.CCOC(=O)[C@H](C)CCO[P@]1(=O)OC[C@H]2S[C@@H](N3C=CC(C)=NC3=O)[C@@H](F)[C@@H]2O1.COC1=NC(C)=NC2=C1N=CN2[C@@H]1O[C@@H]2COP(=O)(OCC[C@@H](C)C(=O)OC(C)C)O[C@H]2[C@@H]1O.COC1=NC(C)=NC2=C1N=CN2[C@@H]1O[C@@H]2CO[P@@](=O)(OCC[C@@H](C)C(=O)OC(C)C)O[C@H]2[C@@H]1O.COC1=NC(C)=NC2=C1N=CN2[C@@H]1O[C@@H]2CO[P@](=O)(OCC[C@@H](C)C(=O)OC(C)C)O[C@H]2[C@@H]1O DAEGMVCJKBFGPW-UTYVVCPNSA-N 0.000 description 2
- OJJJCNRPRAQEMU-SNVBAGLBSA-N CC(C)OCC[C@@H](C)C(=O)OC(C)C Chemical compound CC(C)OCC[C@@H](C)C(=O)OC(C)C OJJJCNRPRAQEMU-SNVBAGLBSA-N 0.000 description 2
- OJJJCNRPRAQEMU-JTQLQIEISA-N CC(C)OCC[C@H](C)C(=O)OC(C)C Chemical compound CC(C)OCC[C@H](C)C(=O)OC(C)C OJJJCNRPRAQEMU-JTQLQIEISA-N 0.000 description 2
- ZBKBJQJBNXRVSB-SSVNFQJKSA-N CC1=NC(=O)N([C@@H]2S[C@@H]3COP(=O)(OCC[C@@H](C)C(=O)OC(C)C)O[C@H]3[C@@H]2F)C=C1.CC1=NC(=O)N([C@@H]2S[C@@H]3CO[P@@](=O)(OCC[C@@H](C)C(=O)OC(C)C)O[C@H]3[C@@H]2F)C=C1.CC1=NC(=O)N([C@@H]2S[C@@H]3CO[P@](=O)(OCC[C@@H](C)C(=O)OC(C)C)O[C@H]3[C@@H]2F)C=C1.CC1=NC2=C(N=CN2[C@@H]2O[C@@H]3COP(=O)(OCC[C@H](C)C(=O)OC(C)C)O[C@H]3[C@@H]2F)C(N)=N1.CC1=NC2=C(N=CN2[C@@H]2O[C@@H]3CO[P@@](=O)(OCC[C@H](C)C(=O)OC(C)C)O[C@H]3[C@@H]2F)C(N)=N1.CCOC(=O)[C@@H](C)CCO[P@@]1(=O)OC[C@H]2O[C@@H](N3C=NC4=C3N=C(C)N=C4N)[C@@H](F)[C@@H]2O1.CCOC(=O)[C@H](C)CCOP1(=O)OC[C@H]2S[C@@H](N3C=CC(C)=NC3=O)[C@@H](F)[C@@H]2O1.CCOC(=O)[C@H](C)CCO[P@@]1(=O)OC[C@H]2S[C@@H](N3C=CC(C)=NC3=O)[C@@H](F)[C@@H]2O1 Chemical compound CC1=NC(=O)N([C@@H]2S[C@@H]3COP(=O)(OCC[C@@H](C)C(=O)OC(C)C)O[C@H]3[C@@H]2F)C=C1.CC1=NC(=O)N([C@@H]2S[C@@H]3CO[P@@](=O)(OCC[C@@H](C)C(=O)OC(C)C)O[C@H]3[C@@H]2F)C=C1.CC1=NC(=O)N([C@@H]2S[C@@H]3CO[P@](=O)(OCC[C@@H](C)C(=O)OC(C)C)O[C@H]3[C@@H]2F)C=C1.CC1=NC2=C(N=CN2[C@@H]2O[C@@H]3COP(=O)(OCC[C@H](C)C(=O)OC(C)C)O[C@H]3[C@@H]2F)C(N)=N1.CC1=NC2=C(N=CN2[C@@H]2O[C@@H]3CO[P@@](=O)(OCC[C@H](C)C(=O)OC(C)C)O[C@H]3[C@@H]2F)C(N)=N1.CCOC(=O)[C@@H](C)CCO[P@@]1(=O)OC[C@H]2O[C@@H](N3C=NC4=C3N=C(C)N=C4N)[C@@H](F)[C@@H]2O1.CCOC(=O)[C@H](C)CCOP1(=O)OC[C@H]2S[C@@H](N3C=CC(C)=NC3=O)[C@@H](F)[C@@H]2O1.CCOC(=O)[C@H](C)CCO[P@@]1(=O)OC[C@H]2S[C@@H](N3C=CC(C)=NC3=O)[C@@H](F)[C@@H]2O1 ZBKBJQJBNXRVSB-SSVNFQJKSA-N 0.000 description 2
- HZFFZCIJKHAVQB-IKIIZTRBSA-N CCOC(=O)C(C)CCOP1(=O)OC[C@@H]2O[C@H](N3C=C(C)C(=O)NC3=O)C[C@H]2O1.CCOC(=O)C(C)CCOP1(=O)OC[C@@H]2O[C@H](N3C=NC4=C3N=CN=C4N)C[C@H]2O1.CCOC(=O)[C@@H](C)CCOP1(=O)OC[C@@H]2O[C@H](N3C=CC(N)=NC3=O)C[C@H]2O1.CCOC(=O)[C@@H](C)CCO[P@@]1(=O)OC[C@@H]2O[C@H](N3C=C(C)C(=O)NC3=O)C[C@H]2O1.CCOC(=O)[C@@H](C)CCO[P@]1(=O)OC[C@@H]2O[C@H](N3C=C(C)C(=O)NC3=O)C[C@H]2O1.CCOC(=O)[C@H](C)CCO[P@@]1(=O)OC[C@@H]2O[C@H](N3C=C(C)C(=O)NC3=O)C[C@H]2O1.CCOC(=O)[C@H](C)CCO[P@]1(=O)OC[C@@H]2O[C@H](N3C=C(C)C(=O)NC3=O)C[C@H]2O1 Chemical compound CCOC(=O)C(C)CCOP1(=O)OC[C@@H]2O[C@H](N3C=C(C)C(=O)NC3=O)C[C@H]2O1.CCOC(=O)C(C)CCOP1(=O)OC[C@@H]2O[C@H](N3C=NC4=C3N=CN=C4N)C[C@H]2O1.CCOC(=O)[C@@H](C)CCOP1(=O)OC[C@@H]2O[C@H](N3C=CC(N)=NC3=O)C[C@H]2O1.CCOC(=O)[C@@H](C)CCO[P@@]1(=O)OC[C@@H]2O[C@H](N3C=C(C)C(=O)NC3=O)C[C@H]2O1.CCOC(=O)[C@@H](C)CCO[P@]1(=O)OC[C@@H]2O[C@H](N3C=C(C)C(=O)NC3=O)C[C@H]2O1.CCOC(=O)[C@H](C)CCO[P@@]1(=O)OC[C@@H]2O[C@H](N3C=C(C)C(=O)NC3=O)C[C@H]2O1.CCOC(=O)[C@H](C)CCO[P@]1(=O)OC[C@@H]2O[C@H](N3C=C(C)C(=O)NC3=O)C[C@H]2O1 HZFFZCIJKHAVQB-IKIIZTRBSA-N 0.000 description 2
- JIUJDIXWXSYVAL-VIFPVBQESA-N CCOC(=O)[C@@H](C)CCOC(C)C Chemical compound CCOC(=O)[C@@H](C)CCOC(C)C JIUJDIXWXSYVAL-VIFPVBQESA-N 0.000 description 2
- JIUJDIXWXSYVAL-SECBINFHSA-N CCOC(=O)[C@H](C)CCOC(C)C Chemical compound CCOC(=O)[C@H](C)CCOC(C)C JIUJDIXWXSYVAL-SECBINFHSA-N 0.000 description 2
- 206010007275 Carcinoid tumour Diseases 0.000 description 2
- DLGOEMSEDOSKAD-UHFFFAOYSA-N Carmustine Chemical compound ClCCNC(=O)N(N=O)CCCl DLGOEMSEDOSKAD-UHFFFAOYSA-N 0.000 description 2
- 206010007953 Central nervous system lymphoma Diseases 0.000 description 2
- 241000282693 Cercopithecidae Species 0.000 description 2
- 208000000419 Chronic Hepatitis B Diseases 0.000 description 2
- 108020004638 Circular DNA Proteins 0.000 description 2
- 229940124087 DNA topoisomerase II inhibitor Drugs 0.000 description 2
- OKKJLVBELUTLKV-MZCSYVLQSA-N Deuterated methanol Chemical compound [2H]OC([2H])([2H])[2H] OKKJLVBELUTLKV-MZCSYVLQSA-N 0.000 description 2
- 208000030820 Ebola disease Diseases 0.000 description 2
- 206010014967 Ependymoma Diseases 0.000 description 2
- 208000000461 Esophageal Neoplasms Diseases 0.000 description 2
- 208000012468 Ewing sarcoma/peripheral primitive neuroectodermal tumor Diseases 0.000 description 2
- 241000282326 Felis catus Species 0.000 description 2
- 206010016654 Fibrosis Diseases 0.000 description 2
- 241000711950 Filoviridae Species 0.000 description 2
- 241000710781 Flaviviridae Species 0.000 description 2
- GHASVSINZRGABV-UHFFFAOYSA-N Fluorouracil Chemical compound FC1=CNC(=O)NC1=O GHASVSINZRGABV-UHFFFAOYSA-N 0.000 description 2
- 208000021519 Hodgkin lymphoma Diseases 0.000 description 2
- 208000010747 Hodgkins lymphoma Diseases 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- VSNHCAURESNICA-UHFFFAOYSA-N Hydroxyurea Chemical compound NC(=O)NO VSNHCAURESNICA-UHFFFAOYSA-N 0.000 description 2
- 102100040018 Interferon alpha-2 Human genes 0.000 description 2
- 108010047761 Interferon-alpha Proteins 0.000 description 2
- 102000006992 Interferon-alpha Human genes 0.000 description 2
- 108010079944 Interferon-alpha2b Proteins 0.000 description 2
- 206010061252 Intraocular melanoma Diseases 0.000 description 2
- 206010025557 Malignant fibrous histiocytoma of bone Diseases 0.000 description 2
- 208000000932 Marburg Virus Disease Diseases 0.000 description 2
- 201000011013 Marburg hemorrhagic fever Diseases 0.000 description 2
- 208000000172 Medulloblastoma Diseases 0.000 description 2
- 208000034578 Multiple myelomas Diseases 0.000 description 2
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 2
- 238000005481 NMR spectroscopy Methods 0.000 description 2
- 208000015914 Non-Hodgkin lymphomas Diseases 0.000 description 2
- 108090001074 Nucleocapsid Proteins Proteins 0.000 description 2
- 206010030155 Oesophageal carcinoma Diseases 0.000 description 2
- 241000282579 Pan Species 0.000 description 2
- SHGAZHPCJJPHSC-UHFFFAOYSA-N Panrexin Chemical compound OC(=O)C=C(C)C=CC=C(C)C=CC1=C(C)CCCC1(C)C SHGAZHPCJJPHSC-UHFFFAOYSA-N 0.000 description 2
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Chemical compound P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- 208000006664 Precursor Cell Lymphoblastic Leukemia-Lymphoma Diseases 0.000 description 2
- YZCKVEUIGOORGS-IGMARMGPSA-N Protium Chemical compound [1H] YZCKVEUIGOORGS-IGMARMGPSA-N 0.000 description 2
- 241000720974 Protium Species 0.000 description 2
- 241001115394 Reston ebolavirus Species 0.000 description 2
- 201000000582 Retinoblastoma Diseases 0.000 description 2
- 208000000453 Skin Neoplasms Diseases 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 241001115376 Sudan ebolavirus Species 0.000 description 2
- 210000001744 T-lymphocyte Anatomy 0.000 description 2
- 241001115374 Tai Forest ebolavirus Species 0.000 description 2
- NAVMQTYZDKMPEU-UHFFFAOYSA-N Targretin Chemical compound CC1=CC(C(CCC2(C)C)(C)C)=C2C=C1C(=C)C1=CC=C(C(O)=O)C=C1 NAVMQTYZDKMPEU-UHFFFAOYSA-N 0.000 description 2
- 201000009365 Thymic carcinoma Diseases 0.000 description 2
- 239000000317 Topoisomerase II Inhibitor Substances 0.000 description 2
- 201000005969 Uveal melanoma Diseases 0.000 description 2
- 229940123627 Viral replication inhibitor Drugs 0.000 description 2
- 208000033559 Waldenström macroglobulinemia Diseases 0.000 description 2
- 125000003158 alcohol group Chemical group 0.000 description 2
- 150000001447 alkali salts Chemical class 0.000 description 2
- 125000005206 alkoxycarbonyloxymethyl group Chemical group 0.000 description 2
- 229940100198 alkylating agent Drugs 0.000 description 2
- 239000002168 alkylating agent Substances 0.000 description 2
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 2
- 125000003277 amino group Chemical group 0.000 description 2
- 238000012435 analytical chromatography Methods 0.000 description 2
- 239000003242 anti bacterial agent Substances 0.000 description 2
- 230000000340 anti-metabolite Effects 0.000 description 2
- 230000000692 anti-sense effect Effects 0.000 description 2
- 230000000259 anti-tumor effect Effects 0.000 description 2
- 229940088710 antibiotic agent Drugs 0.000 description 2
- 238000009175 antibody therapy Methods 0.000 description 2
- 229940100197 antimetabolite Drugs 0.000 description 2
- 239000002256 antimetabolite Substances 0.000 description 2
- GOLCXWYRSKYTSP-UHFFFAOYSA-N arsenic trioxide Inorganic materials O1[As]2O[As]1O2 GOLCXWYRSKYTSP-UHFFFAOYSA-N 0.000 description 2
- 238000003556 assay Methods 0.000 description 2
- RITAVMQDGBJQJZ-FMIVXFBMSA-N axitinib Chemical compound CNC(=O)C1=CC=CC=C1SC1=CC=C(C(\C=C\C=2N=CC=CC=2)=NN2)C2=C1 RITAVMQDGBJQJZ-FMIVXFBMSA-N 0.000 description 2
- VSRXQHXAPYXROS-UHFFFAOYSA-N azanide;cyclobutane-1,1-dicarboxylic acid;platinum(2+) Chemical compound [NH2-].[NH2-].[Pt+2].OC(=O)C1(C(O)=O)CCC1 VSRXQHXAPYXROS-UHFFFAOYSA-N 0.000 description 2
- 125000003785 benzimidazolyl group Chemical group N1=C(NC2=C1C=CC=C2)* 0.000 description 2
- IQFYYKKMVGJFEH-UHFFFAOYSA-N beta-L-thymidine Natural products O=C1NC(=O)C(C)=CN1C1OC(CO)C(O)C1 IQFYYKKMVGJFEH-UHFFFAOYSA-N 0.000 description 2
- 125000006580 bicyclic heterocycloalkyl group Chemical group 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 229950005993 brivanib alaninate Drugs 0.000 description 2
- 150000001649 bromium compounds Chemical class 0.000 description 2
- 229940125763 bromodomain inhibitor Drugs 0.000 description 2
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 2
- 210000000234 capsid Anatomy 0.000 description 2
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 210000003169 central nervous system Anatomy 0.000 description 2
- 208000030239 cerebral astrocytoma Diseases 0.000 description 2
- JCKYGMPEJWAADB-UHFFFAOYSA-N chlorambucil Chemical compound OC(=O)CCCC1=CC=C(N(CCCl)CCCl)C=C1 JCKYGMPEJWAADB-UHFFFAOYSA-N 0.000 description 2
- 230000007882 cirrhosis Effects 0.000 description 2
- 208000019425 cirrhosis of liver Diseases 0.000 description 2
- 229960002436 cladribine Drugs 0.000 description 2
- 229940125773 compound 10 Drugs 0.000 description 2
- 229940125782 compound 2 Drugs 0.000 description 2
- 229940126214 compound 3 Drugs 0.000 description 2
- 239000013068 control sample Substances 0.000 description 2
- 239000013256 coordination polymer Substances 0.000 description 2
- 229960000684 cytarabine Drugs 0.000 description 2
- 229960000640 dactinomycin Drugs 0.000 description 2
- DEZRYPDIMOWBDS-UHFFFAOYSA-N dcm dichloromethane Chemical compound ClCCl.ClCCl DEZRYPDIMOWBDS-UHFFFAOYSA-N 0.000 description 2
- 230000034994 death Effects 0.000 description 2
- 231100000517 death Toxicity 0.000 description 2
- DIOQZVSQGTUSAI-UHFFFAOYSA-N decane Chemical compound CCCCCCCCCC DIOQZVSQGTUSAI-UHFFFAOYSA-N 0.000 description 2
- 229960003603 decitabine Drugs 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- UXGNZZKBCMGWAZ-UHFFFAOYSA-N dimethylformamide dmf Chemical compound CN(C)C=O.CN(C)C=O UXGNZZKBCMGWAZ-UHFFFAOYSA-N 0.000 description 2
- 239000000839 emulsion Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 229960000980 entecavir Drugs 0.000 description 2
- YXPVEXCTPGULBZ-WQYNNSOESA-N entecavir hydrate Chemical compound O.C1=NC=2C(=O)NC(N)=NC=2N1[C@H]1C[C@H](O)[C@@H](CO)C1=C YXPVEXCTPGULBZ-WQYNNSOESA-N 0.000 description 2
- 201000004101 esophageal cancer Diseases 0.000 description 2
- OLAMWIPURJGSKE-UHFFFAOYSA-N et2o diethylether Chemical compound CCOCC.CCOCC OLAMWIPURJGSKE-UHFFFAOYSA-N 0.000 description 2
- LHWWETDBWVTKJO-UHFFFAOYSA-N et3n triethylamine Chemical compound CCN(CC)CC.CCN(CC)CC LHWWETDBWVTKJO-UHFFFAOYSA-N 0.000 description 2
- UYZSVGSBGCOZSU-GFCCVEGCSA-N ethyl (2R)-2-methyl-4-phenylmethoxybutanoate Chemical compound C(C1=CC=CC=C1)OCC[C@H](C(=O)OCC)C UYZSVGSBGCOZSU-GFCCVEGCSA-N 0.000 description 2
- FRENFTUDMFPZNU-JLIBHHFSSA-N ethyl (2R)-4-[[(4aR,6R,7S,7aS)-7-fluoro-6-[4-[[(4-methoxyphenyl)-diphenylmethyl]amino]-2-oxopyrimidin-1-yl]-2-oxo-4a,6,7,7a-tetrahydro-4H-thieno[3,2-d][1,3,2]dioxaphosphinin-2-yl]oxy]-2-methylbutanoate Chemical compound F[C@@H]1[C@@H](S[C@H]2[C@H]1OP(OC2)(=O)OCC[C@H](C(=O)OCC)C)N1C(N=C(C=C1)NC(C1=CC=CC=C1)(C1=CC=CC=C1)C1=CC=C(C=C1)OC)=O FRENFTUDMFPZNU-JLIBHHFSSA-N 0.000 description 2
- YARDKGCSTRNORB-ZCFIWIBFSA-N ethyl (2R)-4-hydroxy-2-methylbutanoate Chemical compound OCC[C@H](C(=O)OCC)C YARDKGCSTRNORB-ZCFIWIBFSA-N 0.000 description 2
- DEFVIWRASFVYLL-UHFFFAOYSA-N ethylene glycol bis(2-aminoethyl)tetraacetic acid Chemical compound OC(=O)CN(CC(O)=O)CCOCCOCCN(CC(O)=O)CC(O)=O DEFVIWRASFVYLL-UHFFFAOYSA-N 0.000 description 2
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 2
- 229960005420 etoposide Drugs 0.000 description 2
- LIQODXNTTZAGID-OCBXBXKTSA-N etoposide phosphate Chemical compound COC1=C(OP(O)(O)=O)C(OC)=CC([C@@H]2C3=CC=4OCOC=4C=C3[C@@H](O[C@H]3[C@@H]([C@@H](O)[C@@H]4O[C@H](C)OC[C@H]4O3)O)[C@@H]3[C@@H]2C(OC3)=O)=C1 LIQODXNTTZAGID-OCBXBXKTSA-N 0.000 description 2
- 229960000752 etoposide phosphate Drugs 0.000 description 2
- 208000024519 eye neoplasm Diseases 0.000 description 2
- ODKNJVUHOIMIIZ-RRKCRQDMSA-N floxuridine Chemical compound C1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C(F)=C1 ODKNJVUHOIMIIZ-RRKCRQDMSA-N 0.000 description 2
- GIUYCYHIANZCFB-FJFJXFQQSA-N fludarabine phosphate Chemical compound C1=NC=2C(N)=NC(F)=NC=2N1[C@@H]1O[C@H](COP(O)(O)=O)[C@@H](O)[C@@H]1O GIUYCYHIANZCFB-FJFJXFQQSA-N 0.000 description 2
- 235000003599 food sweetener Nutrition 0.000 description 2
- 239000012634 fragment Substances 0.000 description 2
- IRSCQMHQWWYFCW-UHFFFAOYSA-N ganciclovir Chemical compound O=C1NC(N)=NC2=C1N=CN2COC(CO)CO IRSCQMHQWWYFCW-UHFFFAOYSA-N 0.000 description 2
- 239000008187 granular material Substances 0.000 description 2
- 229940003183 hexalen Drugs 0.000 description 2
- 208000029824 high grade glioma Diseases 0.000 description 2
- HOMGKSMUEGBAAB-UHFFFAOYSA-N ifosfamide Chemical compound ClCCNP1(=O)OCCCN1CCCl HOMGKSMUEGBAAB-UHFFFAOYSA-N 0.000 description 2
- 210000002865 immune cell Anatomy 0.000 description 2
- 238000001727 in vivo Methods 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 229960003507 interferon alfa-2b Drugs 0.000 description 2
- 150000004694 iodide salts Chemical class 0.000 description 2
- 210000004153 islets of langerhan Anatomy 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 229960005280 isotretinoin Drugs 0.000 description 2
- ZLVXBBHTMQJRSX-VMGNSXQWSA-N jdtic Chemical compound C1([C@]2(C)CCN(C[C@@H]2C)C[C@H](C(C)C)NC(=O)[C@@H]2NCC3=CC(O)=CC=C3C2)=CC=CC(O)=C1 ZLVXBBHTMQJRSX-VMGNSXQWSA-N 0.000 description 2
- 210000000244 kidney pelvis Anatomy 0.000 description 2
- 208000012987 lip and oral cavity carcinoma Diseases 0.000 description 2
- 108010046177 locteron Proteins 0.000 description 2
- 239000000314 lubricant Substances 0.000 description 2
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 2
- 208000030883 malignant astrocytoma Diseases 0.000 description 2
- 201000011614 malignant glioma Diseases 0.000 description 2
- 238000004949 mass spectrometry Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 229960001924 melphalan Drugs 0.000 description 2
- 229960000485 methotrexate Drugs 0.000 description 2
- BKBBTCORRZMASO-ZOWNYOTGSA-M methotrexate monosodium Chemical compound [Na+].C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C([O-])=O)C=C1 BKBBTCORRZMASO-ZOWNYOTGSA-M 0.000 description 2
- 229960003058 methotrexate sodium Drugs 0.000 description 2
- 229960004857 mitomycin Drugs 0.000 description 2
- 208000025113 myeloid leukemia Diseases 0.000 description 2
- 201000000050 myeloid neoplasm Diseases 0.000 description 2
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 208000018795 nasal cavity and paranasal sinus carcinoma Diseases 0.000 description 2
- 229940080607 nexavar Drugs 0.000 description 2
- 231100000252 nontoxic Toxicity 0.000 description 2
- 230000003000 nontoxic effect Effects 0.000 description 2
- 201000008106 ocular cancer Diseases 0.000 description 2
- 201000002575 ocular melanoma Diseases 0.000 description 2
- 150000007530 organic bases Chemical class 0.000 description 2
- 201000008968 osteosarcoma Diseases 0.000 description 2
- 229940127084 other anti-cancer agent Drugs 0.000 description 2
- 230000002611 ovarian Effects 0.000 description 2
- 125000003854 p-chlorophenyl group Chemical group [H]C1=C([H])C(*)=C([H])C([H])=C1Cl 0.000 description 2
- NXJCBFBQEVOTOW-UHFFFAOYSA-L palladium(2+);dihydroxide Chemical compound O[Pd]O NXJCBFBQEVOTOW-UHFFFAOYSA-L 0.000 description 2
- 238000007911 parenteral administration Methods 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- WBXPDJSOTKVWSJ-ZDUSSCGKSA-N pemetrexed Chemical compound C=1NC=2NC(N)=NC(=O)C=2C=1CCC1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 WBXPDJSOTKVWSJ-ZDUSSCGKSA-N 0.000 description 2
- FPVKHBSQESCIEP-JQCXWYLXSA-N pentostatin Chemical compound C1[C@H](O)[C@@H](CO)O[C@H]1N1C(N=CNC[C@H]2O)=C2N=C1 FPVKHBSQESCIEP-JQCXWYLXSA-N 0.000 description 2
- XHXFXVLFKHQFAL-UHFFFAOYSA-N phosphoryl trichloride Chemical compound ClP(Cl)(Cl)=O XHXFXVLFKHQFAL-UHFFFAOYSA-N 0.000 description 2
- 208000010626 plasma cell neoplasm Diseases 0.000 description 2
- 229940063179 platinol Drugs 0.000 description 2
- 238000002953 preparative HPLC Methods 0.000 description 2
- 208000016800 primary central nervous system lymphoma Diseases 0.000 description 2
- CPTBDICYNRMXFX-UHFFFAOYSA-N procarbazine Chemical compound CNNCC1=CC=C(C(=O)NC(C)C)C=C1 CPTBDICYNRMXFX-UHFFFAOYSA-N 0.000 description 2
- ILLQEDUYSGSFIW-CYBMUJFWSA-N propan-2-yl (2R)-2-methyl-4-phenylmethoxybutanoate Chemical compound C(C1=CC=CC=C1)OCC[C@H](C(=O)OC(C)C)C ILLQEDUYSGSFIW-CYBMUJFWSA-N 0.000 description 2
- FXHGWUWEFCRUKF-KNEHSRHWSA-N propan-2-yl (2R)-4-[[(4aR,6R,7aR)-6-(4-benzamido-2-oxopyrimidin-1-yl)-7,7-difluoro-2-oxo-4,4a,6,7a-tetrahydrofuro[3,2-d][1,3,2]dioxaphosphinin-2-yl]oxy]-2-methylbutanoate Chemical compound C(C1=CC=CC=C1)(=O)NC1=NC(N(C=C1)[C@H]1C([C@@H]2OP(OC[C@H]2O1)(=O)OCC[C@H](C(=O)OC(C)C)C)(F)F)=O FXHGWUWEFCRUKF-KNEHSRHWSA-N 0.000 description 2
- FJZHYKAXYCYLJM-ZETCQYMHSA-N propan-2-yl (2S)-4-hydroxy-2-methylbutanoate Chemical compound OCC[C@@H](C(=O)OC(C)C)C FJZHYKAXYCYLJM-ZETCQYMHSA-N 0.000 description 2
- 125000006239 protecting group Chemical group 0.000 description 2
- 125000003373 pyrazinyl group Chemical group 0.000 description 2
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 2
- GPKJTRJOBQGKQK-UHFFFAOYSA-N quinacrine Chemical compound C1=C(OC)C=C2C(NC(C)CCCN(CC)CC)=C(C=CC(Cl)=C3)C3=NC2=C1 GPKJTRJOBQGKQK-UHFFFAOYSA-N 0.000 description 2
- 108091006082 receptor inhibitors Proteins 0.000 description 2
- 230000000306 recurrent effect Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 239000010948 rhodium Substances 0.000 description 2
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- MIXCUJKCXRNYFM-UHFFFAOYSA-M sodium;diiodomethanesulfonate;n-propyl-n-[2-(2,4,6-trichlorophenoxy)ethyl]imidazole-1-carboxamide Chemical compound [Na+].[O-]S(=O)(=O)C(I)I.C1=CN=CN1C(=O)N(CCC)CCOC1=C(Cl)C=C(Cl)C=C1Cl MIXCUJKCXRNYFM-UHFFFAOYSA-M 0.000 description 2
- 229960003787 sorafenib Drugs 0.000 description 2
- 230000006641 stabilisation Effects 0.000 description 2
- 238000011105 stabilization Methods 0.000 description 2
- 210000002784 stomach Anatomy 0.000 description 2
- ZSJLQEPLLKMAKR-GKHCUFPYSA-N streptozocin Chemical compound O=NN(C)C(=O)N[C@H]1[C@@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O ZSJLQEPLLKMAKR-GKHCUFPYSA-N 0.000 description 2
- 125000004434 sulfur atom Chemical group 0.000 description 2
- 239000000829 suppository Substances 0.000 description 2
- 239000012730 sustained-release form Substances 0.000 description 2
- 239000003765 sweetening agent Substances 0.000 description 2
- 229960005311 telbivudine Drugs 0.000 description 2
- 229960004964 temozolomide Drugs 0.000 description 2
- CIHOLLKRGTVIJN-UHFFFAOYSA-N tert‐butyl hydroperoxide Chemical compound CC(C)(C)OO CIHOLLKRGTVIJN-UHFFFAOYSA-N 0.000 description 2
- WHRNULOCNSKMGB-UHFFFAOYSA-N tetrahydrofuran thf Chemical compound C1CCOC1.C1CCOC1 WHRNULOCNSKMGB-UHFFFAOYSA-N 0.000 description 2
- CZDYPVPMEAXLPK-UHFFFAOYSA-N tetramethylsilane Chemical compound C[Si](C)(C)C CZDYPVPMEAXLPK-UHFFFAOYSA-N 0.000 description 2
- 229940021747 therapeutic vaccine Drugs 0.000 description 2
- WYWHKKSPHMUBEB-UHFFFAOYSA-N tioguanine Chemical compound N1C(N)=NC(=S)C2=C1N=CN2 WYWHKKSPHMUBEB-UHFFFAOYSA-N 0.000 description 2
- 231100000419 toxicity Toxicity 0.000 description 2
- 230000001988 toxicity Effects 0.000 description 2
- 206010044412 transitional cell carcinoma Diseases 0.000 description 2
- 229960001727 tretinoin Drugs 0.000 description 2
- 239000001226 triphosphate Substances 0.000 description 2
- 235000011178 triphosphate Nutrition 0.000 description 2
- 208000018417 undifferentiated high grade pleomorphic sarcoma of bone Diseases 0.000 description 2
- 210000000626 ureter Anatomy 0.000 description 2
- 230000029812 viral genome replication Effects 0.000 description 2
- 239000001993 wax Substances 0.000 description 2
- LSPHULWDVZXLIL-UHFFFAOYSA-N (+/-)-Camphoric acid Chemical class CC1(C)C(C(O)=O)CCC1(C)C(O)=O LSPHULWDVZXLIL-UHFFFAOYSA-N 0.000 description 1
- VUTUHLLWFPRWMT-QMDOQEJBSA-M (1z,5z)-cycloocta-1,5-diene;rhodium;trifluoromethanesulfonate Chemical compound [Rh].C\1C\C=C/CC\C=C/1.C\1C\C=C/CC\C=C/1.[O-]S(=O)(=O)C(F)(F)F VUTUHLLWFPRWMT-QMDOQEJBSA-M 0.000 description 1
- UVQYBUYGFBXQGO-SCSAIBSYSA-N (2r)-4-methoxy-2-methyl-4-oxobutanoic acid Chemical compound COC(=O)C[C@@H](C)C(O)=O UVQYBUYGFBXQGO-SCSAIBSYSA-N 0.000 description 1
- IRZRJANZDIOOIF-GAJNKVMBSA-N (2r,3r,4r,5r)-2-(4-aminopyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)-3-methyloxolane-3,4-diol Chemical compound C[C@@]1(O)[C@H](O)[C@@H](CO)O[C@H]1N1C2=NC=NC(N)=C2C=C1 IRZRJANZDIOOIF-GAJNKVMBSA-N 0.000 description 1
- PAORVUMOXXAMPL-SECBINFHSA-N (2s)-3,3,3-trifluoro-2-methoxy-2-phenylpropanoyl chloride Chemical compound CO[C@](C(Cl)=O)(C(F)(F)F)C1=CC=CC=C1 PAORVUMOXXAMPL-SECBINFHSA-N 0.000 description 1
- OLXZPDWKRNYJJZ-VQVTYTSYSA-N (2s,3r,5s)-5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-ol Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1C[C@@H](O)[C@H](CO)O1 OLXZPDWKRNYJJZ-VQVTYTSYSA-N 0.000 description 1
- IYCCJLQFMSHTLK-DOJUIDEBSA-N (2s,3s,4s,5s)-1-[2-[(2s,3s,4s,5s)-3,4-dihydroxy-2,5-dimethylphospholan-1-yl]phenyl]-2,5-dimethylphospholane-3,4-diol;trifluoromethanesulfonic acid Chemical compound OS(=O)(=O)C(F)(F)F.OS(=O)(=O)C(F)(F)F.C[C@H]1[C@@H](O)[C@H](O)[C@H](C)P1C1=CC=CC=C1P1[C@@H](C)[C@@H](O)[C@H](O)[C@@H]1C IYCCJLQFMSHTLK-DOJUIDEBSA-N 0.000 description 1
- QFLWZFQWSBQYPS-AWRAUJHKSA-N (3S)-3-[[(2S)-2-[[(2S)-2-[5-[(3aS,6aR)-2-oxo-1,3,3a,4,6,6a-hexahydrothieno[3,4-d]imidazol-4-yl]pentanoylamino]-3-methylbutanoyl]amino]-3-(4-hydroxyphenyl)propanoyl]amino]-4-[1-bis(4-chlorophenoxy)phosphorylbutylamino]-4-oxobutanoic acid Chemical compound CCCC(NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](Cc1ccc(O)cc1)NC(=O)[C@@H](NC(=O)CCCCC1SC[C@@H]2NC(=O)N[C@H]12)C(C)C)P(=O)(Oc1ccc(Cl)cc1)Oc1ccc(Cl)cc1 QFLWZFQWSBQYPS-AWRAUJHKSA-N 0.000 description 1
- FPVKHBSQESCIEP-UHFFFAOYSA-N (8S)-3-(2-deoxy-beta-D-erythro-pentofuranosyl)-3,6,7,8-tetrahydroimidazo[4,5-d][1,3]diazepin-8-ol Natural products C1C(O)C(CO)OC1N1C(NC=NCC2O)=C2N=C1 FPVKHBSQESCIEP-UHFFFAOYSA-N 0.000 description 1
- 125000004191 (C1-C6) alkoxy group Chemical group 0.000 description 1
- 125000003161 (C1-C6) alkylene group Chemical group 0.000 description 1
- 125000005862 (C1-C6)alkanoyl group Chemical group 0.000 description 1
- 125000005859 (C1-C6)alkanoyloxymethyl group Chemical group 0.000 description 1
- 125000004209 (C1-C8) alkyl group Chemical group 0.000 description 1
- 125000005845 (C2-C12)alkanoyloxymethyl group Chemical group 0.000 description 1
- 125000006272 (C3-C7) cycloalkyl group Chemical group 0.000 description 1
- 125000004514 1,2,4-thiadiazolyl group Chemical group 0.000 description 1
- 125000004530 1,2,4-triazinyl group Chemical group N1=NC(=NC=C1)* 0.000 description 1
- 125000005940 1,4-dioxanyl group Chemical group 0.000 description 1
- HJTAZXHBEBIQQX-UHFFFAOYSA-N 1,5-bis(chloromethyl)naphthalene Chemical compound C1=CC=C2C(CCl)=CC=CC2=C1CCl HJTAZXHBEBIQQX-UHFFFAOYSA-N 0.000 description 1
- 125000005860 1-((C1-C6)alkanoyloxy)ethyl group Chemical group 0.000 description 1
- 125000005851 1-(N-(alkoxycarbonyl)amino)ethyl group Chemical group 0.000 description 1
- 125000005846 1-(alkanoyloxy)ethyl group Chemical group 0.000 description 1
- 125000005848 1-(alkoxycarbonyloxy)ethyl group Chemical group 0.000 description 1
- WZYHABYJDHJMAY-INVSNAKLSA-N 1-[(2R,3S,4S,5R)-3-fluoro-4-hydroxy-5-(hydroxymethyl)thiolan-2-yl]-4-[[(4-methoxyphenyl)-diphenylmethyl]amino]pyrimidin-2-one Chemical compound F[C@@H]1[C@@H](S[C@@H]([C@H]1O)CO)N1C(N=C(C=C1)NC(C1=CC=CC=C1)(C1=CC=CC=C1)C1=CC=C(C=C1)OC)=O WZYHABYJDHJMAY-INVSNAKLSA-N 0.000 description 1
- ASMVHTPAWRFPDF-OBDYRVMHSA-N 1-[(2S,4R,5S)-4-hydroxy-5-(hydroxymethyl)oxolan-2-yl]-4-[[(4-methoxyphenyl)-diphenylmethyl]amino]pyrimidin-2-one Chemical compound COC1=CC=C(C=C1)C(NC1=NC(=O)N(C=C1)[C@@H]1C[C@@H](O)[C@H](CO)O1)(C1=CC=CC=C1)C1=CC=CC=C1 ASMVHTPAWRFPDF-OBDYRVMHSA-N 0.000 description 1
- JBWYRBLDOOOJEU-UHFFFAOYSA-N 1-[chloro-(4-methoxyphenyl)-phenylmethyl]-4-methoxybenzene Chemical compound C1=CC(OC)=CC=C1C(Cl)(C=1C=CC(OC)=CC=1)C1=CC=CC=C1 JBWYRBLDOOOJEU-UHFFFAOYSA-N 0.000 description 1
- VFWCMGCRMGJXDK-UHFFFAOYSA-N 1-chlorobutane Chemical class CCCCCl VFWCMGCRMGJXDK-UHFFFAOYSA-N 0.000 description 1
- VUQPJRPDRDVQMN-UHFFFAOYSA-N 1-chlorooctadecane Chemical class CCCCCCCCCCCCCCCCCCCl VUQPJRPDRDVQMN-UHFFFAOYSA-N 0.000 description 1
- 125000005847 1-methyl-1-(alkanoyloxy)-ethyl group Chemical group 0.000 description 1
- 125000005849 1-methyl-1-(alkoxycarbonyloxy)ethyl group Chemical group 0.000 description 1
- IXPNQXFRVYWDDI-UHFFFAOYSA-N 1-methyl-2,4-dioxo-1,3-diazinane-5-carboximidamide Chemical compound CN1CC(C(N)=N)C(=O)NC1=O IXPNQXFRVYWDDI-UHFFFAOYSA-N 0.000 description 1
- 125000004214 1-pyrrolidinyl group Chemical group [H]C1([H])N(*)C([H])([H])C([H])([H])C1([H])[H] 0.000 description 1
- NMIZONYLXCOHEF-UHFFFAOYSA-N 1h-imidazole-2-carboxamide Chemical compound NC(=O)C1=NC=CN1 NMIZONYLXCOHEF-UHFFFAOYSA-N 0.000 description 1
- XGDRLCRGKUCBQL-UHFFFAOYSA-N 1h-imidazole-4,5-dicarbonitrile Chemical compound N#CC=1N=CNC=1C#N XGDRLCRGKUCBQL-UHFFFAOYSA-N 0.000 description 1
- NOGFHTGYPKWWRX-UHFFFAOYSA-N 2,2,6,6-tetramethyloxan-4-one Chemical compound CC1(C)CC(=O)CC(C)(C)O1 NOGFHTGYPKWWRX-UHFFFAOYSA-N 0.000 description 1
- NBWRJAOOMGASJP-UHFFFAOYSA-N 2-(3,5-diphenyl-1h-tetrazol-1-ium-2-yl)-4,5-dimethyl-1,3-thiazole;bromide Chemical compound [Br-].S1C(C)=C(C)N=C1N1N(C=2C=CC=CC=2)N=C(C=2C=CC=CC=2)[NH2+]1 NBWRJAOOMGASJP-UHFFFAOYSA-N 0.000 description 1
- VXFFGMBXDYAKEO-UHFFFAOYSA-N 2-[(2-amino-6-ethoxypurin-9-yl)methoxy]propane-1,3-diol Chemical compound CCOC1=NC(N)=NC2=C1N=CN2COC(CO)CO VXFFGMBXDYAKEO-UHFFFAOYSA-N 0.000 description 1
- MLONYBFKXHEPCD-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol Chemical compound OCC(N)(CO)CO.OCC(N)(CO)CO MLONYBFKXHEPCD-UHFFFAOYSA-N 0.000 description 1
- 125000000069 2-butynyl group Chemical group [H]C([H])([H])C#CC([H])([H])* 0.000 description 1
- AFXKCBFBGDUFAM-UHFFFAOYSA-N 2-methylpropan-2-amine;hydrofluoride Chemical compound [F-].CC(C)(C)[NH3+] AFXKCBFBGDUFAM-UHFFFAOYSA-N 0.000 description 1
- WMPPDTMATNBGJN-UHFFFAOYSA-N 2-phenylethylbromide Chemical class BrCCC1=CC=CC=C1 WMPPDTMATNBGJN-UHFFFAOYSA-N 0.000 description 1
- AOJJSUZBOXZQNB-VTZDEGQISA-N 4'-epidoxorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@@H](O)[C@H](C)O1 AOJJSUZBOXZQNB-VTZDEGQISA-N 0.000 description 1
- APRZHQXAAWPYHS-UHFFFAOYSA-N 4-[5-[3-(carboxymethoxy)phenyl]-3-(4,5-dimethyl-1,3-thiazol-2-yl)tetrazol-3-ium-2-yl]benzenesulfonate Chemical compound S1C(C)=C(C)N=C1[N+]1=NC(C=2C=C(OCC(O)=O)C=CC=2)=NN1C1=CC=C(S([O-])(=O)=O)C=C1 APRZHQXAAWPYHS-UHFFFAOYSA-N 0.000 description 1
- ZHSKUOZOLHMKEA-UHFFFAOYSA-N 4-[5-[bis(2-chloroethyl)amino]-1-methylbenzimidazol-2-yl]butanoic acid;hydron;chloride Chemical compound Cl.ClCCN(CCCl)C1=CC=C2N(C)C(CCCC(O)=O)=NC2=C1 ZHSKUOZOLHMKEA-UHFFFAOYSA-N 0.000 description 1
- 229960000549 4-dimethylaminophenol Drugs 0.000 description 1
- OIYTYGOUZOARSH-UHFFFAOYSA-N 4-methoxy-2-methylidene-4-oxobutanoic acid Chemical compound COC(=O)CC(=C)C(O)=O OIYTYGOUZOARSH-UHFFFAOYSA-N 0.000 description 1
- NMUSYJAQQFHJEW-UHFFFAOYSA-N 5-Azacytidine Natural products O=C1N=C(N)N=CN1C1C(O)C(O)C(CO)O1 NMUSYJAQQFHJEW-UHFFFAOYSA-N 0.000 description 1
- SHGAZHPCJJPHSC-ZVCIMWCZSA-N 9-cis-retinoic acid Chemical compound OC(=O)/C=C(\C)/C=C/C=C(/C)\C=C\C1=C(C)CCCC1(C)C SHGAZHPCJJPHSC-ZVCIMWCZSA-N 0.000 description 1
- 208000002008 AIDS-Related Lymphoma Diseases 0.000 description 1
- 206010059193 Acute hepatitis B Diseases 0.000 description 1
- 208000024893 Acute lymphoblastic leukemia Diseases 0.000 description 1
- 208000014697 Acute lymphocytic leukaemia Diseases 0.000 description 1
- 208000031261 Acute myeloid leukaemia Diseases 0.000 description 1
- 102000009027 Albumins Human genes 0.000 description 1
- 108010088751 Albumins Proteins 0.000 description 1
- 206010061424 Anal cancer Diseases 0.000 description 1
- 208000007860 Anus Neoplasms Diseases 0.000 description 1
- 101100452478 Arabidopsis thaliana DHAD gene Proteins 0.000 description 1
- 101100096578 Arabidopsis thaliana SQD2 gene Proteins 0.000 description 1
- 239000004475 Arginine Substances 0.000 description 1
- 206010060971 Astrocytoma malignant Diseases 0.000 description 1
- 208000010839 B-cell chronic lymphocytic leukemia Diseases 0.000 description 1
- XRIBTYXMWMXATK-UHFFFAOYSA-N BCOC(CO)CO Chemical compound BCOC(CO)CO XRIBTYXMWMXATK-UHFFFAOYSA-N 0.000 description 1
- 208000032791 BCR-ABL1 positive chronic myelogenous leukemia Diseases 0.000 description 1
- 206010005003 Bladder cancer Diseases 0.000 description 1
- 108010006654 Bleomycin Proteins 0.000 description 1
- 102000004506 Blood Proteins Human genes 0.000 description 1
- 108010017384 Blood Proteins Proteins 0.000 description 1
- 206010005949 Bone cancer Diseases 0.000 description 1
- 208000018084 Bone neoplasm Diseases 0.000 description 1
- 206010006143 Brain stem glioma Diseases 0.000 description 1
- 102000001805 Bromodomains Human genes 0.000 description 1
- 108050009021 Bromodomains Proteins 0.000 description 1
- UFKLYTOEMRFKAD-SHTZXODSSA-N C1C[C@@H](OC)CC[C@@H]1N1C2=NC(C=3C=NC(=CC=3)C(C)(C)O)=CN=C2NCC1=O Chemical compound C1C[C@@H](OC)CC[C@@H]1N1C2=NC(C=3C=NC(=CC=3)C(C)(C)O)=CN=C2NCC1=O UFKLYTOEMRFKAD-SHTZXODSSA-N 0.000 description 1
- PBKQVQYYITZDBK-GSSDQCNTSA-N C=C(CC(=O)OC)C(=O)O.CCOC(=O)[C@H](C)CCO.COC(=O)C[C@@H](C)C(=O)O.C[C@H](CCO)C(=O)O Chemical compound C=C(CC(=O)OC)C(=O)O.CCOC(=O)[C@H](C)CCO.COC(=O)C[C@@H](C)C(=O)O.C[C@H](CCO)C(=O)O PBKQVQYYITZDBK-GSSDQCNTSA-N 0.000 description 1
- GXDILFJEPQAJIE-FRWDULLESA-N C=C(NC1=NC(=O)N([C@@H]2O[C@@H]3COP(=O)(OCC[C@@H](C)C(=O)OC(C)C)O[C@H]3C2(F)F)C=C1)C1=CC=CC=C1.CCOC(=O)[C@@H](C)CCOP1(=O)OCC(OCN2C=NC3=C2N=C(N)N=C3OCC)CO1.CCOC(=O)[C@@H](C)CCOP1(=O)OCC(OCN2C=NC3=C2N=C(N)N=C3OCC)CO1.CCOC(=O)[C@@H](C)CCOP1(=O)OCC(OCN2C=NC3=C2N=C(N)N=C3OCC)CO1 Chemical compound C=C(NC1=NC(=O)N([C@@H]2O[C@@H]3COP(=O)(OCC[C@@H](C)C(=O)OC(C)C)O[C@H]3C2(F)F)C=C1)C1=CC=CC=C1.CCOC(=O)[C@@H](C)CCOP1(=O)OCC(OCN2C=NC3=C2N=C(N)N=C3OCC)CO1.CCOC(=O)[C@@H](C)CCOP1(=O)OCC(OCN2C=NC3=C2N=C(N)N=C3OCC)CO1.CCOC(=O)[C@@H](C)CCOP1(=O)OCC(OCN2C=NC3=C2N=C(N)N=C3OCC)CO1 GXDILFJEPQAJIE-FRWDULLESA-N 0.000 description 1
- BRMYOGJENSGMOM-UHFFFAOYSA-N C=C1CC(C(C)C)C1 Chemical compound C=C1CC(C(C)C)C1 BRMYOGJENSGMOM-UHFFFAOYSA-N 0.000 description 1
- YGRGPVRQKQTJIJ-TVVVURFMSA-O CC(=O)[O-].CC1=NC(=O)N([C@@H]2C[C@@H](O)[C@H](CO)O2)C=C1.CCOC(=O)C(C)CCOP(N(C(C)C)C(C)C)N(C(C)C)C(C)C.CCOC(=O)C(C)CCOP1(=O)OC[C@@H]2O[C@H](N3C=CC(C)=NC3=O)C[C@H]2O1.CCOC(=O)C(C)CCOP1(=O)OC[C@@H]2O[C@H](N3C=CC([NH3+])=NC3=O)C[C@H]2O1 Chemical compound CC(=O)[O-].CC1=NC(=O)N([C@@H]2C[C@@H](O)[C@H](CO)O2)C=C1.CCOC(=O)C(C)CCOP(N(C(C)C)C(C)C)N(C(C)C)C(C)C.CCOC(=O)C(C)CCOP1(=O)OC[C@@H]2O[C@H](N3C=CC(C)=NC3=O)C[C@H]2O1.CCOC(=O)C(C)CCOP1(=O)OC[C@@H]2O[C@H](N3C=CC([NH3+])=NC3=O)C[C@H]2O1 YGRGPVRQKQTJIJ-TVVVURFMSA-O 0.000 description 1
- XUPNEANFKKHZIE-UHFFFAOYSA-N CC(C)C1CO[Si](C)(C)OC1C(C)C.CC(C)C1C[Si](C)(C)CC1C(C)C.CC(C)C1C[Si](C)(C)CCN1C(C)C.CC(C)C1C[Si](C)(C)CN1C(C)C.CC(C)C1C[Si](C)(C)OC1C(C)C.CC(C)C1C[Si](F)(F)CC1C(C)C.CC(C)C1C[Si](F)(F)CN1C(C)C.CC[Si]1(CC)CC(C(C)C)N(C(C)C)C1 Chemical compound CC(C)C1CO[Si](C)(C)OC1C(C)C.CC(C)C1C[Si](C)(C)CC1C(C)C.CC(C)C1C[Si](C)(C)CCN1C(C)C.CC(C)C1C[Si](C)(C)CN1C(C)C.CC(C)C1C[Si](C)(C)OC1C(C)C.CC(C)C1C[Si](F)(F)CC1C(C)C.CC(C)C1C[Si](F)(F)CN1C(C)C.CC[Si]1(CC)CC(C(C)C)N(C(C)C)C1 XUPNEANFKKHZIE-UHFFFAOYSA-N 0.000 description 1
- DAIRCXQRQBOIQA-ZBEKEMSCSA-N CC(C)CC(=O)[C@H](C)CCOP1(=O)OC[C@H]2O[C@@H](N3C=CC(NC(=O)C4=CC=CC=C4)=NC3=O)C(F)(F)[C@@H]2O1 Chemical compound CC(C)CC(=O)[C@H](C)CCOP1(=O)OC[C@H]2O[C@@H](N3C=CC(NC(=O)C4=CC=CC=C4)=NC3=O)C(F)(F)[C@@H]2O1 DAIRCXQRQBOIQA-ZBEKEMSCSA-N 0.000 description 1
- TXCOQVSIQVYERN-KSDMDESDSA-N CC(C)OC(=O)C(C)CCOP(N(C(C)C)C(C)C)N(C(C)C)C(C)C.CC1=CN([C@H]2C[C@@H]3OP(=O)(OCCC(C)C(=O)OC(C)C)OC[C@H]3O2)C(=O)NC1=O.CC1=CN([C@H]2C[C@H](O)[C@@H](CO)O2)C(=O)NC1=O Chemical compound CC(C)OC(=O)C(C)CCOP(N(C(C)C)C(C)C)N(C(C)C)C(C)C.CC1=CN([C@H]2C[C@@H]3OP(=O)(OCCC(C)C(=O)OC(C)C)OC[C@H]3O2)C(=O)NC1=O.CC1=CN([C@H]2C[C@H](O)[C@@H](CO)O2)C(=O)NC1=O TXCOQVSIQVYERN-KSDMDESDSA-N 0.000 description 1
- YTYXSHBUFXKXPW-DEOMHUIPSA-N CC(C)OC(=O)[C@@H](C)CCO.CC(C)OC(=O)[C@@H](C)CCOCC1=CC=CC=C1.C[C@@H](CCOCC1=CC=CC=C1)C(=O)O Chemical compound CC(C)OC(=O)[C@@H](C)CCO.CC(C)OC(=O)[C@@H](C)CCOCC1=CC=CC=C1.C[C@@H](CCOCC1=CC=CC=C1)C(=O)O YTYXSHBUFXKXPW-DEOMHUIPSA-N 0.000 description 1
- IZFAJHLAFHSZDM-KZBZQLNVSA-N CC(C)OC(=O)[C@@H](C)CCOP(N(C(C)C)C(C)C)N(C(C)C)C(C)C.CC(C)OC(=O)[C@@H](C)CCOP1(=O)OC[C@H]2O[C@@H](N3C=NC4=C3N=C(Cl)N=C4N)[C@@H](F)[C@@H]2O1.NC1=NC(Cl)=NC2=C1N=CN2[C@@H]1O[C@H](CO)[C@@H](O)[C@@H]1F Chemical compound CC(C)OC(=O)[C@@H](C)CCOP(N(C(C)C)C(C)C)N(C(C)C)C(C)C.CC(C)OC(=O)[C@@H](C)CCOP1(=O)OC[C@H]2O[C@@H](N3C=NC4=C3N=C(Cl)N=C4N)[C@@H](F)[C@@H]2O1.NC1=NC(Cl)=NC2=C1N=CN2[C@@H]1O[C@H](CO)[C@@H](O)[C@@H]1F IZFAJHLAFHSZDM-KZBZQLNVSA-N 0.000 description 1
- RRAQNKKRSGXTFU-GKKPJONXSA-N CC(C)OC(=O)[C@@H](C)CCOP(N(C(C)C)C(C)C)N(C(C)C)C(C)C.CC(C)OC(=O)[C@H](C)CCOP1(=O)OC[C@H]2S[C@@H](N3C=NC4=C3N=C(Cl)N=C4N)[C@@H](F)[C@@H]2O1.NC1=NC(Cl)=NC2=C1N=CN2[C@H]1C[C@H](O)[C@@H](CO)O1 Chemical compound CC(C)OC(=O)[C@@H](C)CCOP(N(C(C)C)C(C)C)N(C(C)C)C(C)C.CC(C)OC(=O)[C@H](C)CCOP1(=O)OC[C@H]2S[C@@H](N3C=NC4=C3N=C(Cl)N=C4N)[C@@H](F)[C@@H]2O1.NC1=NC(Cl)=NC2=C1N=CN2[C@H]1C[C@H](O)[C@@H](CO)O1 RRAQNKKRSGXTFU-GKKPJONXSA-N 0.000 description 1
- YTYXSHBUFXKXPW-MWCMMYSISA-N CC(C)OC(=O)[C@H](C)CCO.CC(C)OC(=O)[C@H](C)CCOCC1=CC=CC=C1.C[C@H](CCOCC1=CC=CC=C1)C(=O)O Chemical compound CC(C)OC(=O)[C@H](C)CCO.CC(C)OC(=O)[C@H](C)CCOCC1=CC=CC=C1.C[C@H](CCOCC1=CC=CC=C1)C(=O)O YTYXSHBUFXKXPW-MWCMMYSISA-N 0.000 description 1
- ZYXHNPPEODYGPO-CVMRRKOESA-N CC(C)OC(=O)[C@H](C)CCOP(=O)(Cl)Cl.CC(C)OC(=O)[C@H](C)CCOP1(=O)OC[C@H]2S[C@@H](N3C=CC(N)=NC3=O)[C@@H](F)[C@@H]2O1.COC1=CC=C(C(NC2=NC(=O)N([C@@H]3S[C@@H]4COP(=O)(OCC[C@@H](C)C(=O)OC(C)C)O[C@H]4[C@@H]3F)C=C2)(C2=CC=CC=C2)C2=CC=CC=C2)C=C1.COC1=CC=C(C(NC2=NC(=O)N([C@@H]3S[C@H](CO)[C@@H](O)[C@@H]3F)C=C2)(C2=CC=CC=C2)C2=CC=CC=C2)C=C1 Chemical compound CC(C)OC(=O)[C@H](C)CCOP(=O)(Cl)Cl.CC(C)OC(=O)[C@H](C)CCOP1(=O)OC[C@H]2S[C@@H](N3C=CC(N)=NC3=O)[C@@H](F)[C@@H]2O1.COC1=CC=C(C(NC2=NC(=O)N([C@@H]3S[C@@H]4COP(=O)(OCC[C@@H](C)C(=O)OC(C)C)O[C@H]4[C@@H]3F)C=C2)(C2=CC=CC=C2)C2=CC=CC=C2)C=C1.COC1=CC=C(C(NC2=NC(=O)N([C@@H]3S[C@H](CO)[C@@H](O)[C@@H]3F)C=C2)(C2=CC=CC=C2)C2=CC=CC=C2)C=C1 ZYXHNPPEODYGPO-CVMRRKOESA-N 0.000 description 1
- ZQZQSNMYRXJJAE-GZHBGCKQSA-N CC(C)OC(=O)[C@H](C)CCOP(N(C(C)C)C(C)C)N(C(C)C)C(C)C.COC1=NC(N)=NC2=C1N=CN2[C@@H]1O[C@@H]2COP(=O)(OCC[C@@H](C)C(=O)OC(C)C)O[C@H]2[C@@H]1O.COC1=NC(N)=NC2=C1N=CN2[C@@H]1O[C@@H]2COP(=O)(OCC[C@@H](C)C(=O)OC(C)C)O[C@H]2[C@@H]1OC(=O)OCC1=CC=CC=C1.COC1=NC(N)=NC2=C1N=CN2[C@@H]1O[C@H](CO)[C@@H](O)[C@@H]1OC(=O)OCC1=CC=CC=C1 Chemical compound CC(C)OC(=O)[C@H](C)CCOP(N(C(C)C)C(C)C)N(C(C)C)C(C)C.COC1=NC(N)=NC2=C1N=CN2[C@@H]1O[C@@H]2COP(=O)(OCC[C@@H](C)C(=O)OC(C)C)O[C@H]2[C@@H]1O.COC1=NC(N)=NC2=C1N=CN2[C@@H]1O[C@@H]2COP(=O)(OCC[C@@H](C)C(=O)OC(C)C)O[C@H]2[C@@H]1OC(=O)OCC1=CC=CC=C1.COC1=NC(N)=NC2=C1N=CN2[C@@H]1O[C@H](CO)[C@@H](O)[C@@H]1OC(=O)OCC1=CC=CC=C1 ZQZQSNMYRXJJAE-GZHBGCKQSA-N 0.000 description 1
- BPWOTFYCHVULII-PVJKFBCLSA-N CC(C)OC(=O)[C@H](C)CCOP1(=O)OC[C@H]2O[C@@H](N3C=CC(N)=NC3=O)C(F)(F)C2O1.CC(C)OC(=O)[C@H](C)CCOP1(=O)OC[C@H]2O[C@@H](N3C=CC(NC(=O)C4=CC=CC=C4)=NC3=O)C(F)(F)C2O1 Chemical compound CC(C)OC(=O)[C@H](C)CCOP1(=O)OC[C@H]2O[C@@H](N3C=CC(N)=NC3=O)C(F)(F)C2O1.CC(C)OC(=O)[C@H](C)CCOP1(=O)OC[C@H]2O[C@@H](N3C=CC(NC(=O)C4=CC=CC=C4)=NC3=O)C(F)(F)C2O1 BPWOTFYCHVULII-PVJKFBCLSA-N 0.000 description 1
- YJSZTIFLYTXPEG-YDVTWLGESA-N CC(C)OC(=O)[C@H](C)CCO[PH]1(O)OC[C@H]2O[C@@H](N3C=CC(NC(=O)C4=CC=CC=C4)=NC3=O)C(F)(F)[C@@H]2O1 Chemical compound CC(C)OC(=O)[C@H](C)CCO[PH]1(O)OC[C@H]2O[C@@H](N3C=CC(NC(=O)C4=CC=CC=C4)=NC3=O)C(F)(F)[C@@H]2O1 YJSZTIFLYTXPEG-YDVTWLGESA-N 0.000 description 1
- FTQOUICVTNOWEY-UHFFFAOYSA-N CC(C)OCCC(C(OI)=O)N=C Chemical compound CC(C)OCCC(C(OI)=O)N=C FTQOUICVTNOWEY-UHFFFAOYSA-N 0.000 description 1
- RMJLALVRLULXPQ-CUAIQGNZSA-N CC1=CN([C@@H]2C[C@@H](O)[C@H](CO)O2)C(=O)NC1=O.CCOC(=O)C(C)CCOP(N(C(C)C)C(C)C)N(C(C)C)C(C)C.CCOC(=O)C(C)CCOP1(=O)OC[C@@H]2O[C@H](N3C=C(C)C(=O)NC3=O)C[C@H]2O1 Chemical compound CC1=CN([C@@H]2C[C@@H](O)[C@H](CO)O2)C(=O)NC1=O.CCOC(=O)C(C)CCOP(N(C(C)C)C(C)C)N(C(C)C)C(C)C.CCOC(=O)C(C)CCOP1(=O)OC[C@@H]2O[C@H](N3C=C(C)C(=O)NC3=O)C[C@H]2O1 RMJLALVRLULXPQ-CUAIQGNZSA-N 0.000 description 1
- RCCAGDKTMGYINH-UYWJDSFHSA-N CCOC(=O)C(C)CCOP(N(C(C)C)C(C)C)N(C(C)C)C(C)C.CCOC(=O)C(C)CCOP1(=O)OC[C@@H]2O[C@H](N3C=NC4=C3N=CN=C4N)C[C@H]2O1.NC1=NC=NC2=C1N=CN2[C@@H]1C[C@@H](O)[C@H](CO)O1 Chemical compound CCOC(=O)C(C)CCOP(N(C(C)C)C(C)C)N(C(C)C)C(C)C.CCOC(=O)C(C)CCOP1(=O)OC[C@@H]2O[C@H](N3C=NC4=C3N=CN=C4N)C[C@H]2O1.NC1=NC=NC2=C1N=CN2[C@@H]1C[C@@H](O)[C@H](CO)O1 RCCAGDKTMGYINH-UYWJDSFHSA-N 0.000 description 1
- ZUNSOWRBUWVMQW-OTEFLTFGSA-N CCOC(=O)[C@@H](C)CCO.CCOC(=O)[C@@H](C)CCOCC1=CC=CC=C1.C[C@@H](CCOCC1=CC=CC=C1)C(=O)O Chemical compound CCOC(=O)[C@@H](C)CCO.CCOC(=O)[C@@H](C)CCOCC1=CC=CC=C1.C[C@@H](CCOCC1=CC=CC=C1)C(=O)O ZUNSOWRBUWVMQW-OTEFLTFGSA-N 0.000 description 1
- HOHDKQSJAQQTFF-UQWPPVGBSA-N CCOC(=O)[C@@H](C)CCOP(=O)(OC1=CC=C(Cl)C=C1)OC1=C(F)C(F)=C(F)C(F)=C1F.CCOC(=O)[C@@H](C)CCOP1(=O)OCC(OCN2C=NC3=C2N=C(N)N=C3OCC)CO1.CCOC1=NC(N)=NC2=C1N=CN2COC(CO)CO Chemical compound CCOC(=O)[C@@H](C)CCOP(=O)(OC1=CC=C(Cl)C=C1)OC1=C(F)C(F)=C(F)C(F)=C1F.CCOC(=O)[C@@H](C)CCOP1(=O)OCC(OCN2C=NC3=C2N=C(N)N=C3OCC)CO1.CCOC1=NC(N)=NC2=C1N=CN2COC(CO)CO HOHDKQSJAQQTFF-UQWPPVGBSA-N 0.000 description 1
- UNDWYRPXQVUDPD-DIACLGEZSA-N CCOC(=O)[C@@H](C)CCOP1(=O)OCC(OCN2C=NC3=C2N=C(N)N=C3OCC)CO1.CCOC(=O)[C@@H](C)CCOP1(=O)OCC(OCN2C=NC3=C2N=C(N)N=C3OCC)CO1.CCOC(=O)[C@@H](C)CCOP1(=O)OCC(OCN2C=NC3=C2N=C(N)N=C3OCC)CO1 Chemical compound CCOC(=O)[C@@H](C)CCOP1(=O)OCC(OCN2C=NC3=C2N=C(N)N=C3OCC)CO1.CCOC(=O)[C@@H](C)CCOP1(=O)OCC(OCN2C=NC3=C2N=C(N)N=C3OCC)CO1.CCOC(=O)[C@@H](C)CCOP1(=O)OCC(OCN2C=NC3=C2N=C(N)N=C3OCC)CO1 UNDWYRPXQVUDPD-DIACLGEZSA-N 0.000 description 1
- ZUNSOWRBUWVMQW-DYDZIJKWSA-N CCOC(=O)[C@H](C)CCO.CCOC(=O)[C@H](C)CCOCC1=CC=CC=C1.C[C@H](CCOCC1=CC=CC=C1)C(=O)O Chemical compound CCOC(=O)[C@H](C)CCO.CCOC(=O)[C@H](C)CCOCC1=CC=CC=C1.C[C@H](CCOCC1=CC=CC=C1)C(=O)O ZUNSOWRBUWVMQW-DYDZIJKWSA-N 0.000 description 1
- LDXDQDNLVFWESI-UDOUWZMXSA-N CCOC(=O)[C@H](C)CCOP(=O)(Cl)Cl.CCOC(=O)[C@H](C)CCOP1(=O)OC[C@H]2S[C@@H](N3C=CC(N)=NC3=O)[C@@H](F)[C@@H]2O1.CCOC(=O)[C@H](C)CCOP1(=O)OC[C@H]2S[C@@H](N3C=CC(NC(C4=CC=CC=C4)(C4=CC=CC=C4)C4=CC=C(OC)C=C4)=NC3=O)[C@@H](F)[C@@H]2O1.COC1=CC=C(C(NC2=NC(=O)N([C@@H]3S[C@H](CO)[C@@H](O)[C@@H]3F)C=C2)(C2=CC=CC=C2)C2=CC=CC=C2)C=C1 Chemical compound CCOC(=O)[C@H](C)CCOP(=O)(Cl)Cl.CCOC(=O)[C@H](C)CCOP1(=O)OC[C@H]2S[C@@H](N3C=CC(N)=NC3=O)[C@@H](F)[C@@H]2O1.CCOC(=O)[C@H](C)CCOP1(=O)OC[C@H]2S[C@@H](N3C=CC(NC(C4=CC=CC=C4)(C4=CC=CC=C4)C4=CC=C(OC)C=C4)=NC3=O)[C@@H](F)[C@@H]2O1.COC1=CC=C(C(NC2=NC(=O)N([C@@H]3S[C@H](CO)[C@@H](O)[C@@H]3F)C=C2)(C2=CC=CC=C2)C2=CC=CC=C2)C=C1 LDXDQDNLVFWESI-UDOUWZMXSA-N 0.000 description 1
- 108010021064 CTLA-4 Antigen Proteins 0.000 description 1
- 102000008203 CTLA-4 Antigen Human genes 0.000 description 1
- 229940045513 CTLA4 antagonist Drugs 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- 206010007279 Carcinoid tumour of the gastrointestinal tract Diseases 0.000 description 1
- 101150015280 Cel gene Proteins 0.000 description 1
- 206010008342 Cervix carcinoma Diseases 0.000 description 1
- 208000010833 Chronic myeloid leukaemia Diseases 0.000 description 1
- 241000202285 Claravis Species 0.000 description 1
- 206010073140 Clear cell sarcoma of soft tissue Diseases 0.000 description 1
- 208000001333 Colorectal Neoplasms Diseases 0.000 description 1
- 229940126062 Compound A Drugs 0.000 description 1
- 108091035707 Consensus sequence Proteins 0.000 description 1
- 241000439488 Cuevavirus Species 0.000 description 1
- 102100021906 Cyclin-O Human genes 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- 108020004414 DNA Proteins 0.000 description 1
- 230000006820 DNA synthesis Effects 0.000 description 1
- 241000450599 DNA viruses Species 0.000 description 1
- WEAHRLBPCANXCN-UHFFFAOYSA-N Daunomycin Natural products CCC1(O)CC(OC2CC(N)C(O)C(C)O2)c3cc4C(=O)c5c(OC)cccc5C(=O)c4c(O)c3C1 WEAHRLBPCANXCN-UHFFFAOYSA-N 0.000 description 1
- GUGHGUXZJWAIAS-QQYBVWGSSA-N Daunorubicin hydrochloride Chemical compound Cl.O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(C)=O)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 GUGHGUXZJWAIAS-QQYBVWGSSA-N 0.000 description 1
- 235000019739 Dicalciumphosphate Nutrition 0.000 description 1
- XBPCUCUWBYBCDP-UHFFFAOYSA-N Dicyclohexylamine Chemical compound C1CCCCC1NC1CCCCC1 XBPCUCUWBYBCDP-UHFFFAOYSA-N 0.000 description 1
- QGLBZNZGBLRJGS-UHFFFAOYSA-N Dihydro-3-methyl-2(3H)-furanone Chemical compound CC1CCOC1=O QGLBZNZGBLRJGS-UHFFFAOYSA-N 0.000 description 1
- 102100038132 Endogenous retrovirus group K member 6 Pro protein Human genes 0.000 description 1
- 206010014733 Endometrial cancer Diseases 0.000 description 1
- 206010014759 Endometrial neoplasm Diseases 0.000 description 1
- 101710091045 Envelope protein Proteins 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- HTIJFSOGRVMCQR-UHFFFAOYSA-N Epirubicin Natural products COc1cccc2C(=O)c3c(O)c4CC(O)(CC(OC5CC(N)C(=O)C(C)O5)c4c(O)c3C(=O)c12)C(=O)CO HTIJFSOGRVMCQR-UHFFFAOYSA-N 0.000 description 1
- 241000588698 Erwinia Species 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical group FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- 208000022072 Gallbladder Neoplasms Diseases 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 229920002907 Guar gum Polymers 0.000 description 1
- 229940122800 HBV entry inhibitor Drugs 0.000 description 1
- 229910004373 HOAc Inorganic materials 0.000 description 1
- 206010061192 Haemorrhagic fever Diseases 0.000 description 1
- 229940121759 Helicase inhibitor Drugs 0.000 description 1
- 241000700739 Hepadnaviridae Species 0.000 description 1
- NLDMNSXOCDLTTB-UHFFFAOYSA-N Heterophylliin A Natural products O1C2COC(=O)C3=CC(O)=C(O)C(O)=C3C3=C(O)C(O)=C(O)C=C3C(=O)OC2C(OC(=O)C=2C=C(O)C(O)=C(O)C=2)C(O)C1OC(=O)C1=CC(O)=C(O)C(O)=C1 NLDMNSXOCDLTTB-UHFFFAOYSA-N 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 101000834898 Homo sapiens Alpha-synuclein Proteins 0.000 description 1
- 101100407305 Homo sapiens CD274 gene Proteins 0.000 description 1
- 101000897441 Homo sapiens Cyclin-O Proteins 0.000 description 1
- 101100407307 Homo sapiens PDCD1LG2 gene Proteins 0.000 description 1
- 101000652359 Homo sapiens Spermatogenesis-associated protein 2 Proteins 0.000 description 1
- 101000588476 Homo sapiens [heparan sulfate]-glucosamine N-sulfotransferase NDST3 Proteins 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-N Hydrogen bromide Chemical class Br CPELXLSAUQHCOX-UHFFFAOYSA-N 0.000 description 1
- 206010021042 Hypopharyngeal cancer Diseases 0.000 description 1
- 206010056305 Hypopharyngeal neoplasm Diseases 0.000 description 1
- YQYBNCMNIQPULI-UHFFFAOYSA-N IC(C)C.[N] Chemical compound IC(C)C.[N] YQYBNCMNIQPULI-UHFFFAOYSA-N 0.000 description 1
- 238000004566 IR spectroscopy Methods 0.000 description 1
- XDXDZDZNSLXDNA-UHFFFAOYSA-N Idarubicin Natural products C1C(N)C(O)C(C)OC1OC1C2=C(O)C(C(=O)C3=CC=CC=C3C3=O)=C3C(O)=C2CC(O)(C(C)=O)C1 XDXDZDZNSLXDNA-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 108060003951 Immunoglobulin Proteins 0.000 description 1
- 102000017727 Immunoglobulin Variable Region Human genes 0.000 description 1
- 108010067060 Immunoglobulin Variable Region Proteins 0.000 description 1
- 208000007766 Kaposi sarcoma Diseases 0.000 description 1
- 208000008839 Kidney Neoplasms Diseases 0.000 description 1
- 239000005909 Kieselgur Substances 0.000 description 1
- 150000008575 L-amino acids Chemical class 0.000 description 1
- 125000002061 L-isoleucyl group Chemical group [H]N([H])[C@]([H])(C(=O)[*])[C@](C([H])([H])[H])([H])C(C([H])([H])[H])([H])[H] 0.000 description 1
- 125000003580 L-valyl group Chemical group [H]N([H])[C@]([H])(C(=O)[*])C(C([H])([H])[H])(C([H])([H])[H])[H] 0.000 description 1
- 102000017578 LAG3 Human genes 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 101150030213 Lag3 gene Proteins 0.000 description 1
- 206010023825 Laryngeal cancer Diseases 0.000 description 1
- 235000010643 Leucaena leucocephala Nutrition 0.000 description 1
- 240000007472 Leucaena leucocephala Species 0.000 description 1
- 206010062038 Lip neoplasm Diseases 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 239000012448 Lithium borohydride Substances 0.000 description 1
- 208000031422 Lymphocytic Chronic B-Cell Leukemia Diseases 0.000 description 1
- 206010025312 Lymphoma AIDS related Diseases 0.000 description 1
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- 208000004059 Male Breast Neoplasms Diseases 0.000 description 1
- 208000006644 Malignant Fibrous Histiocytoma Diseases 0.000 description 1
- 208000030070 Malignant epithelial tumor of ovary Diseases 0.000 description 1
- 208000032271 Malignant tumor of penis Diseases 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- 208000002030 Merkel cell carcinoma Diseases 0.000 description 1
- 206010027406 Mesothelioma Diseases 0.000 description 1
- 208000003445 Mouth Neoplasms Diseases 0.000 description 1
- 201000003793 Myelodysplastic syndrome Diseases 0.000 description 1
- 208000033761 Myelogenous Chronic BCR-ABL Positive Leukemia Diseases 0.000 description 1
- 208000033776 Myeloid Acute Leukemia Diseases 0.000 description 1
- 208000014767 Myeloproliferative disease Diseases 0.000 description 1
- 201000007224 Myeloproliferative neoplasm Diseases 0.000 description 1
- 125000005855 N,N-di(C1-C2)alkylcarbamoyl-(C1-C2)alkyl group Chemical group 0.000 description 1
- 125000005850 N-(alkoxycarbonyl)aminomethyl group Chemical group 0.000 description 1
- 208000001894 Nasopharyngeal Neoplasms Diseases 0.000 description 1
- 206010061306 Nasopharyngeal cancer Diseases 0.000 description 1
- 241001481166 Nautilus Species 0.000 description 1
- 206010029260 Neuroblastoma Diseases 0.000 description 1
- 206010029266 Neuroendocrine carcinoma of the skin Diseases 0.000 description 1
- 125000005861 N—(C1-C6)alkoxycarbonylaminomethyl group Chemical group 0.000 description 1
- 108700020796 Oncogene Proteins 0.000 description 1
- 206010031096 Oropharyngeal cancer Diseases 0.000 description 1
- 206010057444 Oropharyngeal neoplasm Diseases 0.000 description 1
- 208000007571 Ovarian Epithelial Carcinoma Diseases 0.000 description 1
- 206010061328 Ovarian epithelial cancer Diseases 0.000 description 1
- 206010033268 Ovarian low malignant potential tumour Diseases 0.000 description 1
- 241000282577 Pan troglodytes Species 0.000 description 1
- 208000000821 Parathyroid Neoplasms Diseases 0.000 description 1
- 208000002471 Penile Neoplasms Diseases 0.000 description 1
- 206010034299 Penile cancer Diseases 0.000 description 1
- ABLZXFCXXLZCGV-UHFFFAOYSA-N Phosphorous acid Chemical class OP(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 description 1
- 208000007913 Pituitary Neoplasms Diseases 0.000 description 1
- 201000008199 Pleuropulmonary blastoma Diseases 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-N Propionic acid Chemical class CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 1
- 206010060862 Prostate cancer Diseases 0.000 description 1
- 208000000236 Prostatic Neoplasms Diseases 0.000 description 1
- 101710188315 Protein X Proteins 0.000 description 1
- 241000219492 Quercus Species 0.000 description 1
- 208000015634 Rectal Neoplasms Diseases 0.000 description 1
- 206010038389 Renal cancer Diseases 0.000 description 1
- 208000004337 Salivary Gland Neoplasms Diseases 0.000 description 1
- 206010061934 Salivary gland cancer Diseases 0.000 description 1
- 241000183290 Scleropages leichardti Species 0.000 description 1
- 208000009359 Sezary Syndrome Diseases 0.000 description 1
- 208000021388 Sezary disease Diseases 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical group [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 206010041067 Small cell lung cancer Diseases 0.000 description 1
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 1
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical class [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 1
- 208000021712 Soft tissue sarcoma Diseases 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 208000031673 T-Cell Cutaneous Lymphoma Diseases 0.000 description 1
- 206010042971 T-cell lymphoma Diseases 0.000 description 1
- 208000027585 T-cell non-Hodgkin lymphoma Diseases 0.000 description 1
- 208000024313 Testicular Neoplasms Diseases 0.000 description 1
- 206010057644 Testis cancer Diseases 0.000 description 1
- 208000024770 Thyroid neoplasm Diseases 0.000 description 1
- 206010044407 Transitional cell cancer of the renal pelvis and ureter Diseases 0.000 description 1
- 208000015778 Undifferentiated pleomorphic sarcoma Diseases 0.000 description 1
- 206010046431 Urethral cancer Diseases 0.000 description 1
- 206010046458 Urethral neoplasms Diseases 0.000 description 1
- 208000007097 Urinary Bladder Neoplasms Diseases 0.000 description 1
- 208000006105 Uterine Cervical Neoplasms Diseases 0.000 description 1
- 229940118555 Viral entry inhibitor Drugs 0.000 description 1
- 206010047741 Vulval cancer Diseases 0.000 description 1
- 208000004354 Vulvar Neoplasms Diseases 0.000 description 1
- 208000008383 Wilms tumor Diseases 0.000 description 1
- VWQVUPCCIRVNHF-OUBTZVSYSA-N Yttrium-90 Chemical compound [90Y] VWQVUPCCIRVNHF-OUBTZVSYSA-N 0.000 description 1
- 240000008042 Zea mays Species 0.000 description 1
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 1
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 1
- IIINUYXJABGHSY-MBMVNNNZSA-N [(2R,3S,4R,5R)-2-(2-amino-6-methoxypurin-9-yl)-4-hydroxy-5-(hydroxymethyl)oxolan-3-yl] benzyl carbonate Chemical compound C(O[C@@H]1[C@@H](O[C@@H]([C@H]1O)CO)N1C2=NC(=NC(=C2N=C1)OC)N)(OCC1=CC=CC=C1)=O IIINUYXJABGHSY-MBMVNNNZSA-N 0.000 description 1
- GUWXKKAWLCENJA-WGWHJZDNSA-N [(2r,3s,5r)-5-(2-amino-6-oxo-3h-purin-9-yl)-3-hydroxyoxolan-2-yl]methyl [(2r,3s,5r)-5-(4-amino-2-oxo-1,3,5-triazin-1-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Chemical compound O=C1N=C(N)N=CN1[C@@H]1O[C@H](CO)[C@@H](OP(O)(=O)OC[C@@H]2[C@H](C[C@@H](O2)N2C3=C(C(N=C(N)N3)=O)N=C2)O)C1 GUWXKKAWLCENJA-WGWHJZDNSA-N 0.000 description 1
- XNRZTDDFOAYOTG-UHFFFAOYSA-N [H]N1CCC(=O)C1C(C)C Chemical compound [H]N1CCC(=O)C1C(C)C XNRZTDDFOAYOTG-UHFFFAOYSA-N 0.000 description 1
- 102100031395 [heparan sulfate]-glucosamine N-sulfotransferase NDST3 Human genes 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 230000009102 absorption Effects 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 description 1
- 150000008043 acidic salts Chemical class 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 208000037628 acute hepatitis B virus infection Diseases 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 208000020990 adrenal cortex carcinoma Diseases 0.000 description 1
- 208000007128 adrenocortical carcinoma Diseases 0.000 description 1
- 230000001780 adrenocortical effect Effects 0.000 description 1
- 229940009456 adriamycin Drugs 0.000 description 1
- 229940064305 adrucil Drugs 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229940110282 alimta Drugs 0.000 description 1
- 229960001445 alitretinoin Drugs 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 229940098174 alkeran Drugs 0.000 description 1
- 125000004183 alkoxy alkyl group Chemical group 0.000 description 1
- 125000000278 alkyl amino alkyl group Chemical group 0.000 description 1
- 150000001350 alkyl halides Chemical class 0.000 description 1
- 125000004390 alkyl sulfonyl group Chemical group 0.000 description 1
- 125000005275 alkylenearyl group Chemical group 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 229940022824 amnesteem Drugs 0.000 description 1
- 230000019552 anatomical structure morphogenesis Effects 0.000 description 1
- 230000003466 anti-cipated effect Effects 0.000 description 1
- 230000000843 anti-fungal effect Effects 0.000 description 1
- 229940121375 antifungal agent Drugs 0.000 description 1
- 201000011165 anus cancer Diseases 0.000 description 1
- 239000012736 aqueous medium Substances 0.000 description 1
- 125000005140 aralkylsulfonyl group Chemical group 0.000 description 1
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- 125000005251 aryl acyl group Chemical group 0.000 description 1
- 125000003710 aryl alkyl group Chemical group 0.000 description 1
- 125000005160 aryl oxy alkyl group Chemical group 0.000 description 1
- 125000004104 aryloxy group Chemical group 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 125000003289 ascorbyl group Chemical class [H]O[C@@]([H])(C([H])([H])O*)[C@@]1([H])OC(=O)C(O*)=C1O* 0.000 description 1
- 229960003272 asparaginase Drugs 0.000 description 1
- DCXYFEDJOCDNAF-UHFFFAOYSA-M asparaginate Chemical compound [O-]C(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-M 0.000 description 1
- 238000000065 atmospheric pressure chemical ionisation Methods 0.000 description 1
- 229940120638 avastin Drugs 0.000 description 1
- 229960003005 axitinib Drugs 0.000 description 1
- 229960002756 azacitidine Drugs 0.000 description 1
- 125000005334 azaindolyl group Chemical group N1N=C(C2=CC=CC=C12)* 0.000 description 1
- 210000003719 b-lymphocyte Anatomy 0.000 description 1
- 229940002637 baraclude Drugs 0.000 description 1
- 229960002707 bendamustine Drugs 0.000 description 1
- YTKUWDBFDASYHO-UHFFFAOYSA-N bendamustine Chemical compound ClCCN(CCCl)C1=CC=C2N(C)C(CCCC(O)=O)=NC2=C1 YTKUWDBFDASYHO-UHFFFAOYSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- SRSXLGNVWSONIS-UHFFFAOYSA-N benzenesulfonic acid Chemical class OS(=O)(=O)C1=CC=CC=C1 SRSXLGNVWSONIS-UHFFFAOYSA-N 0.000 description 1
- 125000005513 benzoazaindolyl group Chemical group 0.000 description 1
- 125000004601 benzofurazanyl group Chemical group N1=C2C(=NO1)C(=CC=C2)* 0.000 description 1
- 150000001558 benzoic acid derivatives Chemical class 0.000 description 1
- 125000001164 benzothiazolyl group Chemical group S1C(=NC2=C1C=CC=C2)* 0.000 description 1
- 125000004196 benzothienyl group Chemical group S1C(=CC2=C1C=CC=C2)* 0.000 description 1
- 125000003236 benzoyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C(*)=O 0.000 description 1
- 229960000397 bevacizumab Drugs 0.000 description 1
- 229960002938 bexarotene Drugs 0.000 description 1
- 150000005347 biaryls Chemical class 0.000 description 1
- 208000026900 bile duct neoplasm Diseases 0.000 description 1
- 239000012472 biological sample Substances 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-M bisulphate group Chemical group S([O-])(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-M 0.000 description 1
- 229960001561 bleomycin Drugs 0.000 description 1
- OYVAGSVQBOHSSS-UAPAGMARSA-O bleomycin A2 Chemical compound N([C@H](C(=O)N[C@H](C)[C@@H](O)[C@H](C)C(=O)N[C@@H]([C@H](O)C)C(=O)NCCC=1SC=C(N=1)C=1SC=C(N=1)C(=O)NCCC[S+](C)C)[C@@H](O[C@H]1[C@H]([C@@H](O)[C@H](O)[C@H](CO)O1)O[C@@H]1[C@H]([C@@H](OC(N)=O)[C@H](O)[C@@H](CO)O1)O)C=1N=CNC=1)C(=O)C1=NC([C@H](CC(N)=O)NC[C@H](N)C(N)=O)=NC(N)=C1C OYVAGSVQBOHSSS-UAPAGMARSA-O 0.000 description 1
- 239000010836 blood and blood product Substances 0.000 description 1
- 208000012172 borderline epithelial tumor of ovary Diseases 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- 235000010338 boric acid Nutrition 0.000 description 1
- 150000001642 boronic acid derivatives Chemical class 0.000 description 1
- 210000000133 brain stem Anatomy 0.000 description 1
- RDHPKYGYEGBMSE-UHFFFAOYSA-N bromoethane Chemical compound CCBr RDHPKYGYEGBMSE-UHFFFAOYSA-N 0.000 description 1
- 201000002143 bronchus adenoma Diseases 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 229960002092 busulfan Drugs 0.000 description 1
- 229940112133 busulfex Drugs 0.000 description 1
- 150000004648 butanoic acid derivatives Chemical class 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 235000011132 calcium sulphate Nutrition 0.000 description 1
- 238000011088 calibration curve Methods 0.000 description 1
- MIOPJNTWMNEORI-UHFFFAOYSA-N camphorsulfonic acid Chemical class C1CC2(CS(O)(=O)=O)C(=O)CC1C2(C)C MIOPJNTWMNEORI-UHFFFAOYSA-N 0.000 description 1
- 229940022399 cancer vaccine Drugs 0.000 description 1
- 229940124765 capsid inhibitor Drugs 0.000 description 1
- 125000005854 carbamoyl-(C1-C2)alkyl group Chemical group 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 229960004562 carboplatin Drugs 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 150000001733 carboxylic acid esters Chemical class 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 231100000504 carcinogenesis Toxicity 0.000 description 1
- 229960005243 carmustine Drugs 0.000 description 1
- 239000012876 carrier material Substances 0.000 description 1
- 210000003855 cell nucleus Anatomy 0.000 description 1
- 239000006285 cell suspension Substances 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 235000010980 cellulose Nutrition 0.000 description 1
- 201000007455 central nervous system cancer Diseases 0.000 description 1
- 201000007335 cerebellar astrocytoma Diseases 0.000 description 1
- 201000010881 cervical cancer Diseases 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- 238000002512 chemotherapy Methods 0.000 description 1
- 229960004630 chlorambucil Drugs 0.000 description 1
- OEYIOHPDSNJKLS-UHFFFAOYSA-N choline Chemical compound C[N+](C)(C)CCO OEYIOHPDSNJKLS-UHFFFAOYSA-N 0.000 description 1
- 229960001231 choline Drugs 0.000 description 1
- 208000032852 chronic lymphocytic leukemia Diseases 0.000 description 1
- DQLATGHUWYMOKM-UHFFFAOYSA-L cisplatin Chemical compound N[Pt](N)(Cl)Cl DQLATGHUWYMOKM-UHFFFAOYSA-L 0.000 description 1
- 229960004316 cisplatin Drugs 0.000 description 1
- 150000001860 citric acid derivatives Chemical class 0.000 description 1
- 229940031301 claravis Drugs 0.000 description 1
- 229940060799 clarus Drugs 0.000 description 1
- 201000000292 clear cell sarcoma Diseases 0.000 description 1
- WDDPHFBMKLOVOX-AYQXTPAHSA-N clofarabine Chemical compound C1=NC=2C(N)=NC(Cl)=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@@H]1F WDDPHFBMKLOVOX-AYQXTPAHSA-N 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229940110456 cocoa butter Drugs 0.000 description 1
- 235000019868 cocoa butter Nutrition 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000004440 column chromatography Methods 0.000 description 1
- 229940125898 compound 5 Drugs 0.000 description 1
- JNGZXGGOCLZBFB-IVCQMTBJSA-N compound E Chemical compound N([C@@H](C)C(=O)N[C@@H]1C(N(C)C2=CC=CC=C2C(C=2C=CC=CC=2)=N1)=O)C(=O)CC1=CC(F)=CC(F)=C1 JNGZXGGOCLZBFB-IVCQMTBJSA-N 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229940055354 copegus Drugs 0.000 description 1
- 235000005822 corn Nutrition 0.000 description 1
- 229940088547 cosmegen Drugs 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 201000007241 cutaneous T cell lymphoma Diseases 0.000 description 1
- 208000017763 cutaneous neuroendocrine carcinoma Diseases 0.000 description 1
- 125000001995 cyclobutyl group Chemical group [H]C1([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000004976 cyclobutylene group Chemical group 0.000 description 1
- 125000000582 cycloheptyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 125000004956 cyclohexylene group Chemical group 0.000 description 1
- 125000000640 cyclooctyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C([H])([H])C1([H])[H] 0.000 description 1
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000004979 cyclopentylene group Chemical group 0.000 description 1
- 229960004397 cyclophosphamide Drugs 0.000 description 1
- 125000001559 cyclopropyl group Chemical group [H]C1([H])C([H])([H])C1([H])* 0.000 description 1
- 125000004980 cyclopropylene group Chemical group 0.000 description 1
- 229940127089 cytotoxic agent Drugs 0.000 description 1
- 239000002254 cytotoxic agent Substances 0.000 description 1
- 231100000599 cytotoxic agent Toxicity 0.000 description 1
- 229940087451 cytovene Drugs 0.000 description 1
- 229960003901 dacarbazine Drugs 0.000 description 1
- 229940059359 dacogen Drugs 0.000 description 1
- 229960000975 daunorubicin Drugs 0.000 description 1
- 229940052372 daunorubicin citrate liposome Drugs 0.000 description 1
- 229940041983 daunorubicin liposomal Drugs 0.000 description 1
- 229940107841 daunoxome Drugs 0.000 description 1
- 125000003493 decenyl group Chemical group [H]C([*])=C([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000002704 decyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 125000000422 delta-lactone group Chemical group 0.000 description 1
- XUWHAWMETYGRKB-UHFFFAOYSA-N delta-valerolactam Natural products O=C1CCCCN1 XUWHAWMETYGRKB-UHFFFAOYSA-N 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 125000005852 di-N,N—(C1-C2)alkylamino(C2-C3)alkyl group Chemical group 0.000 description 1
- 150000008050 dialkyl sulfates Chemical class 0.000 description 1
- LMEDOLJKVASKTP-UHFFFAOYSA-N dibutyl sulfate Chemical class CCCCOS(=O)(=O)OCCCC LMEDOLJKVASKTP-UHFFFAOYSA-N 0.000 description 1
- NEFBYIFKOOEVPA-UHFFFAOYSA-K dicalcium phosphate Chemical compound [Ca+2].[Ca+2].[O-]P([O-])([O-])=O NEFBYIFKOOEVPA-UHFFFAOYSA-K 0.000 description 1
- 229940038472 dicalcium phosphate Drugs 0.000 description 1
- 229910000390 dicalcium phosphate Inorganic materials 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 125000004177 diethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 125000000118 dimethyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 239000007884 disintegrant Substances 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- WBZKQQHYRPRKNJ-UHFFFAOYSA-L disulfite Chemical compound [O-]S(=O)S([O-])(=O)=O WBZKQQHYRPRKNJ-UHFFFAOYSA-L 0.000 description 1
- CETRZFQIITUQQL-UHFFFAOYSA-N dmso dimethylsulfoxide Chemical compound CS(C)=O.CS(C)=O CETRZFQIITUQQL-UHFFFAOYSA-N 0.000 description 1
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 229960004679 doxorubicin Drugs 0.000 description 1
- 238000001647 drug administration Methods 0.000 description 1
- 238000009510 drug design Methods 0.000 description 1
- 238000009509 drug development Methods 0.000 description 1
- 241001493065 dsRNA viruses Species 0.000 description 1
- 238000002330 electrospray ionisation mass spectrometry Methods 0.000 description 1
- 229940073038 elspar Drugs 0.000 description 1
- QDGZDCVAUDNJFG-FXQIFTODSA-N entecavir (anhydrous) Chemical compound C1=2NC(N)=NC(=O)C=2N=CN1[C@H]1C[C@H](O)[C@@H](CO)C1=C QDGZDCVAUDNJFG-FXQIFTODSA-N 0.000 description 1
- 229940088598 enzyme Drugs 0.000 description 1
- 229960001904 epirubicin Drugs 0.000 description 1
- 230000032050 esterification Effects 0.000 description 1
- 238000005886 esterification reaction Methods 0.000 description 1
- OCLXJTCGWSSVOE-UHFFFAOYSA-N ethanol etoh Chemical compound CCO.CCO OCLXJTCGWSSVOE-UHFFFAOYSA-N 0.000 description 1
- 229940011957 ethiodized oil Drugs 0.000 description 1
- ZWUKLLQBXLYZBR-JQYWLWRHSA-N ethyl (2R)-4-[[(2R,4aR,6R,7S,7aS)-6-(4-amino-2-oxopyrimidin-1-yl)-7-fluoro-2-oxo-4a,6,7,7a-tetrahydro-4H-thieno[3,2-d][1,3,2]dioxaphosphinin-2-yl]oxy]-2-methylbutanoate Chemical compound NC1=NC(N(C=C1)[C@H]1[C@H]([C@@H]2O[P@](OC[C@H]2S1)(=O)OCC[C@H](C(=O)OCC)C)F)=O ZWUKLLQBXLYZBR-JQYWLWRHSA-N 0.000 description 1
- GMBHMHLTSOSUMD-TUXMDYKLSA-N ethyl (2R)-4-[[(2R,4aS,6S,7aR)-6-(5-methyl-2,4-dioxopyrimidin-1-yl)-2-oxo-4a,6,7,7a-tetrahydro-4H-furo[3,2-d][1,3,2]dioxaphosphinin-2-yl]oxy]-2-methylbutanoate Chemical compound C[C@@H](C(=O)OCC)CCO[P@@]1(OC[C@H]2[C@H](O1)C[C@H](O2)N1C(NC(C(=C1)C)=O)=O)=O GMBHMHLTSOSUMD-TUXMDYKLSA-N 0.000 description 1
- ZWUKLLQBXLYZBR-IIQYUWCNSA-N ethyl (2R)-4-[[(2S,4aR,6R,7S,7aS)-6-(4-amino-2-oxopyrimidin-1-yl)-7-fluoro-2-oxo-4a,6,7,7a-tetrahydro-4H-thieno[3,2-d][1,3,2]dioxaphosphinin-2-yl]oxy]-2-methylbutanoate Chemical compound NC1=NC(N(C=C1)[C@H]1[C@H]([C@@H]2O[P@@](OC[C@H]2S1)(=O)OCC[C@H](C(=O)OCC)C)F)=O ZWUKLLQBXLYZBR-IIQYUWCNSA-N 0.000 description 1
- GMBHMHLTSOSUMD-AARQHAISSA-N ethyl (2R)-4-[[(2S,4aS,6S,7aR)-6-(5-methyl-2,4-dioxopyrimidin-1-yl)-2-oxo-4a,6,7,7a-tetrahydro-4H-furo[3,2-d][1,3,2]dioxaphosphinin-2-yl]oxy]-2-methylbutanoate Chemical compound CCOC(=O)[C@H](C)CCO[P@@]1(=O)OC[C@@H]2O[C@@H](C[C@H]2O1)n1cc(C)c(=O)[nH]c1=O GMBHMHLTSOSUMD-AARQHAISSA-N 0.000 description 1
- UYZSVGSBGCOZSU-LBPRGKRZSA-N ethyl (2S)-2-methyl-4-phenylmethoxybutanoate Chemical compound C(C1=CC=CC=C1)OCC[C@@H](C(=O)OCC)C UYZSVGSBGCOZSU-LBPRGKRZSA-N 0.000 description 1
- GMBHMHLTSOSUMD-OJECNXASSA-N ethyl (2S)-4-[[(2R,4aS,6S,7aR)-6-(5-methyl-2,4-dioxopyrimidin-1-yl)-2-oxo-4a,6,7,7a-tetrahydro-4H-furo[3,2-d][1,3,2]dioxaphosphinin-2-yl]oxy]-2-methylbutanoate Chemical compound CCOC(=O)[C@@H](C)CCO[P@]1(=O)OC[C@@H]2O[C@@H](C[C@H]2O1)n1cc(C)c(=O)[nH]c1=O GMBHMHLTSOSUMD-OJECNXASSA-N 0.000 description 1
- GMBHMHLTSOSUMD-QOEXJTEESA-N ethyl (2S)-4-[[(2S,4aS,6S,7aR)-6-(5-methyl-2,4-dioxopyrimidin-1-yl)-2-oxo-4a,6,7,7a-tetrahydro-4H-furo[3,2-d][1,3,2]dioxaphosphinin-2-yl]oxy]-2-methylbutanoate Chemical compound CCOC(=O)[C@@H](C)CCO[P@@]1(=O)OC[C@@H]2O[C@@H](C[C@H]2O1)n1cc(C)c(=O)[nH]c1=O GMBHMHLTSOSUMD-QOEXJTEESA-N 0.000 description 1
- YARDKGCSTRNORB-LURJTMIESA-N ethyl (2S)-4-hydroxy-2-methylbutanoate Chemical compound OCC[C@@H](C(=O)OCC)C YARDKGCSTRNORB-LURJTMIESA-N 0.000 description 1
- PKZDYCMEFGJPGE-KBSCDBHESA-N ethyl 4-[[(2R,4aS,6S,7aR)-6-(4-amino-2-oxopyrimidin-1-yl)-2-oxo-4a,6,7,7a-tetrahydro-4H-furo[3,2-d][1,3,2]dioxaphosphinin-2-yl]oxy]-2-methylbutanoate Chemical compound NC1=NC(N(C=C1)[C@@H]1C[C@H]2O[P@](OC[C@@H]2O1)(=O)OCCC(C(=O)OCC)C)=O PKZDYCMEFGJPGE-KBSCDBHESA-N 0.000 description 1
- FDLOHANURLUGRR-ORMVWVJNSA-N ethyl 4-[[(2R,4aS,6S,7aR)-6-(6-aminopurin-9-yl)-2-oxo-4a,6,7,7a-tetrahydro-4H-furo[3,2-d][1,3,2]dioxaphosphinin-2-yl]oxy]-2-methylbutanoate Chemical compound NC1=C2N=CN(C2=NC=N1)[C@@H]1C[C@H]2O[P@](OC[C@@H]2O1)(=O)OCCC(C(=O)OCC)C FDLOHANURLUGRR-ORMVWVJNSA-N 0.000 description 1
- PKZDYCMEFGJPGE-FKKKZZLXSA-N ethyl 4-[[(2S,4aS,6S,7aR)-6-(4-amino-2-oxopyrimidin-1-yl)-2-oxo-4a,6,7,7a-tetrahydro-4H-furo[3,2-d][1,3,2]dioxaphosphinin-2-yl]oxy]-2-methylbutanoate Chemical compound NC1=NC(N(C=C1)[C@@H]1C[C@H]2O[P@@](OC[C@@H]2O1)(=O)OCCC(C(=O)OCC)C)=O PKZDYCMEFGJPGE-FKKKZZLXSA-N 0.000 description 1
- FDLOHANURLUGRR-AREUGTSWSA-N ethyl 4-[[(2S,4aS,6S,7aR)-6-(6-aminopurin-9-yl)-2-oxo-4a,6,7,7a-tetrahydro-4H-furo[3,2-d][1,3,2]dioxaphosphinin-2-yl]oxy]-2-methylbutanoate Chemical compound NC1=C2N=CN(C2=NC=N1)[C@@H]1C[C@H]2O[P@@](OC[C@@H]2O1)(=O)OCCC(C(=O)OCC)C FDLOHANURLUGRR-AREUGTSWSA-N 0.000 description 1
- 125000000816 ethylene group Chemical group [H]C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- OJCSPXHYDFONPU-UHFFFAOYSA-N etoac etoac Chemical compound CCOC(C)=O.CCOC(C)=O OJCSPXHYDFONPU-UHFFFAOYSA-N 0.000 description 1
- 230000029142 excretion Effects 0.000 description 1
- 239000011536 extraction buffer Substances 0.000 description 1
- 201000008819 extrahepatic bile duct carcinoma Diseases 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 229960000961 floxuridine Drugs 0.000 description 1
- RFHAOTPXVQNOHP-UHFFFAOYSA-N fluconazole Chemical compound C1=NC=NN1CC(C=1C(=CC(F)=CC=1)F)(O)CN1C=NC=N1 RFHAOTPXVQNOHP-UHFFFAOYSA-N 0.000 description 1
- 229960004884 fluconazole Drugs 0.000 description 1
- 229960000390 fludarabine Drugs 0.000 description 1
- 229960005304 fludarabine phosphate Drugs 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000011737 fluorine Chemical group 0.000 description 1
- 229910052731 fluorine Chemical group 0.000 description 1
- 229960002949 fluorouracil Drugs 0.000 description 1
- 235000013355 food flavoring agent Nutrition 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 238000001640 fractional crystallisation Methods 0.000 description 1
- 238000004108 freeze drying Methods 0.000 description 1
- 239000012737 fresh medium Substances 0.000 description 1
- VZCYOOQTPOCHFL-OWOJBTEDSA-L fumarate(2-) Chemical class [O-]C(=O)\C=C\C([O-])=O VZCYOOQTPOCHFL-OWOJBTEDSA-L 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 125000003838 furazanyl group Chemical group 0.000 description 1
- 125000002541 furyl group Chemical group 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 201000010175 gallbladder cancer Diseases 0.000 description 1
- 125000005643 gamma-butyrolacton-4-yl group Chemical group 0.000 description 1
- 229960002963 ganciclovir Drugs 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 201000007116 gestational trophoblastic neoplasm Diseases 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 125000003147 glycosyl group Chemical group 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 239000000665 guar gum Substances 0.000 description 1
- 235000010417 guar gum Nutrition 0.000 description 1
- 229960002154 guar gum Drugs 0.000 description 1
- 201000009277 hairy cell leukemia Diseases 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 201000010536 head and neck cancer Diseases 0.000 description 1
- 208000014829 head and neck neoplasm Diseases 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 230000005802 health problem Effects 0.000 description 1
- XLYOFNOQVPJJNP-ZSJDYOACSA-N heavy water Substances [2H]O[2H] XLYOFNOQVPJJNP-ZSJDYOACSA-N 0.000 description 1
- 150000002373 hemiacetals Chemical group 0.000 description 1
- 229940097709 hepsera Drugs 0.000 description 1
- 125000005842 heteroatom Chemical group 0.000 description 1
- 239000008240 homogeneous mixture Substances 0.000 description 1
- 150000004677 hydrates Chemical class 0.000 description 1
- 229940096120 hydrea Drugs 0.000 description 1
- 150000003840 hydrochlorides Chemical class 0.000 description 1
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical class I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- RCCPEORTSYDPMB-UHFFFAOYSA-N hydroxy benzenecarboximidothioate Chemical compound OSC(=N)C1=CC=CC=C1 RCCPEORTSYDPMB-UHFFFAOYSA-N 0.000 description 1
- 229960001330 hydroxycarbamide Drugs 0.000 description 1
- 201000006866 hypopharynx cancer Diseases 0.000 description 1
- 229940099279 idamycin Drugs 0.000 description 1
- 229960000908 idarubicin Drugs 0.000 description 1
- 229940090411 ifex Drugs 0.000 description 1
- 229960001101 ifosfamide Drugs 0.000 description 1
- 125000002883 imidazolyl group Chemical group 0.000 description 1
- 125000005945 imidazopyridyl group Chemical group 0.000 description 1
- 102000018358 immunoglobulin Human genes 0.000 description 1
- 238000009177 immunoglobulin therapy Methods 0.000 description 1
- 230000002584 immunomodulator Effects 0.000 description 1
- 239000003018 immunosuppressive agent Substances 0.000 description 1
- 229940125721 immunosuppressive agent Drugs 0.000 description 1
- 238000000099 in vitro assay Methods 0.000 description 1
- 238000010874 in vitro model Methods 0.000 description 1
- 230000002779 inactivation Effects 0.000 description 1
- 125000001041 indolyl group Chemical group 0.000 description 1
- 239000003999 initiator Substances 0.000 description 1
- 150000007529 inorganic bases Chemical class 0.000 description 1
- 229960003521 interferon alfa-2a Drugs 0.000 description 1
- 108010055511 interferon alfa-2c Proteins 0.000 description 1
- 108010010648 interferon alfacon-1 Proteins 0.000 description 1
- 229960003358 interferon alfacon-1 Drugs 0.000 description 1
- 229940047124 interferons Drugs 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- 230000009545 invasion Effects 0.000 description 1
- HVTICUPFWKNHNG-UHFFFAOYSA-N iodoethane Chemical compound CCI HVTICUPFWKNHNG-UHFFFAOYSA-N 0.000 description 1
- SYJRVVFAAIUVDH-UHFFFAOYSA-N ipa isopropanol Chemical compound CC(C)O.CC(C)O SYJRVVFAAIUVDH-UHFFFAOYSA-N 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 125000004491 isohexyl group Chemical group C(CCC(C)C)* 0.000 description 1
- 125000001972 isopentyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])C([H])([H])* 0.000 description 1
- FMKOJHQHASLBPH-UHFFFAOYSA-N isopropyl iodide Chemical compound CC(C)I FMKOJHQHASLBPH-UHFFFAOYSA-N 0.000 description 1
- 125000002183 isoquinolinyl group Chemical group C1(=NC=CC2=CC=CC=C12)* 0.000 description 1
- 125000001786 isothiazolyl group Chemical group 0.000 description 1
- 125000000842 isoxazolyl group Chemical group 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- 201000010982 kidney cancer Diseases 0.000 description 1
- 229940043355 kinase inhibitor Drugs 0.000 description 1
- 150000003903 lactic acid esters Chemical class 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 206010023841 laryngeal neoplasm Diseases 0.000 description 1
- 239000007942 layered tablet Substances 0.000 description 1
- 229940063725 leukeran Drugs 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 201000006721 lip cancer Diseases 0.000 description 1
- 238000004811 liquid chromatography Methods 0.000 description 1
- 238000001294 liquid chromatography-tandem mass spectrometry Methods 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 210000005229 liver cell Anatomy 0.000 description 1
- 229960002247 lomustine Drugs 0.000 description 1
- 230000004904 long-term response Effects 0.000 description 1
- 210000001165 lymph node Anatomy 0.000 description 1
- 230000001926 lymphatic effect Effects 0.000 description 1
- 230000000527 lymphocytic effect Effects 0.000 description 1
- 208000003747 lymphoid leukemia Diseases 0.000 description 1
- 201000000564 macroglobulinemia Diseases 0.000 description 1
- 159000000003 magnesium salts Chemical class 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 201000003175 male breast cancer Diseases 0.000 description 1
- 208000010907 male breast carcinoma Diseases 0.000 description 1
- 150000002688 maleic acid derivatives Chemical class 0.000 description 1
- 230000036210 malignancy Effects 0.000 description 1
- 208000006178 malignant mesothelioma Diseases 0.000 description 1
- 208000026045 malignant tumor of parathyroid gland Diseases 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 229940087732 matulane Drugs 0.000 description 1
- 230000035800 maturation Effects 0.000 description 1
- BCVXHSPFUWZLGQ-UHFFFAOYSA-N mecn acetonitrile Chemical compound CC#N.CC#N BCVXHSPFUWZLGQ-UHFFFAOYSA-N 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- COTNUBDHGSIOTA-UHFFFAOYSA-N meoh methanol Chemical compound OC.OC COTNUBDHGSIOTA-UHFFFAOYSA-N 0.000 description 1
- 229960000901 mepacrine Drugs 0.000 description 1
- GLVAUDGFNGKCSF-UHFFFAOYSA-N mercaptopurine Chemical compound S=C1NC=NC2=C1NC=N2 GLVAUDGFNGKCSF-UHFFFAOYSA-N 0.000 description 1
- 210000000716 merkel cell Anatomy 0.000 description 1
- 108020004999 messenger RNA Proteins 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- LVWZTYCIRDMTEY-UHFFFAOYSA-N metamizole Chemical compound O=C1C(N(CS(O)(=O)=O)C)=C(C)N(C)N1C1=CC=CC=C1 LVWZTYCIRDMTEY-UHFFFAOYSA-N 0.000 description 1
- 230000001394 metastastic effect Effects 0.000 description 1
- 206010061289 metastatic neoplasm Diseases 0.000 description 1
- 208000037970 metastatic squamous neck cancer Diseases 0.000 description 1
- AFVFQIVMOAPDHO-UHFFFAOYSA-M methanesulfonate group Chemical class CS(=O)(=O)[O-] AFVFQIVMOAPDHO-UHFFFAOYSA-M 0.000 description 1
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 1
- HRDXJKGNWSUIBT-UHFFFAOYSA-N methoxybenzene Chemical group [CH2]OC1=CC=CC=C1 HRDXJKGNWSUIBT-UHFFFAOYSA-N 0.000 description 1
- 125000004184 methoxymethyl group Chemical group [H]C([H])([H])OC([H])([H])* 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 235000010981 methylcellulose Nutrition 0.000 description 1
- 125000004170 methylsulfonyl group Chemical group [H]C([H])([H])S(*)(=O)=O 0.000 description 1
- 210000001589 microsome Anatomy 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 229960001156 mitoxantrone Drugs 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 125000005858 morpholino(C2-C3)alkyl group Chemical group 0.000 description 1
- 125000002757 morpholinyl group Chemical group 0.000 description 1
- 229950003968 motesanib Drugs 0.000 description 1
- RAHBGWKEPAQNFF-UHFFFAOYSA-N motesanib Chemical compound C=1C=C2C(C)(C)CNC2=CC=1NC(=O)C1=CC=CN=C1NCC1=CC=NC=C1 RAHBGWKEPAQNFF-UHFFFAOYSA-N 0.000 description 1
- 210000000214 mouth Anatomy 0.000 description 1
- 206010051747 multiple endocrine neoplasia Diseases 0.000 description 1
- 238000000175 multiple-ion monitoring Methods 0.000 description 1
- 229940087004 mustargen Drugs 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- 229940090009 myleran Drugs 0.000 description 1
- PEECTLLHENGOKU-UHFFFAOYSA-N n,n-dimethylpyridin-4-amine Chemical compound CN(C)C1=CC=NC=C1.CN(C)C1=CC=NC=C1 PEECTLLHENGOKU-UHFFFAOYSA-N 0.000 description 1
- 125000004370 n-butenyl group Chemical group [H]\C([H])=C(/[H])C([H])([H])C([H])([H])* 0.000 description 1
- WOOWBQQQJXZGIE-UHFFFAOYSA-N n-ethyl-n-propan-2-ylpropan-2-amine Chemical compound CCN(C(C)C)C(C)C.CCN(C(C)C)C(C)C WOOWBQQQJXZGIE-UHFFFAOYSA-N 0.000 description 1
- 125000001280 n-hexyl group Chemical group C(CCCCC)* 0.000 description 1
- 125000000740 n-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- PSZYNBSKGUBXEH-UHFFFAOYSA-N naphthalene-1-sulfonic acid Chemical class C1=CC=C2C(S(=O)(=O)O)=CC=CC2=C1 PSZYNBSKGUBXEH-UHFFFAOYSA-N 0.000 description 1
- 125000001624 naphthyl group Chemical group 0.000 description 1
- 210000000581 natural killer T-cell Anatomy 0.000 description 1
- 239000013642 negative control Substances 0.000 description 1
- 125000005244 neohexyl group Chemical group [H]C([H])([H])C(C([H])([H])[H])(C([H])([H])[H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000001971 neopentyl group Chemical group [H]C([*])([H])C(C([H])([H])[H])(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 230000009826 neoplastic cell growth Effects 0.000 description 1
- 229940109551 nipent Drugs 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 208000002154 non-small cell lung carcinoma Diseases 0.000 description 1
- 125000003729 nucleotide group Chemical group 0.000 description 1
- 210000004940 nucleus Anatomy 0.000 description 1
- 125000004365 octenyl group Chemical group C(=CCCCCCC)* 0.000 description 1
- 208000022982 optic pathway glioma Diseases 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 201000005443 oral cavity cancer Diseases 0.000 description 1
- 239000007935 oral tablet Substances 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 125000001181 organosilyl group Chemical group [SiH3]* 0.000 description 1
- 201000006958 oropharynx cancer Diseases 0.000 description 1
- 208000021284 ovarian germ cell tumor Diseases 0.000 description 1
- 125000001715 oxadiazolyl group Chemical group 0.000 description 1
- 150000003901 oxalic acid esters Chemical class 0.000 description 1
- 125000002971 oxazolyl group Chemical group 0.000 description 1
- 125000003566 oxetanyl group Chemical group 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 125000000636 p-nitrophenyl group Chemical group [H]C1=C([H])C(=C([H])C([H])=C1*)[N+]([O-])=O 0.000 description 1
- 201000002530 pancreatic endocrine carcinoma Diseases 0.000 description 1
- 229940096763 panretin Drugs 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- VMZMNAABQBOLAK-DBILLSOUSA-N pasireotide Chemical compound C([C@H]1C(=O)N2C[C@@H](C[C@H]2C(=O)N[C@H](C(=O)N[C@H](CC=2C3=CC=CC=C3NC=2)C(=O)N[C@H](C(N[C@@H](CC=2C=CC(OCC=3C=CC=CC=3)=CC=2)C(=O)N1)=O)CCCCN)C=1C=CC=CC=1)OC(=O)NCCN)C1=CC=CC=C1 VMZMNAABQBOLAK-DBILLSOUSA-N 0.000 description 1
- 229960005415 pasireotide Drugs 0.000 description 1
- 108700017947 pasireotide Proteins 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 229940002988 pegasys Drugs 0.000 description 1
- 108010092853 peginterferon alfa-2a Proteins 0.000 description 1
- 229960005079 pemetrexed Drugs 0.000 description 1
- 229960002340 pentostatin Drugs 0.000 description 1
- 229950011309 pexastimogene devacirepvec Drugs 0.000 description 1
- 239000000825 pharmaceutical preparation Substances 0.000 description 1
- 208000028591 pheochromocytoma Diseases 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 150000003014 phosphoric acid esters Chemical class 0.000 description 1
- 229910000073 phosphorus hydride Inorganic materials 0.000 description 1
- 239000003757 phosphotransferase inhibitor Substances 0.000 description 1
- 201000003113 pineoblastoma Diseases 0.000 description 1
- 125000004193 piperazinyl group Chemical group 0.000 description 1
- 125000000587 piperidin-1-yl group Chemical group [H]C1([H])N(*)C([H])([H])C([H])([H])C([H])([H])C1([H])[H] 0.000 description 1
- 125000005856 piperidino(C2-C3)alkyl group Chemical group 0.000 description 1
- 125000005936 piperidyl group Chemical group 0.000 description 1
- 208000010916 pituitary tumor Diseases 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920001184 polypeptide Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 238000010837 poor prognosis Methods 0.000 description 1
- 239000013641 positive control Substances 0.000 description 1
- 159000000001 potassium salts Chemical class 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 230000001855 preneoplastic effect Effects 0.000 description 1
- 238000004237 preparative chromatography Methods 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 208000025638 primary cutaneous T-cell non-Hodgkin lymphoma Diseases 0.000 description 1
- 229960000624 procarbazine Drugs 0.000 description 1
- 102000004196 processed proteins & peptides Human genes 0.000 description 1
- 108090000765 processed proteins & peptides Proteins 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- ALDITMKAAPLVJK-UHFFFAOYSA-N prop-1-ene;hydrate Chemical group O.CC=C ALDITMKAAPLVJK-UHFFFAOYSA-N 0.000 description 1
- YLZKGKDWGZZBGR-JGYORERUSA-N propan-2-yl (2R)-4-[[(2R,4aR,6R,7S,7aS)-6-(2-amino-6-methoxypurin-9-yl)-7-hydroxy-2-oxo-4a,6,7,7a-tetrahydro-4H-furo[3,2-d][1,3,2]dioxaphosphinin-2-yl]oxy]-2-methylbutanoate Chemical compound NC1=NC(=C2N=CN(C2=N1)[C@H]1[C@H]([C@@H]2O[P@](OC[C@H]2O1)(=O)OCC[C@H](C(=O)OC(C)C)C)O)OC YLZKGKDWGZZBGR-JGYORERUSA-N 0.000 description 1
- VBYSBLYIWXFAFK-GNAANRRZSA-N propan-2-yl (2R)-4-[[(2R,4aR,6R,7S,7aS)-6-(4-amino-2-oxopyrimidin-1-yl)-7-fluoro-2-oxo-4a,6,7,7a-tetrahydro-4H-thieno[3,2-d][1,3,2]dioxaphosphinin-2-yl]oxy]-2-methylbutanoate Chemical compound NC1=NC(N(C=C1)[C@H]1[C@H]([C@@H]2O[P@](OC[C@H]2S1)(=O)OCC[C@H](C(=O)OC(C)C)C)F)=O VBYSBLYIWXFAFK-GNAANRRZSA-N 0.000 description 1
- YLZKGKDWGZZBGR-KONBFWGESA-N propan-2-yl (2R)-4-[[(2S,4aR,6R,7S,7aS)-6-(2-amino-6-methoxypurin-9-yl)-7-hydroxy-2-oxo-4a,6,7,7a-tetrahydro-4H-furo[3,2-d][1,3,2]dioxaphosphinin-2-yl]oxy]-2-methylbutanoate Chemical compound NC1=NC(=C2N=CN(C2=N1)[C@H]1[C@H]([C@@H]2O[P@@](OC[C@H]2O1)(=O)OCC[C@H](C(=O)OC(C)C)C)O)OC YLZKGKDWGZZBGR-KONBFWGESA-N 0.000 description 1
- GXPFNFRBKJKEBP-ZVPAUURCSA-N propan-2-yl (2R)-4-[[(4aR,6R,7S,7aR)-6-(2-amino-6-methoxypurin-9-yl)-2-oxo-7-phenylmethoxycarbonyloxy-4a,6,7,7a-tetrahydro-4H-furo[3,2-d][1,3,2]dioxaphosphinin-2-yl]oxy]-2-methylbutanoate Chemical compound COc1nc(N)nc2n(cnc12)[C@@H]1O[C@@H]2COP(=O)(OCC[C@@H](C)C(=O)OC(C)C)O[C@H]2[C@@H]1OC(=O)OCc1ccccc1 GXPFNFRBKJKEBP-ZVPAUURCSA-N 0.000 description 1
- AQZWWYSXNHVOBV-ZYPSZORRSA-N propan-2-yl (2R)-4-[[(4aR,6R,7aR)-6-(4-amino-2-oxopyrimidin-1-yl)-7,7-difluoro-2-oxo-4,4a,6,7a-tetrahydrofuro[3,2-d][1,3,2]dioxaphosphinin-2-yl]oxy]-2-methylbutanoate Chemical compound CC(C)OC(=O)[C@H](C)CCOP1(=O)OC[C@H]2O[C@@H](N3C=CC(N)=NC3=O)C(F)(F)[C@@H]2O1 AQZWWYSXNHVOBV-ZYPSZORRSA-N 0.000 description 1
- FJZHYKAXYCYLJM-SSDOTTSWSA-N propan-2-yl (2R)-4-hydroxy-2-methylbutanoate Chemical compound OCC[C@H](C(=O)OC(C)C)C FJZHYKAXYCYLJM-SSDOTTSWSA-N 0.000 description 1
- ILLQEDUYSGSFIW-ZDUSSCGKSA-N propan-2-yl (2S)-2-methyl-4-phenylmethoxybutanoate Chemical compound C(C1=CC=CC=C1)OCC[C@@H](C(=O)OC(C)C)C ILLQEDUYSGSFIW-ZDUSSCGKSA-N 0.000 description 1
- SEBWFKGVMBBDHT-AZAKILHBSA-N propan-2-yl (2S)-4-[[(2R,4aR,6R,7S,7aR)-6-(6-amino-2-chloropurin-9-yl)-7-fluoro-2-oxo-4a,6,7,7a-tetrahydro-4H-furo[3,2-d][1,3,2]dioxaphosphinin-2-yl]oxy]-2-methylbutanoate Chemical compound NC1=C2N=CN(C2=NC(=N1)Cl)[C@H]1[C@H]([C@@H]2O[P@](OC[C@H]2O1)(=O)OCC[C@@H](C(=O)OC(C)C)C)F SEBWFKGVMBBDHT-AZAKILHBSA-N 0.000 description 1
- KDUSHTQFFRYVCQ-XTUHUHPASA-N propan-2-yl (2S)-4-[[(2R,4aR,6R,7aS)-6-(6-amino-2-chloropurin-9-yl)-2-oxo-4a,6,7,7a-tetrahydro-4H-furo[3,2-d][1,3,2]dioxaphosphinin-2-yl]oxy]-2-methylbutanoate Chemical compound NC1=C2N=CN(C2=NC(=N1)Cl)[C@H]1C[C@@H]2O[P@](OC[C@H]2O1)(=O)OCC[C@@H](C(=O)OC(C)C)C KDUSHTQFFRYVCQ-XTUHUHPASA-N 0.000 description 1
- SEBWFKGVMBBDHT-FRZFUDLFSA-N propan-2-yl (2S)-4-[[(2S,4aR,6R,7S,7aR)-6-(6-amino-2-chloropurin-9-yl)-7-fluoro-2-oxo-4a,6,7,7a-tetrahydro-4H-furo[3,2-d][1,3,2]dioxaphosphinin-2-yl]oxy]-2-methylbutanoate Chemical compound NC1=C2N=CN(C2=NC(=N1)Cl)[C@H]1[C@H]([C@@H]2O[P@@](OC[C@H]2O1)(=O)OCC[C@@H](C(=O)OC(C)C)C)F SEBWFKGVMBBDHT-FRZFUDLFSA-N 0.000 description 1
- KDUSHTQFFRYVCQ-XHYJZXCHSA-N propan-2-yl (2S)-4-[[(2S,4aR,6R,7aS)-6-(6-amino-2-chloropurin-9-yl)-2-oxo-4a,6,7,7a-tetrahydro-4H-furo[3,2-d][1,3,2]dioxaphosphinin-2-yl]oxy]-2-methylbutanoate Chemical compound NC1=C2N=CN(C2=NC(=N1)Cl)[C@H]1C[C@@H]2O[P@@](OC[C@H]2O1)(=O)OCC[C@@H](C(=O)OC(C)C)C KDUSHTQFFRYVCQ-XHYJZXCHSA-N 0.000 description 1
- RMDJLMHQEVBSGO-UNIHFJTOSA-N propan-2-yl 4-[[(2R,4aR,6R,7aS)-6-[2,4-dioxo-5-(trifluoromethyl)pyrimidin-1-yl]-2-oxo-4a,6,7,7a-tetrahydro-4H-furo[3,2-d][1,3,2]dioxaphosphinin-2-yl]oxy]-2-methylbutanoate Chemical compound O=C1N(C=C(C(N1)=O)C(F)(F)F)[C@H]1C[C@@H]2O[P@](OC[C@H]2O1)(=O)OCCC(C(=O)OC(C)C)C RMDJLMHQEVBSGO-UNIHFJTOSA-N 0.000 description 1
- RMDJLMHQEVBSGO-CUTYJTCLSA-N propan-2-yl 4-[[(2S,4aR,6R,7aS)-6-[2,4-dioxo-5-(trifluoromethyl)pyrimidin-1-yl]-2-oxo-4a,6,7,7a-tetrahydro-4H-furo[3,2-d][1,3,2]dioxaphosphinin-2-yl]oxy]-2-methylbutanoate Chemical compound O=C1N(C=C(C(N1)=O)C(F)(F)F)[C@H]1C[C@@H]2O[P@@](OC[C@H]2O1)(=O)OCCC(C(=O)OC(C)C)C RMDJLMHQEVBSGO-CUTYJTCLSA-N 0.000 description 1
- FJZHYKAXYCYLJM-UHFFFAOYSA-N propan-2-yl 4-hydroxy-2-methylbutanoate Chemical compound CC(C)OC(=O)C(C)CCO FJZHYKAXYCYLJM-UHFFFAOYSA-N 0.000 description 1
- 125000004368 propenyl group Chemical group C(=CC)* 0.000 description 1
- DNIAPMSPPWPWGF-UHFFFAOYSA-N propylene glycol Substances CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 1
- 125000002568 propynyl group Chemical group [*]C#CC([H])([H])[H] 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 238000000425 proton nuclear magnetic resonance spectrum Methods 0.000 description 1
- LVTJOONKWUXEFR-FZRMHRINSA-N protoneodioscin Natural products O(C[C@@H](CC[C@]1(O)[C@H](C)[C@@H]2[C@]3(C)[C@H]([C@H]4[C@@H]([C@]5(C)C(=CC4)C[C@@H](O[C@@H]4[C@H](O[C@H]6[C@@H](O)[C@@H](O)[C@@H](O)[C@H](C)O6)[C@@H](O)[C@H](O[C@H]6[C@@H](O)[C@@H](O)[C@@H](O)[C@H](C)O6)[C@H](CO)O4)CC5)CC3)C[C@@H]2O1)C)[C@H]1[C@H](O)[C@H](O)[C@H](O)[C@@H](CO)O1 LVTJOONKWUXEFR-FZRMHRINSA-N 0.000 description 1
- 229940117820 purinethol Drugs 0.000 description 1
- 125000003226 pyrazolyl group Chemical group 0.000 description 1
- 125000002098 pyridazinyl group Chemical group 0.000 description 1
- 125000004076 pyridyl group Chemical group 0.000 description 1
- 125000000714 pyrimidinyl group Chemical group 0.000 description 1
- 125000005857 pyrrolidino(C2-C3)alkyl group Chemical group 0.000 description 1
- 125000000719 pyrrolidinyl group Chemical group 0.000 description 1
- 125000006085 pyrrolopyridyl group Chemical group 0.000 description 1
- 125000000168 pyrrolyl group Chemical group 0.000 description 1
- 125000002294 quinazolinyl group Chemical group N1=C(N=CC2=CC=CC=C12)* 0.000 description 1
- 125000002943 quinolinyl group Chemical group N1=C(C=CC2=CC=CC=C12)* 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- 229940053146 rebetol Drugs 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 206010038038 rectal cancer Diseases 0.000 description 1
- 201000001275 rectum cancer Diseases 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 208000030859 renal pelvis/ureter urothelial carcinoma Diseases 0.000 description 1
- 229930002330 retinoic acid Natural products 0.000 description 1
- 201000009410 rhabdomyosarcoma Diseases 0.000 description 1
- 229940061969 rheumatrex Drugs 0.000 description 1
- 150000003902 salicylic acid esters Chemical class 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 201000008261 skin carcinoma Diseases 0.000 description 1
- 208000000587 small cell lung carcinoma Diseases 0.000 description 1
- 201000002314 small intestine cancer Diseases 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000001632 sodium acetate Substances 0.000 description 1
- 235000017281 sodium acetate Nutrition 0.000 description 1
- 239000000661 sodium alginate Substances 0.000 description 1
- 235000010413 sodium alginate Nutrition 0.000 description 1
- 229940005550 sodium alginate Drugs 0.000 description 1
- WXMKPNITSTVMEF-UHFFFAOYSA-M sodium benzoate Chemical compound [Na+].[O-]C(=O)C1=CC=CC=C1 WXMKPNITSTVMEF-UHFFFAOYSA-M 0.000 description 1
- 239000004299 sodium benzoate Substances 0.000 description 1
- 235000010234 sodium benzoate Nutrition 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- AJPJDKMHJJGVTQ-UHFFFAOYSA-M sodium dihydrogen phosphate Chemical compound [Na+].OP(O)([O-])=O AJPJDKMHJJGVTQ-UHFFFAOYSA-M 0.000 description 1
- 229910000162 sodium phosphate Inorganic materials 0.000 description 1
- 210000004872 soft tissue Anatomy 0.000 description 1
- 239000007909 solid dosage form Substances 0.000 description 1
- 238000000527 sonication Methods 0.000 description 1
- 229960000487 sorafenib tosylate Drugs 0.000 description 1
- 229940034345 sotret Drugs 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 238000012421 spiking Methods 0.000 description 1
- 210000000952 spleen Anatomy 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 208000037969 squamous neck cancer Diseases 0.000 description 1
- 238000009102 step therapy Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 229960001052 streptozocin Drugs 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 150000003900 succinic acid esters Chemical class 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 150000003871 sulfonates Chemical class 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 208000034223 susceptibility to 2 systemic lupus erythematosus Diseases 0.000 description 1
- 238000013268 sustained release Methods 0.000 description 1
- 239000011885 synergistic combination Substances 0.000 description 1
- 239000006188 syrup Substances 0.000 description 1
- 235000020357 syrup Nutrition 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 235000012222 talc Nutrition 0.000 description 1
- 229940099419 targretin Drugs 0.000 description 1
- 229940061353 temodar Drugs 0.000 description 1
- 210000002435 tendon Anatomy 0.000 description 1
- 229960001278 teniposide Drugs 0.000 description 1
- 229960004556 tenofovir Drugs 0.000 description 1
- SGOIRFVFHAKUTI-ZCFIWIBFSA-N tenofovir (anhydrous) Chemical compound N1=CN=C2N(C[C@@H](C)OCP(O)(O)=O)C=NC2=C1N SGOIRFVFHAKUTI-ZCFIWIBFSA-N 0.000 description 1
- VCMJCVGFSROFHV-WZGZYPNHSA-N tenofovir disoproxil fumarate Chemical compound OC(=O)\C=C\C(O)=O.N1=CN=C2N(C[C@@H](C)OCP(=O)(OCOC(=O)OC(C)C)OCOC(=O)OC(C)C)C=NC2=C1N VCMJCVGFSROFHV-WZGZYPNHSA-N 0.000 description 1
- YBRBMKDOPFTVDT-UHFFFAOYSA-N tert-butylamine Chemical compound CC(C)(C)N YBRBMKDOPFTVDT-UHFFFAOYSA-N 0.000 description 1
- BCNZYOJHNLTNEZ-UHFFFAOYSA-N tert-butyldimethylsilyl chloride Chemical compound CC(C)(C)[Si](C)(C)Cl BCNZYOJHNLTNEZ-UHFFFAOYSA-N 0.000 description 1
- 201000003120 testicular cancer Diseases 0.000 description 1
- FPGGTKZVZWFYPV-UHFFFAOYSA-M tetrabutylammonium fluoride Chemical compound [F-].CCCC[N+](CCCC)(CCCC)CCCC FPGGTKZVZWFYPV-UHFFFAOYSA-M 0.000 description 1
- 125000003718 tetrahydrofuranyl group Chemical group 0.000 description 1
- 125000003507 tetrahydrothiofenyl group Chemical group 0.000 description 1
- WROMPOXWARCANT-UHFFFAOYSA-N tfa trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F.OC(=O)C(F)(F)F WROMPOXWARCANT-UHFFFAOYSA-N 0.000 description 1
- 125000001984 thiazolidinyl group Chemical group 0.000 description 1
- 125000000335 thiazolyl group Chemical group 0.000 description 1
- 125000001544 thienyl group Chemical group 0.000 description 1
- 150000003567 thiocyanates Chemical class 0.000 description 1
- 125000003396 thiol group Chemical group [H]S* 0.000 description 1
- 125000004568 thiomorpholinyl group Chemical group 0.000 description 1
- 229960001196 thiotepa Drugs 0.000 description 1
- 201000002510 thyroid cancer Diseases 0.000 description 1
- 229960003087 tioguanine Drugs 0.000 description 1
- 229940044616 toll-like receptor 7 agonist Drugs 0.000 description 1
- LBLYYCQCTBFVLH-UHFFFAOYSA-M toluenesulfonate group Chemical group C=1(C(=CC=CC1)S(=O)(=O)[O-])C LBLYYCQCTBFVLH-UHFFFAOYSA-M 0.000 description 1
- 229940035307 toposar Drugs 0.000 description 1
- 125000005490 tosylate group Chemical group 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 229940066958 treanda Drugs 0.000 description 1
- 125000001425 triazolyl group Chemical group 0.000 description 1
- VSQQQLOSPVPRAZ-RRKCRQDMSA-N trifluridine Chemical compound C1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C(C(F)(F)F)=C1 VSQQQLOSPVPRAZ-RRKCRQDMSA-N 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
- UNXRWKVEANCORM-UHFFFAOYSA-N triphosphoric acid Chemical class OP(O)(=O)OP(O)(=O)OP(O)(O)=O UNXRWKVEANCORM-UHFFFAOYSA-N 0.000 description 1
- 229940086984 trisenox Drugs 0.000 description 1
- 208000029387 trophoblastic neoplasm Diseases 0.000 description 1
- 208000029729 tumor suppressor gene on chromosome 11 Diseases 0.000 description 1
- 229940063032 tyzeka Drugs 0.000 description 1
- 238000004724 ultra fast liquid chromatography Methods 0.000 description 1
- 238000001946 ultra-performance liquid chromatography-mass spectrometry Methods 0.000 description 1
- 201000005112 urinary bladder cancer Diseases 0.000 description 1
- 208000037965 uterine sarcoma Diseases 0.000 description 1
- 229960005486 vaccine Drugs 0.000 description 1
- 206010046885 vaginal cancer Diseases 0.000 description 1
- 208000013139 vaginal neoplasm Diseases 0.000 description 1
- 239000003981 vehicle Substances 0.000 description 1
- 229940065658 vidaza Drugs 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 238000003260 vortexing Methods 0.000 description 1
- 201000005102 vulva cancer Diseases 0.000 description 1
- 238000010626 work up procedure Methods 0.000 description 1
- 229940053890 zanosar Drugs 0.000 description 1
- 125000005853 β-dimethylaminoethyl group Chemical group 0.000 description 1
- 150000003954 δ-lactams Chemical class 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/66—Phosphorus compounds
- A61K31/675—Phosphorus compounds having nitrogen as a ring hetero atom, e.g. pyridoxal phosphate
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07H—SUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
- C07H19/00—Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
- C07H19/02—Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
- C07H19/04—Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
- C07H19/06—Pyrimidine radicals
- C07H19/10—Pyrimidine radicals with the saccharide radical esterified by phosphoric or polyphosphoric acids
- C07H19/11—Pyrimidine radicals with the saccharide radical esterified by phosphoric or polyphosphoric acids containing cyclic phosphate
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
- A61P1/16—Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F9/00—Compounds containing elements of Groups 5 or 15 of the Periodic Table
- C07F9/02—Phosphorus compounds
- C07F9/547—Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
- C07F9/6558—Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom containing at least two different or differently substituted hetero rings neither condensed among themselves nor condensed with a common carbocyclic ring or ring system
- C07F9/65586—Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom containing at least two different or differently substituted hetero rings neither condensed among themselves nor condensed with a common carbocyclic ring or ring system at least one of the hetero rings does not contain nitrogen as ring hetero atom
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F9/00—Compounds containing elements of Groups 5 or 15 of the Periodic Table
- C07F9/02—Phosphorus compounds
- C07F9/547—Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
- C07F9/6561—Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom containing systems of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring or ring system, with or without other non-condensed hetero rings
- C07F9/65616—Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom containing systems of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring or ring system, with or without other non-condensed hetero rings containing the ring system having three or more than three double bonds between ring members or between ring members and non-ring members, e.g. purine or analogs
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F9/00—Compounds containing elements of Groups 5 or 15 of the Periodic Table
- C07F9/02—Phosphorus compounds
- C07F9/547—Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
- C07F9/6564—Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms
- C07F9/6571—Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus and oxygen atoms as the only ring hetero atoms
- C07F9/6574—Esters of oxyacids of phosphorus
- C07F9/65744—Esters of oxyacids of phosphorus condensed with carbocyclic or heterocyclic rings or ring systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07H—SUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
- C07H19/00—Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
- C07H19/02—Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
- C07H19/04—Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
- C07H19/16—Purine radicals
- C07H19/20—Purine radicals with the saccharide radical esterified by phosphoric or polyphosphoric acids
- C07H19/213—Purine radicals with the saccharide radical esterified by phosphoric or polyphosphoric acids containing cyclic phosphate
Definitions
- the present invention relates to compounds of Formula (I) or Formula (II), compositions comprising the compounds of Formula (I) or Formula (II) and the compounds of Formula (I) or Formula (II) for use in treating or preventing liver diseases, such as cancer, Hepatitis B virus infection or Ebolavirus infection in a patient.
- liver diseases such as cancer, Hepatitis B virus infection or Ebolavirus infection in a patient.
- Cancer is a disease characterised primarily by an uncontrolled division of abnormal cells derived from a given normal tissue and the invasion of adjacent tissues by these malignant cells. Blood or lymphatic transportation can spread cancer cells to other parts of the body leading to regional lymph nodes and to distant sites (metastasis). Cancer is a complex, multistep process that begins with minor preneoplastic changes, which may under certain conditions progress to neoplasia. There are more than 100 different types of cancer, which can be grouped into broader categories. The main categories include: carcinoma, sarcoma, leukemia, lymphoma and myeloma, and central nervous system cancers. The incidence of cancer continues to climb as the general population ages, as new cancers develop, and as susceptible populations (e.g., people infected with AIDS or excessively exposed to sunlight) grow.
- Hepatocellular carcinoma also known as malignant hepatoma
- Hepatocellular carcinoma occurs mostly in men and patients that suffer from cirrhosis. It has been the third leading cause of cancer deaths worldwide (Block T. M. et al., 2003 , Oncogene 22:5093-5107).
- Many patients with hepatocellular carcinoma remain asymptomatic until the disease is in its advanced stages, resulting in ineffective treatment and poor prognosis; the majority of unresectable hepatocellular carcinoma patients die within one year.
- Treatment options for hepatocellular carcinoma have been limited, especially in the case of advanced or recurrent hepatocellular carcinoma.
- Surgery and radiation therapy are options for early stage liver cancer, but not very effective for advanced or recurrent hepatocellular carcinoma.
- Systematic chemotherapies have not been particularly effective, and there are a very limited number of drugs available for use.
- the recently approved kinase inhibitor sorafenib has been shown to be effective in treating hepatocellular carcinoma. However, it can slow or stop advanced liver cancer from progressing for only a few months longer than without treatment.
- Liver cancers which can be treated include primary and secondary liver cancers.
- the liver cancer is hepatocellular carcinoma, cholangiocarcinoma, or biliary tract cancer.
- the liver cancer is a metastasis in the liver originated from other cancers (such as colon cancer, pancreatic cancer, etc.).
- the compounds described herein can be used to treat cancers such as breast cancer, ovarian cancer, lung cancer, pancreatic cancer and leukemic cancer
- Hepatitis B virus (HBV) infection is a major health problem that can lead to chronic liver disease, such as cirrhosis and hepatocellular carcinoma, in a substantial number of infected individuals. Although most individuals seem to resolve the infection following acute symptoms, approximately 30% of cases become chronic. According to recent estimates around five percent of the world's population have chronic hepatitis B, leading to half a million to one million deaths per year.
- HBV Hepatitis B virus
- HBV is a small DNA virus that is considered to be the prototypical member of the hepadnaviridae.
- HBV is an enveloped virus with an unusual mode of replication, centering on the establishment of a covalently closed circular DNA (cccDNA) copy of its genome in the host cell nucleus.
- the episomal form is established from conversion of the partially double stranded circular DNA (relaxed circular, or rcDNA) genome upon initial infection and functions as the template for all HBV mRNAs.
- HBV cccDNA replicates through retrotranscription of a 1.1 genome unit-length RNA copy (pregenomic, or pgDNA) which is originally transcribed from the cccDNA template and which is acted upon by a virus encoded polymerase to yield progeny rcDNA.
- HBV DNA synthesis is coupled to assembly of its capsid and most copies of the encapsidated genome then efficiently associate with the envelope proteins for viron assembly and secretion; a minority of these genomes are shunted to the nucleus where they are converted to cccDNA, thus amplifying levels of the episome.
- HBV is classified into eight genotypes (A-H)
- HBsAg surface antigen
- HBV is transmitted parenterally by contaminated blood and blood products, contaminated needles, or sexually and vertically from infected mothers or carrier mothers to their off-spring.
- People who are chronically affected with HBV are usually characterised by readily detectable levels of circulating antibody specific to the viral capsid (HBc), with little, if any, detectable levels of antibody to HBsAg.
- HBc viral capsid
- the viruses of the Filoviridae family are enveloped negative sense, single-stranded, linear RNA viruses.
- Three genera within the Filoviridae family are Ebolavirus, Marburgvirus and ‘Cuevavirus’ (tentative).
- the five recognized species of Ebolavirus are Ebola virus (EBOV), Reston ebolavirus (REBOV), Sudan ebolavirus (SEBOV), Tai Forest ebolavirus (TAFV) and Bundibugyo ebolavirus (BEBOV).
- Ebolavirus and Marburgvirus are both highly infectious and contagious. Both viruses are transmitted by direct contact with the blood, body fluids and/or tissues of the infected persons. Ebolavirus and Marburgvirus can also be transmitted by handling sick or dead infected wild animals.
- Ebola hemorrhagic fever is caused by an Ebolavirus infection.
- Marburg virus disease is a human disease caused by Marburgvirus and causes Marburgvirus hemorrhagic fever (MHF).
- MHF Marburgvirus hemorrhagic fever
- the primary organs infected by Ebolavirus have been shown to be the liver and the spleen as reported in Rev. Fr. Histotechnol., 2012, vol. 25 no. 1, pages 65-80.
- liver diseases such as cancer or HBV infection or Ebolavirus infection which are safe and effective.
- the present invention provides a compound according to Formula (I) or Formula (II):
- A is selected from O, S, CH 2 , CF and C ⁇ CH 2 , with the proviso that if R 2 is OH and R 3 , R 4 and V are hydrogen, then A is other than S; and if A is CF or C ⁇ CH 2 , then V is absent;
- Q is O or S
- V is hydrogen, halogen, —N(R 13 ) 2 , —OR 13 , alkyl, alkenyl, alkynyl, haloalkyl, N 3 or CN;
- W is N, CH or CF
- R 1 is —CH 2 —X—Y—R 16 ;
- X is —C(R 14 ) 2 ;
- Y is —C(R 15 ) 2 or C 3 -C 6 cycloalkylene
- R 2 is hydrogen, fluoro, chloro, —OR 13 , —CN, —N(R 13 ) 2 , N 3 , C 1 -C 3 alkyl, C 1 -C 3 haloalkyl, C 2 -C 6 alkenyl or C 2 -C 3 alkynyl;
- R 3 is hydrogen, C 1 -C 6 alkyl, C 2 -C 6 alkenyl, C 2 -C 6 alkynyl, C 1 -C 6 haloalkyl, —OR 13 , fluoro, chloro, N 3 , —CN or —N(R 13 ) 2 with the proviso that if R 2 is fluoro or chloro, then R 3 is other than fluoro or chloro;
- R 4 is hydrogen, C 1 -C 6 alkyl, C 2 -C 6 alkenyl, C 2 -C 6 alkynyl, C 1 -C 6 haloalkyl, —OR 13 , fluoro, chloro, N 3 , —CN or —N(R 13 ) 2 ;
- R 5 , R 6 , R 8 and R 9 are each independently selected from hydrogen, C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, C 1 -C 6 hydroxyalkyl, halogen, —OR 18 , —SR 18 and —N(R 18 ) 2 ; C 1 -C 10 alkyl or —COOR 7 ;
- R 7 , R 10 , R 11 and R 12 are each independently selected from hydrogen, C 1 -C 6 alkyl, C 2 -C 6 alkenyl, C 2 -C 6 alkynyl, C 3 -C 7 cycloalkyl, C 5 -C 6 heteroary, C 9 -C 10 heteroaryl, halogen, —OR 18 , —SR 18 , —S(O)R 18 , —S(O) 2 R 18 , —S(O) 2 N(R 18 ) 2 , —NHC(O)OR 18 , —NHC(O)N(R 18 ) 2 , C 1 -C 6 haloalkyl, C 1 -C 6 hydroxyalkyl, —O(C 1 -C 6 haloalkyl), —CN, —NO 2 , —N(R 18 ) 2 , —NH(C 1 -C 6 alkylene)-(C 5 -C 6 heteroaryl),
- each occurrence of R 13 is independently selected from hydrogen, C 1 -C 6 alkyl, —C(O)R 18 or —C(O)OR 18 ;
- R 14 is hydrogen, halogen, C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, C 1 -C 6 hydroxyalkyl, C 6 -C 10 aryl-, OR 7 , —OC(O)R 17 , —N(R 12 )C(O)OR 17 or —C(O)OR 17 ;
- each occurrence of R 15 is independently selected from hydrogen, halogen, C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, C 1 -C 6 hydroxyalkyl, C 6 -C 10 aryl-, OR 17 , —OC(O)R 17 , —N(R 12 )C(O)OR 17 and —C(O)OR 17 or both R 15 groups together with the carbon atom to which they are attached can join to form a 3- to 6-membered spirocyclic cycloalkyl group;
- R 16 is —C(O)OR 17 ;
- each occurrence of R 17 is independently selected from hydrogen, halogen, C 1 -C 6 alkyl, C 3 -C 7 cycloalkyl and C 6 -C 10 aryl;
- each occurrence of R 18 is independently selected from hydrogen, C 1 -C 15 alkyl, C 1 -C 6 haloalkyl, C 1 -C 6 hydroxyalkyl, —(C 1 -C 3 alkylene) m -(C 3 -C 7 cycloalkyl), —(C 1 -C 3 alkylene) m -(C 6 -C 10 aryl), —(C 1 -C 3 alkylene) m -(C 4 -C 7 heterocycloalkyl), —(C 1 -C 3 alkylene) m -(C 5 -C 6 heteroaryl) and —(C 1 -C 3 alkylene) m -(C 9 -C 10 heteroaryl) and
- the present invention provides a pharmaceutical composition
- a pharmaceutical composition comprising a compound according to Formula (I) or Formula (II) or a pharmaceutically acceptable salt, solvate or enantiomer thereof, and a pharmaceutically acceptable carrier or diluent.
- the compounds of Formula (I) or Formula (II) or pharmaceutically acceptable salts, solvates or enantiomers thereof are useful in therapy.
- the compounds of Formula (I) or Formula (II) or pharmaceutically acceptable salts, solvates or enantiomers thereof are useful in the treatment or prevention of liver diseases in a patient.
- compounds of Formula (I) or Formula (II) or pharmaceutically acceptable salts, solvates or enantiomers thereof can be useful, for example, for treating or preventing cancer in a patient.
- Compounds of Formula (I) or Formula (II) or pharmaceutically acceptable salts, solvates or enantiomers thereof can also be useful for inhibiting HBV replication or replicon activity and for treating or preventing HBV infection in a patient.
- Compounds of Formula (I) or Formula (II) or pharmaceutically acceptable salts, solvates or enantiomers thereof can also be useful for treating or preventing Ebolavirus infection in a patient.
- the present invention provides a compound of Formula (I) or Formula (II) or a pharmaceutically acceptable salt, solvate or enantiomer thereof for use in the treatment or prevention of liver diseases in a patient.
- the present invention further provides a compound of Formula (I) or Formula (II) or a pharmaceutically acceptable salt, solvate or enantiomer thereof for use in treating or preventing cancer in a patient.
- the present invention further provides a compound of Formula (I) or Formula (II) or a pharmaceutically acceptable salt, solvate or enantiomer thereof for use in treating or preventing HBV infection in a patient.
- the present invention further provides a compound of Formula (I) or Formula (II) or a pharmaceutically acceptable salt, solvate or enantiomer thereof for use in treating or preventing Ebolavirus infection in a patient.
- the present invention further provides a combination comprising a compound of Formula (I) or Formula (II), or a pharmaceutically acceptable salt, solvate or enantiomer thereof and one, two, three or more other therapeutic agents.
- alkyl refers to an aliphatic hydrocarbon group having one of its hydrogen atoms replaced with a bond.
- An alkyl group may be straight or branched and contain from about 1 to about 20 carbon atoms. In one embodiment, an alkyl group contains from about 1 to about 12 carbon atoms. In different embodiments, an alkyl group contains from 1 to 6 carbon atoms (C 1 -C 6 alkyl), or from 1 to 3 carbon atoms (C 1 -C 3 alkyl).
- alkyl groups include methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl, tert-butyl, n-pentyl, neopentyl, isopentyl, n-hexyl, isohexyl and neohexyl.
- an alkyl group is linear.
- an alkyl group is branched. Unless otherwise indicated, an alkyl group is unsubstituted.
- C 1 -C 6 alkoxy refers to a group having the formula —O—(C 1 -C 6 alkyl), where the term “C 1 -C 6 alkyl” is defined above herein.
- alkenyl refers to an aliphatic hydrocarbon group containing at least one carbon-carbon double bond and having one of its hydrogen atoms replaced with a bond.
- An alkenyl group may be straight or branched and contain from about 2 to about 15 carbon atoms. In one embodiment, an alkenyl group contains from 2 to 12 carbon atoms. In another embodiment, an alkenyl group contains from 2 to 6 carbon atoms (C 2 -C 6 alkenyl). Examples of alkenyl groups include ethenyl, propenyl, n-butenyl, 3-methylbut-2-enyl, n-pentenyl, octenyl and decenyl. Unless otherwise indicated, an alkenyl group is unsubstituted.
- alkynyl refers to an aliphatic hydrocarbon group containing at least one carbon-carbon triple bond and having one of its hydrogen atoms replaced with a bond.
- An alkynyl group may be straight or branched and contain from about 2 to about 15 carbon atoms. In one embodiment, an alkynyl group contains from about 2 to about 12 carbon atoms. In another embodiment, an alkynyl group contains from 2 to 6 carbon atoms (C 2 -C 6 alkynyl). In another embodiment, an alkynyl group contains from 2 to 3 carbon atoms (C 2 -C 3 alkynyl). Examples of alkynyl groups include ethynyl, propynyl, 2-butynyl and 3-methylbutynyl. Unless otherwise indicated, an alkynyl group is unsubstituted.
- alkylene refers to an alkyl group, as defined above, wherein one of the alkyl group's hydrogen atoms has been replaced with a bond.
- alkylene groups include —CH 2 —, —CH 2 CH 2 —, —CH 2 CH 2 CH 2 —, —CH 2 CH 2 CH 2 CH 2 —, —CH(CH 3 )CH 2 CH 2 —, —CH(CH 3 )— and —CH 2 CH(CH 3 )CH 2 —.
- an alkylene group has from 1 to 6 carbon atoms (C 1 -C 6 alkylene).
- an alkylene group has from 1 to 3 carbon atoms (C 1 -C 3 alkylene). In another embodiment, an alkylene group is branched. In another embodiment, an alkylene group is linear. In one embodiment, an alkylene group is —CH 2 —.
- aryl refers to an aromatic monocyclic or multicyclic ring system comprising from about 6 to about 14 carbon atoms. In one embodiment, an aryl group contains from 6 to 10 carbon atoms (C 6 -C 10 aryl). In one embodiment, an aryl group can be optionally fused to a cycloalkyl or cycloalkanoyl group. Examples of aryl groups include phenyl and naphthyl. In one embodiment, an aryl group is phenyl.
- aryloxy refers to a group having the formula —O-aryl, where the term “aryl” is defined above herein.
- cycloalkyl refers to a non-aromatic mono- or multicyclic ring system comprising from 3 to about 10 ring carbon atoms. In one embodiment, a cycloalkyl contains from 3 to 7 ring carbon atoms (C 3 -C 7 cycloalkyl). In another embodiment, a cycloalkyl contains from 5 to 6 ring atoms. Examples of monocyclic cycloalkyls include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl and cyclooctyl.
- multicyclic cycloalkyls examples include 1-decalinyl, norbomyl and adamantly.
- a cycloalkyl group is unsubstituted.
- the term “3 to 6-membered cycloalkyl” refers to a cycloalkyl group having from 3 to 6 ring carbon atoms.
- a ring carbon atom of a cycloalkyl group may be functionalized as a carbonyl group.
- An illustrative example of such a cycloalkyl group (also referred to herein as a “cycloalkanoyl” group) includes cyclobutanoyl:
- cycloalkylene refers to a cycloalkyl group, as defined above, wherein one of the cycloalkyl group's hydrogen atoms has been replaced with a bond.
- examples of cycloalkylene groups include cyclopropylene, cyclobutylene, cyclopentylene and cyclohexylene.
- a cycloalkylene group has from 3 to 6 carbon atoms (C 3 -C 6 cycloalkylene).
- halogen means —F, —Cl, —Br or —I.
- haloalkyl refers to an alkyl group as defined above, wherein one or more of the alkyl group's hydrogen atoms have been replaced with a halogen.
- a haloalkyl group has from 1 to 6 carbon atoms (C 1 -C 6 haloalkyl).
- a haloalkyl group has from 1 to 3 carbon atoms (C 1 -C 3 haloalkyl).
- a haloalkyl group is substituted with from 1 to 3 F atoms. Examples of haloalkyl groups include —CH 2 F, —CHF 2 , —CF 3 , —CH 2 C 1 and —CCl 3 .
- hydroxyalkyl refers to an alkyl group as defined above, wherein one or more of the alkyl group's hydrogen atoms have been replaced with an —OH group.
- a hydroxyalkyl group has from 1 to 6 carbon atoms (C 1 -C 6 hydroxyalkyl).
- Non-limiting examples of hydroxyalkyl groups include —CH 2 OH, —CH 2 CH 2 OH, —CH 2 CH 2 CH 2 OH and —CH 2 CH(OH)CH 3 .
- 5 or 6-membered monocyclic heteroaryl refers to an aromatic monocyclic ring system comprising 5 to 6 ring atoms, wherein from 1 to 4 of the ring atoms is independently O, N or S and the remaining ring atoms are carbon atoms.
- a 5 or 6-membered monocyclic heteroaryl group is joined via a ring carbon atom, and any nitrogen atom of a heteroaryl can be optionally oxidized to the corresponding N-oxide.
- Examples of 5 or 6-membered monocyclic heteroaryls include pyridyl, pyrazinyl, furanyl, thienyl, pyrimidinyl, pyridone (including N-substituted pyridones), isoxazolyl, isothiazolyl, oxazolyl, oxadiazolyl, thiazolyl, pyrazolyl, furazanyl, pyrrolyl, triazolyl, 1,2,4-thiadiazolyl, pyrazinyl, pyridazinyl, imidazolyl, 1,2,4-triazinyl and the like, and all isomeric forms thereof.
- 9 or 10-membered bicyclic heteroaryl refers to an aromatic bicyclic ring system comprising 9 to 10 ring atoms, wherein from 1 to 4 of the ring atoms is independently O, N or S and the remaining ring atoms are carbon atoms.
- a 9 or 10-membered bicyclic heteroaryl group is joined via a ring carbon atom, and any nitrogen atom of a heteroaryl can be optionally oxidized to the corresponding N-oxide.
- 9 or 10-membered bicyclic heteroaryls include imidazo[1,2-a]pyridinyl, imidazo[2,1-b]thiazolyl, benzofurazanyl, indolyl, azaindolyl, benzimidazolyl, benzothienyl, quinolinyl, benzimidazolyl, quinazolinyl, pyrrolopyridyl, imidazopyridyl, isoquinolinyl, benzoazaindolyl, benzothiazolyl, and the like, and all isomeric forms thereof.
- heterocycloalkyl refers to a non-aromatic monocyclic or multicyclic ring system comprising 3 to about 11 ring atoms, wherein from 1 to 4 of the ring atoms are independently O, S, N or Si, and the remainder of the ring atoms are carbon atoms.
- a heterocycloalkyl group can be joined via a ring carbon, ring silicon atom or ring nitrogen atom.
- a heterocycloalkyl group is monocyclic and has from 3 to 7 ring atoms (C 3 -C 7 heterocycloalkyl).
- a heterocycloalkyl group is monocyclic has from 4 to 7 ring atoms (C 4 -C 7 heterocycloalkyl).
- a heterocycloalkyl group is bicyclic and has from 7 to 11 ring atoms.
- a heterocycloalkyl group is monocyclic and has 5 or 6 ring atoms.
- a heterocycloalkyl group is monocyclic.
- a heterocycloalkyl group is bicyclic. There are no adjacent oxygen and/or sulfur atoms present in the ring system.
- heterocycloalkyl any —NH group in a heterocycloalkyl ring may exist protected such as, for example, as an —N(BOC), —N(Cbz), —N(Tos) group and the like; such protected heterocycloalkyl groups are considered part of this invention.
- heterocycloalkyl also encompasses a heterocycloalkyl group, as defined above, which is fused to an aryl (e.g., benzene) or heteroaryl ring.
- the nitrogen or sulfur atom of the heterocycloalkyl can be optionally oxidized to the corresponding N-oxide, S-oxide or S,S-dioxide.
- Examples of monocyclic heterocycloalkyl rings include oxetanyl, piperidyl, pyrrolidinyl, piperazinyl, morpholinyl, thiomorpholinyl, thiazolidinyl, 1,4-dioxanyl, tetrahydrofuranyl, tetrahydrothiophenyl, delta-lactam, delta-lactone, silacyclopentane, silapyrrolidine and the like, and all isomers thereof.
- Illustrative examples of a silyl-containing heterocycloalkyl group include:
- a ring carbon atom of a heterocycloalkyl group may be functionalized as a carbonyl group.
- An illustrative example of such a heterocycloalkyl group is:
- a heterocycloalkyl group is a 5-membered monocyclic heterocycloalkyl. In another embodiment, a heterocycloalkyl group is a 6-membered monocyclic heterocycloalkyl.
- the term “3 to 6-membered monocyclic cycloalkyl” refers to a monocyclic heterocycloalkyl group having from 3 to 6 ring atoms.
- the term “4 to 6-membered monocyclic cycloalkyl” refers to a monocyclic heterocycloalkyl group having from 4 to 6 ring atoms.
- 7 to 11-membered bicyclic heterocycloalkyl refers to a bicyclic heterocycloalkyl group having from 7 to 11 ring atoms. Unless otherwise indicated, an heterocycloalkyl group is unsubstituted.
- substituted means that one or more hydrogens on the designated atom is replaced with a selection from the indicated group, provided that the designated atom's normal valency under the existing circumstances is not exceeded, and that the substitution results in a stable compound. Combinations of substituents and/or variables are permissible only if such combinations result in stable compounds.
- stable compound or “stable structure” is meant a compound that is sufficiently robust to survive isolation to a useful degree of purity from a reaction mixture, and formulation into an efficacious therapeutic agent.
- substituent “beta” refers to a substituent on the same side of the plane of the sugar ring as the 5′ carbon and the term “alpha” refers to a substituent on the opposite side of the plane of the sugar ring from the 5′ carbon. As shown below, substituent “A” is in the “alpha” position, and substituent “B” is in the “beta” position with respect to the 5′ carbon.
- substantially purified form refers to the physical state of a compound after the compound is isolated from a synthetic process (e.g., from a reaction mixture), a natural source, or a combination thereof.
- substantially purified form also refers to the physical state of a compound after the compound is obtained from a purification process or processes described herein or well-known to the skilled artisan (e.g., chromatography, recrystallization and the like), in sufficient purity to be characterizable by standard analytical techniques described herein or well-known to the skilled artisan.
- protecting groups When a functional group in a compound is termed “protected”, this means that the group is in modified form to preclude undesired side reactions at the protected site when the compound is subjected to a reaction. Suitable protecting groups will be recognized by those with ordinary skill in the art as well as by reference to standard textbooks such as, for example, T. W. Greene et al, Protective Groups in Organic Synthesis (1991), Wiley, New York.
- any substituent or variable e.g., alkyl, R 6 , R a , etc.
- its definition on each occurrence is independent of its definition at every other occurrence, unless otherwise indicated.
- composition is intended to encompass a product comprising the specified ingredients in the specified amounts, as well as any product which results directly from combination of the specified ingredients in the specified amounts.
- IC 50 refers to an amount, concentration or dosage of a particular test compound that achieves a 50% inhibition of a maximal response in an assay that measures such response.
- the term “host,” as used herein, refers to any unicellular or multicellular organism, including cell lines and animals, and in certain embodiments, a human. Alternatively, the host can be carrying a part of the Flaviviridae or Filovaridae viral genome, whose replication or function can be altered by the compounds of the present invention.
- the term “host” specifically includes infected cells, cells transfected with all or part of the Flaviviridae or Filovaridae genome and animals, in particular, primates (including chimpanzees) and humans. In most animal applications of the present invention, the host is a human patient. Veterinary applications, in certain indications, however, are clearly anticipated by the present invention (such as chimpanzees).
- subject and “patient,” as used herein, are used interchangeably.
- the terms “subject” and “subjects” refer to a mammal including a non-primate (e.g., a cow, pig, horse, cat, dog, rat, and mouse) and a primate (e.g., a monkey such as a cynomolgous monkey, a chimpanzee and a human), and for example, a human.
- the subject may also be a farm animal (e.g., a horse, a cow, a pig, etc.) or a pet (e.g., a dog or a cat).
- therapeutic agent refers to any agent(s) which can be used in the treatment or prevention of a disorder or one or more symptoms thereof.
- therapeutic agent includes a compound provided herein.
- a therapeutic agent can be an agent which is known to be useful for, or has been or is currently being used for the treatment or prevention of a disorder or one or more symptoms thereof.
- an effective amount refers to an amount of a compound of Formula (I) or Formula (II) and/or an additional therapeutic agent, or a composition thereof that is effective in producing the desired therapeutic, ameliorative, inhibitory or preventative effect when administered to a patient suffering from a viral infection or virus-related disorder.
- an effective amount can refer to each individual agent or to the combination as a whole, wherein the amounts of all agents administered are together effective, but wherein the component agent of the combination may not be present individually in an effective amount.
- a “therapeutically effective amount” can vary depending on, inter alia, the compound, the disease and its severity, and the age, weight, etc., of the subject to be treated.
- treating refers to ameliorating a disease or disorder that exists in a subject.
- “treating” or “treatment” includes ameliorating at least one physical parameter, which may be indiscernible by the subject.
- “treating” or “treatment” includes modulating the disease or disorder, either physically (e.g., stabilization of a discernible symptom) or physiologically (e.g., stabilization of a physical parameter) or both.
- “treating” or “treatment” includes delaying the onset of the disease or disorder.
- preventing refers to reducing the likelihood or severity of the liver disease or disorder.
- the present invention provides compounds of Formula (I), having the formula:
- A is O, S or CH 2 , with the proviso that if R 2 is OH and R 3 , R 4 and V are hydrogen, then A is other than S.
- A is O.
- A is S, with the proviso that if R 2 is OH, then R 3 , R 4 and V cannot be hydrogen.
- A is CF or C ⁇ CH 2 and V is absent.
- A is CF and V is absent.
- A is C ⁇ CH 2 and V is absent.
- Q is O.
- Q is S.
- R 1 is —CH 2 —C(R 14 ) 2 —C(R 15 ) 2 —C(O)OR 17 , wherein R 14 , R 15 and R 17 are as previously defined.
- R 1 is —CH 2 —C(R 14 ) 2 —C(R 15 ) 2 —C(O)OR 17 , wherein R 14 , R 15 and R 17 are each independently selected from hydrogen and C 1 -C 6 alkyl.
- R 1 is —CH 2 —CH 2 —C(R 15 ) 2 —C(O)OR 17 , wherein R 15 and R 17 are as previously defined.
- R 1 is N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl
- R 15 and R 17 are as previously defined.
- R 1 is N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl
- R 15 and R 17 are each independently selected from C 1 -C 6 alkyl.
- R 1 is N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl
- R 15 and R 17 are each independently selected from C 1 -C 6 alkyl.
- R 1 is N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl
- R 15 and R 17 are each independently selected from C 1 -C 6 alkyl.
- R 1 is N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl
- R 15 is methyl and R 17 is selected from ethyl or propyl.
- R 1 is N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl
- R 15 is methyl and R 17 is selected from ethyl or propyl.
- R 1 is N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl
- R 15 is methyl and R 17 is selected from ethyl or propyl.
- R 1 is N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl
- R 1 is N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl
- R 1 is N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl
- R 1 is N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl
- R 2 is hydrogen, fluoro, chloro, —OR 13 , —CN, —N(R 13 ) 2 or N 3 with the proviso that if R 2 is OH and R 3 , R 4 and V are hydrogen, then A is other than S and if R 2 is fluoro or chloro, then R 3 is other than fluoro or chloro.
- R 2 is C 1 -C 3 alkyl, C 1 -C 3 haloalkyl, C 2 -C 6 alkenyl or C 2 -C 3 alkynyl.
- R 2 is hydrogen, fluoro, chloro, methyl, amino or hydroxyl with the proviso that if R 2 is OH and R 3 , R 4 and V are hydrogen, then A is other than S and if R 2 is fluoro or chloro, then R 3 is other than fluoro or chloro.
- R 2 is hydrogen, fluoro or —OH with the proviso that if R 2 is OH and R 3 , R 4 and V are hydrogen, then A is other than S and if R 2 is fluoro or chloro, then R 3 is other than fluoro or chloro.
- R 2 is hydrogen
- R 2 is fluoro and R 3 is other than fluoro or chloro.
- R 2 is OH and if R 3 , R 4 and V are hydrogen, then A is other than S.
- R 3 is hydrogen, hydroxyl, fluoro, chloro, N 3 , CN or C 1 -C 6 alkyl, with the proviso that if R 2 is fluoro or chloro, then R 3 is other than fluoro or chloro.
- R 3 is hydrogen, hydroxyl, fluoro, chloro or methyl with the proviso that if R 2 is fluoro or chloro, then R 3 is other than fluoro or chloro.
- R 3 is hydrogen
- R 4 is hydrogen, C 1 -C 6 alkyl or C 2 -C 6 alkynyl.
- R 4 is hydrogen or ethynyl.
- R 4 is hydrogen
- V is hydrogen or fluoro.
- V is hydrogen
- V is hydrogen and each of R 2 , R 3 and R 4 is hydrogen.
- V is fluoro and each of R 2 , R 3 and R 4 is hydrogen.
- V is hydrogen
- R 2 is fluoro
- each of R 3 and R 4 is hydrogen
- V is hydrogen
- R 2 is hydroxyl
- each of R 3 and R 4 is hydrogen
- A is O
- V is hydrogen
- each of R 2 , R 3 and R 4 is hydrogen
- A is O
- V is hydrogen
- R 2 is fluoro
- each of R 3 and R 4 is hydrogen
- A is O
- V is hydrogen
- R 2 is hydroxyl
- each of R 3 and R 4 is hydrogen
- A is S
- V is hydrogen
- each of R 2 , R 3 and R 4 is hydrogen
- A is S
- V is hydrogen
- R 2 is fluoro
- each of R 3 and R 4 is hydrogen
- B is selected from the following groups:
- B is selected from the following groups:
- B is selected from the following groups:
- Q is O; W is N or CH; R 5 , R 6 and R 8 are each hydrogen; R 7 is amino or NHC(O)aryl; R 9 is hydrogen or trifluoromethyl; R 10 is —NH 2 or —O—C 1 -C 6 alkyl, R 11 is —NH 2 or halogen and R 12 is —NH 2 or halogen.
- B is selected from the following groups:
- Q is O; W is N; R 5 , R 6 and R 8 are each hydrogen; R 7 is amino or NHC(O)aryl; R 9 is hydrogen or trifluoromethyl; R 10 is —NH 2 or —O—C 1 -C 6 alkyl and R 11 is —NH 2 or halogen.
- B is N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-phenyl
- R 5 and R 6 are each hydrogen and R 7 is amino or NHC(O)R 18 , wherein R 18 is C 1 -C 6 alkyl or C 6 -C 10 aryl.
- B is N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-phenyl
- B is N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-phenyl
- R 5 and R 6 are each hydrogen and R 7 is NHC(O)R 18 , wherein R 18 is C 1 -C 6 alkyl or C 6 -C 10 aryl.
- B is:
- B is:
- B is:
- R 10 is —OR 18 and R 11 is —N(R 18 ) 2 , wherein R 18 is as previously defined and each R 18 is selected independently of each other.
- B is:
- W is N
- R 10 is —O— C 1 -C 6 alkyl and R 11 is amino.
- B is:
- R 10 is —O-ethyl and R 11 is amino.
- B is:
- B is:
- W is N, R 10 is amino and R 11 is hydrogen.
- A is O or S
- R 15 is methyl and R 17 is selected from ethyl or propyl.
- R 2 is F
- R 3 , R 4 and V are H and
- R 5 and R 6 are each hydrogen and R 7 is amino or NHC(O)R 18 , wherein R 18 is C 1 -C 6 alkyl or C 6 -C 10 aryl.
- A is O or S
- R 15 is methyl and R 17 is selected from ethyl or propyl.
- R 2 , R 3 , R 4 and V are hydrogen and
- R 8 is hydrogen and R 9 is hydrogen or trifluoromethyl.
- A is O or S
- R 15 is methyl and R 17 is selected from ethyl or propyl.
- R 2 is hydrogen or fluorine
- R 3 , R 4 and V are hydrogen and
- A is O
- R 15 is methyl and R 17 is selected from ethyl or propyl.
- R 2 is hydroxy
- R 3 , R 4 and V are hydrogen and
- W is N, R 10 is methoxy and R 11 is amino.
- R 17 is as defined previously.
- variables A, B, R 1 , R 2 , R 3 , Q and V for the Compounds of Formula (I) are selected independently of each other.
- the Compounds of Formula (I) are in substantially purified form.
- the present invention provides compounds of Formula (II), having the formula:
- Q is O.
- Q is S.
- R 1 is —CH 2 —C(R 14 ) 2 —C(R 15 ) 2 —C(O)OR 17 , wherein R 14 , R 15 and R 17 are as previously defined.
- R 1 is —CH 2 —C(R 14 ) 2 —C(R 15 ) 2 —C(O)OR 17 , wherein R 14 , R 15 and R 17 are each independently selected from hydrogen and C 1 -C 6 alkyl.
- R 1 is —CH 2 —CH 2 —C(R 15 ) 2 —C(O)OR 17 , wherein R 15 and R 17 are as previously defined.
- R 1 is N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl
- R 15 and R 17 are as previously defined.
- R 1 is N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl
- R 15 and R 17 are each independently selected from C 1 -C 6 alkyl.
- R 1 is N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl
- R 15 and R 17 are each independently selected from C 1 -C 6 alkyl.
- R 1 is N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl
- R 15 and R 17 are each independently selected from C 1 -C 6 alkyl.
- R 1 is N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl
- R 15 is methyl and R 17 is selected from ethyl or propyl.
- R 1 is N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl
- R 15 is methyl and R 17 is selected from ethyl or propyl.
- R 1 is N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl
- R 15 is methyl and R 17 is selected from ethyl or propyl.
- R 1 is N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl
- R 1 is N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl
- R 1 is N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl
- R 1 is N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl
- B is selected from the following groups:
- B is selected from the following groups:
- B is selected from the following groups:
- Q is O; W is N or CH; R 5 , R 6 and R 8 are each hydrogen; R 7 is amino; R 9 is hydrogen or trifluoromethyl; R 10 is —NH 2 or —O—C 1 -C 6 alkyl, R 11 is —NH 2 or halogen and R 12 is —NH 2 or halogen.
- B is selected from the following groups:
- Q is O; W is N; R 5 , R 6 and R 8 are each hydrogen; R 7 is amino; R 9 is hydrogen or trifluoromethyl; R 10 is —NH 2 or —O—C 1 -C 6 alkyl and R 11 is —NH 2 or halogen.
- B is N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-phenyl
- R 5 and R 6 are each hydrogen and R 7 is amino or NHC(O)R 18 , wherein R 18 is C 1 -C 6 alkyl or is C 6 -C 10 aryl
- B is N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-phenyl
- B is N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-phenyl
- R 5 and R 6 are each hydrogen and R 7 is NHC(O)R 18 , wherein R 18 is C 1 -C 6 alkyl or is C 6 -C 10 aryl
- B is:
- B is:
- B is:
- R 10 is —OR 18 and R 11 is —N(R 18 ) 2 , wherein R 18 is as previously defined and each R 18 is selected independently of each other.
- B is:
- R 10 is —O— C 1 -C 6 alkyl and R 11 is amino, wherein R 18 is as previously defined and each R 18 is selected independently of each other.
- B is:
- W is N
- R 10 is —O-ethyl and R 11 is amino
- R 18 is as previously defined and each R 18 is selected independently of each other.
- R 15 is methyl and R 17 is selected from ethyl or propyl and
- R 10 is —OR 18 and R 11 is NHR 18 , wherein each R 18 is independently hydrogen or C 1 -C 6 alkyl.
- R 15 is methyl and R 17 is selected from ethyl or propyl and
- R 10 is —O-ethyl and R 11 is amino.
- variables B, R 1 and Q for the compounds of Formula (II) are selected independently of each other.
- the compounds of Formula (II) are in substantially purified form.
- the compounds of Formula (I) or Formula (II) may be prepared from known or readily prepared starting materials, following methods known to one skilled in the art of organic synthesis. Methods useful for making the compounds of Formula (I) or Formula (II) are set forth in the Examples below and generalized in Schemes A, B and C below. Alternative synthetic pathways and analogous structures will be apparent to those skilled in the art of organic synthesis.
- Scheme A shows a method useful for making nucleoside compounds of formula A4, which correspond to the compounds of Formula (I).
- Phosphorus (V) oxychloride can be reacted with triethylamine and an alcohol of formula R 1 OH as shown to provide a compound of formula A2.
- the compound of formula A2 is then reacted as shown with a nucleoside of formula A3 to provide a cyclic phosphate nucleoside prodrug of formula A4.
- Scheme B shows an alternative method useful for making nucleoside compounds of formula A4, which correspond to the compounds of Formula (I).
- 1-Chloro-N,N,N′,N′-tetraisopropylphosphinediamine (B1) can be reacted as shown with triethylamine and an alcohol of formula R 1 OH to provide a compound of formula B2.
- the compound of formula B2 is then reacted as shown with a nucleoside of formula A3 to provide a cyclic phosphate nucleoside prodrug of formula A4.
- Scheme C shows an alternative method useful for making nucleoside compounds of formula A4, which correspond to the compounds of Formula (I).
- 2,3,4,5,6-Pentafluorophenol (C2) can be reacted with 4-chlorophenyl phosphodichloridate or 4-nitrophenyl phosphodichloridate (C1), triethylamine and an alcohol of formula R 1 OH as shown to provide a compound of formula C3.
- the compound of formula C3 is then reacted with a nucleoside of formula A3 as shown to provide a cyclic phosphate nucleoside prodrug of formula A4.
- Prodrugs and solvates of the compounds of the invention are also contemplated herein.
- a discussion of prodrugs is provided in T. Higuchi and V. Stella, Pro - drugs as Novel Delivery Systems (1987) 14 of the A.C.S. Symposium Series, and in Bioreversible Carriers in Drug Design , (1987) Edward B. Roche, ed., American Pharmaceutical Association and Pergamon Press.
- the term “prodrug” means a compound (e.g., a drug precursor) that is transformed in vivo to provide a Compound of Formula (I) or Formula (II), or a pharmaceutically acceptable salt of the compound. The transformation may occur by various mechanisms (e.g., by metabolic or chemical processes), such as, for example, through hydrolysis in blood.
- a prodrug can comprise an ester formed by the replacement of the hydrogen atom of the acid group with a group such as, for example, (C 1 -C 8 )alkyl, (C 2 -C 12 )alkanoyloxymethyl, 1-(alkanoyloxy)ethyl having from 4 to 9 carbon atoms, 1-methyl-1-(alkanoyloxy)-ethyl having from 5 to 10 carbon atoms, alkoxycarbonyloxymethyl having from 3 to 6 carbon atoms, 1-(alkoxycarbonyloxy)ethyl having from 4 to 7 carbon atoms, 1-methyl-1-(alkoxycarbonyloxy)ethyl having from 5 to 8 carbon atoms, N-(alkoxycarbonyl)aminomethyl having from 3 to 9 carbon atoms, 1-(N-(alkoxycarbonyl)amino)ethy
- a group such as, for example, (C 1 -C 8 )alkyl, (C 2 -
- a prodrug can be formed by the replacement of one or more of the hydrogen atoms of the alcohol groups with a group such as, for example, (C 1 -C 6 )alkanoyloxymethyl, 1-((C 1 -C 6 )alkanoyloxy)ethyl, 1-methyl-1-((C 1 -C 6 )alkanoyloxy)ethyl, (C 1 -C 6 )alkoxycarbonyloxymethyl, N—(C 1 -C 6 )alkoxycarbonylaminomethyl, succinoyl, (C 1 -C 6 )alkanoyl, ⁇ -amino(C 1 -C 4 )alkyl, ⁇ -amino(C 1 -C 4 )alkylene-aryl, arylacyl and ⁇ -aminoacyl, or ⁇ -aminoacyl- ⁇ -a
- a group such as, for example, (C 1 -C 6 )alkanoyl
- alcohol-derived prodrugs include —P(O)(OH) 2 ; —P(O)(—O—C 1 -C 6 alkyl) 2 ; —P(O)(—NH-( ⁇ -aminoacyl group))(-O-aryl); —P(O)(—O—(C 1 -C 6 alkylene)-S-acyl)(-NH-arylalkyl); and those described in U.S. Pat. No. 7,879,815; International Publication Nos. WO2005/003047, WO2008/082602, WO2010/0081628, WO2010/075517 and WO2010/075549; Mehellou, Chem. Med.
- a prodrug can be formed by the replacement of a hydrogen atom in the amine group with a group such as, for example, R-carbonyl-, RO-carbonyl-, NRR′-carbonyl- wherein R and R′ are each independently (C 1 -C 10 )alkyl, (C 3 -C 7 ) cycloalkyl, benzyl, a natural ⁇ -aminoacyl, —C(OH)C(O)OY 1 wherein Y 1 is H, (C 1 -C 6 )alkyl or benzyl, —C(OY 2 )Y 3 wherein Y 2 is (C 1 -C 4 ) alkyl and Y 3 is (C 1 -C 6 )alkyl; carboxy (C 1 -C 6 )alkyl; amino(C 1 -C 4 )alkyl or mono-N- or di-
- esters of the present compounds include the following groups: (1) carboxylic acid esters obtained by esterification of the hydroxy group of a hydroxyl compound, in which the non-carbonyl moiety of the carboxylic acid portion of the ester grouping is selected from straight or branched chain alkyl (e.g., methyl, ethyl, n-propyl, isopropyl, t-butyl, sec-butyl or n-butyl), alkoxyalkyl (e.g., methoxymethyl), aralkyl (e.g., benzyl), aryloxyalkyl (for example, phenoxymethyl), aryl (e.g., phenyl optionally substituted with, for example, halogen, C 1-4 alkyl, —O—(C 1-4 alkyl) or amino); (2) sulfonate esters, such as alkyl- or aralkylsulfonyl (for example, methanes),
- One or more compounds of the invention may exist in unsolvated as well as solvated forms with pharmaceutically acceptable solvents such as water, ethanol, and the like, and it is intended that the invention embrace both solvated and unsolvated forms.
- “Solvate” means a physical association of a compound of this invention with one or more solvent molecules. This physical association involves varying degrees of ionic and covalent bonding, including hydrogen bonding. In certain instances the solvate will be capable of isolation, for example when one or more solvent molecules are incorporated in the crystal lattice of the crystalline solid. “Solvate” encompasses both solution-phase and isolatable solvates. Non-limiting examples of solvates include ethanolates, methanolates, and the like. A “hydrate” is a solvate wherein the solvent molecule is water.
- One or more compounds of the invention may optionally be converted to a solvate.
- Preparation of solvates is generally known.
- M. Caira et al, J. Pharmaceutical Sci., 93(3), 601-611 (2004) describe the preparation of the solvates of the antifungal fluconazole in ethyl acetate as well as from water.
- Similar preparations of solvates, hemisolvate, hydrates and the like are described by E. C. van Tonder et al, AAPS Pharm Sci Techours., 501), article 12 (2004); and A. L. Bingham et al, Chem. Commun., 603-604 (2001).
- a typical process involves dissolving the inventive compound in desired amounts of the desired solvent (organic or water or mixtures thereof) at a higher than room temperature, and cooling the solution at a rate sufficient to form crystals which are then isolated by standard methods.
- Analytical techniques such as, for example IR spectroscopy, show the presence of the solvent (or water) in the crystals as a solvate (or hydrate).
- the compounds of Formula (I) or Formula (II) can form salts which are also within the scope of this invention.
- the term “salt(s)”, as employed herein, denotes acidic salts formed with inorganic and/or organic acids, as well as basic salts formed with inorganic and/or organic bases.
- a compound of Formula (I) or Formula (II) contains both a basic moiety, such as, a pyridine or imidazole, and an acidic moiety, such as, a carboxylic acid, zwitterions (“inner salts”) may be formed and are included within the term “salt(s)” as used herein.
- the salt is a pharmaceutically acceptable (i.e., non-toxic, physiologically acceptable) salt.
- the salt is other than a pharmaceutically acceptable salt. Salts of the compounds of Formula (I) or Formula (II) may be formed, for example, by reacting a compound of Formula (I) or Formula (II) with an amount of acid or base, such as an equivalent amount, in a medium such as one in which the salt precipitates or in an aqueous medium followed by lyophilization.
- Exemplary acid addition salts include acetates, ascorbates, benzoates, benzenesulfonates, bisulfates, borates, butyrates, citrates, camphorates, camphorsulfonates, fumarates, hydrochlorides, hydrobromides, hydroiodides, lactates, maleates, methanesulfonates, naphthalenesulfonates, nitrates, oxalates, phosphates, propionates, salicylates, succinates, sulfates, tartarates, thiocyanates, toluenesulfonates (also known as tosylates) and the like.
- Exemplary basic salts include ammonium salts, alkali metal salts such as sodium, lithium, and potassium salts, alkaline earth metal salts such as calcium and magnesium salts, salts with organic bases (for example, organic amines) such as dicyclohexylamine, t-butyl amine, choline, and salts with amino acids such as arginine, lysine and the like.
- alkali metal salts such as sodium, lithium, and potassium salts
- alkaline earth metal salts such as calcium and magnesium salts
- salts with organic bases for example, organic amines
- organic bases for example, organic amines
- amino acids such as arginine, lysine and the like.
- Basic nitrogen-containing groups may be quarternized with agents such as lower alkyl halides (e.g., methyl, ethyl, and butyl chlorides, bromides and iodides), dialkyl sulfates (e.g., dimethyl, diethyl, and dibutyl sulfates), long chain halides (e.g., decyl, lauryl, and stearyl chlorides, bromides and iodides), aralkyl halides (e.g., benzyl and phenethyl bromides), and others.
- lower alkyl halides e.g., methyl, ethyl, and butyl chlorides, bromides and iodides
- dialkyl sulfates e.g., dimethyl, diethyl, and dibutyl sulfates
- long chain halides e.g., decyl, lauryl, and
- Individual stereoisomers of the compounds of the invention may, for example, be substantially free of other isomers, or may be admixed, for example, as racemates or with all other, or other selected, stereoisomers.
- the chiral centers of the present invention can have the S or R configuration as defined by the IUPAC 1974 Recommendations.
- the use of the terms “salt”, “solvate” and the like, is intended to apply equally to the salt and solvate of enantiomers, stereoisomers, rotamers, tautomers, positional isomers, racemates or prodrugs of the inventive compounds.
- Diastereomeric mixtures may be separated into their individual diastereomers on the basis of their physical chemical differences by methods well-known to those skilled in the art, such as, for example, by chromatography and/or fractional crystallization.
- Enantiomers may be separated by converting the enantiomeric mixture into a diastereomeric mixture by reaction with an appropriate optically active compound (e.g., chiral auxiliary such as a chiral alcohol or Mosher's acid chloride), separating the diastereomers and converting (e.g., hydrolyzing) the individual diastereomers to the corresponding pure enantiomers.
- an appropriate optically active compound e.g., chiral auxiliary such as a chiral alcohol or Mosher's acid chloride
- Sterochemically pure compounds may also be prepared by using chiral starting materials or by employing salt resolution techniques.
- Enantiomers can also be directly separated using chiral chromatographic techniques.
- the atoms may exhibit their natural isotopic abundances, or one or more of the atoms may be artificially enriched in a particular isotope having the same atomic number, but an atomic mass or mass number different from the atomic mass or mass number predominantly found in nature.
- the present invention is meant to include all suitable isotopic variations of the compounds of generic Formula (I) or Formula (II).
- different isotopic forms of hydrogen (H) include protium ( 1 H) and deuterium ( 2 H). Protium is the predominant hydrogen isotope found in nature.
- Enriching for deuterium may afford certain therapeutic advantages, such as increasing in vivo half-life or reducing dosage requirements, or may provide a compound useful as a standard for characterization of biological samples.
- Isotopically-enriched compounds of Formula (I) or Formula (II) may be prepared without undue experimentation by conventional techniques well known to those skilled in the art or by processes analogous to those described in the Schemes and Examples herein using appropriate isotopically-enriched reagents and/or intermediates.
- a Compound of Formula (I) or Formula (II) has one or more of its hydrogen atoms replaced with deuterium.
- the compounds provided herein are based, at least in part, on the discovery that the cyclic phosphate prodrugs can provide superior human pharmacokinetics including superior accumulation of active nucleoside and nucleotide analogs in target cells, such as liver cells.
- Any compound provided herein is preferably in the form of a composition that is substantially free of other stereoisomers of the compound, as described herein.
- a pharmaceutical composition comprising an effective amount of a compound of Formula (I) or Formula (II), or a pharmaceutically acceptable salt, solvate or enantiomer thereof, and a pharmaceutically acceptable carrier or diluent.
- a combination comprising a compound of Formula (I) or Formula (II), or a pharmaceutically acceptable salt, solvate or enantiomer thereof and one, two, three or more other therapeutic agents.
- cancer for example liver cancer, breast cancer, ovarian cancer, lung cancer, pancreatic cancer, cholangiocarcinoma, biliary tract cancer, hepatocellular carcinoma or leukemia, in a subject.
- a method of treating or preventing cancer and/or reducing the likelihood or severity of symptoms of cancer for example liver cancer, breast cancer, ovarian cancer, lung cancer, pancreatic cancer, cholangiocarcinoma, biliary tract cancer, hepatocellular carcinoma or leukemia, in a subject in need thereof which comprises administering to the subject an effective amount of a compound of Formula (I) of Formula (II) or a pharmaceutically acceptable salt, solvate or enantiomer thereof.
- a method of treating or preventing cancer and/or reducing the likelihood or severity of symptoms of cancer for example liver cancer, breast cancer, ovarian cancer, lung cancer, pancreatic cancer, cholangiocarcinoma, biliary tract cancer, hepatocellular carcinoma or leukemia, in a subject in need thereof which comprises administering to the subject the pharmaceutical composition of (a), (b) or (c) or the combination of (d) or (g).
- a method of inhibiting HBV replication in a subject in need thereof which comprises administering to the subject an effective amount of a compound of Formula (I) or Formula (II) or a pharmaceutically acceptable salt, solvate or enantiomer thereof.
- a method of treating HBV infection and/or reducing the likelihood or severity of symptoms of HBV infection in a subject in need thereof which comprises administering to the subject an effective amount of a compound of Formula (I) of Formula (II) or a pharmaceutically acceptable salt, solvate or enantiomer thereof.
- a method of inhibiting HBV replication in a subject in need thereof which comprises administering to the subject the pharmaceutical composition of (a), (b) or (c) or the combination of (d), (e) or (f).
- a method of treating HBV infection and/or reducing the likelihood or severity of symptoms of HBV infection in a subject in need thereof which comprises administering to the subject the pharmaceutical composition of (a), (b) or (c) or the combination of (d), (e) or (f).
- a method of treating Ebolavirus infection and/or reducing the likelihood or severity of symptoms of Ebolavirus infection in a subject in need thereof which comprises administering to the subject the pharmaceutical composition of (a), (b) or (c) or the combination of (d).
- Additional embodiments of the invention include the pharmaceutical compositions, combinations and methods set forth in (a)-(v) above and the uses set forth in the discussion below, wherein the compound of the present invention employed therein is a compound of one of the embodiments, aspects, classes, sub-classes, or features of the compounds described above.
- the compound may optionally be used in the form of a pharmaceutically acceptable salt or solvate as appropriate. It is understood that references to compounds would include the compound in its present form as well as in different forms, such as polymorphs and solvates as applicable.
- compositions and methods provided as (a) through (v) above are understood to include all embodiments of the compounds, including such embodiments as result from combinations of embodiments.
- the cancer is selected from liver cancer, breast cancer, ovarian cancer, lung cancer, pancreatic cancer or leukemic cancer.
- the cancer is liver cancer.
- Liver cancers which can be treated include primary and secondary liver cancers.
- the liver cancer is hepatocellular carcinoma, cholangiocarcinoma, or biliary tract cancer.
- the liver cancer is a metastasis in the liver originated from other cancers (such as colon cancer, pancreatic cancer, etc).
- the invention also provides methods for treating or preventing cancer and/or reducing the likelihood or severity of symptoms of cancer in a patient, the methods comprising administering to the patient an effective amount of at least one compound of Formula (I) or Formula (II) or a pharmaceutically acceptable salt, solvate or enantiomer thereof.
- the cancers which can be treated by the compounds described herein include, but are not limited to, Acute Lymphoblastic Leukemia; Acute Myeloid Leukemia; Adrenocortical Carcinoma; AIDS-Related Lymphoma; AIDS-Related Malignancies; Anal Cancer; Astrocytoma; Bile Duct Cancer; Bladder Cancer; Bone Cancer, Osteosarcoma/Malignant Fibrous Histiocytoma; Brain Stem Glioma; Brain Tumor, Cerebellar Astrocytoma; Brain Tumor, Cerebral Astrocytoma/Malignant Glioma; Brain Tumor, Ependymoma; Brain Tumor, Medulloblastoma; Brain Tumor, Supratentorial Primitive Neuroectodermal Tumors; Brain Tumor, Visual Pathway and Hypothalamic Glioma; Breast Cancer; Bronchial Adenomas/Carcinoids; Carcinoi
- the compounds of Formula (I) and Formula (II) are further useful in inhibiting the growth of a cancer cell or inhibiting replication of a cancer cell.
- the cancer is selected from liver cancer, breast cancer, ovarian cancer, lung cancer, pancreatic cancer or leukemic cancer.
- the cancer is liver cancer.
- the liver cancer is hepatocellular carcinoma, cholangiocarcinoma, or biliary tract cancer.
- the cancer is hepatocellular carcinoma.
- the compounds of Formula (I) and Formula (II) are useful in the inhibition of viral infection, the treatment viral infection and/or reduction of the likelihood or severity of symptoms of viral infection and the inhibition of viral replication and/or viral production in a cell-based system.
- the compounds of Formula (I) and Formula (II) are useful in treating viral infection after suspected past exposure to the virus by such means as blood transfusion, exchange of body fluids, bites, accidental needle stick, or exposure to patient blood during surgery or other medical procedures.
- the compounds of Formula (I) and Formula (II) are useful in the inhibition of HBV, the treatment of HBV infection and/or reduction of the likelihood or severity of symptoms of HBV infection and the inhibition of HBV replication and/or HBV production in a cell-based system.
- the compounds of Formula (I) and Formula (II) are useful in treating infection by HBV after suspected past exposure to HBV by such means as blood transfusion, exchange of body fluids, bites, accidental needle stick, or exposure to patient blood during surgery or other medical procedures.
- the hepatitis B infection is acute hepatitis B. In another embodiment, the hepatitis B infection is chronic hepatitis B.
- the invention provides methods for treating HBV infection in a patient, the methods comprising administering to the patient an effective amount of at least one compound of Formula (I) or Formula (II) or a pharmaceutically acceptable salt, solvate or enantiomer thereof.
- the amount administered is effective to treat or prevent infection by HBV in the patient.
- the amount administered is effective to inhibit HBV viral replication and/or viral production in the patient.
- the compounds and compositions provided herein are useful in methods of treatment of a liver disorder, that comprise further administration of a second or more agent effective for the treatment of the disorder, such as HBV infection in a subject in need thereof.
- the second agent can be any agent known to those of skill in the art to be effective for the treatment of the disorder, including those currently approved by the FDA.
- the compounds of Formula (I) and Formula (II) are useful in the inhibition of ebola virus, the treatment of Ebolavirus infection and/or reduction of the likelihood or severity of symptoms of Ebolavirus infection and the inhibition of Ebolavirus replication and/or Ebolavirus production in a cell-based system.
- the compounds of Formula (I) and Formula (II) are useful in treating infection by Ebolavirus after suspected past exposure to ebola virus by such means as blood transfusion, exchange of body fluids, bites, accidental needle stick, or exposure to patient blood during surgery or other medical procedures.
- the present compounds, compositions, combinations and methods for treating or preventing liver diseases, such as cancer or viral infection can further comprise the administration of one or more additional therapeutic agents which are not compounds of Formula (I) or Formula (II).
- the additional therapeutic agent is an anticancer agent.
- the additional therapeutic agent is an antiviral agent.
- the additional therapeutic agent is an immunomodulatory agent, such as an immunosuppressive agent.
- the term “in combination” includes the use of more than one therapy (e.g., one or more prophylactic and/or therapeutic agents).
- the use of the term “in combination” does not restrict the order in which therapies (e.g., prophylactic and/or therapeutic agents) are administered to a subject with a disorder.
- a first therapy e.g., a prophylactic or therapeutic agent such as a compound provided herein
- a first therapy can be administered prior to (e.g., 5 minutes, 15 minutes, 30 minutes, 45 minutes, 1 hour, 2 hours, 4 hours, 6 hours, 12 hours, 24 hours, 48 hours, 72 hours, 96 hours, 1 week, 2 weeks, 3 weeks, 4 weeks, 5 weeks, 6 weeks, 8 weeks, or 12 weeks before), concomitantly with, or subsequent to (e.g., 5 minutes, 15 minutes, 30 minutes, 45 minutes, 1 hour, 2 hours, 4 hours, 6 hours, 12 hours, 24 hours, 48 hours, 72 hours, 96 hours, 1 week, 2 weeks, 3 weeks, 4 weeks, 5 weeks, 6 weeks, 8 weeks, or 12 weeks after) the administration of a second therapy (e.g., a prophylactic or therapeutic agent) to a subject with a disorder.
- a second therapy e.g., a prophylactic or therapeutic agent
- the term “synergistic” includes a combination of a compound provided herein and another therapy (e.g., a prophylactic or therapeutic agent) which has been or is currently being used to prevent, manage or treat a disorder, which is more effective than the additive effects of the therapies.
- a synergistic effect of a combination of therapies permits the use of lower dosages of one or more of the therapies and/or less frequent administration of said therapies to a subject with a disorder.
- a therapy e.g., a prophylactic or therapeutic agent
- a synergistic effect can result in improved efficacy of agents in the prevention or treatment of a disorder.
- a synergistic effect of a combination of therapies e.g., a combination of prophylactic or therapeutic agents
- therapeutic agents in the combination may be administered in any order such as, for example, sequentially, concurrently, together, simultaneously and the like.
- the amounts of the various actives in such combination therapy may be different amounts (different dosage amounts) or same amounts (same dosage amounts).
- a Compound of Formula (I) or Formula (II) and an additional therapeutic agent may be present in fixed amounts (dosage amounts) in a single dosage unit (e.g., a capsule, a tablet and the like).
- the at least one compound of Formula (I) or Formula (II) is administered during a time when the additional therapeutic agent(s) exert their prophylactic or therapeutic effect, or vice versa.
- the at least one compound of Formula (I) or Formula (II) and the additional therapeutic agent(s) are administered in doses commonly employed when such agents are used as monotherapy for treating a cancer or a viral infection.
- the at least one compound of Formula (I) or Formula (II) and the additional therapeutic agent(s) are administered in doses lower than the doses commonly employed when such agents are used as monotherapy for treating a cancer or a viral infection.
- the at least one compound of Formula (I) or Formula (II) and the additional therapeutic agent(s) act synergistically and are administered in doses lower than the doses commonly employed when such agents are used as monotherapy for treating a cancer or a viral infection.
- the at least one compound of Formula (I) or Formula (II) and the additional therapeutic agent(s) are present in the same composition.
- this composition is suitable for oral administration.
- this composition is suitable for intravenous administration.
- this composition is suitable for subcutaneous administration.
- this composition is suitable for parenteral administration.
- compositions comprising a Compound of Formula (I) or Formula (II), a pharmaceutically acceptable carrier, and a second therapeutic agent selected from the group consisting of immunomodulators, anti-infective agents and anti-cancer agents.
- compositions comprising a Compound of Formula (I) or Formula (II), a pharmaceutically acceptable carrier, and two additional therapeutic agents, each of which are independently selected from the group consisting of immunomodulators, anti-infective agents and anti-cancer agents.
- the present invention provides a compound of Formula (I) or Formula (II) for use in treating cancer in a patient comprising administering to the patient: (i) at least one compound of Formula (I) or Formula (II) (which may include two or more different 2′-Substituted Nucleoside Derivatives), or a pharmaceutically acceptable salt or solvate thereof, and (ii) at least one additional therapeutic agent that is other than a compound of Formula (I) or Formula (II), wherein the amounts administered are together effective to treat or prevent cancer.
- the compounds and compositions provided herein are useful in the treatment of a liver cancer, that comprise further administration of a second agent effective for the treatment of the liver cancer in a subject in need thereof.
- the second agent can be any agent known to those of skill in the art to be effective for the treatment of the liver cancer, including those currently approved by the FDA.
- a compound provided herein is administered in combination with one second agent. In further embodiments, a compound provided herein is administered in combination with two second agents. In still further embodiments, a compound provided herein is administered in combination with two or more second agents.
- the active compounds provided herein can be administered in combination or alternation with another therapeutic agent, in particular an anti-cancer agent.
- combination therapy effective dosages of two or more agents are administered together, whereas in alternation or sequential-step therapy, an effective dosage of each agent is administered serially or sequentially.
- the dosages given will depend on absorption, inactivation and excretion rates of the drug as well as other factors known to those of skill in the art. It is to be noted that dosage values will also vary with the severity of the condition to be alleviated. It is to be further understood that for any particular subject, specific dosage regimens and schedules should be adjusted over time according to the individual need and the professional judgment of the person administering or supervising the administration of the compositions.
- the second agent is selected from the group consisting of sorafenib tosylate (Nexavar), radiation therapy, selective internal radiation therapy (e.g., SIR-Spheres and TheraSphere), ethiodized oil (Lipidol), pexastimogene devacirepvec (Pexa-Vec, JX-594, Jennarex), Quinacrine (Clevelane BioLabs), CC-223 (Celgene), CF 102 (Can-Fite), SGI-110 (Astex), and G-202 (Genspera).
- sorafenib tosylate Nexavar
- radiation therapy selective internal radiation therapy
- selective internal radiation therapy e.g., SIR-Spheres and TheraSphere
- ethiodized oil Lipidol
- pexastimogene devacirepvec Pexa-Vec, JX-594, Jennarex
- Quinacrine Clevelane Bio
- the other anticancer agent is selected from the group consisting of vascular endothelial growth factor (VEGF) receptor inhibitors, topoisomerase II inhibitors, smoothen inhibitors, alkylating agents, anti-tumor antibiotics, anti-metabolites, retinoids, immunomodulatory agents including but not limited to anti-cancer vaccines, CTLA-4, LAG-3, PD-1 antagonists and BET bromodomain inhibitors.
- VEGF vascular endothelial growth factor
- vascular endothelial growth factor (VEGF) receptor inhibitors examples include, bevacizumab (sold under the trademark AVASTIN by Genentech/Roche), axitinib, (N-methyl-2-[[3-[([pound])-2-pyridin-2-ylethenyl]-1H-indazol-6-yl]sulfanyl]benzamide, also known as AG013736, and described in PCT Publication No.
- topoisomerase II inhibitors examples include, etoposide (also known as VP-16 and Etoposide phosphate, sold under the tradenames TOPOSAR, VEPESID and ETOPOPHOS), and teniposide (also known as VM-26, sold under the tradename VUMON).
- etoposide also known as VP-16 and Etoposide phosphate, sold under the tradenames TOPOSAR, VEPESID and ETOPOPHOS
- teniposide also known as VM-26, sold under the tradename VUMON.
- alkylating agents examples include, 5-azacytidine (sold under the trade name VIDAZA), decitabine (sold under the trade name of DECOGEN), temozolomide (sold under the trade names TEMODAR and TEMODAL by Schering-Plough/Merck), dactinomycin (also known as actinomycin-D and sold under the tradename COSMEGEN), melphalan (also known as L-PAM, L-sarcolysin, and phenylalanine mustard, sold under the tradename ALKERAN), altretamine (also known as hexamethylmelamine (HMM), sold under the tradename HEXALEN), carmustine (sold under the tradename BCNU), bendamustine (sold under the tradename TREANDA), busulfan (sold under the tradenames Busulfex® and Myleran®), carboplatin (sold under the tradename Paraplatin®), lomustine (also known as CCNU, sold under the tradename Cee
- anti-tumor antibiotics examples include, doxorubicin (sold under the tradenames Adriamycin® and Rubex®), bleomycin (sold under the tradename Lenoxane®), daunorubicin (also known as dauorubicin hydrochloride, daunomycin, and rubidomycin hydrochloride, sold under the tradename Cerubidine®), daunorubicin liposomal (daunorubicin citrate liposome, sold under the tradename DaunoXome®), mitoxantrone (also known as DHAD, sold under the tradename Novantrone®), epirubicin (sold under the tradename EllenceTM), idarubicin (sold under the tradenames Idamycin®, Idamycin PFS®), and mitomycin C (sold under the tradename Mutamycin®).
- doxorubicin sold under the tradenames Adriamycin® and Rubex®
- bleomycin sold under the tradename Lenoxane
- anti-metabolites examples include, claribine (2-chlorodeoxyadenosine, sold under the tradename Leustatin®), 5-fluorouracil (sold under the tradename Adrucil®), 6-thioguanine (sold under the tradename Purinethol®), pemetrexed (sold under the tradename Alimta®), cytarabine (also known as arabinosylcytosine (Ara-C), sold under the tradename Cytosar-U®), cytarabine liposomal (also known as Liposomal Ara-C, sold under the tradename DepoCytTM), decitabine (sold under the tradename Dacogen®), hydroxyurea (sold under the tradenames Hydrea®, DroxiaTM and MylocelTM), fludarabine (sold under the tradename Fludara®), floxuridine (sold under the tradename FUDR®), cladribine (also known as 2-chlorodeoxya
- retinoids examples include, alitretinoin (sold under the tradename Panretin®), tretinoin (all-trans retinoic acid, also known as ATRA, sold under the tradename Vesanoid®), Isotretinoin (13-c/s-retinoic acid, sold under the tradenames Accutane®, Amnesteem®, Claravis®, Clarus®, Decutan®, Isotane®, Izotech®, Oratane®, Isotret®, and Sotret®), and bexarotene (sold under the tradename Targretin®).
- PD-1 antagonist means any chemical compound or biological molecule that blocks binding of PD-L1 expressed on a cancer cell to PD-1 expressed on an immune cell (T cell, B cell or NKT cell) and preferably also blocks binding of PD-L2 expressed on a cancer cell to the immune-cell expressed PD-1.
- Alternative names or synonyms for PD-1 and its ligands include: PDCD1, PD1, CD279 and SLEB2 for PD-1; PDCD1L1, PDL1, B7H1, B7-4, CD274 and B7-H for PD-L1; and PDCD1L2, PDL2, B7-DC, Btdc and CD273 for PD-L2.
- the PD-1 antagonist blocks binding of human PD-L1 to human PD-1, and preferably blocks binding of both human PD-L1 and PD-L2 to human PD-1.
- Human PD-1 amino acid sequences can be found in NCBI Locus No.: NP_005009.
- Human PD-L1 and PD-L2 amino acid sequences can be found in NCBI Locus No.: NP_054862 and NP_079515, respectively.
- PD-1 antagonists useful in any of the compositions and uses of the present invention include a monoclonal antibody (mAb), or antigen binding fragment thereof, which specifically binds to PD-1 or PD-L1, and preferably specifically binds to human PD-1 or human PD-L1.
- the mAb may be a human antibody, a humanized antibody or a chimeric antibody, and may include a human constant region.
- the human constant region is selected from the group consisting of IgG1, IgG2, IgG3 and IgG4 constant regions, and in preferred embodiments, the human constant region is an IgG1 or IgG4 constant region.
- the antigen binding fragment is selected from the group consisting of Fab, Fab′-SH, F(ab′) 2 , scFv and Fv fragments.
- mAbs that bind to human PD-L1 are described in WO2013/019906, WO2010/077634 A1 and U.S. Pat. No. 8,383,796.
- Specific anti-human PD-L1 mAbs useful as the PD-1 antagonist in the treatment method, medicaments and uses of the present invention include MPDL3280A, BMS-936559, MED14736, MSB0010718C and an antibody which comprises the heavy chain and light chain variable regions of SEQ ID NO:24 and SEQ ID NO:21, respectively, of WO2013/019906.
- PD-1 antagonists useful in any of the treatment method, medicaments and uses of the present invention include, an immunoadhesin that specifically binds to PD-1 or PD-L1, and preferably specifically binds to human PD-1 or human PD-L1, e.g., a fusion protein containing the extracellular or PD-1 binding portion of PD-L1 or PD-L2 fused to a constant region such as an Fc region of an immunoglobulin molecule.
- immunoadhesion molecules that specifically bind to PD-1 are described in WO2010/027827 and WO2011/066342.
- Specific fusion proteins useful as the PD-1 antagonist in the treatment method, medicaments and uses of the present invention include AMP-224 (also known as B7-DCIg), which is a PD-L2-FC fusion protein and binds to human PD-1.
- cytotoxic agents examples include, arsenic trioxide (sold under the tradename Trisenox®), asparaginase (also known as L-asparaginase, and Erwinia L-asparaginase, sold under the tradenames Elspar® and Kidrolase®).
- the other anticancer agent is a BET bromodomain inhibitor.
- BET bromodomain inhibitor include the compounds described in U.S. Pat. No. 5,712,274, WO1994006802, U.S. Pat. No. 8,476,260 and WO2009/084693.
- the present invention provides a compound of Formula (I) or Formula (II) for use in treating a viral infection in a patient comprising administering to the patient: (i) at least one compound of Formula (I) or Formula (II) (which may include two or more different 2′-Substituted Nucleoside Derivatives), or a pharmaceutically acceptable salt or solvate thereof, and (ii) at least one additional therapeutic agent that is other than a compound of Formula (I) or Formula (II), wherein the amounts administered are together effective to treat or prevent a viral infection.
- the present invention provides compositions comprising: (i) at least one Compound of Formula (I) or Formula (II) or a pharmaceutically acceptable salt, solvate or enantiomer thereof; (ii) one or more additional therapeutic agents that are not a Compound of Formula (I) or Formula (II); and (iii) a pharmaceutically acceptable carrier, wherein the amounts in the composition are together effective to prevent HBV replication and/or treat HBV infection.
- the present invention provides compositions comprising: (i) at least one Compound of Formula (I) or Formula (II) or a pharmaceutically acceptable salt, solvate or enantiomer thereof; (ii) one or more additional therapeutic agents that are not a Compound of Formula (I) or Formula (II); and (iii) a pharmaceutically acceptable carrier, wherein the amounts in the composition are together effective to prevent Ebolavirus replication and/or treat Ebolavirus infection.
- Viral infections and virus-related disorders that may be treated or prevented using the combination therapy of the present invention include those listed above.
- the viral infection is HBV infection.
- the viral infection is Ebolavirus infection.
- the at least one compound of Formula (I) or Formula (II) and the additional therapeutic agent(s) can act additively or synergistically.
- a synergistic combination may allow the use of lower dosages of one or more agents and/or less frequent administration of one or more agents of a combination therapy.
- a lower dosage or less frequent administration of one or more agents may lower toxicity of therapy without reducing the efficacy of therapy.
- the administration of at least one compound of Formula (I) or Formula (II) and the additional therapeutic agent(s) may inhibit the resistance of a viral infection to these agents.
- additional therapeutic agents useful in the present compositions and methods include an interferon, an immunomodulator, a viral replication inhibitor, an antisense agent, a therapeutic vaccine, a viral polymerase inhibitor, a nucleoside inhibitor, a viral protease inhibitor, a viral helicase inhibitor, a virion production inhibitor, a viral entry inhibitor, a viral assembly inhibitor, an antibody therapy (monoclonal or polyclonal), and any agent useful for treating an RNA-dependent polymerase-related disorder.
- one or more compounds of the invention are administered with one or more additional therapeutic agents, including the therapeutic agents described, supra.
- the additional therapeutic agent is a viral protease inhibitor.
- the additional therapeutic agent is a viral replication inhibitor.
- the additional therapeutic agent is an HBV entry inhibitor.
- the additional therapeutic agent is an HBV capsid inhibitor.
- the additional therapeutic agent is an HBV polymerase inhibitor.
- the additional therapeutic agent is a nucleoside inhibitor.
- the additional therapeutic agent is an interferon.
- the additional therapeutic agent is an antisense agent.
- the additional therapeutic agent is a therapeutic vaccine.
- the additional therapeutic agent is a virion production inhibitor.
- the additional therapeutic agent is an antibody therapy.
- one or more compounds of the present invention are administered with two additional therapeutic agents.
- one or more compounds of the present invention are administered with three additional therapeutic agents.
- one or more compounds of the present invention are administered with an HBV polymerase inhibitor.
- one or more compounds of the present invention are administered with lamivudine.
- one or more compounds of the present invention are administered with tenofovir.
- one or more compounds of the present invention are administered with pegylated-interferon alpha and ribavirin.
- the additional therapeutic agents comprise a viral protease inhibitor and a viral polymerase inhibitor.
- the additional therapeutic agents comprise a viral protease inhibitor and an immunomodulatory agent.
- the additional therapeutic agents comprise a polymerase inhibitor and an immunomodulatory agent.
- the additional therapeutic agents comprise a viral protease inhibitor and a nucleoside.
- the additional therapeutic agents comprise an immunomodulatory agent and a nucleoside.
- the additional therapeutic agents comprise a nucleoside and an HBV polymerase inhibitor.
- the additional therapeutic agents comprise a viral protease inhibitor, a viral polymerase inhibitor and an immunomodulatory agent.
- the additional therapeutic agent is ribavirin.
- HBV polymerase inhibitors useful in the present compositions and treatments include lamivudine (Epivir), adefovir (Hepsera), tenofovir (Viread), telbivudine (Tyzeka), ganciclovir (Cytovene), entecavir (Baraclude), interferon alpha-2a, and PEGylated interferon alpha-2a (Pegasys).
- Interferons useful in the present compositions and methods include, but are not limited to, interferon alfa-2a, interferon alfa-2b, interferon alfacon-1 and petroleum etherG-interferon alpha conjugates.
- PEG-interferon alpha conjugates are interferon alpha molecules covalently attached to a petroleum etherG molecule.
- Illustrative petroleum etherG-interferon alpha conjugates include interferon alpha-2a (RoferonTM, Hoffman La-Roche, Nutley, N.J.) in the form of pegylated interferon alpha-2a (e.g., as sold under the trade name PegasysTM), interferon alpha-2b (IntronTM, from Schering-Plough Corporation) in the form of pegylated interferon alpha-2b (e.g., as sold under the trade name petroleum etherG-IntronTM from Schering-Plough Corporation), interferon alpha-2b-XL (e.g., as sold under the trade name petroleum etherG-IntronTM), interferon alpha-2c (Berofor AlphaTM, Boehringer Ingelheim, Ingelheim, Germany), petroleum etherG-interferon lambda (Bristol-Myers Squibb and ZymoGenetics), interferon alfa-2b alpha fusion polypeptides, inter
- HBV inhibitors useful in the present compositions and treatments include TLR-3 or TLR-7 agonists, virus entry inhibitors, cccDNA formation inhibitors, silenceor of cccDNA, nucleocapsid formation inhibitors, virion maturation, assembly or secretion inhibitors.
- the doses and dosage regimen of the other agents used in the combination therapies of the present invention for the treatment or prevention of the viral infection may be determined using the attending clinician, taking into consideration the approved doses and dosage regimen in the package insert; the age, sex and general health of the patient; and the type and severity of the viral infection or related disease or disorder.
- the compound of Formula (I) or Formula (II) and the other agent(s) may be administered simultaneously (i.e., in the same composition or in separate compositions one right after the other) or sequentially.
- kits comprising the separate dosage forms is therefore advantageous.
- a total daily dosage of the at least one Compound of Formula (I) or Formula (II) alone, or when administered as combination therapy can range from about 1 to about 2500 mg per day, although variations will necessarily occur depending on the target of therapy, the patient and the route of administration.
- the dosage is from about 10 to about 1000 mg/day, administered in a single dose or in 2-4 divided doses.
- the dosage is from about 1 to about 500 mg/day, administered in a single dose or in 2-4 divided doses.
- the dosage is from about 1 to about 100 mg/day, administered in a single dose or in 2-4 divided doses.
- the dosage is from about 1 to about 50 mg/day, administered in a single dose or in 2-4 divided doses. In another embodiment, the dosage is from about 500 to about 1500 mg/day, administered in a single dose or in 2-4 divided doses. In still another embodiment, the dosage is from about 500 to about 1000 mg/day, administered in a single dose or in 2-4 divided doses. In yet another embodiment, the dosage is from about 100 to about 500 mg/day, administered in a single dose or in 2-4 divided doses.
- the additional therapeutic agent is Ribavirin (commercially available as REBETOL ribavirin from Schering-Plough or COPEGUS ribavirin from Hoffmann-La Roche)
- this agent is administered at a daily dosage of from about 600 to about 1400 mg/day for at least 24 weeks.
- the compounds of Formula (I) and Formula (II) are useful in veterinary and human medicine. As described above, the compounds of Formula (I) and Formula (II) are useful for treating or preventing liver diseases, such as cancer, HBV infection or Ebolavirus infection in a patient.
- the compounds of Formula (I) or Formula (II) When administered to a patient, the compounds of Formula (I) or Formula (II) may be administered as a component of a composition that comprises a pharmaceutically acceptable carrier or vehicle.
- the present invention provides pharmaceutical compositions comprising an effective amount of at least one compound of Formula (I) or Formula (II) or a pharmaceutically acceptable salt, solvate or enantiomer thereof and a pharmaceutically acceptable carrier or diluent.
- the active ingredients will typically be administered in admixture with suitable carrier materials suitably selected with respect to the intended form of administration, i.e., oral tablets, capsules (either solid-filled, semi-solid filled or liquid filled), powders for constitution, oral gels, elixirs, dispersible granules, syrups, suspensions, and the like, and consistent with conventional pharmaceutical practices.
- suitable carrier materials suitably selected with respect to the intended form of administration, i.e., oral tablets, capsules (either solid-filled, semi-solid filled or liquid filled), powders for constitution, oral gels, elixirs, dispersible granules, syrups, suspensions, and the like, and consistent with conventional pharmaceutical practices.
- the active drug component may be combined with any oral non-toxic pharmaceutically acceptable inert carrier, such as lactose, starch, sucrose, cellulose, magnesium stearate, dicalcium phosphate, calcium sulfate, talc, mannitol, ethyl alcohol (liquid forms) and the like.
- Solid form preparations include powders, tablets, dispersible granules, capsules, cachets and suppositories. Powders and tablets may be comprised of from about 0.5 to about 95 percent inventive composition. Tablets, powders, cachets and capsules may be used as solid dosage forms suitable for oral administration.
- suitable binders include starch, gelatin, natural sugars, corn sweeteners, natural and synthetic gums such as acacia, sodium alginate, carboxymethylcellulose, polyethylene glycol and waxes.
- lubricants there may be mentioned for use in these dosage forms, boric acid, sodium benzoate, sodium acetate, sodium chloride, and the like.
- Disintegrants include starch, methylcellulose, guar gum, and the like. Sweetening and flavoring agents and preservatives may also be included where appropriate.
- Liquid form preparations include solutions, suspensions and emulsions and may include water or water-propylene glycol solutions for parenteral injection.
- Liquid form preparations may also include solutions for intranasal administration.
- solid form preparations which are intended to be converted, shortly before use, to liquid form preparations for either oral or parenteral administration.
- liquid forms include solutions, suspensions and emulsions.
- a low melting wax such as a mixture of fatty acid glycerides or cocoa butter is first melted, and the active ingredient is dispersed homogeneously therein as by stirring. The molten homogeneous mixture is then poured into convenient sized molds, allowed to cool and thereby solidify.
- compositions of the present invention may be formulated in sustained release form to provide the rate controlled release of any one or more of the components or active ingredients to optimize therapeutic effects, i.e., antiviral activity and the like.
- Suitable dosage forms for sustained release include layered tablets containing layers of varying disintegration rates or controlled release polymeric matrices impregnated with the active components and shaped in tablet form or capsules containing such impregnated or encapsulated porous polymeric matrices.
- the one or more compounds of Formula (I) or Formula (II) are administered orally.
- the one or more compounds of Formula (I) or Formula (II) are administered intravenously.
- a pharmaceutical preparation comprising a compound of Formula (I) or Formula (II) is in unit dosage form.
- the preparation is subdivided into unit doses containing effective amounts of the active components.
- compositions may be prepared according to conventional mixing, granulating or coating methods, respectively, and the present compositions can contain, in one embodiment, from about 0.1% to about 99% of the compound of Formula (I) or Formula (II) by weight or volume. In various embodiments, the present compositions can contain, in one embodiment, from about 1% to about 70% or from about 5% to about 60% of the compound of Formula (I) or Formula (II) by weight or volume.
- the quantity of compound of Formula (I) or Formula (II) in a unit dose of preparation may be varied or adjusted from about 1 mg to about 2500 mg. In various embodiments, the quantity is from about 10 mg to about 1000 mg, 1 mg to about 500 mg, 1 mg to about 100 mg, and 1 mg to about 100 mg.
- the total daily dosage may be divided and administered in portions during the day if desired. In one embodiment, the daily dosage is administered in one portion. In another embodiment, the total daily dosage is administered in two divided doses over a 24 hour period. In another embodiment, the total daily dosage is administered in three divided doses over a 24 hour period. In still another embodiment, the total daily dosage is administered in four divided doses over a 24 hour period.
- a total daily dosage of the compounds of Formula (I) or Formula (II) range from about 0.1 to about 2000 mg per day, although variations will necessarily occur depending on the target of therapy, the patient and the route of administration.
- the dosage is from about 1 to about 200 mg/day, administered in a single dose or in 2-4 divided doses.
- the dosage is from about 10 to about 2000 mg/day, administered in a single dose or in 2-4 divided doses.
- the dosage is from about 100 to about 2000 mg/day, administered in a single dose or in 2-4 divided doses.
- the dosage is from about 500 to about 2000 mg/day, administered in a single dose or in 2-4 divided doses.
- reactions sensitive to moisture or air were performed under nitrogen or argon atmosphere using anhydrous solvents and reagents.
- the progress of reactions was determined using either analytical thin layer chromatography (TLC) usually performed with E. Merck pre-coated TLC plates, silica gel 60F-254, layer thickness 0.25 mm or liquid chromatography-mass spectrometry (LC-MS).
- TLC analytical thin layer chromatography
- LC-MS liquid chromatography-mass spectrometry
- the analytical UPLC-MS system used consisted of a Waters SQD2 platform with electrospray ionization in positive and negative detection mode with an Acquity UPLC I-class solvent manager, column manager, sample manager and PDA detector.
- the column used for standard methods was a CORTECS UPLC C18 1.6 ⁇ m, 2.1 ⁇ 30 mm, and the column used for polars method was an ACQUITY UPLC HSST3 1.8 ⁇ m, 2.1 ⁇ 30 mm, the column temperature was 40° C., the flow rate was 0.7 mL/min, and injection volume was 1 ⁇ L. UV detection was in the range 210-400 nm.
- the mobile phase consisted of solvent A (water plus 0.05% formic acid) and solvent B (acetonitrile plus 0.05% formic acid) with different gradients for 4 different methods: 1/ Starting with 99% solvent A for 0.2 minutes changing to 98% solvent B over 1 minutes, maintained for 0.4 minutes, then reverting to 99% solvent A over 0.1 min; 2/ Starting with 99% solvent A for 0.5 minutes changing to 98% solvent B over 3.7 minutes, maintained for 0.4 minutes, then reverting to 99% solvent A over 0.1 min; 3/ Starting with 100% solvent A for 0.4 minutes changing to 98% solvent B over 0.9 minutes, maintained for 0.3 minutes, then reverting to 100% solvent A over 0.1 min; 4/ Starting with 100% solvent A for 0.8 minutes changing to 98% solvent B over 3.4 minutes, maintained for 0.4 minutes, then reverting to 100% solvent A over 0.1 minutes.
- the analytical LC-MS system used consisted of a Agilent 6140 quadrupole LC/MS platform with electrospray ionization in positive and negative detection mode with an Agilent 1200 Series solvent manager, column manager, sample manager and PDA detector.
- the column for standard method was Purospher® STAR RP-18 endcapped 2 ⁇ m, Hibar® HR 50-2.1, the column temperature was 60° C., the flow rate was 0.8 mL/min, and injection volume was 0.5-5 ⁇ L. UV detection was in the range 210-400 nm.
- the mobile phase consisted of solvent A (water plus 0.05% formic acid) and solvent B (acetonitrile plus 0.05% formic acid) with different gradients for 2 different methods: 1) Starting with 98% solvent A changing to 100% solvent B over 1.8 minutes, maintained for 0.8 min; 2) Starting with 98% solvent A changing to 100% solvent B over 5.8 minutes, maintained for 0.3 minutes.
- Preparative HPLC purifications were usually performed using a mass spectrometry directed system. Usually they were performed on a Waters Chromatography Workstation (MassLynx V4.1) configured with LC-MS System Consisting of: Waters ZQTM 2000 (quad MS system with Electrospray Ionization), Waters 2545 Gradient Pump, Waters 2767 Injecto/Collector, Waters 2998 PDA Detector, the MS Conditions of: 100-1400 amu, Positive Electrospray, Collection Triggered by MS, and a Waters SUNFIRE® C-18 5 micron, 19 mm (id) ⁇ 150 mm column. The mobile phases consisted of mixtures of acetonitrile (5-95%) in water containing 0.02% formic acid.
- Flow rates were maintained at 20 mL/min, the injection volume was 500 to 3000 ⁇ L, and the UV detection range was 210-400 nm.
- Mobile phase gradients were optimized for the individual compounds.
- the analytical system consisted of the same system with a Waters SUNFIRE® C-18 5 ⁇ m, 4.6 ⁇ 150 mm column, or a XSelect® CSHTM C-18 5 ⁇ m, 4.6 ⁇ 150 mm column.
- the mobile phases consisted of mixtures of acetonitrile (5-95%) in water containing 0.02% formic acid. Flow rates were maintained at 1.2 mL/min, the injection volume was 5 to 20 ⁇ L.
- Preparative HPLC were also performed on a Gilson system GX-281 (Trilution).
- the column was a Waters SUNFIRE® Prep C18 5 ⁇ m OBD, dimension 50 ⁇ 150 mm.
- the mobile phase consisted of acetonitrile (5-50%) in water containing 0.02% HCOOH over 60 minutes. Flow rates were maintained at 117 mL/min, the injection volume was 1000 to 7000 ⁇ L, and the UV detection range was 260 nm.
- Tetramethylsilane was used as internal reference in CDCl 3 solutions, and residual CH 3 OH peak or TMS was used as internal reference in CD 3 OD solutions. Coupling constants (J) were reported in hertz (Hz). Chiral analytical chromatography was performed on one of CHIRALPAK® AS, CHIRALPAK® AD, CHIRALCEL® OD, CHIRALCEL® IA, or CHIRALCEL® OJ columns (250 ⁇ 4.6 mm) (Daicel Chemical Industries, Ltd.) with noted percentage of either ethanol in hexane (% Et/Hex) or isopropanol in heptane (% IPA/Hep) as isocratic solvent systems.
- Chiral preparative chromatography was conducted on one of of CHIRALPAK AS, of CHIRALPAK AD, CHIRALCEL® OD, CHIRALCEL® IA, CHIRALCEL® OJ columns (20 ⁇ 250 mm) (Daicel Chemical Industries, Ltd.) with desired isocratic solvent systems identified on chiral analytical chromatography or by supercritical fluid (SFC) conditions.
- SFC supercritical fluid
- Step 1 To a solution of (R)-4-(benzyloxy)-2-methylbutanoic acid (11.43 g, 54.95 mmol) in DCM (170 mL) were added N-(3-Dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (13.40 g, 70.16 mmol), 4-dimethylamino pyridine (0.69 g, 5.65 mmol) and ethanol (34 mL, 0.58 mol). The reaction mixture was stirred under nitrogen at RT overnight. The resulting reaction mixture was washed with water (100 mL).
- Step 2 To a suspension of palladium on carbon (1.64 g, 15.41 mmol) in isopropyl acetate (400 mL) was added a solution of ethyl (R)-4-(benzyloxy)-2-methylbutanoate (15.34 g, 65.00 mmol) in isopropyl acetate (50 mL). The reaction mixture was degassed few times with nitrogen.
- Step 1 a/ In a glass autoclave, 4-methoxy-2-methylene-4-oxobutanoic acid (50 g, 0.347 mol) and methanol (70 mL) were stirred until complete dissolution. The system was then pump-fill degassed with nitrogen (3 ⁇ ). b/ To Rosphos bistriflate (95 mg, 0.142 mmol) under N 2 was added methanol (1.5 mL, purged with N 2 ), followed by diisopropylethylamine (36.5 mg, 0.283 mmol) in methanol (0.5 mL).
- Step 2 To a solution of (R)-4-methoxy-2-methyl-4-oxobutanoic acid (52 g, 356 mmol) in THF (2 L) was added lithium borohydride (16.5 g, 712 mmol) portionwise over 40 min at RT. The reaction mixture was stirred at RT for 40 min, and then ethanol (400 mL) was added dropwise over 90 min. The reaction mixture was then stirred at RT overnight, and then concentrated under reduced pressure, azeotroping with THF to afford the expected intermediate used directly in the next step without further purification.
- Step 3 To a suspension of previous intermediate in DMF (800 mL) was added bromoethane (270 mL, 3.6 mol). The reaction mixture was stirred for 2 days. The reaction mixture was extracted with MTBE and a pH 6.75 buffer (NaH 2 PO 4 .H 2 O, 55.7 g; Na 2 HPO 4 .2H 2 O, 61.6 g in 1 L of water), and then with brine. The organic layers were dried, filtered and concentrated under reduced pressure at 30° C. to afford the crude expected compound. This material was purified by column chromatography (DCM/EtOAc: 0 to 30%)
- Step 1 To a stirred solution of (R)-4-(benzyloxy)-2-methylbutanoic acid (15.00 g, 72.00 mmol) in DCM (220 mL), was added isopropanol (55.2 mL, 0.72 mol) followed by the addition of a solution of N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (16.60 g, 86.44 mmol) in DCM (100 mL). The reaction mixture was stirred, and then, 4-dimethylamino pyridine (0.88 g, 7.20 mmol) was added to the mixture. The reaction mixture was stirred under nitrogen at RT overnight.
- Step 2 To a suspension of palladium on carbon (3.30 g, 31.00 mmol) in isopropyl acetate (50 mL) was added a solution of isopropyl (R)-4-(benzyloxy)-2-methylbutanoate (16.50 g, 66.00 mmol) in isopropyl acetate (500 mL).
- reaction mixture was degassed few times with nitrogen. Then the flask was filled with hydrogen and it was stirred under an atmosphere of hydrogen overnight. The reaction mixture was filtered through a pad of celite. The filtrates were concentrated under reduced pressure (water bath: 30° C.) and the resulting product was dried in vacuum oven for 4 h to afford the expected intermediate.
- Step 1 To a stirred solution of (S)-4-(benzyloxy)-2-methylbutanoic acid (21.0 g, 101 mmol) in DCM (420 mL), was added isopropanol (38.5 mL, 504 mmol), N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (23.20 g, 121 mmol) and 4-dimethylamino pyridine (1.23 g, 10.08 mmol). The reaction mixture was stirred under nitrogen at RT overnight. The resulting reaction mixture was washed with water (250 mL).
- Step 2 To isopropyl (S)-4-(benzyloxy)-2-methylbutanoate (25.3 g, 101 mmol) was added propan-2-ol (500 mL) and dihydroxypalladium (2.13 g, 15.15 mmol). The reaction mixture was degassed few times with nitrogen. Then the flask was filled with hydrogen and the reaction mixture was stirred under an atmosphere of hydrogen for 9 h. The reaction mixture was filtered through a pad of celite.
- Step 1 To a solution of (S)-4-(benzyloxy)-2-methylbutanoic acid (30.0 g, 144 mmol) in DCM (600 mL) were added N-(3-Dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (33.1 g, 173 mmol), 4-dimethylamino pyridine (1.76 g, 14.41 mmol) and ethanol (42.1 mL, 720 mmol). The reaction mixture was stirred under nitrogen at RT overnight. The resulting reaction mixture was washed with water (250 mL).
- Step 2 To a solution of ethyl (S)-4-(benzyloxy)-2-methylbutanoate (29.5 g, 125 mmol) in ethanol (624 mL) was added dihydroxypalladium (2.63 g, 18.73 mmol). The reaction mixture was degassed few times with nitrogen. Then the flask was filled with hydrogen and the reaction mixture was stirred under an atmosphere of hydrogen for 9 h. The reaction mixture was filtered through a pad of celite.
- Step 1 A solution of ⁇ -methyl- ⁇ -butyrolactone (50.0 g, 499 mmol) in 1M aqueous potassium hydroxide solution (499 mL, 499 mmol) was stirred under reflux for 3 hours, then cooled to RT and concentrated under reduced pressure. The crude solid was triturated in diethyl ether, filtered off and washed with diethyl ether. The solid was then dried in vacuo over P 2 O 5 at 45° C.
- Step 2 To a solution of the product of step 1 (25.0 g, 160.0 mmol) in DMF (200 mL) was added dropwise at RT under nitrogen 2-iodopropane (31.9 mL, 320 mmol).
- Step 1 A solution of phosphorus (V) oxychloride (0.12 mL, 1.29 mmol) in anhydrous DCM (4 mL) was cooled to ⁇ 20° C. A solution of intermediate A (171 mg, 1.17 mmol) and triethylamine (0.18 mL, 1.29 mmol) in anhydrous DCM (3 mL) was added to the previous solution dropwise at ⁇ 20° C. The reaction mixture was stirred at ⁇ 25° C. for 64 h. The resulting reaction mixture was warmed to RT and solvent was removed in vacuo at 30° C. Diethyl ether was added to the residue, filtered and concentrated under reduced pressure to afford the expected intermediate, which was used in the next step without further purification.
- V phosphorus (V) oxychloride
- Step 2 To a solution of previous intermediate of step 1 in DCM (10 mL) was added dropwise a solution of 1-((2R,3S,4S,5R)-3-fluoro-4-hydroxy-5-(hydroxymethyl)tetrahydrothiophen-2-yl)-4-(((4-methoxyphenyl)diphenylmethyl)amino)pyrimidin-2(1H)-one (500 mg, 0.94 mmol) and triethylamine (0.45 mL, 3.23 mmol) in DCM (3 mL). The reaction mixture was stirred for 30 min at RT, and then, a solution of 1-methylimidazole (77 mg, 0.94 mmol) in DCM (0.5 mL) was added.
- 1-methylimidazole 77 mg, 0.94 mmol
- Step 3 To a solution of diastereoisomer 1 of ethyl (2R)-4-(((4aR,6R,7S,7aS)-7-fluoro-6-(4-(((4-methoxyphenyl)diphenylmethyl)amino)-2-oxopyrimidin-1 (2H)-yl)-2-oxidotetrahydro-4H-thieno[3,2-d][1,3,2]dioxaphosphinin-2-yl)oxy)-2-methylbutanoate (40 mg, 55 ⁇ mol) in DCM (5 mL) was added triethylsilane (0.5 mL).
- Step 1 To a ⁇ 15° C. solution of 1-chloro-N,N,N′,N′-tetraisopropylphosphinediamine (15 g, 56.2 mmol) and triethylamine (7.84 mL, 56.2 mmol) in diethyl ether (187 mL), under nitrogen, was added dropwise a solution of isopropyl (S)-4-hydroxy-2-methylbutanoate (9.01 g, 56.2 mmol) in diethyl ether (94 mL). The reaction mixture was stirred at ⁇ 15° C. for 1 h and then at RT for 2 h. The resulting suspension was filtered under nitrogen and washed with diethyl ether.
- Step 2 To a solution of THF (3.2 mL) under nitrogen at RT were simultaneously slowly added a solution of (2R,3S,5R)-5-(6-amino-2-chloro-9H-purin-9-yl)-2-(hydroxymethyl)tetrahydrofuran-3-ol (400 mg, 1.4 mmol) and 1H-imidazole-4,5-dicarbonitrile (413 mg, 3.5 mmol) (coevaporated 3 times with CH 3 CN and THF) in THF (10.2 mL) and CH 3 CN (5.1 mL), and a solution of the intermediate compound of step 1 (729 mg, 1.68 mmol) in THF (3.2 mL). The reaction mixture was stirred at RT overnight.
- Step 1 was similar than the procedure described for Step 1 of Compounds 3A/3B using Intermediate B as starting material. 31 P NMR (162 MHz, CDCl 3 ) ⁇ 123.89 (s, 1P).
- Step 2 To a solution of (2R,3S,4R,5R)-2-(2-amino-6-methoxy-9H-purin-9-yl)-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-3-yl benzyl carbonate (500 mg, 1.16 mmol) in anhydrous pyridine (11 mL, 9.5 mL/mmol) was added under nitrogen at RT 1H-tetrazole (11 mL, 9.5 mL/mmol). The reaction mixture was cooled to ⁇ 5° C. and a solution of the intermediate compound of step 1 (453 mg, 1.16 mmol) in CH 3 CN (5 mL) was added dropwise. The reaction mixture was stirred at 0° C.
- Step 3 To a solution of isopropyl (2R)-4-(((4aR,6R,7S,7aR)-6-(2-amino-6-methoxy-9H-purin-9-yl)-7-(((benzyloxy)carbonyl)oxy)-2-oxidotetrahydro-4H-furo[3,2-d][1,3,2]dioxaphosphinin-2-yl)oxy)-2-methylbutanoate (468 mg, 0.74 mmol) in propan-2-ol (5 mL) was added palladium on carbon (78 mg, 0.74 mmol). The reaction mixture was degassed few times with nitrogen.
- Step 1 To a solution of 2,3,4,5,6-pentafluorophenol (2.77 g, 15.05 mmol) in DCM (25 mL) were added at ⁇ 75° C. a solution of 4-chlorophenyl phosphodichloridate (3.69 g, 15.05 mmol) in DCM (25 mL), followed by triethylamine (2.01 mL, 15.05 mmol) dropwise. The reaction mixture was stirred at ⁇ 75° C. for 30 min, then allowed to warm up to 0° C.
- Step 2 To a solution of 2-((2-amino-6-ethoxy-9H-purin-9-yl)methoxy)propane-1,3-diol (50 mg, 0.18 mmol) in DMF (880 ⁇ L) under nitrogen was added DBU (80 ⁇ L, 0.53 mmol). After stirring for 10 min, a solution of intermediate of step 1 (89 mg, 0.18 mmol) in DMF (880 ⁇ L) was then added dropwise at ⁇ 10° C. The reaction mixture was stirred at 140° C. under microwaves irradiation for 20 min. The reaction mixture was then diluted with EtOAc and washed with saturated NaHCO 3 solution. The aqueous layer was extracted with EtOAc. The organic layers were combined, dried, filtered and concentrated under reduced pressure. The crude compound was purified by preparative MS/HPLC to afford a mixture of diastereoisomers.
- the compounds of the invention were tested in cell based in vitro assays comprising HuH-1 cells and HepG2 cells, as in vitro models for potential hepatocellular carcinoma activity.
- HuH-1 cells were purchased from JCRB, HepG2 cells from ATCC, and both tested with the following method:
- Cells are suspended at a specific density in a specific culture medium. Then, 100 ⁇ l of cell suspension are plated per well in 96-well plates.
- DMSO dimethyl methacrylate
- SDS is added to control wells (final concentration of 1%) and kept for 15 min at 37° C.
- SDS 1% represents the positive control of proliferation inhibition.
- Cell supernatant is removed and 100 ⁇ l of a MTT (3-[4.5-dimethylthiazol-2-yl]-2.5-diphenyltetrazolium bromide) solution in fresh medium are added per well (MTT final concentration of 0.5 mg/ml) and incubated for 4 h at 37° C.
- MTT reaction is stopped and homogenized by adding 100 ⁇ l/well of SDS 10%, 0.01M HCl and incubated for 2 h at 37° C.
- Absorbance is measured at 570 nm. The results for selected compounds are shown in Table 1.
- HuH-1 HuH-1: HepG2: Compound Relative IC50 Relative IC50 1 Diastereoisomer 1 A ND 2 Diastereoisomer 1 A ND 2 Diastereoisomer 2 A B 3 Diastereoisomer 1 B A Mixture 5A/5B C C Mixture 6A/6B C C
- NTP nucleoside triphosphate
- a 2 mM stock solution of the prodrug test compound is prepared in 5% DMSO/95% MeOH to provide a final sample concentration of 10M.
- a 5 ⁇ L aliquot is removed from this stock solution and added to 1 mL of either a rat or human cryopreserved hepatocyte sample to provide a control sample at concentration of 1 million cells/mL. This sample is assayed in triplicate and used as a test sample.
- a 5 ⁇ L aliquot is removed from this stock solution and added to 1 mL of either a rat or human cryopreserved hepatocyte sample to provide a control sample at a concentration of 1 million cells/mL. This sample is assayed in triplicate and used as a control standard.
- Human and rat hepatocytes are removed from liquid nitrogen storage and thawed by submerging the hepatocyte tube into a pre-heated 37° C. waterbath and gently shaking the tube back & forth until thawed.
- the thawed hepatocytes are then gently poured into a container of Hepatocyte Basal Medium (50 mL, pre-warmed to 37° C.) and washed.
- the hepatocyte tube is then rinsed out with pre-warmed Hepatocyte Basal Medium and the washed hepatocytes and rinse are combined and centrifuged at 500 rpm for 4 minutes at room temperature.
- the supernatant is then discarded and the resulting hepatocyte pellet is resuspended with Hepatocyte Basal Medium (pre-warmed to 37° C.) and the final hepatocyte concentration is adjusted to 1 million cells/mL to provide the final hepatocyte suspension.
- a 1 mL aliquot is removed from the 1 million cells/mL final hepatocyte suspension, analyzed in triplicate and placed into 20 mL scintillation vial without a cap. 2 mM of the prodrug test sample is then added into the hepatocyte suspension to provide a 10 ⁇ M final concentration in the 1 mL hepatocyte sample. The sample is then incubated at 37° C./5% CO 2 for 4 hours. A blank hepatocyte sample as well as the control standard are also incubated in this fashion.
- the incubated hepatocyte suspension samples are transferred to a microcentrifuge tube using a transfer pipette and centrifuged at 500 rpm for 4 minutes at room temperature. The supernatant is discarded and the resulting hepatocyte pellet was resuspended and the cells are extracted with 0.25 mL of a 4° C. solution of 70% methanol/30% (20 mM EDTA/20 mM EGTA) that has been adjusted to pH 8 using sodium hydroxide. The resulting extract solution is then stored in a refrigerator at 4° C. until ready for use, at which point the sample is first subjected to vortexing/sonication to ensure that all hepatocyte cells have burst.
- the sample is then centrifuged at 4000 rpm for 10 minutes at 4° C. and a 100 ⁇ L aliquot of the resulting supernatant is added into a bioanalytical plate (2 mL Square 96 well plate w/100 uL Tapered Reservoir), with the remaining supernatant immediately stored at ⁇ 80° C. for re-assay if necessary.
- the blank control supernatant is transferred to a new tube for use as a control matrix in standard curves.
- cryopreserved plateable hepatocytes are obtained from Celsius-In Vitro Technologies (Baltimore, Md.) and plated according to manufacturer's protocol at 0.7 ⁇ 10 6 cells/mL in In Vitro GRO CP Medium (1.75 ⁇ 10 6 cells/well in 6-well plates) three hours prior to inhibitor treatment.
- cells are washed in ice-cold PBS, extracted with ice-cold 1 mL 70% methanol: 30% 20 mM EDTA/EGTA and centrifuged.
- the supernatant is stored at ⁇ 80° C. until analysis.
- an NTP calibration curve is first generated by spiking a blank extraction buffer with known concentrations of the NTP standard.
- LC/ESI-MS analysis is performed on a QTRAP 5500 LC/MS/MS system (Applied Biosystems, Foster City, Calif.) coupled to a Shimazu UFLC system, operated in the positive-ion mode.
- the HPLC system is consisted of solvent delivery module (LC20-AD XR), auto injector (SIL-20ACXR), and photodiode array detector (SPD-M20A PDA) (Shimazu Corporation, Tokyo, Japan). All HPLC separations are performed at 40° C.
- the injection volume is 50 ⁇ L.
- the mobile phase gradient starts at 0% B, and linearly increases to 100% B over 6 min.
- the MS analysis of all NTPs is performed on the same QTRAP 5500 MS instrument in the multiple ion monitoring mode (MRM), with Turbo-Ion-Spray ionization.
- the collision energy is 40 eV for all the analytes and standards.
- the quadrupole mass analyzer is set to unit resolution.
- NTP values in Table 2 are as follows:
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Molecular Biology (AREA)
- Veterinary Medicine (AREA)
- Medicinal Chemistry (AREA)
- Public Health (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- Engineering & Computer Science (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Biotechnology (AREA)
- Genetics & Genomics (AREA)
- Epidemiology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Gastroenterology & Hepatology (AREA)
- Virology (AREA)
- Communicable Diseases (AREA)
- Oncology (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
Description
- The present invention relates to compounds of Formula (I) or Formula (II), compositions comprising the compounds of Formula (I) or Formula (II) and the compounds of Formula (I) or Formula (II) for use in treating or preventing liver diseases, such as cancer, Hepatitis B virus infection or Ebolavirus infection in a patient.
- Cancer is a disease characterised primarily by an uncontrolled division of abnormal cells derived from a given normal tissue and the invasion of adjacent tissues by these malignant cells. Blood or lymphatic transportation can spread cancer cells to other parts of the body leading to regional lymph nodes and to distant sites (metastasis). Cancer is a complex, multistep process that begins with minor preneoplastic changes, which may under certain conditions progress to neoplasia. There are more than 100 different types of cancer, which can be grouped into broader categories. The main categories include: carcinoma, sarcoma, leukemia, lymphoma and myeloma, and central nervous system cancers. The incidence of cancer continues to climb as the general population ages, as new cancers develop, and as susceptible populations (e.g., people infected with AIDS or excessively exposed to sunlight) grow.
- Primary liver cancer is one of the most common forms of cancer in the world. Hepatocellular carcinoma, also known as malignant hepatoma, is the most common form of primary liver cancer, and develops within the hepatocyte. Hepatocellular carcinoma occurs mostly in men and patients that suffer from cirrhosis. It has been the third leading cause of cancer deaths worldwide (Block T. M. et al., 2003, Oncogene 22:5093-5107). Many patients with hepatocellular carcinoma remain asymptomatic until the disease is in its advanced stages, resulting in ineffective treatment and poor prognosis; the majority of unresectable hepatocellular carcinoma patients die within one year.
- Treatment options for hepatocellular carcinoma have been limited, especially in the case of advanced or recurrent hepatocellular carcinoma. Surgery and radiation therapy are options for early stage liver cancer, but not very effective for advanced or recurrent hepatocellular carcinoma. Systematic chemotherapies have not been particularly effective, and there are a very limited number of drugs available for use. The recently approved kinase inhibitor sorafenib has been shown to be effective in treating hepatocellular carcinoma. However, it can slow or stop advanced liver cancer from progressing for only a few months longer than without treatment.
- Liver cancers which can be treated include primary and secondary liver cancers. In particular cases, the liver cancer is hepatocellular carcinoma, cholangiocarcinoma, or biliary tract cancer. In particular cases, the liver cancer is a metastasis in the liver originated from other cancers (such as colon cancer, pancreatic cancer, etc.). In certain embodiments, the compounds described herein can be used to treat cancers such as breast cancer, ovarian cancer, lung cancer, pancreatic cancer and leukemic cancer
- Hepatitis B virus (HBV) infection is a major health problem that can lead to chronic liver disease, such as cirrhosis and hepatocellular carcinoma, in a substantial number of infected individuals. Although most individuals seem to resolve the infection following acute symptoms, approximately 30% of cases become chronic. According to recent estimates around five percent of the world's population have chronic hepatitis B, leading to half a million to one million deaths per year.
- HBV is a small DNA virus that is considered to be the prototypical member of the hepadnaviridae. HBV is an enveloped virus with an unusual mode of replication, centering on the establishment of a covalently closed circular DNA (cccDNA) copy of its genome in the host cell nucleus. The episomal form is established from conversion of the partially double stranded circular DNA (relaxed circular, or rcDNA) genome upon initial infection and functions as the template for all HBV mRNAs. Unlike the mechanisms of most other DNA viruses, HBV cccDNA replicates through retrotranscription of a 1.1 genome unit-length RNA copy (pregenomic, or pgDNA) which is originally transcribed from the cccDNA template and which is acted upon by a virus encoded polymerase to yield progeny rcDNA. HBV DNA synthesis is coupled to assembly of its capsid and most copies of the encapsidated genome then efficiently associate with the envelope proteins for viron assembly and secretion; a minority of these genomes are shunted to the nucleus where they are converted to cccDNA, thus amplifying levels of the episome. HBV is classified into eight genotypes (A-H)
- Although the viral polymerase and surface antigen (HBsAg) perform very different functions, both are essential proteins for the virus to complete its life cycle and be infectious. That is HBV lacking HBsAg is completely defective and cannot infect or cause infection. HBsAg is needed to protect the virus nucleocapsid, to begin the infectious cycle and to mediate morphogenesis and secretion of newly forming virus from the infected cells.
- HBV is transmitted parenterally by contaminated blood and blood products, contaminated needles, or sexually and vertically from infected mothers or carrier mothers to their off-spring. People who are chronically affected with HBV are usually characterised by readily detectable levels of circulating antibody specific to the viral capsid (HBc), with little, if any, detectable levels of antibody to HBsAg. There is some evidence that chronic carriers do produce antibodies to HBsAg, but these antibodies are complexed with the circulating HBsAg, which can be present in milligram per milliliter amounts in a chronic carrier's circulation.
- As the only enzyme encoded by HBV, the polymerase has been well exploited as a target for antiviral drug development, with several nucleoside polymerase inhibitors approved for drug use and others in development. Mutations in the primary sequence of the polymerase that confer resistance to lamivudine and adefovir have been identified clinically, and underly a rebound of serum virus titers that 70% of treated patients experience within three years of starting lamivudine therapy. Although resistance to telbivudine, adefovir and entecavir occurs more rarely, it has been recorded. α-interferon is the other major therapy available for treatment of hepatitis B, but is limited by poor long-term response and debilitating side-effects. Despite the availability of an effective vaccine, immunoglobulin therapy, interferon and antiviral drugs, there is a need for improved therapeutic agents that effectively combat chronic HBV infection.
- The viruses of the Filoviridae family are enveloped negative sense, single-stranded, linear RNA viruses. Three genera within the Filoviridae family are Ebolavirus, Marburgvirus and ‘Cuevavirus’ (tentative). The five recognized species of Ebolavirus are Ebola virus (EBOV), Reston ebolavirus (REBOV), Sudan ebolavirus (SEBOV), Tai Forest ebolavirus (TAFV) and Bundibugyo ebolavirus (BEBOV). Ebolavirus and Marburgvirus are both highly infectious and contagious. Both viruses are transmitted by direct contact with the blood, body fluids and/or tissues of the infected persons. Ebolavirus and Marburgvirus can also be transmitted by handling sick or dead infected wild animals. Ebola hemorrhagic fever (EHF) is caused by an Ebolavirus infection. Marburg virus disease (MVD) is a human disease caused by Marburgvirus and causes Marburgvirus hemorrhagic fever (MHF). The primary organs infected by Ebolavirus have been shown to be the liver and the spleen as reported in Rev. Fr. Histotechnol., 2012, vol. 25 no. 1, pages 65-80.
- There remains a need for further therapies for the treatment of liver diseases, such as cancer or HBV infection or Ebolavirus infection which are safe and effective.
- In one aspect, the present invention provides a compound according to Formula (I) or Formula (II):
- or a pharmaceutically acceptable salt, solvate or enantiomer thereof, wherein:
- A is selected from O, S, CH2, CF and C═CH2, with the proviso that if R2 is OH and R3, R4 and V are hydrogen, then A is other than S; and if A is CF or C═CH2, then V is absent;
- B is selected from the following groups:
- Q is O or S;
- V is hydrogen, halogen, —N(R13)2, —OR13, alkyl, alkenyl, alkynyl, haloalkyl, N3 or CN;
- W is N, CH or CF;
- R1 is —CH2—X—Y—R16;
- X is —C(R14)2;
- Y is —C(R15)2 or C3-C6cycloalkylene;
- R2 is hydrogen, fluoro, chloro, —OR13, —CN, —N(R13)2, N3, C1-C3alkyl, C1-C3haloalkyl, C2-C6alkenyl or C2-C3alkynyl;
- R3 is hydrogen, C1-C6alkyl, C2-C6alkenyl, C2-C6alkynyl, C1-C6haloalkyl, —OR13, fluoro, chloro, N3, —CN or —N(R13)2 with the proviso that if R2 is fluoro or chloro, then R3 is other than fluoro or chloro;
- R4 is hydrogen, C1-C6alkyl, C2-C6alkenyl, C2-C6alkynyl, C1-C6haloalkyl, —OR13, fluoro, chloro, N3, —CN or —N(R13)2;
- R5, R6, R8 and R9 are each independently selected from hydrogen, C1-C6alkyl, C1-C6haloalkyl, C1-C6hydroxyalkyl, halogen, —OR18, —SR18 and —N(R18)2; C1-C10 alkyl or —COOR7;
- R7, R10, R11 and R12 are each independently selected from hydrogen, C1-C6alkyl, C2-C6 alkenyl, C2-C6alkynyl, C3-C7cycloalkyl, C5-C6heteroary, C9-C10heteroaryl, halogen, —OR18, —SR18, —S(O)R18, —S(O)2R18, —S(O)2N(R18)2, —NHC(O)OR18, —NHC(O)N(R18)2, C1-C6haloalkyl, C1-C6hydroxyalkyl, —O(C1-C6haloalkyl), —CN, —NO2, —N(R18)2, —NH(C1-C6alkylene)-(C5-C6heteroaryl), —NH(C1-C6 alkylene)-(C9-C10heteroaryl), —C(O)R18, —C(O)OR18, —C(O)N(R18)2 and —NHC(O)R18, wherein said C2-C6alkenyl group and said C2-C6alkynyl group are optionally substituted with one or more halogen;
- each occurrence of R13 is independently selected from hydrogen, C1-C6 alkyl, —C(O)R18 or —C(O)OR18;
- R14 is hydrogen, halogen, C1-C6alkyl, C1-C6haloalkyl, C1-C6hydroxyalkyl, C6-C10aryl-, OR7, —OC(O)R17, —N(R12)C(O)OR17 or —C(O)OR17;
- each occurrence of R15 is independently selected from hydrogen, halogen, C1-C6 alkyl, C1-C6 haloalkyl, C1-C6 hydroxyalkyl, C6-C10aryl-, OR17, —OC(O)R17, —N(R12)C(O)OR17 and —C(O)OR17 or both R15 groups together with the carbon atom to which they are attached can join to form a 3- to 6-membered spirocyclic cycloalkyl group;
- R16 is —C(O)OR17;
- each occurrence of R17 is independently selected from hydrogen, halogen, C1-C6alkyl, C3-C7cycloalkyl and C6-C10aryl;
- each occurrence of R18 is independently selected from hydrogen, C1-C15alkyl, C1-C6haloalkyl, C1-C6hydroxyalkyl, —(C1-C3alkylene)m-(C3-C7cycloalkyl), —(C1-C3alkylene)m-(C6-C10aryl), —(C1-C3alkylene)m-(C4-C7heterocycloalkyl), —(C1-C3alkylene)m-(C5-C6heteroaryl) and —(C1-C3alkylene)m-(C9-C10heteroaryl) and
-
- each occurrence of m is independently 0 or 1;
- or the compound
- or a pharmaceutically acceptable salt or solvate thereof.
- In a further aspect, the present invention provides a pharmaceutical composition comprising a compound according to Formula (I) or Formula (II) or a pharmaceutically acceptable salt, solvate or enantiomer thereof, and a pharmaceutically acceptable carrier or diluent.
- The compounds of Formula (I) or Formula (II) or pharmaceutically acceptable salts, solvates or enantiomers thereof are useful in therapy. In particular, the compounds of Formula (I) or Formula (II) or pharmaceutically acceptable salts, solvates or enantiomers thereof are useful in the treatment or prevention of liver diseases in a patient. As such, compounds of Formula (I) or Formula (II) or pharmaceutically acceptable salts, solvates or enantiomers thereof can be useful, for example, for treating or preventing cancer in a patient.
- Compounds of Formula (I) or Formula (II) or pharmaceutically acceptable salts, solvates or enantiomers thereof can also be useful for inhibiting HBV replication or replicon activity and for treating or preventing HBV infection in a patient. Compounds of Formula (I) or Formula (II) or pharmaceutically acceptable salts, solvates or enantiomers thereof can also be useful for treating or preventing Ebolavirus infection in a patient.
- Accordingly, the present invention provides a compound of Formula (I) or Formula (II) or a pharmaceutically acceptable salt, solvate or enantiomer thereof for use in the treatment or prevention of liver diseases in a patient. The present invention further provides a compound of Formula (I) or Formula (II) or a pharmaceutically acceptable salt, solvate or enantiomer thereof for use in treating or preventing cancer in a patient. The present invention further provides a compound of Formula (I) or Formula (II) or a pharmaceutically acceptable salt, solvate or enantiomer thereof for use in treating or preventing HBV infection in a patient. The present invention further provides a compound of Formula (I) or Formula (II) or a pharmaceutically acceptable salt, solvate or enantiomer thereof for use in treating or preventing Ebolavirus infection in a patient.
- The present invention further provides a combination comprising a compound of Formula (I) or Formula (II), or a pharmaceutically acceptable salt, solvate or enantiomer thereof and one, two, three or more other therapeutic agents.
- The details of the invention are set forth in the accompanying detailed description below.
- The terms used herein have their ordinary meaning and the meaning of such terms is independent at each occurrence thereof. That notwithstanding and except where stated otherwise, the following definitions apply throughout the specification and claims. Chemical names, common names, and chemical structures may be used interchangeably to describe the same structure. If a chemical compound is referred to using both a chemical structure and a chemical name and an ambiguity exists between the structure and the name, the structure predominates. These definitions apply regardless of whether a term is used by itself or in combination with other terms, unless otherwise indicated. Hence, the definition of “alkyl” applies to “alkyl” as well as the “alkyl” portions of “hydroxyalkyl,” “haloalkyl,” “—O-alkyl,” etc.
- As used herein, and throughout this disclosure, the following terms, unless otherwise indicated, shall be understood to have the following meanings:
- The term “alkyl,” as used herein, refers to an aliphatic hydrocarbon group having one of its hydrogen atoms replaced with a bond. An alkyl group may be straight or branched and contain from about 1 to about 20 carbon atoms. In one embodiment, an alkyl group contains from about 1 to about 12 carbon atoms. In different embodiments, an alkyl group contains from 1 to 6 carbon atoms (C1-C6alkyl), or from 1 to 3 carbon atoms (C1-C3alkyl). Examples of alkyl groups include methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl, tert-butyl, n-pentyl, neopentyl, isopentyl, n-hexyl, isohexyl and neohexyl. In one embodiment, an alkyl group is linear. In another embodiment, an alkyl group is branched. Unless otherwise indicated, an alkyl group is unsubstituted.
- The term “C1-C6 alkoxy” as used herein, refers to a group having the formula —O—(C1-C6alkyl), where the term “C1-C6 alkyl” is defined above herein.
- The term “alkenyl,” as used herein, refers to an aliphatic hydrocarbon group containing at least one carbon-carbon double bond and having one of its hydrogen atoms replaced with a bond. An alkenyl group may be straight or branched and contain from about 2 to about 15 carbon atoms. In one embodiment, an alkenyl group contains from 2 to 12 carbon atoms. In another embodiment, an alkenyl group contains from 2 to 6 carbon atoms (C2-C6alkenyl). Examples of alkenyl groups include ethenyl, propenyl, n-butenyl, 3-methylbut-2-enyl, n-pentenyl, octenyl and decenyl. Unless otherwise indicated, an alkenyl group is unsubstituted.
- The term “alkynyl,” as used herein, refers to an aliphatic hydrocarbon group containing at least one carbon-carbon triple bond and having one of its hydrogen atoms replaced with a bond. An alkynyl group may be straight or branched and contain from about 2 to about 15 carbon atoms. In one embodiment, an alkynyl group contains from about 2 to about 12 carbon atoms. In another embodiment, an alkynyl group contains from 2 to 6 carbon atoms (C2-C6alkynyl). In another embodiment, an alkynyl group contains from 2 to 3 carbon atoms (C2-C3alkynyl). Examples of alkynyl groups include ethynyl, propynyl, 2-butynyl and 3-methylbutynyl. Unless otherwise indicated, an alkynyl group is unsubstituted.
- The term “alkylene,” as used herein, refers to an alkyl group, as defined above, wherein one of the alkyl group's hydrogen atoms has been replaced with a bond. Examples of alkylene groups include —CH2—, —CH2CH2—, —CH2CH2CH2—, —CH2CH2CH2CH2—, —CH(CH3)CH2CH2—, —CH(CH3)— and —CH2CH(CH3)CH2—. In one embodiment, an alkylene group has from 1 to 6 carbon atoms (C1-C6alkylene). In another embodiment, an alkylene group has from 1 to 3 carbon atoms (C1-C3alkylene). In another embodiment, an alkylene group is branched. In another embodiment, an alkylene group is linear. In one embodiment, an alkylene group is —CH2—.
- The term “aryl,” as used herein, refers to an aromatic monocyclic or multicyclic ring system comprising from about 6 to about 14 carbon atoms. In one embodiment, an aryl group contains from 6 to 10 carbon atoms (C6-C10aryl). In one embodiment, an aryl group can be optionally fused to a cycloalkyl or cycloalkanoyl group. Examples of aryl groups include phenyl and naphthyl. In one embodiment, an aryl group is phenyl. The term “aryloxy” as used herein, refers to a group having the formula —O-aryl, where the term “aryl” is defined above herein.
- The term “cycloalkyl,” as used herein, refers to a non-aromatic mono- or multicyclic ring system comprising from 3 to about 10 ring carbon atoms. In one embodiment, a cycloalkyl contains from 3 to 7 ring carbon atoms (C3-C7cycloalkyl). In another embodiment, a cycloalkyl contains from 5 to 6 ring atoms. Examples of monocyclic cycloalkyls include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl and cyclooctyl. Examples of multicyclic cycloalkyls include 1-decalinyl, norbomyl and adamantly. In one embodiment, a cycloalkyl group is unsubstituted. The term “3 to 6-membered cycloalkyl” refers to a cycloalkyl group having from 3 to 6 ring carbon atoms. A ring carbon atom of a cycloalkyl group may be functionalized as a carbonyl group. An illustrative example of such a cycloalkyl group (also referred to herein as a “cycloalkanoyl” group) includes cyclobutanoyl:
- The term “cycloalkylene,” as used herein, refers to a cycloalkyl group, as defined above, wherein one of the cycloalkyl group's hydrogen atoms has been replaced with a bond. Examples of cycloalkylene groups include cyclopropylene, cyclobutylene, cyclopentylene and cyclohexylene. In one embodiment, a cycloalkylene group has from 3 to 6 carbon atoms (C3-C6cycloalkylene).
- The term “halogen,” as used herein, means —F, —Cl, —Br or —I.
- The term “haloalkyl,” as used herein, refers to an alkyl group as defined above, wherein one or more of the alkyl group's hydrogen atoms have been replaced with a halogen. In one embodiment, a haloalkyl group has from 1 to 6 carbon atoms (C1-C6haloalkyl). In another embodiment, a haloalkyl group has from 1 to 3 carbon atoms (C1-C3haloalkyl). In another embodiment, a haloalkyl group is substituted with from 1 to 3 F atoms. Examples of haloalkyl groups include —CH2F, —CHF2, —CF3, —CH2C1 and —CCl3.
- The term “hydroxyalkyl,” as used herein, refers to an alkyl group as defined above, wherein one or more of the alkyl group's hydrogen atoms have been replaced with an —OH group. In one embodiment, a hydroxyalkyl group has from 1 to 6 carbon atoms (C1-C6hydroxyalkyl). Non-limiting examples of hydroxyalkyl groups include —CH2OH, —CH2CH2OH, —CH2CH2CH2OH and —CH2CH(OH)CH3.
- The term “5 or 6-membered monocyclic heteroaryl,” or C5-C6heteroaryl, as used herein, refers to an aromatic monocyclic ring system comprising 5 to 6 ring atoms, wherein from 1 to 4 of the ring atoms is independently O, N or S and the remaining ring atoms are carbon atoms. A 5 or 6-membered monocyclic heteroaryl group is joined via a ring carbon atom, and any nitrogen atom of a heteroaryl can be optionally oxidized to the corresponding N-oxide. Examples of 5 or 6-membered monocyclic heteroaryls include pyridyl, pyrazinyl, furanyl, thienyl, pyrimidinyl, pyridone (including N-substituted pyridones), isoxazolyl, isothiazolyl, oxazolyl, oxadiazolyl, thiazolyl, pyrazolyl, furazanyl, pyrrolyl, triazolyl, 1,2,4-thiadiazolyl, pyrazinyl, pyridazinyl, imidazolyl, 1,2,4-triazinyl and the like, and all isomeric forms thereof.
- The term “9 or 10-membered bicyclic heteroaryl,” or C9-C10heteroaryl as used herein, refers to an aromatic bicyclic ring system comprising 9 to 10 ring atoms, wherein from 1 to 4 of the ring atoms is independently O, N or S and the remaining ring atoms are carbon atoms. A 9 or 10-membered bicyclic heteroaryl group is joined via a ring carbon atom, and any nitrogen atom of a heteroaryl can be optionally oxidized to the corresponding N-oxide. Examples of 9 or 10-membered bicyclic heteroaryls include imidazo[1,2-a]pyridinyl, imidazo[2,1-b]thiazolyl, benzofurazanyl, indolyl, azaindolyl, benzimidazolyl, benzothienyl, quinolinyl, benzimidazolyl, quinazolinyl, pyrrolopyridyl, imidazopyridyl, isoquinolinyl, benzoazaindolyl, benzothiazolyl, and the like, and all isomeric forms thereof.
- The term “heterocycloalkyl,” as used herein, refers to a non-aromatic monocyclic or multicyclic ring system comprising 3 to about 11 ring atoms, wherein from 1 to 4 of the ring atoms are independently O, S, N or Si, and the remainder of the ring atoms are carbon atoms. A heterocycloalkyl group can be joined via a ring carbon, ring silicon atom or ring nitrogen atom. In one embodiment, a heterocycloalkyl group is monocyclic and has from 3 to 7 ring atoms (C3-C7heterocycloalkyl). In another embodiment, a heterocycloalkyl group is monocyclic has from 4 to 7 ring atoms (C4-C7heterocycloalkyl). In another embodiment, a heterocycloalkyl group is bicyclic and has from 7 to 11 ring atoms. In still another embodiment, a heterocycloalkyl group is monocyclic and has 5 or 6 ring atoms. In one embodiment, a heterocycloalkyl group is monocyclic. In another embodiment, a heterocycloalkyl group is bicyclic. There are no adjacent oxygen and/or sulfur atoms present in the ring system. Any —NH group in a heterocycloalkyl ring may exist protected such as, for example, as an —N(BOC), —N(Cbz), —N(Tos) group and the like; such protected heterocycloalkyl groups are considered part of this invention. The term “heterocycloalkyl” also encompasses a heterocycloalkyl group, as defined above, which is fused to an aryl (e.g., benzene) or heteroaryl ring. The nitrogen or sulfur atom of the heterocycloalkyl can be optionally oxidized to the corresponding N-oxide, S-oxide or S,S-dioxide. Examples of monocyclic heterocycloalkyl rings include oxetanyl, piperidyl, pyrrolidinyl, piperazinyl, morpholinyl, thiomorpholinyl, thiazolidinyl, 1,4-dioxanyl, tetrahydrofuranyl, tetrahydrothiophenyl, delta-lactam, delta-lactone, silacyclopentane, silapyrrolidine and the like, and all isomers thereof. Illustrative examples of a silyl-containing heterocycloalkyl group include:
- A ring carbon atom of a heterocycloalkyl group may be functionalized as a carbonyl group. An illustrative example of such a heterocycloalkyl group is:
- In one embodiment, a heterocycloalkyl group is a 5-membered monocyclic heterocycloalkyl. In another embodiment, a heterocycloalkyl group is a 6-membered monocyclic heterocycloalkyl. The term “3 to 6-membered monocyclic cycloalkyl” refers to a monocyclic heterocycloalkyl group having from 3 to 6 ring atoms. The term “4 to 6-membered monocyclic cycloalkyl” refers to a monocyclic heterocycloalkyl group having from 4 to 6 ring atoms. The term “7 to 11-membered bicyclic heterocycloalkyl” refers to a bicyclic heterocycloalkyl group having from 7 to 11 ring atoms. Unless otherwise indicated, an heterocycloalkyl group is unsubstituted.
- The term “substituted”, as used herein, means that one or more hydrogens on the designated atom is replaced with a selection from the indicated group, provided that the designated atom's normal valency under the existing circumstances is not exceeded, and that the substitution results in a stable compound. Combinations of substituents and/or variables are permissible only if such combinations result in stable compounds. By “stable compound’ or “stable structure” is meant a compound that is sufficiently robust to survive isolation to a useful degree of purity from a reaction mixture, and formulation into an efficacious therapeutic agent.
- When referring to a substituent on a sugar ring of a nucleoside, the term “beta” refers to a substituent on the same side of the plane of the sugar ring as the 5′ carbon and the term “alpha” refers to a substituent on the opposite side of the plane of the sugar ring from the 5′ carbon. As shown below, substituent “A” is in the “alpha” position, and substituent “B” is in the “beta” position with respect to the 5′ carbon.
- The term “in substantially purified form,” as used herein, refers to the physical state of a compound after the compound is isolated from a synthetic process (e.g., from a reaction mixture), a natural source, or a combination thereof. The term “in substantially purified form,” also refers to the physical state of a compound after the compound is obtained from a purification process or processes described herein or well-known to the skilled artisan (e.g., chromatography, recrystallization and the like), in sufficient purity to be characterizable by standard analytical techniques described herein or well-known to the skilled artisan.
- It should also be noted that any carbon as well as heteroatom with unsatisfied valences in the text, schemes, examples and tables herein is assumed to have the sufficient number of hydrogen atom(s) to satisfy the valences.
- When a functional group in a compound is termed “protected”, this means that the group is in modified form to preclude undesired side reactions at the protected site when the compound is subjected to a reaction. Suitable protecting groups will be recognized by those with ordinary skill in the art as well as by reference to standard textbooks such as, for example, T. W. Greene et al, Protective Groups in Organic Synthesis (1991), Wiley, New York.
- When any substituent or variable (e.g., alkyl, R6, Ra, etc.) occurs more than one time in any constituent or in Formula (I) or Formula (II), its definition on each occurrence is independent of its definition at every other occurrence, unless otherwise indicated.
- The term “composition,” as used herein, is intended to encompass a product comprising the specified ingredients in the specified amounts, as well as any product which results directly from combination of the specified ingredients in the specified amounts.
- IC50, as used herein, refers to an amount, concentration or dosage of a particular test compound that achieves a 50% inhibition of a maximal response in an assay that measures such response.
- The term “host,” as used herein, refers to any unicellular or multicellular organism, including cell lines and animals, and in certain embodiments, a human. Alternatively, the host can be carrying a part of the Flaviviridae or Filovaridae viral genome, whose replication or function can be altered by the compounds of the present invention. The term “host” specifically includes infected cells, cells transfected with all or part of the Flaviviridae or Filovaridae genome and animals, in particular, primates (including chimpanzees) and humans. In most animal applications of the present invention, the host is a human patient. Veterinary applications, in certain indications, however, are clearly anticipated by the present invention (such as chimpanzees).
- The terms “subject” and “patient,” as used herein, are used interchangeably. The terms “subject” and “subjects” refer to a mammal including a non-primate (e.g., a cow, pig, horse, cat, dog, rat, and mouse) and a primate (e.g., a monkey such as a cynomolgous monkey, a chimpanzee and a human), and for example, a human. The subject may also be a farm animal (e.g., a horse, a cow, a pig, etc.) or a pet (e.g., a dog or a cat).
- The terms “therapeutic agent” and “therapeutic agents,” as used herein, refer to any agent(s) which can be used in the treatment or prevention of a disorder or one or more symptoms thereof. The term “therapeutic agent” includes a compound provided herein. In some cases, a therapeutic agent can be an agent which is known to be useful for, or has been or is currently being used for the treatment or prevention of a disorder or one or more symptoms thereof.
- The term “effective amount,” as used herein, refers to an amount of a compound of Formula (I) or Formula (II) and/or an additional therapeutic agent, or a composition thereof that is effective in producing the desired therapeutic, ameliorative, inhibitory or preventative effect when administered to a patient suffering from a viral infection or virus-related disorder. In the combination therapies of the present invention, an effective amount can refer to each individual agent or to the combination as a whole, wherein the amounts of all agents administered are together effective, but wherein the component agent of the combination may not be present individually in an effective amount. A “therapeutically effective amount” can vary depending on, inter alia, the compound, the disease and its severity, and the age, weight, etc., of the subject to be treated.
- The term “treating” or “treatment” of any disease or disorder, as used herein, refers to ameliorating a disease or disorder that exists in a subject. In some cases, “treating” or “treatment” includes ameliorating at least one physical parameter, which may be indiscernible by the subject. In other cases, “treating” or “treatment” includes modulating the disease or disorder, either physically (e.g., stabilization of a discernible symptom) or physiologically (e.g., stabilization of a physical parameter) or both. In other cases, “treating” or “treatment” includes delaying the onset of the disease or disorder.
- The term “preventing,” as used herein with respect to a liver disease or disorder, refers to reducing the likelihood or severity of the liver disease or disorder.
- The present invention provides compounds of Formula (I), having the formula:
- or a pharmaceutically acceptable salt, solvate or enantiomer thereof wherein A, B, R1, R2, R3, R4, Q and V are defined above for the compounds of Formula (I).
- In one embodiment, A is O, S or CH2, with the proviso that if R2 is OH and R3, R4 and V are hydrogen, then A is other than S.
- In another embodiment, A is O.
- In another embodiment, A is S, with the proviso that if R2 is OH, then R3, R4 and V cannot be hydrogen.
- In another embodiment A, is CF or C═CH2 and V is absent.
- In another embodiment, A is CF and V is absent.
- In another embodiment, A is C═CH2 and V is absent.
- In one embodiment, Q is O.
- In another embodiment, Q is S.
- In one embodiment, R1 is —CH2—C(R14)2—C(R15)2—C(O)OR17, wherein R14, R15 and R17 are as previously defined.
- In one embodiment, R1 is —CH2—C(R14)2—C(R15)2—C(O)OR17, wherein R14, R15 and R17 are each independently selected from hydrogen and C1-C6alkyl.
- In another embodiment, R1 is —CH2—CH2—C(R15)2—C(O)OR17, wherein R15 and R17 are as previously defined.
- In another embodiment, R1 is
- wherein R15 and R17 are as previously defined.
- In another embodiment, R1 is
- wherein R15 and R17 are each independently selected from C1-C6alkyl.
- In another embodiment, R1 is
- wherein R15 and R17 are each independently selected from C1-C6alkyl.
- In another embodiment, R1 is
- wherein R15 and R17 are each independently selected from C1-C6alkyl.
- In another embodiment, R1 is
- wherein R15 is methyl and R17 is selected from ethyl or propyl.
- In another embodiment, R1 is
- wherein R15 is methyl and R17 is selected from ethyl or propyl.
- In another embodiment, R1 is
- wherein R15 is methyl and R17 is selected from ethyl or propyl.
- In another embodiment, R1 is
- In another embodiment, R1 is
- In another embodiment, R1 is
- In another embodiment, R1 is
- In one embodiment, R2 is hydrogen, fluoro, chloro, —OR13, —CN, —N(R13)2 or N3 with the proviso that if R2 is OH and R3, R4 and V are hydrogen, then A is other than S and if R2 is fluoro or chloro, then R3 is other than fluoro or chloro.
- In another embodiment, R2 is C1-C3alkyl, C1-C3haloalkyl, C2-C6alkenyl or C2-C3alkynyl.
- In another embodiment, R2 is hydrogen, fluoro, chloro, methyl, amino or hydroxyl with the proviso that if R2 is OH and R3, R4 and V are hydrogen, then A is other than S and if R2 is fluoro or chloro, then R3 is other than fluoro or chloro.
- In another embodiment, R2 is hydrogen, fluoro or —OH with the proviso that if R2 is OH and R3, R4 and V are hydrogen, then A is other than S and if R2 is fluoro or chloro, then R3 is other than fluoro or chloro.
- In another embodiment, R2 is hydrogen.
- In another embodiment, R2 is fluoro and R3 is other than fluoro or chloro.
- In another embodiment, R2 is OH and if R3, R4 and V are hydrogen, then A is other than S.
- In one embodiment, R3 is hydrogen, hydroxyl, fluoro, chloro, N3, CN or C1-C6alkyl, with the proviso that if R2 is fluoro or chloro, then R3 is other than fluoro or chloro.
- In another embodiment, R3 is hydrogen, hydroxyl, fluoro, chloro or methyl with the proviso that if R2 is fluoro or chloro, then R3 is other than fluoro or chloro.
- In another embodiment, R3 is hydrogen.
- In another embodiment, R4 is hydrogen, C1-C6alkyl or C2-C6alkynyl.
- In another embodiment, R4 is hydrogen or ethynyl.
- In another embodiment, R4 is hydrogen.
- In one embodiment, V is hydrogen or fluoro.
- In another embodiment, V is hydrogen.
- In one embodiment, V is hydrogen and each of R2, R3 and R4 is hydrogen.
- In another embodiment, V is fluoro and each of R2, R3 and R4 is hydrogen.
- In another embodiment, V is hydrogen, R2 is fluoro and each of R3 and R4 is hydrogen.
- In another embodiment, V is hydrogen, R2 is hydroxyl and each of R3 and R4 is hydrogen.
- In one embodiment, A is O, V is hydrogen and each of R2, R3 and R4 is hydrogen.
- In another embodiment, A is O, V is hydrogen, R2 is fluoro and each of R3 and R4 is hydrogen.
- In another embodiment, A is O, V is hydrogen, R2 is hydroxyl and each of R3 and R4 is hydrogen.
- In one embodiment, A is S, V is hydrogen and each of R2, R3 and R4 is hydrogen.
- In another embodiment, A is S, V is hydrogen, R2 is fluoro and each of R3 and R4 is hydrogen.
- In one embodiment, B is selected from the following groups:
- wherein Q, W and R5 to R12 are as defined previously.
- In another embodiment, B is selected from the following groups:
- wherein Q, W and R5 to R11 are as defined previously.
- In another embodiment, B is selected from the following groups:
- wherein Q is O; W is N or CH; R5, R6 and R8 are each hydrogen; R7 is amino or NHC(O)aryl; R9 is hydrogen or trifluoromethyl; R10 is —NH2 or —O—C1-C6alkyl, R11 is —NH2 or halogen and R12 is —NH2 or halogen.
- In another embodiment, B is selected from the following groups:
- wherein Q is O; W is N; R5, R6 and R8 are each hydrogen; R7 is amino or NHC(O)aryl; R9 is hydrogen or trifluoromethyl; R10 is —NH2 or —O—C1-C6alkyl and R11 is —NH2 or halogen.
- In another embodiment, B is
- wherein, Q is O, R5 and R6 are each hydrogen and R7 is amino or NHC(O)R18, wherein R18 is C1-C6alkyl or C6-C10aryl.
- In another embodiment, B is
- wherein, Q is O, R5 and R6 are each hydrogen and R7 is amino.
- In another embodiment, B is
- wherein, Q is O, R5 and R6 are each hydrogen and R7 is NHC(O)R18, wherein R18 is C1-C6alkyl or C6-C10aryl.
- In another embodiment, B is:
- wherein Q is O and R8 is hydrogen and R9 is hydrogen or trifluoromethyl.
- In another embodiment, B is:
- wherein W is N, R10 is amino and R11 is chloro.
- In another embodiment, B is:
- wherein W is N, R10 is —OR18 and R11 is —N(R18)2, wherein R18 is as previously defined and each R18 is selected independently of each other.
- In another embodiment, B is:
- wherein W is N, R10 is —O— C1-C6alkyl and R11 is amino.
In another embodiment, B is: - wherein W is N, R10 is —O-ethyl and R11 is amino.
- In another embodiment, B is:
- wherein W is N, R10 is —O-methyl and R11 is amino.
- In another embodiment, B is:
- wherein W is N, R10 is amino and R11 is hydrogen.
- In one embodiment is a compound according to Formula (I):
- or a pharmaceutically acceptable salt, solvate or enantiomer thereof, wherein:
- Q is O;
- A is O or S;
- R1 is
- wherein R15 is methyl and R17 is selected from ethyl or propyl.
- R2 is F;
- R3, R4 and V are H and
- B is
- wherein, R5 and R6 are each hydrogen and R7 is amino or NHC(O)R18, wherein R18 is C1-C6alkyl or C6-C10aryl.
- In another embodiment is a compound according to Formula (I):
- or a pharmaceutically acceptable salt, solvate or enantiomer thereof, wherein:
- Q is O;
- A is O or S;
- R1 is
- wherein R15 is methyl and R17 is selected from ethyl or propyl.
- R2, R3, R4 and V are hydrogen and
- B is
- wherein, R8 is hydrogen and R9 is hydrogen or trifluoromethyl.
- In another embodiment is a compound according to Formula (I):
- or a pharmaceutically acceptable salt, solvate or enantiomer thereof, wherein:
- Q is O;
- A is O or S;
- R1 is
- wherein R15 is methyl and R17 is selected from ethyl or propyl.
- R2 is hydrogen or fluorine;
- R3, R4 and V are hydrogen and
- B is
- wherein W is N, R10 is amino and R11 is chloro.
- In another embodiment is a compound according to Formula (I):
- or a pharmaceutically acceptable salt, solvate or enantiomer thereof, wherein:
- Q is O;
- A is O;
- R1 is
- wherein R15 is methyl and R17 is selected from ethyl or propyl.
- R2 is hydroxy;
- R3, R4 and V are hydrogen and
- B is
- wherein W is N, R10 is methoxy and R11 is amino.
- In another embodiment is a compound of Formula I having the structure:
- or a pharmaceutically acceptable salt or solvate thereof, wherein B and R17 are as defined previously.
- In another embodiment is a compound of Formula I having the structure:
- or a pharmaceutically acceptable salt or solvate thereof, wherein R17 is as defined previously.
- In another embodiment is a compound of formula (I) which is selected from:
- or a pharmaceutically acceptable salt or solvate thereof.
- In one embodiment, variables A, B, R1, R2, R3, Q and V for the Compounds of Formula (I) are selected independently of each other.
- In another embodiment, the Compounds of Formula (I) are in substantially purified form.
- The present invention provides compounds of Formula (II), having the formula:
- or a pharmaceutically acceptable salt or solvate thereof, wherein B, R1 and Q are defined above for the compounds of Formula (II).
- In one embodiment, Q is O.
- In another embodiment, Q is S.
- In one embodiment, R1 is —CH2—C(R14)2—C(R15)2—C(O)OR17, wherein R14, R15 and R17 are as previously defined.
- In one embodiment, R1 is —CH2—C(R14)2—C(R15)2—C(O)OR17, wherein R14, R15 and R17 are each independently selected from hydrogen and C1-C6alkyl.
- In another embodiment, R1 is —CH2—CH2—C(R15)2—C(O)OR17, wherein R15 and R17 are as previously defined.
- In another embodiment, R1 is
- wherein R15 and R17 are as previously defined.
- In another embodiment, R1 is
- wherein R15 and R17 are each independently selected from C1-C6alkyl.
- In another embodiment, R1 is
- wherein R15 and R17 are each independently selected from C1-C6alkyl.
- In another embodiment, R1 is
- wherein R15 and R17 are each independently selected from C1-C6alkyl.
- In another embodiment, R1 is
- wherein R15 is methyl and R17 is selected from ethyl or propyl.
- In another embodiment, R1 is
- wherein R15 is methyl and R17 is selected from ethyl or propyl.
- In another embodiment, R1 is
- wherein R15 is methyl and R17 is selected from ethyl or propyl.
- In another embodiment, R1 is
- In another embodiment, R1 is
- In another embodiment, R1 is
- In another embodiment, R1 is
- In one embodiment, B is selected from the following groups:
- wherein Q, W and R5 to R12 are as defined previously.
- In another embodiment, B is selected from the following groups:
- wherein Q, W and R5 to R11 are as defined previously.
- In another embodiment, B is selected from the following groups:
- wherein Q is O; W is N or CH; R5, R6 and R8 are each hydrogen; R7 is amino; R9 is hydrogen or trifluoromethyl; R10 is —NH2 or —O—C1-C6alkyl, R11 is —NH2 or halogen and R12 is —NH2 or halogen.
- In another embodiment, B is selected from the following groups:
- wherein Q is O; W is N; R5, R6 and R8 are each hydrogen; R7 is amino; R9 is hydrogen or trifluoromethyl; R10 is —NH2 or —O—C1-C6alkyl and R11 is —NH2 or halogen.
- In another embodiment, B is
- wherein, Q is O, R5 and R6 are each hydrogen and R7 is amino or NHC(O)R18, wherein R18 is C1-C6alkyl or is C6-C10aryl
- In another embodiment, B is
- wherein, Q is O, R5 and R6 are each hydrogen and R7 is amino.
- In another embodiment, B is
- wherein, Q is O, R5 and R6 are each hydrogen and R7 is NHC(O)R18, wherein R18 is C1-C6alkyl or is C6-C10aryl
- In another embodiment, B is:
- wherein Q is O and R8 is hydrogen and R9 is hydrogen or trifluoromethyl.
- In another embodiment, B is:
- wherein W is N, R10 is amino and R11 is chloro.
- In another embodiment, B is:
- wherein W is N, R10 is —OR18 and R11 is —N(R18)2, wherein R18 is as previously defined and each R18 is selected independently of each other.
- In another embodiment, B is:
- wherein W is N, R10 is —O— C1-C6alkyl and R11 is amino, wherein R18 is as previously defined and each R18 is selected independently of each other.
- In another embodiment, B is:
- wherein W is N, R10 is —O-ethyl and R11 is amino, wherein R18 is as previously defined and each R18 is selected independently of each other.
- In one embodiment is a compound according to Formula (II):
- or a pharmaceutically acceptable salt or solvate thereof, wherein:
- Q is O;
- R1 is
- wherein R15 is methyl and R17 is selected from ethyl or propyl and
- B is
- wherein, R10 is —OR18 and R11 is NHR18, wherein each R18 is independently hydrogen or C1-C6alkyl.
- In another embodiment is a compound according to Formula (II):
- or a pharmaceutically acceptable salt or solvate thereof, wherein:
- Q is O;
- wherein R15 is methyl and R17 is selected from ethyl or propyl and
- B is
- wherein, R10 is —O-ethyl and R11 is amino.
- In another embodiment is a compound of formula (II) which is selected from:
- or a pharmaceutically acceptable salt or solvate thereof.
- In one embodiment, variables B, R1 and Q for the compounds of Formula (II) are selected independently of each other.
- In another embodiment, the compounds of Formula (II) are in substantially purified form.
- The compounds of Formula (I) or Formula (II) may be prepared from known or readily prepared starting materials, following methods known to one skilled in the art of organic synthesis. Methods useful for making the compounds of Formula (I) or Formula (II) are set forth in the Examples below and generalized in Schemes A, B and C below. Alternative synthetic pathways and analogous structures will be apparent to those skilled in the art of organic synthesis.
- The following abbreviations are used herein:
- CH3CN or ACN acetonitrile
- DBU 1,8-diazabicyclo(5.4.0)undec-7-ene
- DCM dichloromethane
- DMF N,N-dimethylformamide
- Et3N triethylamine
- Et2O diethylether
- NMI N-methylimidazole
- t-bu tert-butyl
- THF tetrahydrofuran
- Scheme A shows a method useful for making nucleoside compounds of formula A4, which correspond to the compounds of Formula (I).
- Phosphorus (V) oxychloride can be reacted with triethylamine and an alcohol of formula R1OH as shown to provide a compound of formula A2. The compound of formula A2 is then reacted as shown with a nucleoside of formula A3 to provide a cyclic phosphate nucleoside prodrug of formula A4.
- In Scheme A, the variables are as described in the context of Formula I. Nucleosides A3 can be prepared or obtained according to the knowledge in the art. Additional steps and reagents not provided in Scheme A would be known to those of skill in the art. Exemplary methods of preparation are described in detail in the Examples herein.
- Scheme B shows an alternative method useful for making nucleoside compounds of formula A4, which correspond to the compounds of Formula (I).
- 1-Chloro-N,N,N′,N′-tetraisopropylphosphinediamine (B1) can be reacted as shown with triethylamine and an alcohol of formula R1OH to provide a compound of formula B2. The compound of formula B2 is then reacted as shown with a nucleoside of formula A3 to provide a cyclic phosphate nucleoside prodrug of formula A4.
- In Scheme B, the variables are as described in the context of Formula I. Nucleosides A3 can be prepared or obtained according to the knowledge in the art. Additional steps and reagents not provided in Scheme A would be known to those of skill in the art. Exemplary methods of preparation are described in detail in the Examples herein.
- Scheme C shows an alternative method useful for making nucleoside compounds of formula A4, which correspond to the compounds of Formula (I).
- 2,3,4,5,6-Pentafluorophenol (C2) can be reacted with 4-chlorophenyl phosphodichloridate or 4-nitrophenyl phosphodichloridate (C1), triethylamine and an alcohol of formula R1OH as shown to provide a compound of formula C3. The compound of formula C3 is then reacted with a nucleoside of formula A3 as shown to provide a cyclic phosphate nucleoside prodrug of formula A4.
- In Scheme C, the variables are as described in the context of Formula I. Nucleosides A3 can be prepared or obtained according to the knowledge in the art. Additional steps and reagents not provided in Scheme A would be known to those of skill in the art. Exemplary methods of preparation are described in detail in the Examples herein.
- Compounds of Formula II can be prepared by analogous processes to those shown in Schemes A to C using the nucleoside A5 in place of nucleoside A3.
- Prodrugs and solvates of the compounds of the invention are also contemplated herein. A discussion of prodrugs is provided in T. Higuchi and V. Stella, Pro-drugs as Novel Delivery Systems (1987) 14 of the A.C.S. Symposium Series, and in Bioreversible Carriers in Drug Design, (1987) Edward B. Roche, ed., American Pharmaceutical Association and Pergamon Press. The term “prodrug” means a compound (e.g., a drug precursor) that is transformed in vivo to provide a Compound of Formula (I) or Formula (II), or a pharmaceutically acceptable salt of the compound. The transformation may occur by various mechanisms (e.g., by metabolic or chemical processes), such as, for example, through hydrolysis in blood.
- For example, if a Compound of Formula (I) or Formula (II) contains a carboxylic acid functional group, a prodrug can comprise an ester formed by the replacement of the hydrogen atom of the acid group with a group such as, for example, (C1-C8)alkyl, (C2-C12)alkanoyloxymethyl, 1-(alkanoyloxy)ethyl having from 4 to 9 carbon atoms, 1-methyl-1-(alkanoyloxy)-ethyl having from 5 to 10 carbon atoms, alkoxycarbonyloxymethyl having from 3 to 6 carbon atoms, 1-(alkoxycarbonyloxy)ethyl having from 4 to 7 carbon atoms, 1-methyl-1-(alkoxycarbonyloxy)ethyl having from 5 to 8 carbon atoms, N-(alkoxycarbonyl)aminomethyl having from 3 to 9 carbon atoms, 1-(N-(alkoxycarbonyl)amino)ethyl having from 4 to 10 carbon atoms, 3-phthalidyl, 4-crotonolactonyl, gamma-butyrolacton-4-yl, di-N,N—(C1-C2)alkylamino(C2-C3)alkyl (such as β-dimethylaminoethyl), carbamoyl-(C1-C2)alkyl, N,N-di(C1-C2)alkylcarbamoyl-(C1-C2)alkyl and piperidino-, pyrrolidino- or morpholino(C2-C3)alkyl, and the like.
- Similarly, if a Compound of Formula (I) or Formula (II) contains an alcohol functional group, a prodrug can be formed by the replacement of one or more of the hydrogen atoms of the alcohol groups with a group such as, for example, (C1-C6)alkanoyloxymethyl, 1-((C1-C6)alkanoyloxy)ethyl, 1-methyl-1-((C1-C6)alkanoyloxy)ethyl, (C1-C6)alkoxycarbonyloxymethyl, N—(C1-C6)alkoxycarbonylaminomethyl, succinoyl, (C1-C6)alkanoyl, α-amino(C1-C4)alkyl, α-amino(C1-C4)alkylene-aryl, arylacyl and α-aminoacyl, or α-aminoacyl-α-aminoacyl, where each α-aminoacyl group is independently selected from the naturally occurring L-amino acids, or glycosyl (the radical resulting from the removal of a hydroxyl group of the hemiacetal form of a carbohydrate). Other example of alcohol-derived prodrugs include —P(O)(OH)2; —P(O)(—O—C1-C6alkyl)2; —P(O)(—NH-(α-aminoacyl group))(-O-aryl); —P(O)(—O—(C1-C6 alkylene)-S-acyl)(-NH-arylalkyl); and those described in U.S. Pat. No. 7,879,815; International Publication Nos. WO2005/003047, WO2008/082602, WO2010/0081628, WO2010/075517 and WO2010/075549; Mehellou, Chem. Med. Chem., 5:1841-1842 (2005); Bobeck et al., Antiviral Therapy 15:935-950 (2010); Furman et al., Future Medicinal Chemistry, 1:1429-1452 (2009); and Erion, Microsomes and Drug Oxidations, Proceedings of the International Symposium, 17th, Saratoga Springs, N.Y., United States, Jul. 6-10, 2008, 7-12 (2008).
- If a Compound of Formula (I) or Formula (II) incorporates an amine functional group, a prodrug can be formed by the replacement of a hydrogen atom in the amine group with a group such as, for example, R-carbonyl-, RO-carbonyl-, NRR′-carbonyl- wherein R and R′ are each independently (C1-C10)alkyl, (C3-C7) cycloalkyl, benzyl, a natural α-aminoacyl, —C(OH)C(O)OY1 wherein Y1 is H, (C1-C6)alkyl or benzyl, —C(OY2)Y3 wherein Y2 is (C1-C4) alkyl and Y3 is (C1-C6)alkyl; carboxy (C1-C6)alkyl; amino(C1-C4)alkyl or mono-N- or di-N,N—(C1-C6)alkylaminoalkyl; —C(Y4)Y5 wherein Y4 is H or methyl and Y5 is mono-N- or di-N,N—(C1-C6)alkylamino morpholino; piperidin-1-yl or pyrrolidin-1-yl, and the like.
- Pharmaceutically acceptable esters of the present compounds include the following groups: (1) carboxylic acid esters obtained by esterification of the hydroxy group of a hydroxyl compound, in which the non-carbonyl moiety of the carboxylic acid portion of the ester grouping is selected from straight or branched chain alkyl (e.g., methyl, ethyl, n-propyl, isopropyl, t-butyl, sec-butyl or n-butyl), alkoxyalkyl (e.g., methoxymethyl), aralkyl (e.g., benzyl), aryloxyalkyl (for example, phenoxymethyl), aryl (e.g., phenyl optionally substituted with, for example, halogen, C1-4alkyl, —O—(C1-4alkyl) or amino); (2) sulfonate esters, such as alkyl- or aralkylsulfonyl (for example, methanesulfonyl); (3) amino acid esters (e.g., L-valyl or L-isoleucyl); (4) phosphonate esters and (5) mono-, di- or triphosphate esters. The phosphate esters may be further esterified by, for example, a C1-20 alcohol or reactive derivative thereof, or by a 2,3-di (C6-24)acyl glycerol.
- One or more compounds of the invention may exist in unsolvated as well as solvated forms with pharmaceutically acceptable solvents such as water, ethanol, and the like, and it is intended that the invention embrace both solvated and unsolvated forms. “Solvate” means a physical association of a compound of this invention with one or more solvent molecules. This physical association involves varying degrees of ionic and covalent bonding, including hydrogen bonding. In certain instances the solvate will be capable of isolation, for example when one or more solvent molecules are incorporated in the crystal lattice of the crystalline solid. “Solvate” encompasses both solution-phase and isolatable solvates. Non-limiting examples of solvates include ethanolates, methanolates, and the like. A “hydrate” is a solvate wherein the solvent molecule is water.
- One or more compounds of the invention may optionally be converted to a solvate. Preparation of solvates is generally known. Thus, for example, M. Caira et al, J. Pharmaceutical Sci., 93(3), 601-611 (2004) describe the preparation of the solvates of the antifungal fluconazole in ethyl acetate as well as from water. Similar preparations of solvates, hemisolvate, hydrates and the like are described by E. C. van Tonder et al, AAPS Pharm Sci Techours., 501), article 12 (2004); and A. L. Bingham et al, Chem. Commun., 603-604 (2001). A typical process involves dissolving the inventive compound in desired amounts of the desired solvent (organic or water or mixtures thereof) at a higher than room temperature, and cooling the solution at a rate sufficient to form crystals which are then isolated by standard methods. Analytical techniques such as, for example IR spectroscopy, show the presence of the solvent (or water) in the crystals as a solvate (or hydrate).
- The compounds of Formula (I) or Formula (II) can form salts which are also within the scope of this invention. The term “salt(s)”, as employed herein, denotes acidic salts formed with inorganic and/or organic acids, as well as basic salts formed with inorganic and/or organic bases. In addition, when a compound of Formula (I) or Formula (II) contains both a basic moiety, such as, a pyridine or imidazole, and an acidic moiety, such as, a carboxylic acid, zwitterions (“inner salts”) may be formed and are included within the term “salt(s)” as used herein. In one embodiment, the salt is a pharmaceutically acceptable (i.e., non-toxic, physiologically acceptable) salt. In another embodiment, the salt is other than a pharmaceutically acceptable salt. Salts of the compounds of Formula (I) or Formula (II) may be formed, for example, by reacting a compound of Formula (I) or Formula (II) with an amount of acid or base, such as an equivalent amount, in a medium such as one in which the salt precipitates or in an aqueous medium followed by lyophilization.
- Exemplary acid addition salts include acetates, ascorbates, benzoates, benzenesulfonates, bisulfates, borates, butyrates, citrates, camphorates, camphorsulfonates, fumarates, hydrochlorides, hydrobromides, hydroiodides, lactates, maleates, methanesulfonates, naphthalenesulfonates, nitrates, oxalates, phosphates, propionates, salicylates, succinates, sulfates, tartarates, thiocyanates, toluenesulfonates (also known as tosylates) and the like. Additionally, acids which are generally considered suitable for the formation of pharmaceutically useful salts from basic pharmaceutical compounds are discussed, for example, by P. Stahl et al, Camille G. (eds.) Handbook of Pharmaceutical Salts. Properties, Selection and Use. (2002) Zurich: Wiley-VCH; S. Berge et al, Journal of Pharmaceutical Sciences (1977) 66(1) 1-19; P. Gould, International J. of Pharmaceutics (1986) 33 201-217; Anderson et al, The Practice of Medicinal Chemistry (1996), Academic Press, New York; and in The Orange Book (Food & Drug Administration, Washington, D.C. on their website). These disclosures are incorporated herein by reference thereto.
- Exemplary basic salts include ammonium salts, alkali metal salts such as sodium, lithium, and potassium salts, alkaline earth metal salts such as calcium and magnesium salts, salts with organic bases (for example, organic amines) such as dicyclohexylamine, t-butyl amine, choline, and salts with amino acids such as arginine, lysine and the like. Basic nitrogen-containing groups may be quarternized with agents such as lower alkyl halides (e.g., methyl, ethyl, and butyl chlorides, bromides and iodides), dialkyl sulfates (e.g., dimethyl, diethyl, and dibutyl sulfates), long chain halides (e.g., decyl, lauryl, and stearyl chlorides, bromides and iodides), aralkyl halides (e.g., benzyl and phenethyl bromides), and others.
- All such acid salts and base salts are intended to be pharmaceutically acceptable salts within the scope of the invention and all acid and base salts are considered equivalent to the free forms of the corresponding compounds for purposes of the invention.
- All stereoisomers (for example, geometric isomers, optical isomers and the like) of the present compounds (including those of the salts and solvates of the compounds), such as those which may exist due to asymmetric carbons on various substituents, including enantiomeric forms (which may exist even in the absence of asymmetric carbons), rotameric forms, atropisomers (e.g., substituted biaryls) and diastereomeric forms, are contemplated within the scope of this invention. If a compound of Formula (I) or Formula (II) incorporates a double bond or a fused ring, both the cis- and trans-forms, as well as mixtures, are embraced within the scope of the invention.
- It is also possible that the compounds of Formula (I) or Formula (II) may exist in different tautomeric forms, and all such forms are embraced within the scope of the invention. For example, all keto-enol and imine-enamine forms of the compounds are included in the invention.
- Individual stereoisomers of the compounds of the invention may, for example, be substantially free of other isomers, or may be admixed, for example, as racemates or with all other, or other selected, stereoisomers. The chiral centers of the present invention can have the S or R configuration as defined by the IUPAC 1974 Recommendations. The use of the terms “salt”, “solvate” and the like, is intended to apply equally to the salt and solvate of enantiomers, stereoisomers, rotamers, tautomers, positional isomers, racemates or prodrugs of the inventive compounds.
- Diastereomeric mixtures may be separated into their individual diastereomers on the basis of their physical chemical differences by methods well-known to those skilled in the art, such as, for example, by chromatography and/or fractional crystallization. Enantiomers may be separated by converting the enantiomeric mixture into a diastereomeric mixture by reaction with an appropriate optically active compound (e.g., chiral auxiliary such as a chiral alcohol or Mosher's acid chloride), separating the diastereomers and converting (e.g., hydrolyzing) the individual diastereomers to the corresponding pure enantiomers. Sterochemically pure compounds may also be prepared by using chiral starting materials or by employing salt resolution techniques. Enantiomers can also be directly separated using chiral chromatographic techniques.
- In the compounds of Formula (I) or Formula (II), the atoms may exhibit their natural isotopic abundances, or one or more of the atoms may be artificially enriched in a particular isotope having the same atomic number, but an atomic mass or mass number different from the atomic mass or mass number predominantly found in nature. The present invention is meant to include all suitable isotopic variations of the compounds of generic Formula (I) or Formula (II). For example, different isotopic forms of hydrogen (H) include protium (1H) and deuterium (2H). Protium is the predominant hydrogen isotope found in nature. Enriching for deuterium may afford certain therapeutic advantages, such as increasing in vivo half-life or reducing dosage requirements, or may provide a compound useful as a standard for characterization of biological samples. Isotopically-enriched compounds of Formula (I) or Formula (II) may be prepared without undue experimentation by conventional techniques well known to those skilled in the art or by processes analogous to those described in the Schemes and Examples herein using appropriate isotopically-enriched reagents and/or intermediates. In one embodiment, a Compound of Formula (I) or Formula (II) has one or more of its hydrogen atoms replaced with deuterium.
- Polymorphic forms of the compounds of Formula (I) or Formula (II), and of the salts or solvates of the Compounds of Formula (I) or Formula (II), are intended to be included in the present invention.
- The compounds provided herein are based, at least in part, on the discovery that the cyclic phosphate prodrugs can provide superior human pharmacokinetics including superior accumulation of active nucleoside and nucleotide analogs in target cells, such as liver cells. Any compound provided herein is preferably in the form of a composition that is substantially free of other stereoisomers of the compound, as described herein.
- Other embodiments of the present invention include the following:
- (a) A pharmaceutical composition comprising an effective amount of a compound of Formula (I) or Formula (II), or a pharmaceutically acceptable salt, solvate or enantiomer thereof, and a pharmaceutically acceptable carrier or diluent.
- (b) The pharmaceutical composition of (a), further comprising a second therapeutic agent selected from the group consisting of immunomodulators, anti-infective agents and anticancer agents.
- (c) The pharmaceutical composition of (b), wherein the anti-infective agent is an antiviral, such as an HBV inhibitor.
- (d) A combination comprising a compound of Formula (I) or Formula (II), or a pharmaceutically acceptable salt, solvate or enantiomer thereof and one, two, three or more other therapeutic agents.
- (e) The combination of (d) that is (i) a Compound of Formula (I) or (II), or a pharmaceutically acceptable salt, solvate or enantiomer thereof, and (ii) a second therapeutic agent selected from the group consisting of immunomodulators, and anti-infective agents; wherein the Compound of Formula (I) or (II) and the second therapeutic agent are each employed in an amount that renders the combination effective for inhibiting HBV replication, or for treating HBV infection and/or reducing the likelihood or severity of symptoms of HBV infection.
- (f) The combination of (d), wherein the anti-infective agent is an antiviral such as an HBV inhibitor.
- (g) The combination of (d) that is (i) a Compound of Formula (I) or (II), or a pharmaceutically acceptable salt, solvate or enantiomer thereof, and (ii) a second therapeutic agent which is an anticancer agent; wherein the Compound of Formula (I) or (II) and the second therapeutic agent are each employed in an amount that renders the combination effective for treating and/or reducing the likelihood or severity of symptoms of cancer.
- (h) A Compound of Formula (I) or (II), or a pharmaceutically acceptable salt, solvate or enantiomer thereof for use in therapy.
- (i) The Compound for use of (h), wherein the therapy is treating cancer and/or reducing the likelihood or severity of symptoms of cancer, for example liver cancer, breast cancer, ovarian cancer, lung cancer, pancreatic cancer, cholangiocarcinoma, biliary tract cancer, hepatocellular carcinoma or leukemia, in a subject.
- (j) The Compound for use of (h), wherein the therapy is treating HBV infection and/or reducing the likelihood or severity of symptoms of HBV infection in a subject.
- (k) The Compound for use of (h), wherein the therapy is treating Ebolavirus infection and/or reducing the likelihood or severity of symptoms of Ebolavirus infection in a subject.
- (l) The Compound for use of (h), (i), (j) or (k), wherein said compound is administered in combination with one or more other therapeutic agents.
- (m) A method of treating or preventing cancer and/or reducing the likelihood or severity of symptoms of cancer, for example liver cancer, breast cancer, ovarian cancer, lung cancer, pancreatic cancer, cholangiocarcinoma, biliary tract cancer, hepatocellular carcinoma or leukemia, in a subject in need thereof which comprises administering to the subject an effective amount of a compound of Formula (I) of Formula (II) or a pharmaceutically acceptable salt, solvate or enantiomer thereof.
- (n) A method of treating or preventing cancer and/or reducing the likelihood or severity of symptoms of cancer, for example liver cancer, breast cancer, ovarian cancer, lung cancer, pancreatic cancer, cholangiocarcinoma, biliary tract cancer, hepatocellular carcinoma or leukemia, in a subject in need thereof which comprises administering to the subject the pharmaceutical composition of (a), (b) or (c) or the combination of (d) or (g).
- (o) A method of inhibiting HBV replication in a subject in need thereof which comprises administering to the subject an effective amount of a compound of Formula (I) or Formula (II) or a pharmaceutically acceptable salt, solvate or enantiomer thereof.
- (p) A method of treating HBV infection and/or reducing the likelihood or severity of symptoms of HBV infection in a subject in need thereof which comprises administering to the subject an effective amount of a compound of Formula (I) of Formula (II) or a pharmaceutically acceptable salt, solvate or enantiomer thereof.
- (q) A method of treating Ebolavirus infection and/or reducing the likelihood or severity of symptoms of Ebolavirus infection in a subject in need thereof which comprises administering to the subject an effective amount of a compound of Formula (I) of Formula (II) or a pharmaceutically acceptable salt, solvate or enantiomer thereof.
- (r) The method of (o), (p) or (q) wherein the compound of Formula (I) or Formula (II) is administered in combination with an effective amount of at least one second therapeutic agent selected from the group consisting of immunomodulators, and anti-infective agents.
- (s) The method of (r), wherein the anti-infective agent is an antiviral, such as an HBV inhibitor.
- (t) A method of inhibiting HBV replication in a subject in need thereof which comprises administering to the subject the pharmaceutical composition of (a), (b) or (c) or the combination of (d), (e) or (f).
- (u) A method of treating HBV infection and/or reducing the likelihood or severity of symptoms of HBV infection in a subject in need thereof which comprises administering to the subject the pharmaceutical composition of (a), (b) or (c) or the combination of (d), (e) or (f).
- (v) A method of treating Ebolavirus infection and/or reducing the likelihood or severity of symptoms of Ebolavirus infection in a subject in need thereof which comprises administering to the subject the pharmaceutical composition of (a), (b) or (c) or the combination of (d).
- Additional embodiments of the invention include the pharmaceutical compositions, combinations and methods set forth in (a)-(v) above and the uses set forth in the discussion below, wherein the compound of the present invention employed therein is a compound of one of the embodiments, aspects, classes, sub-classes, or features of the compounds described above. In all of these embodiments, the compound may optionally be used in the form of a pharmaceutically acceptable salt or solvate as appropriate. It is understood that references to compounds would include the compound in its present form as well as in different forms, such as polymorphs and solvates as applicable.
- It is further to be understood that the embodiments of compositions and methods provided as (a) through (v) above are understood to include all embodiments of the compounds, including such embodiments as result from combinations of embodiments.
- Compounds of Formula (I) and Formula (II) are further useful in the treatment or prevention of cancer and/or reducing the likelihood or severity of symptoms of cancer, In one embodiment, the cancer is selected from liver cancer, breast cancer, ovarian cancer, lung cancer, pancreatic cancer or leukemic cancer. In a further embodiment the cancer is liver cancer. Liver cancers which can be treated include primary and secondary liver cancers. In particular embodiments, the liver cancer is hepatocellular carcinoma, cholangiocarcinoma, or biliary tract cancer. In particular embodiments, the liver cancer is a metastasis in the liver originated from other cancers (such as colon cancer, pancreatic cancer, etc).
- Accordingly, the invention also provides methods for treating or preventing cancer and/or reducing the likelihood or severity of symptoms of cancer in a patient, the methods comprising administering to the patient an effective amount of at least one compound of Formula (I) or Formula (II) or a pharmaceutically acceptable salt, solvate or enantiomer thereof.
- In further embodiments, the cancers which can be treated by the compounds described herein include, but are not limited to, Acute Lymphoblastic Leukemia; Acute Myeloid Leukemia; Adrenocortical Carcinoma; AIDS-Related Lymphoma; AIDS-Related Malignancies; Anal Cancer; Astrocytoma; Bile Duct Cancer; Bladder Cancer; Bone Cancer, Osteosarcoma/Malignant Fibrous Histiocytoma; Brain Stem Glioma; Brain Tumor, Cerebellar Astrocytoma; Brain Tumor, Cerebral Astrocytoma/Malignant Glioma; Brain Tumor, Ependymoma; Brain Tumor, Medulloblastoma; Brain Tumor, Supratentorial Primitive Neuroectodermal Tumors; Brain Tumor, Visual Pathway and Hypothalamic Glioma; Breast Cancer; Bronchial Adenomas/Carcinoids; Carcinoid Tumor; Carcinoid Tumor, Gastrointestinal; Carcinoma, Adrenocortical; Carcinoma, Islet Cell; Central Nervous System Lymphoma, Primary; Cerebral Astrocytoma/Malignant Glioma; Cervical Cancer; Cholangiocarcinoma; Chronic Lymphocytic Leukemia; Chronic Myelogenous Leukemia; Chronic Myeloproliferative Disorders; Clear Cell Sarcoma of Tendon Sheaths; Colon Cancer; Colorectal Cancer; Cutaneous T-Cell Lymphoma; Endometrial Cancer; Ependymoma; Epithelial Cancer, Ovarian; Esophageal Cancer; Esophageal Cancer; Ewing's Family of Tumors; Extracranial Germ Cell Tumor; Extrahepatic Bile Duct Cancer; Eye Cancer, Intraocular Melanoma; Eye Cancer, Retinoblastoma; Gallbladder Cancer; Gastric (Stomach) Cancer; Gastrointestinal Carcinoid Tumor; Germ Cell Tumor, Extracranial, Childhood; Germ Cell Tumor, Extragonadal; Germ Cell Tumor, Ovarian; Gestational Trophoblastic Tumor; Glioma, Childhood Brain Stem; Glioma, Childhood Visual Pathway and Hypothalamic; Hairy Cell Leukemia; Head and Neck Cancer; Hepatocellular (Liver) Cancer; Hodgkin's Lymphoma; Hypopharyngeal Cancer; Hypothalamic and Visual Pathway Glioma; Intraocular Melanoma; Islet Cell Carcinoma (Endocrine Pancreas); Kaposi's Sarcoma; Kidney Cancer; Laryngeal Cancer; Leukemia, Acute Lymphoblastic; Leukemia, Acute Myeloid; Leukemia, Chronic Lymphocytic; Leukemia, Chronic Myelogenous; Leukemia, Hairy Cell; Lip and Oral Cavity Cancer; Liver Cancer; Lung Cancer, Non-Small Cell; Lung Cancer, Small Cell; Lymphoblastic Leukemia; Lymphoma, AIDS-Related; Lymphoma, Central Nervous System (Primary); Lymphoma, Cutaneous T-Cell; Lymphoma, Hodgkin's; Lymphoma, Hodgkin's During Pregnancy; Lymphoma, Non-Hodgkin's; Lymphoma, Primary Central Nervous System; Macroglobulinemia, Waldenstrom's; Male Breast Cancer; Malignant Mesothelioma; Malignant Thymoma; Medulloblastoma, Childhood; Melanoma; Melanoma, Intraocular; Merkel Cell Carcinoma; Mesothelioma, Malignant; Metastatic Squamous Neck Cancer with Occult Primary; Multiple Endocrine Neoplasia Syndrome, Childhood; Multiple Myeloma/Plasma Cell Neoplasm; Mycosis Fungoides; Myelodysplastic Syndromes; Myelogenous Leukemia, Chronic; Myeloid Leukemia; Myeloma, Multiple; Myeloproliferative Disorders, Chronic; Nasal Cavity and Paranasal Sinus Cancer; Nasopharyngeal Cancer; Neuroblastoma; Non-Hodgkin's Lymphoma; Non-Small Cell Lung Cancer; Oral Cancer; Oral Cavity and Lip Cancer; Oropharyngeal Cancer; steosarcoma/Malignant Fibrous Histiocytoma of Bone; Ovarian Epithelial Cancer; Ovarian Germ Cell Tumor; Ovarian Low Malignant Potential Tumor; Pancreatic Cancer; Paranasal Sinus and Nasal Cavity Cancer; Parathyroid Cancer; Penile Cancer; Pheochromocytoma; Pineal and Supratentorial Primitive Neuroectodermal Tumors; Pituitary Tumor; Plasma Cell Neoplasm/Multiple Myeloma; Pleuropulmonary Blastoma; Pregnancy and Breast Cancer; Pregnancy and Hodgkin's Lymphoma; Pregnancy and Non-Hodgkin's Lymphoma; Primary Central Nervous System Lymphoma; Primary Liver Cancer; Prostate Cancer; Rectal Cancer; Renal Cell (Kidney) Cancer; Renal Pelvis and Ureter, Transitional Cell Cancer; Retinoblastoma; Rhabdomyosarcoma; Salivary Gland Cancer; Sarcoma, Ewing's Family of Tumors; Sarcoma, Kaposi's; Sarcoma (Osteosarcoma)/Malignant Fibrous Histiocytoma of Bone; Sarcoma, Soft Tissue; Sezary Syndrome; Skin Cancer; Skin Cancer (Melanoma); Skin Carcinoma, Merkel Cell; Small Cell Lung Cancer; Small Intestine Cancer; Soft Tissue Sarcoma; Squamous Neck Cancer with Occult Primary, Metastatic; Stomach (Gastric) Cancer; Supratentorial Primitive Neuroectodermal Tumors; T-Cell Lymphoma, Cutaneous; Testicular Cancer; Thymoma, Malignant; Thyroid Cancer; Transitional Cell Cancer of the Renal Pelvis and Ureter; Trophoblastic Tumor, Gestational; Ureter and Renal Pelvis, Transitional Cell Cancer; Urethral Cancer; Uterine Sarcoma; Vaginal Cancer; Visual Pathway and Hypothalamic Glioma; Vulvar Cancer; Waldenstrom's Macro globulinemia; and Wilms' Tumor.
- The compounds of Formula (I) and Formula (II) are further useful in inhibiting the growth of a cancer cell or inhibiting replication of a cancer cell. In certain embodiments, the cancer is selected from liver cancer, breast cancer, ovarian cancer, lung cancer, pancreatic cancer or leukemic cancer. In an embodiment the cancer is liver cancer. In certain embodiments, the liver cancer is hepatocellular carcinoma, cholangiocarcinoma, or biliary tract cancer. In particular embodiments, the cancer is hepatocellular carcinoma.
- The compounds of Formula (I) and Formula (II) are useful in the inhibition of viral infection, the treatment viral infection and/or reduction of the likelihood or severity of symptoms of viral infection and the inhibition of viral replication and/or viral production in a cell-based system. For example, the compounds of Formula (I) and Formula (II) are useful in treating viral infection after suspected past exposure to the virus by such means as blood transfusion, exchange of body fluids, bites, accidental needle stick, or exposure to patient blood during surgery or other medical procedures.
- In a further embodiment, the compounds of Formula (I) and Formula (II) are useful in the inhibition of HBV, the treatment of HBV infection and/or reduction of the likelihood or severity of symptoms of HBV infection and the inhibition of HBV replication and/or HBV production in a cell-based system. For example, the compounds of Formula (I) and Formula (II) are useful in treating infection by HBV after suspected past exposure to HBV by such means as blood transfusion, exchange of body fluids, bites, accidental needle stick, or exposure to patient blood during surgery or other medical procedures.
- In one embodiment, the hepatitis B infection is acute hepatitis B. In another embodiment, the hepatitis B infection is chronic hepatitis B.
- Accordingly, in one embodiment, the invention provides methods for treating HBV infection in a patient, the methods comprising administering to the patient an effective amount of at least one compound of Formula (I) or Formula (II) or a pharmaceutically acceptable salt, solvate or enantiomer thereof. In a specific embodiment, the amount administered is effective to treat or prevent infection by HBV in the patient. In another specific embodiment, the amount administered is effective to inhibit HBV viral replication and/or viral production in the patient.
- In a further embodiment, the compounds and compositions provided herein are useful in methods of treatment of a liver disorder, that comprise further administration of a second or more agent effective for the treatment of the disorder, such as HBV infection in a subject in need thereof. The second agent can be any agent known to those of skill in the art to be effective for the treatment of the disorder, including those currently approved by the FDA.
- In a further embodiment, the compounds of Formula (I) and Formula (II) are useful in the inhibition of ebola virus, the treatment of Ebolavirus infection and/or reduction of the likelihood or severity of symptoms of Ebolavirus infection and the inhibition of Ebolavirus replication and/or Ebolavirus production in a cell-based system. For example, the compounds of Formula (I) and Formula (II) are useful in treating infection by Ebolavirus after suspected past exposure to ebola virus by such means as blood transfusion, exchange of body fluids, bites, accidental needle stick, or exposure to patient blood during surgery or other medical procedures.
- In another embodiment, the present compounds, compositions, combinations and methods for treating or preventing liver diseases, such as cancer or viral infection, can further comprise the administration of one or more additional therapeutic agents which are not compounds of Formula (I) or Formula (II).
- In one embodiment, the additional therapeutic agent is an anticancer agent.
- In another embodiment, the additional therapeutic agent is an antiviral agent.
- In another embodiment, the additional therapeutic agent is an immunomodulatory agent, such as an immunosuppressive agent.
- As used herein, the term “in combination” includes the use of more than one therapy (e.g., one or more prophylactic and/or therapeutic agents). The use of the term “in combination” does not restrict the order in which therapies (e.g., prophylactic and/or therapeutic agents) are administered to a subject with a disorder. A first therapy (e.g., a prophylactic or therapeutic agent such as a compound provided herein) can be administered prior to (e.g., 5 minutes, 15 minutes, 30 minutes, 45 minutes, 1 hour, 2 hours, 4 hours, 6 hours, 12 hours, 24 hours, 48 hours, 72 hours, 96 hours, 1 week, 2 weeks, 3 weeks, 4 weeks, 5 weeks, 6 weeks, 8 weeks, or 12 weeks before), concomitantly with, or subsequent to (e.g., 5 minutes, 15 minutes, 30 minutes, 45 minutes, 1 hour, 2 hours, 4 hours, 6 hours, 12 hours, 24 hours, 48 hours, 72 hours, 96 hours, 1 week, 2 weeks, 3 weeks, 4 weeks, 5 weeks, 6 weeks, 8 weeks, or 12 weeks after) the administration of a second therapy (e.g., a prophylactic or therapeutic agent) to a subject with a disorder.
- As used herein, the term “synergistic” includes a combination of a compound provided herein and another therapy (e.g., a prophylactic or therapeutic agent) which has been or is currently being used to prevent, manage or treat a disorder, which is more effective than the additive effects of the therapies. A synergistic effect of a combination of therapies (e.g., a combination of prophylactic or therapeutic agents) permits the use of lower dosages of one or more of the therapies and/or less frequent administration of said therapies to a subject with a disorder. The ability to utilize lower dosages of a therapy (e.g., a prophylactic or therapeutic agent) and/or to administer said therapy less frequently reduces the toxicity associated with the administration of said therapy to a subject without reducing the efficacy of said therapy in the prevention or treatment of a disorder). In addition, a synergistic effect can result in improved efficacy of agents in the prevention or treatment of a disorder. Finally, a synergistic effect of a combination of therapies (e.g., a combination of prophylactic or therapeutic agents) may avoid or reduce adverse or unwanted side effects associated with the use of either therapy alone.
- When administering a combination therapy of the invention to a patient, therapeutic agents in the combination, or a pharmaceutical composition or compositions comprising therapeutic agents, may be administered in any order such as, for example, sequentially, concurrently, together, simultaneously and the like. The amounts of the various actives in such combination therapy may be different amounts (different dosage amounts) or same amounts (same dosage amounts). Thus, for illustration purposes, a Compound of Formula (I) or Formula (II) and an additional therapeutic agent may be present in fixed amounts (dosage amounts) in a single dosage unit (e.g., a capsule, a tablet and the like).
- In one embodiment, the at least one compound of Formula (I) or Formula (II) is administered during a time when the additional therapeutic agent(s) exert their prophylactic or therapeutic effect, or vice versa.
- In another embodiment, the at least one compound of Formula (I) or Formula (II) and the additional therapeutic agent(s) are administered in doses commonly employed when such agents are used as monotherapy for treating a cancer or a viral infection.
- In another embodiment, the at least one compound of Formula (I) or Formula (II) and the additional therapeutic agent(s) are administered in doses lower than the doses commonly employed when such agents are used as monotherapy for treating a cancer or a viral infection.
- In still another embodiment, the at least one compound of Formula (I) or Formula (II) and the additional therapeutic agent(s) act synergistically and are administered in doses lower than the doses commonly employed when such agents are used as monotherapy for treating a cancer or a viral infection.
- In one embodiment, the at least one compound of Formula (I) or Formula (II) and the additional therapeutic agent(s) are present in the same composition. In one embodiment, this composition is suitable for oral administration. In another embodiment, this composition is suitable for intravenous administration. In another embodiment, this composition is suitable for subcutaneous administration. In still another embodiment, this composition is suitable for parenteral administration.
- In another embodiment, the present invention provides compositions comprising a Compound of Formula (I) or Formula (II), a pharmaceutically acceptable carrier, and a second therapeutic agent selected from the group consisting of immunomodulators, anti-infective agents and anti-cancer agents.
- In another embodiment, the present invention provides compositions comprising a Compound of Formula (I) or Formula (II), a pharmaceutically acceptable carrier, and two additional therapeutic agents, each of which are independently selected from the group consisting of immunomodulators, anti-infective agents and anti-cancer agents.
- In one embodiment, the present invention provides a compound of Formula (I) or Formula (II) for use in treating cancer in a patient comprising administering to the patient: (i) at least one compound of Formula (I) or Formula (II) (which may include two or more different 2′-Substituted Nucleoside Derivatives), or a pharmaceutically acceptable salt or solvate thereof, and (ii) at least one additional therapeutic agent that is other than a compound of Formula (I) or Formula (II), wherein the amounts administered are together effective to treat or prevent cancer.
- In certain embodiments the compounds and compositions provided herein are useful in the treatment of a liver cancer, that comprise further administration of a second agent effective for the treatment of the liver cancer in a subject in need thereof. The second agent can be any agent known to those of skill in the art to be effective for the treatment of the liver cancer, including those currently approved by the FDA.
- In certain embodiments, a compound provided herein is administered in combination with one second agent. In further embodiments, a compound provided herein is administered in combination with two second agents. In still further embodiments, a compound provided herein is administered in combination with two or more second agents.
- The active compounds provided herein can be administered in combination or alternation with another therapeutic agent, in particular an anti-cancer agent. In combination therapy, effective dosages of two or more agents are administered together, whereas in alternation or sequential-step therapy, an effective dosage of each agent is administered serially or sequentially. The dosages given will depend on absorption, inactivation and excretion rates of the drug as well as other factors known to those of skill in the art. It is to be noted that dosage values will also vary with the severity of the condition to be alleviated. It is to be further understood that for any particular subject, specific dosage regimens and schedules should be adjusted over time according to the individual need and the professional judgment of the person administering or supervising the administration of the compositions.
- In certain embodiments, the second agent is selected from the group consisting of sorafenib tosylate (Nexavar), radiation therapy, selective internal radiation therapy (e.g., SIR-Spheres and TheraSphere), ethiodized oil (Lipidol), pexastimogene devacirepvec (Pexa-Vec, JX-594, Jennarex), Quinacrine (Clevelane BioLabs), CC-223 (Celgene), CF 102 (Can-Fite), SGI-110 (Astex), and G-202 (Genspera).
- In one embodiment, the other anticancer agent is selected from the group consisting of vascular endothelial growth factor (VEGF) receptor inhibitors, topoisomerase II inhibitors, smoothen inhibitors, alkylating agents, anti-tumor antibiotics, anti-metabolites, retinoids, immunomodulatory agents including but not limited to anti-cancer vaccines, CTLA-4, LAG-3, PD-1 antagonists and BET bromodomain inhibitors.
- Examples of vascular endothelial growth factor (VEGF) receptor inhibitors include, bevacizumab (sold under the trademark AVASTIN by Genentech/Roche), axitinib, (N-methyl-2-[[3-[([pound])-2-pyridin-2-ylethenyl]-1H-indazol-6-yl]sulfanyl]benzamide, also known as AG013736, and described in PCT Publication No. WO 01/002369), Brivanib Alaninate ((S)—((R)-1-(4-(4-Fluoro-2-methyl-1H-indol-5-yloxy)-5-methylpyrrolo[2,1-f][1,2,4]triazin-6-yloxy)propan-2-yl)2-aminopropanoate, also known as BMS-582664), motesanib (N-(2,3-dihydro-3,3-dimethyl-1H-indoi-6-y!)-2-[(4-pyridinyimethyj)amino]-3-pyfidinecarboxamide. and described in PCT Publication No. WO 02/068470), pasireotide (also known as SO 230, and described in PCT Publication No. WO 02/010192), and sorafenib (sold under the tradename NEXAVAR).
- Examples of topoisomerase II inhibitors include, etoposide (also known as VP-16 and Etoposide phosphate, sold under the tradenames TOPOSAR, VEPESID and ETOPOPHOS), and teniposide (also known as VM-26, sold under the tradename VUMON).
- Examples of alkylating agents include, 5-azacytidine (sold under the trade name VIDAZA), decitabine (sold under the trade name of DECOGEN), temozolomide (sold under the trade names TEMODAR and TEMODAL by Schering-Plough/Merck), dactinomycin (also known as actinomycin-D and sold under the tradename COSMEGEN), melphalan (also known as L-PAM, L-sarcolysin, and phenylalanine mustard, sold under the tradename ALKERAN), altretamine (also known as hexamethylmelamine (HMM), sold under the tradename HEXALEN), carmustine (sold under the tradename BCNU), bendamustine (sold under the tradename TREANDA), busulfan (sold under the tradenames Busulfex® and Myleran®), carboplatin (sold under the tradename Paraplatin®), lomustine (also known as CCNU, sold under the tradename CeeNU®), cisplatin (also known as CDDP, sold under the tradenames Platinol® and Platinol®-AQ), chlorambucil (sold under the tradename Leukeran®), cyclophosphamide (sold under the tradenames Cytoxan® and Neosar®), dacarbazine (also known as DTIC, DIC and imidazole carboxamide, sold under the tradename DTIC-Dome®), altretamine (also known as hexamethylmelamine (HMM) sold under the tradename Hexalen®), ifosfamide (sold under the tradename Ifex®), procarbazine (sold under the tradename Matulane®), mechlorethamine (also known as nitrogen mustard, mustine and mechloroethamine hydrochloride, sold under the tradename Mustargen®), streptozocin (sold under the tradename Zanosar®), thiotepa (also known as thiophosphoamide, TESPA and TSPA, and sold under the tradename Thioplex®.
- Examples of anti-tumor antibiotics include, doxorubicin (sold under the tradenames Adriamycin® and Rubex®), bleomycin (sold under the tradename Lenoxane®), daunorubicin (also known as dauorubicin hydrochloride, daunomycin, and rubidomycin hydrochloride, sold under the tradename Cerubidine®), daunorubicin liposomal (daunorubicin citrate liposome, sold under the tradename DaunoXome®), mitoxantrone (also known as DHAD, sold under the tradename Novantrone®), epirubicin (sold under the tradename Ellence™), idarubicin (sold under the tradenames Idamycin®, Idamycin PFS®), and mitomycin C (sold under the tradename Mutamycin®).
- Examples of anti-metabolites include, claribine (2-chlorodeoxyadenosine, sold under the tradename Leustatin®), 5-fluorouracil (sold under the tradename Adrucil®), 6-thioguanine (sold under the tradename Purinethol®), pemetrexed (sold under the tradename Alimta®), cytarabine (also known as arabinosylcytosine (Ara-C), sold under the tradename Cytosar-U®), cytarabine liposomal (also known as Liposomal Ara-C, sold under the tradename DepoCyt™), decitabine (sold under the tradename Dacogen®), hydroxyurea (sold under the tradenames Hydrea®, Droxia™ and Mylocel™), fludarabine (sold under the tradename Fludara®), floxuridine (sold under the tradename FUDR®), cladribine (also known as 2-chlorodeoxyadenosine (2-CdA) sold under the tradename Leustatin™), methotrexate (also known as amethopterin, methotrexate sodium (MTX), sold under the tradenames Rheumatrex® and Trexall™), and pentostatin (sold under the tradename Nipent®).
- Examples of retinoids include, alitretinoin (sold under the tradename Panretin®), tretinoin (all-trans retinoic acid, also known as ATRA, sold under the tradename Vesanoid®), Isotretinoin (13-c/s-retinoic acid, sold under the tradenames Accutane®, Amnesteem®, Claravis®, Clarus®, Decutan®, Isotane®, Izotech®, Oratane®, Isotret®, and Sotret®), and bexarotene (sold under the tradename Targretin®).
- “PD-1 antagonist” means any chemical compound or biological molecule that blocks binding of PD-L1 expressed on a cancer cell to PD-1 expressed on an immune cell (T cell, B cell or NKT cell) and preferably also blocks binding of PD-L2 expressed on a cancer cell to the immune-cell expressed PD-1. Alternative names or synonyms for PD-1 and its ligands include: PDCD1, PD1, CD279 and SLEB2 for PD-1; PDCD1L1, PDL1, B7H1, B7-4, CD274 and B7-H for PD-L1; and PDCD1L2, PDL2, B7-DC, Btdc and CD273 for PD-L2. In any of the treatment method, medicaments and uses of the present invention in which a human individual is being treated, the PD-1 antagonist blocks binding of human PD-L1 to human PD-1, and preferably blocks binding of both human PD-L1 and PD-L2 to human PD-1. Human PD-1 amino acid sequences can be found in NCBI Locus No.: NP_005009. Human PD-L1 and PD-L2 amino acid sequences can be found in NCBI Locus No.: NP_054862 and NP_079515, respectively.
- PD-1 antagonists useful in any of the compositions and uses of the present invention include a monoclonal antibody (mAb), or antigen binding fragment thereof, which specifically binds to PD-1 or PD-L1, and preferably specifically binds to human PD-1 or human PD-L1. The mAb may be a human antibody, a humanized antibody or a chimeric antibody, and may include a human constant region. In some embodiments the human constant region is selected from the group consisting of IgG1, IgG2, IgG3 and IgG4 constant regions, and in preferred embodiments, the human constant region is an IgG1 or IgG4 constant region. In some embodiments, the antigen binding fragment is selected from the group consisting of Fab, Fab′-SH, F(ab′)2, scFv and Fv fragments.
- Examples of mAbs that bind to human PD-1, and useful in the treatment method, medicaments and uses of the present invention, are described in U.S. Pat. Nos. 7,488,802, 7,521,051, 8,008,449, 8,354,509, 8,168,757, WO2004/004771, WO2004/072286, WO2004/056875, and US2011/0271358.
- Examples of mAbs that bind to human PD-L1, and useful in the treatment method, medicaments and uses of the present invention, are described in WO2013/019906, WO2010/077634 A1 and U.S. Pat. No. 8,383,796. Specific anti-human PD-L1 mAbs useful as the PD-1 antagonist in the treatment method, medicaments and uses of the present invention include MPDL3280A, BMS-936559, MED14736, MSB0010718C and an antibody which comprises the heavy chain and light chain variable regions of SEQ ID NO:24 and SEQ ID NO:21, respectively, of WO2013/019906.
- Other PD-1 antagonists useful in any of the treatment method, medicaments and uses of the present invention include, an immunoadhesin that specifically binds to PD-1 or PD-L1, and preferably specifically binds to human PD-1 or human PD-L1, e.g., a fusion protein containing the extracellular or PD-1 binding portion of PD-L1 or PD-L2 fused to a constant region such as an Fc region of an immunoglobulin molecule. Examples of immunoadhesion molecules that specifically bind to PD-1 are described in WO2010/027827 and WO2011/066342. Specific fusion proteins useful as the PD-1 antagonist in the treatment method, medicaments and uses of the present invention include AMP-224 (also known as B7-DCIg), which is a PD-L2-FC fusion protein and binds to human PD-1.
- Examples of other cytotoxic agents include, arsenic trioxide (sold under the tradename Trisenox®), asparaginase (also known as L-asparaginase, and Erwinia L-asparaginase, sold under the tradenames Elspar® and Kidrolase®).
- In an embodiment, the other anticancer agent is a BET bromodomain inhibitor. Examples of BET bromodomain inhibitor include the compounds described in U.S. Pat. No. 5,712,274, WO1994006802, U.S. Pat. No. 8,476,260 and WO2009/084693.
- In a further embodiment, the present invention provides a compound of Formula (I) or Formula (II) for use in treating a viral infection in a patient comprising administering to the patient: (i) at least one compound of Formula (I) or Formula (II) (which may include two or more different 2′-Substituted Nucleoside Derivatives), or a pharmaceutically acceptable salt or solvate thereof, and (ii) at least one additional therapeutic agent that is other than a compound of Formula (I) or Formula (II), wherein the amounts administered are together effective to treat or prevent a viral infection.
- Accordingly, in one embodiment, the present invention provides compositions comprising: (i) at least one Compound of Formula (I) or Formula (II) or a pharmaceutically acceptable salt, solvate or enantiomer thereof; (ii) one or more additional therapeutic agents that are not a Compound of Formula (I) or Formula (II); and (iii) a pharmaceutically acceptable carrier, wherein the amounts in the composition are together effective to prevent HBV replication and/or treat HBV infection.
- In another embodiment, the present invention provides compositions comprising: (i) at least one Compound of Formula (I) or Formula (II) or a pharmaceutically acceptable salt, solvate or enantiomer thereof; (ii) one or more additional therapeutic agents that are not a Compound of Formula (I) or Formula (II); and (iii) a pharmaceutically acceptable carrier, wherein the amounts in the composition are together effective to prevent Ebolavirus replication and/or treat Ebolavirus infection.
- Viral infections and virus-related disorders that may be treated or prevented using the combination therapy of the present invention include those listed above.
- In one embodiment, the viral infection is HBV infection.
- In another embodiment, the viral infection is Ebolavirus infection.
- The at least one compound of Formula (I) or Formula (II) and the additional therapeutic agent(s) can act additively or synergistically. A synergistic combination may allow the use of lower dosages of one or more agents and/or less frequent administration of one or more agents of a combination therapy. A lower dosage or less frequent administration of one or more agents may lower toxicity of therapy without reducing the efficacy of therapy.
- In one embodiment, the administration of at least one compound of Formula (I) or Formula (II) and the additional therapeutic agent(s) may inhibit the resistance of a viral infection to these agents.
- Examples of additional therapeutic agents useful in the present compositions and methods include an interferon, an immunomodulator, a viral replication inhibitor, an antisense agent, a therapeutic vaccine, a viral polymerase inhibitor, a nucleoside inhibitor, a viral protease inhibitor, a viral helicase inhibitor, a virion production inhibitor, a viral entry inhibitor, a viral assembly inhibitor, an antibody therapy (monoclonal or polyclonal), and any agent useful for treating an RNA-dependent polymerase-related disorder.
- In one embodiment, one or more compounds of the invention are administered with one or more additional therapeutic agents, including the therapeutic agents described, supra.
- In one embodiment, the additional therapeutic agent is a viral protease inhibitor.
- In another embodiment, the additional therapeutic agent is a viral replication inhibitor.
- In another embodiment, the additional therapeutic agent is an HBV entry inhibitor.
- In another embodiment, the additional therapeutic agent is an HBV capsid inhibitor.
- In still another embodiment, the additional therapeutic agent is an HBV polymerase inhibitor.
- In another embodiment, the additional therapeutic agent is a nucleoside inhibitor.
- In another embodiment, the additional therapeutic agent is an interferon.
- In another embodiment, the additional therapeutic agent is an antisense agent.
- In another embodiment, the additional therapeutic agent is a therapeutic vaccine.
- In a further embodiment, the additional therapeutic agent is a virion production inhibitor.
- In another embodiment, the additional therapeutic agent is an antibody therapy.
- In still another embodiment, one or more compounds of the present invention are administered with two additional therapeutic agents.
- In another embodiment, one or more compounds of the present invention are administered with three additional therapeutic agents.
- In another embodiment, one or more compounds of the present invention are administered with an HBV polymerase inhibitor.
- In another embodiment, one or more compounds of the present invention are administered with lamivudine.
- In a further embodiment, one or more compounds of the present invention are administered with tenofovir.
- In another embodiment, one or more compounds of the present invention are administered with pegylated-interferon alpha and ribavirin.
- In one embodiment, the additional therapeutic agents comprise a viral protease inhibitor and a viral polymerase inhibitor.
- In still another embodiment, the additional therapeutic agents comprise a viral protease inhibitor and an immunomodulatory agent.
- In yet another embodiment, the additional therapeutic agents comprise a polymerase inhibitor and an immunomodulatory agent.
- In another embodiment, the additional therapeutic agents comprise a viral protease inhibitor and a nucleoside.
- In another embodiment, the additional therapeutic agents comprise an immunomodulatory agent and a nucleoside.
- In another embodiment, the additional therapeutic agents comprise a nucleoside and an HBV polymerase inhibitor.
- In a further embodiment, the additional therapeutic agents comprise a viral protease inhibitor, a viral polymerase inhibitor and an immunomodulatory agent.
- In another embodiment, the additional therapeutic agent is ribavirin.
- HBV polymerase inhibitors useful in the present compositions and treatments include lamivudine (Epivir), adefovir (Hepsera), tenofovir (Viread), telbivudine (Tyzeka), ganciclovir (Cytovene), entecavir (Baraclude), interferon alpha-2a, and PEGylated interferon alpha-2a (Pegasys).
- Interferons useful in the present compositions and methods include, but are not limited to, interferon alfa-2a, interferon alfa-2b, interferon alfacon-1 and petroleum etherG-interferon alpha conjugates. “PEG-interferon alpha conjugates” are interferon alpha molecules covalently attached to a petroleum etherG molecule. Illustrative petroleum etherG-interferon alpha conjugates include interferon alpha-2a (Roferon™, Hoffman La-Roche, Nutley, N.J.) in the form of pegylated interferon alpha-2a (e.g., as sold under the trade name Pegasys™), interferon alpha-2b (Intron™, from Schering-Plough Corporation) in the form of pegylated interferon alpha-2b (e.g., as sold under the trade name petroleum etherG-Intron™ from Schering-Plough Corporation), interferon alpha-2b-XL (e.g., as sold under the trade name petroleum etherG-Intron™), interferon alpha-2c (Berofor Alpha™, Boehringer Ingelheim, Ingelheim, Germany), petroleum etherG-interferon lambda (Bristol-Myers Squibb and ZymoGenetics), interferon alfa-2b alpha fusion polypeptides, interferon fused with the human blood protein albumin (Albuferon™, Human Genome Sciences), Omega Interferon (Intarcia), Locteron controlled release interferon (Biolex/OctoPlus), Biomed-510 (omega interferon), Peg-IL-29 (ZymoGenetics), Locteron CR (Octoplus), R-7025 (Roche), IFN-α-2b-XL (Flamel Technologies), belerofon (Nautilus) and consensus interferon as defined by determination of a consensus sequence of naturally occurring interferon alphas (Infergen™, Amgen, Thousand Oaks, Calif.).
- Examples of other HBV inhibitors useful in the present compositions and treatments include TLR-3 or TLR-7 agonists, virus entry inhibitors, cccDNA formation inhibitors, silenceor of cccDNA, nucleocapsid formation inhibitors, virion maturation, assembly or secretion inhibitors.
- The doses and dosage regimen of the other agents used in the combination therapies of the present invention for the treatment or prevention of the viral infection may be determined using the attending clinician, taking into consideration the approved doses and dosage regimen in the package insert; the age, sex and general health of the patient; and the type and severity of the viral infection or related disease or disorder. When administered in combination, the compound of Formula (I) or Formula (II) and the other agent(s) may be administered simultaneously (i.e., in the same composition or in separate compositions one right after the other) or sequentially. This particularly useful when the components of the combination are given on different dosing schedules, e.g., one component is administered once daily and another component is administered every six hours, or when the preferred pharmaceutical compositions are different, e.g., one is a tablet and one is a capsule. A kit comprising the separate dosage forms is therefore advantageous.
- Generally, a total daily dosage of the at least one Compound of Formula (I) or Formula (II) alone, or when administered as combination therapy, can range from about 1 to about 2500 mg per day, although variations will necessarily occur depending on the target of therapy, the patient and the route of administration. In one embodiment, the dosage is from about 10 to about 1000 mg/day, administered in a single dose or in 2-4 divided doses. In another embodiment, the dosage is from about 1 to about 500 mg/day, administered in a single dose or in 2-4 divided doses. In still another embodiment, the dosage is from about 1 to about 100 mg/day, administered in a single dose or in 2-4 divided doses. In yet another embodiment, the dosage is from about 1 to about 50 mg/day, administered in a single dose or in 2-4 divided doses. In another embodiment, the dosage is from about 500 to about 1500 mg/day, administered in a single dose or in 2-4 divided doses. In still another embodiment, the dosage is from about 500 to about 1000 mg/day, administered in a single dose or in 2-4 divided doses. In yet another embodiment, the dosage is from about 100 to about 500 mg/day, administered in a single dose or in 2-4 divided doses.
- In a further embodiment, when the additional therapeutic agent is Ribavirin (commercially available as REBETOL ribavirin from Schering-Plough or COPEGUS ribavirin from Hoffmann-La Roche), this agent is administered at a daily dosage of from about 600 to about 1400 mg/day for at least 24 weeks.
- Due to their activity, the compounds of Formula (I) and Formula (II) are useful in veterinary and human medicine. As described above, the compounds of Formula (I) and Formula (II) are useful for treating or preventing liver diseases, such as cancer, HBV infection or Ebolavirus infection in a patient.
- When administered to a patient, the compounds of Formula (I) or Formula (II) may be administered as a component of a composition that comprises a pharmaceutically acceptable carrier or vehicle. The present invention provides pharmaceutical compositions comprising an effective amount of at least one compound of Formula (I) or Formula (II) or a pharmaceutically acceptable salt, solvate or enantiomer thereof and a pharmaceutically acceptable carrier or diluent. In the pharmaceutical compositions and uses of the present invention, the active ingredients will typically be administered in admixture with suitable carrier materials suitably selected with respect to the intended form of administration, i.e., oral tablets, capsules (either solid-filled, semi-solid filled or liquid filled), powders for constitution, oral gels, elixirs, dispersible granules, syrups, suspensions, and the like, and consistent with conventional pharmaceutical practices. For example, for oral administration in the form of tablets or capsules, the active drug component may be combined with any oral non-toxic pharmaceutically acceptable inert carrier, such as lactose, starch, sucrose, cellulose, magnesium stearate, dicalcium phosphate, calcium sulfate, talc, mannitol, ethyl alcohol (liquid forms) and the like. Solid form preparations include powders, tablets, dispersible granules, capsules, cachets and suppositories. Powders and tablets may be comprised of from about 0.5 to about 95 percent inventive composition. Tablets, powders, cachets and capsules may be used as solid dosage forms suitable for oral administration.
- Moreover, when desired or needed, suitable binders, lubricants, disintegrating agents and coloring agents may also be incorporated in the mixture. Suitable binders include starch, gelatin, natural sugars, corn sweeteners, natural and synthetic gums such as acacia, sodium alginate, carboxymethylcellulose, polyethylene glycol and waxes. Among the lubricants there may be mentioned for use in these dosage forms, boric acid, sodium benzoate, sodium acetate, sodium chloride, and the like. Disintegrants include starch, methylcellulose, guar gum, and the like. Sweetening and flavoring agents and preservatives may also be included where appropriate.
- Liquid form preparations include solutions, suspensions and emulsions and may include water or water-propylene glycol solutions for parenteral injection.
- Liquid form preparations may also include solutions for intranasal administration.
- Also included are solid form preparations which are intended to be converted, shortly before use, to liquid form preparations for either oral or parenteral administration. Such liquid forms include solutions, suspensions and emulsions.
- For preparing suppositories, a low melting wax such as a mixture of fatty acid glycerides or cocoa butter is first melted, and the active ingredient is dispersed homogeneously therein as by stirring. The molten homogeneous mixture is then poured into convenient sized molds, allowed to cool and thereby solidify.
- Additionally, the compositions of the present invention may be formulated in sustained release form to provide the rate controlled release of any one or more of the components or active ingredients to optimize therapeutic effects, i.e., antiviral activity and the like. Suitable dosage forms for sustained release include layered tablets containing layers of varying disintegration rates or controlled release polymeric matrices impregnated with the active components and shaped in tablet form or capsules containing such impregnated or encapsulated porous polymeric matrices.
- In one embodiment, the one or more compounds of Formula (I) or Formula (II) are administered orally.
- In another embodiment, the one or more compounds of Formula (I) or Formula (II) are administered intravenously.
- In one embodiment, a pharmaceutical preparation comprising a compound of Formula (I) or Formula (II) is in unit dosage form. In such form, the preparation is subdivided into unit doses containing effective amounts of the active components.
- Compositions may be prepared according to conventional mixing, granulating or coating methods, respectively, and the present compositions can contain, in one embodiment, from about 0.1% to about 99% of the compound of Formula (I) or Formula (II) by weight or volume. In various embodiments, the present compositions can contain, in one embodiment, from about 1% to about 70% or from about 5% to about 60% of the compound of Formula (I) or Formula (II) by weight or volume.
- The quantity of compound of Formula (I) or Formula (II) in a unit dose of preparation may be varied or adjusted from about 1 mg to about 2500 mg. In various embodiments, the quantity is from about 10 mg to about 1000 mg, 1 mg to about 500 mg, 1 mg to about 100 mg, and 1 mg to about 100 mg.
- For convenience, the total daily dosage may be divided and administered in portions during the day if desired. In one embodiment, the daily dosage is administered in one portion. In another embodiment, the total daily dosage is administered in two divided doses over a 24 hour period. In another embodiment, the total daily dosage is administered in three divided doses over a 24 hour period. In still another embodiment, the total daily dosage is administered in four divided doses over a 24 hour period.
- The amount and frequency of administration of the compounds of Formula (I) or Formula (II) will be regulated according to the judgment of the attending clinician considering such factors as age, condition and size of the patient as well as severity of the symptoms being treated. Generally, a total daily dosage of the compounds of Formula (I) or Formula (II) range from about 0.1 to about 2000 mg per day, although variations will necessarily occur depending on the target of therapy, the patient and the route of administration. In one embodiment, the dosage is from about 1 to about 200 mg/day, administered in a single dose or in 2-4 divided doses. In another embodiment, the dosage is from about 10 to about 2000 mg/day, administered in a single dose or in 2-4 divided doses. In another embodiment, the dosage is from about 100 to about 2000 mg/day, administered in a single dose or in 2-4 divided doses. In still another embodiment, the dosage is from about 500 to about 2000 mg/day, administered in a single dose or in 2-4 divided doses.
- The invention is illustrated by the following examples. For all of the examples, standard work-up and purification methods known to those skilled in the art can be utilized. Unless otherwise indicated, all temperatures are expressed in ° C. (degrees Centigrade). All reactions are conducted at room temperature unless otherwise noted. Synthetic methodologies illustrated herein are intended to exemplify the applicable chemistry through the use of specific examples and are not indicative of the scope of the disclosure.
- The following abbreviations are used herein:
- Ac acetyl
- Ac2O acetic anhydride
- ACN acetonitrile
- AcOH or HOAc acetic acid
- APCI atmospheric-pressure chemical ionization
- aq aqueous
- Bn benzyl
- Boc or BOC tert-butoxycarbonyl
- Bz benzoyl
- Cbz benzyloxycvarbonyl
- calc'd calculated
- Celite diatomaceous earth
- DBU 1,8-diazabicyclo(5.4.0)undec-7-ene
- DCM dichloromethane
- DIEA or DIPEA N,N-diisopropylethylamine
- DMAP 4-dimethylaminopyridine
- DMF N,N-dimethylformamide
- DMSO dimethyl sulfoxide
- dMTrCl 4,4′-dimethoxytrityl chloride
- EDCI 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide
- EDTA ethylenediamine tetraacetic acid
- ESI electrospray ionization
- Et ethyl
- Et2O diethyl ether
- EtOH ethanol
- EtOAc ethyl acetate
- Et3N triethylamine
- h hour
- HPLC high-performance liquid chromatography
- IPA isopropanol
- iPr isopropyl
- LC liquid chromatography
- LCMS liquid chromatography mass spectrometry
- Me Methyl
- MeCN acetonitrile
- MeOH methanol
- mg milligrams
- min minute
- μL microliters
- mL milliliters
- mmol millimoles
- MS mass spectrometry
- MTBE methyl tert-butyl ether
- MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium)
- NMR nuclear magnetic resonance spectroscopy
- PDA photodiode array
- PE petroleum ether
- Ph phenyl
- Pr Propyl
- PS Polystyrene
- Rac racemic mixture
- Rh(COD)2OTf Bis(1,5-cyclooctadiene)rhodium(I) trifluoromethanesulfonate
- Rosphos bistriflate (+)-1,2-Bis[(2S,5S)-2,5-dimethyl-(3S,4S)-3,4-dihydroxyphospholano]benzene bis(trifluoromethanesulfonate)salt
- RT room temperature
- Rt retention time
- Sat saturated
- SFC supercritical fluid chromatography
- TBAF tert-butyl ammonium fluoride
- TBS or TBDMS tert-butyldimethylsilyl
- TBSCL tert-butyldimethylsilyl chloride
- t-Bu tert-butyl
- TEA triethylamine
- TFA trifluoroacetic acid
- THF tetrahydrofuran
- TLC thin layer chromatography
- TMS trimethylsilyl
- Tris tris(hydroxymethyl)aminomethane
- UPLC ultra-performance liquid chromatography
- Reactions sensitive to moisture or air were performed under nitrogen or argon atmosphere using anhydrous solvents and reagents. The progress of reactions was determined using either analytical thin layer chromatography (TLC) usually performed with E. Merck pre-coated TLC plates, silica gel 60F-254, layer thickness 0.25 mm or liquid chromatography-mass spectrometry (LC-MS).
- The analytical UPLC-MS system used consisted of a Waters SQD2 platform with electrospray ionization in positive and negative detection mode with an Acquity UPLC I-class solvent manager, column manager, sample manager and PDA detector. The column used for standard methods was a CORTECS UPLC C18 1.6 μm, 2.1×30 mm, and the column used for polars method was an ACQUITY UPLC HSST3 1.8 μm, 2.1×30 mm, the column temperature was 40° C., the flow rate was 0.7 mL/min, and injection volume was 1 μL. UV detection was in the range 210-400 nm. The mobile phase consisted of solvent A (water plus 0.05% formic acid) and solvent B (acetonitrile plus 0.05% formic acid) with different gradients for 4 different methods: 1/ Starting with 99% solvent A for 0.2 minutes changing to 98% solvent B over 1 minutes, maintained for 0.4 minutes, then reverting to 99% solvent A over 0.1 min; 2/ Starting with 99% solvent A for 0.5 minutes changing to 98% solvent B over 3.7 minutes, maintained for 0.4 minutes, then reverting to 99% solvent A over 0.1 min; 3/ Starting with 100% solvent A for 0.4 minutes changing to 98% solvent B over 0.9 minutes, maintained for 0.3 minutes, then reverting to 100% solvent A over 0.1 min; 4/ Starting with 100% solvent A for 0.8 minutes changing to 98% solvent B over 3.4 minutes, maintained for 0.4 minutes, then reverting to 100% solvent A over 0.1 minutes.
- The analytical LC-MS system used consisted of a Agilent 6140 quadrupole LC/MS platform with electrospray ionization in positive and negative detection mode with an Agilent 1200 Series solvent manager, column manager, sample manager and PDA detector. The column for standard method was Purospher® STAR RP-18 endcapped 2 μm, Hibar® HR 50-2.1, the column temperature was 60° C., the flow rate was 0.8 mL/min, and injection volume was 0.5-5 μL. UV detection was in the range 210-400 nm. The mobile phase consisted of solvent A (water plus 0.05% formic acid) and solvent B (acetonitrile plus 0.05% formic acid) with different gradients for 2 different methods: 1) Starting with 98% solvent A changing to 100% solvent B over 1.8 minutes, maintained for 0.8 min; 2) Starting with 98% solvent A changing to 100% solvent B over 5.8 minutes, maintained for 0.3 minutes.
- Preparative HPLC purifications were usually performed using a mass spectrometry directed system. Usually they were performed on a Waters Chromatography Workstation (MassLynx V4.1) configured with LC-MS System Consisting of: Waters ZQ™ 2000 (quad MS system with Electrospray Ionization), Waters 2545 Gradient Pump, Waters 2767 Injecto/Collector, Waters 2998 PDA Detector, the MS Conditions of: 100-1400 amu, Positive Electrospray, Collection Triggered by MS, and a Waters SUNFIRE® C-18 5 micron, 19 mm (id)×150 mm column. The mobile phases consisted of mixtures of acetonitrile (5-95%) in water containing 0.02% formic acid. Flow rates were maintained at 20 mL/min, the injection volume was 500 to 3000 μL, and the UV detection range was 210-400 nm. Mobile phase gradients were optimized for the individual compounds. The analytical system consisted of the same system with a Waters SUNFIRE® C-18 5 μm, 4.6×150 mm column, or a XSelect® CSH™ C-18 5 μm, 4.6×150 mm column. The mobile phases consisted of mixtures of acetonitrile (5-95%) in water containing 0.02% formic acid. Flow rates were maintained at 1.2 mL/min, the injection volume was 5 to 20 μL. Preparative HPLC were also performed on a Gilson system GX-281 (Trilution). The column was a Waters SUNFIRE® Prep C18 5 μm OBD, dimension 50×150 mm. The mobile phase consisted of acetonitrile (5-50%) in water containing 0.02% HCOOH over 60 minutes. Flow rates were maintained at 117 mL/min, the injection volume was 1000 to 7000 μL, and the UV detection range was 260 nm.
- Reactions performed using microwave irradiation were normally carried out using an Emrys Optimizer manufactured by Personal Chemistry, or an Initiator manufactured by Biotage. Concentration of solutions was carried out on a rotary evaporator in vacuo. Flash chromatography was usually performed using a Biotage® Flash Chromatography apparatus (Isolera) on silica gel (15-45μ, 40-63, or spheric silica) in pre-packed cartridges of the size noted. 1H NMR spectra were acquired at 400 MHz or 500 MHz spectrometers in CDCl3 solutions unless otherwise noted. Chemical shifts were reported in parts per million (ppm). Tetramethylsilane (TMS) was used as internal reference in CDCl3 solutions, and residual CH3OH peak or TMS was used as internal reference in CD3OD solutions. Coupling constants (J) were reported in hertz (Hz). Chiral analytical chromatography was performed on one of CHIRALPAK® AS, CHIRALPAK® AD, CHIRALCEL® OD, CHIRALCEL® IA, or CHIRALCEL® OJ columns (250×4.6 mm) (Daicel Chemical Industries, Ltd.) with noted percentage of either ethanol in hexane (% Et/Hex) or isopropanol in heptane (% IPA/Hep) as isocratic solvent systems. Chiral preparative chromatography was conducted on one of of CHIRALPAK AS, of CHIRALPAK AD, CHIRALCEL® OD, CHIRALCEL® IA, CHIRALCEL® OJ columns (20×250 mm) (Daicel Chemical Industries, Ltd.) with desired isocratic solvent systems identified on chiral analytical chromatography or by supercritical fluid (SFC) conditions.
-
- Step 1: To a solution of (R)-4-(benzyloxy)-2-methylbutanoic acid (11.43 g, 54.95 mmol) in DCM (170 mL) were added N-(3-Dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (13.40 g, 70.16 mmol), 4-dimethylamino pyridine (0.69 g, 5.65 mmol) and ethanol (34 mL, 0.58 mol). The reaction mixture was stirred under nitrogen at RT overnight. The resulting reaction mixture was washed with water (100 mL). The organic layer was washed with a 10% solution of citric acid (100 mL) and with a 1:1 mixture of brine and water (100 mL), dried over sodium sulfate, filtered and concentrated under reduced pressure to afford ethyl (R)-4-(benzyloxy)-2-methylbutanoate. Step 2: To a suspension of palladium on carbon (1.64 g, 15.41 mmol) in isopropyl acetate (400 mL) was added a solution of ethyl (R)-4-(benzyloxy)-2-methylbutanoate (15.34 g, 65.00 mmol) in isopropyl acetate (50 mL). The reaction mixture was degassed few times with nitrogen. Then the flask was filled with hydrogen and it was stirred under an atmosphere of hydrogen for 7 h. The resulting reaction mixture was filtered through a pad of celite and washed with ethyl acetate (180 mL). The filtrates were concentrated under reduced pressure to afford the expected intermediate.
-
- Step 1: a/ In a glass autoclave, 4-methoxy-2-methylene-4-oxobutanoic acid (50 g, 0.347 mol) and methanol (70 mL) were stirred until complete dissolution. The system was then pump-fill degassed with nitrogen (3×). b/ To Rosphos bistriflate (95 mg, 0.142 mmol) under N2 was added methanol (1.5 mL, purged with N2), followed by diisopropylethylamine (36.5 mg, 0.283 mmol) in methanol (0.5 mL). c/ To a solution of Rh(COD)2OTf (63 mg, 0.135 mmol) purged with N2 in methanol (1 mL, purged with N2), cooled in an ice/methanol bath, was added dropwise over 2 min the phosphine solution prepared above. This solution was allowed to warm to RT, and then added to the autoclave, via syringe. The autoclave was took to 5 bar of hydrogen. The reaction mixture was stirred at 50° C. for 1 h, and then at 60° C. for 50 min. The system was allowed to cool to RT overnight. The resulting solution was transferred to an RBF with methanol, and concentrated under reduced pressure to afford the expected intermediate without further purification.
- Step 2: To a solution of (R)-4-methoxy-2-methyl-4-oxobutanoic acid (52 g, 356 mmol) in THF (2 L) was added lithium borohydride (16.5 g, 712 mmol) portionwise over 40 min at RT. The reaction mixture was stirred at RT for 40 min, and then ethanol (400 mL) was added dropwise over 90 min. The reaction mixture was then stirred at RT overnight, and then concentrated under reduced pressure, azeotroping with THF to afford the expected intermediate used directly in the next step without further purification.
- Step 3: To a suspension of previous intermediate in DMF (800 mL) was added bromoethane (270 mL, 3.6 mol). The reaction mixture was stirred for 2 days. The reaction mixture was extracted with MTBE and a pH 6.75 buffer (NaH2PO4.H2O, 55.7 g; Na2HPO4.2H2O, 61.6 g in 1 L of water), and then with brine. The organic layers were dried, filtered and concentrated under reduced pressure at 30° C. to afford the crude expected compound. This material was purified by column chromatography (DCM/EtOAc: 0 to 30%)
-
- Step 1: To a stirred solution of (R)-4-(benzyloxy)-2-methylbutanoic acid (15.00 g, 72.00 mmol) in DCM (220 mL), was added isopropanol (55.2 mL, 0.72 mol) followed by the addition of a solution of N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (16.60 g, 86.44 mmol) in DCM (100 mL). The reaction mixture was stirred, and then, 4-dimethylamino pyridine (0.88 g, 7.20 mmol) was added to the mixture. The reaction mixture was stirred under nitrogen at RT overnight. The resulting reaction mixture was washed with water (250 mL). The organic layer was washed with a 10% solution of citric acid (×2) and with brine, then it was dried over sodium sulfate, filtered and concentrated under reduced pressure to afford isopropyl (R)-4-(benzyloxy)-2-methylbutanoate. Step 2: To a suspension of palladium on carbon (3.30 g, 31.00 mmol) in isopropyl acetate (50 mL) was added a solution of isopropyl (R)-4-(benzyloxy)-2-methylbutanoate (16.50 g, 66.00 mmol) in isopropyl acetate (500 mL). The reaction mixture was degassed few times with nitrogen. Then the flask was filled with hydrogen and it was stirred under an atmosphere of hydrogen overnight. The reaction mixture was filtered through a pad of celite. The filtrates were concentrated under reduced pressure (water bath: 30° C.) and the resulting product was dried in vacuum oven for 4 h to afford the expected intermediate.
-
- Step 1: To a stirred solution of (S)-4-(benzyloxy)-2-methylbutanoic acid (21.0 g, 101 mmol) in DCM (420 mL), was added isopropanol (38.5 mL, 504 mmol), N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (23.20 g, 121 mmol) and 4-dimethylamino pyridine (1.23 g, 10.08 mmol). The reaction mixture was stirred under nitrogen at RT overnight. The resulting reaction mixture was washed with water (250 mL). The organic layer was washed with a 10% solution of citric acid (×2) and with brine, then it was dried over sodium sulfate, filtered and concentrated under reduced pressure to afford the expected intermediate; MS (ESI) m/z=251.3 (MH+). Step 2: To isopropyl (S)-4-(benzyloxy)-2-methylbutanoate (25.3 g, 101 mmol) was added propan-2-ol (500 mL) and dihydroxypalladium (2.13 g, 15.15 mmol). The reaction mixture was degassed few times with nitrogen. Then the flask was filled with hydrogen and the reaction mixture was stirred under an atmosphere of hydrogen for 9 h. The reaction mixture was filtered through a pad of celite. The filtrates were concentrated under reduced pressure (water bath: 30° C.) to afford the expected intermediate; 1H NMR (CDCl3, 400 MHz) δ (ppm) 4.99 (heptuplet, J=6.24 Hz, 1H), 3.70-3.61 (m, 2H), 2.60-2.51 (m, 1H), 1.94-1.85 (m, 1H), 1.70-1.62 (m, 1H), 1.22-1.20 (m, 6H), 1.15 (d, J=7.00 Hz, 3H); MS (ESI) m/z=183.0 (MNa+).
-
- Step 1: To a solution of (S)-4-(benzyloxy)-2-methylbutanoic acid (30.0 g, 144 mmol) in DCM (600 mL) were added N-(3-Dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (33.1 g, 173 mmol), 4-dimethylamino pyridine (1.76 g, 14.41 mmol) and ethanol (42.1 mL, 720 mmol). The reaction mixture was stirred under nitrogen at RT overnight. The resulting reaction mixture was washed with water (250 mL). The organic layer was washed with a 10% solution of citric acid (250 mL) and with brine, and then filtered through a phase separator and concentrated under reduced pressure to afford the expected intermediate; MS (ESI) m/z=237.1 (MH+). Step 2: To a solution of ethyl (S)-4-(benzyloxy)-2-methylbutanoate (29.5 g, 125 mmol) in ethanol (624 mL) was added dihydroxypalladium (2.63 g, 18.73 mmol). The reaction mixture was degassed few times with nitrogen. Then the flask was filled with hydrogen and the reaction mixture was stirred under an atmosphere of hydrogen for 9 h. The reaction mixture was filtered through a pad of celite. The filtrates were concentrated under reduced pressure to afford the expected intermediate; 1H NMR (CDCl3, 400 MHz) δ (ppm) 4.04 (q, J=7.09 Hz, 2H), 3.56 (t, J=6.40 Hz, 2H), 2.57-2.48 (m, 1H), 1.81-1.79 (m, 1H), 1.61-1.53 (m, 1H), 1.18 (t, J=7.09 Hz, 3H), 1.09 (d, J=6.99 Hz, 3H).
-
- Step 1: A solution of α-methyl-γ-butyrolactone (50.0 g, 499 mmol) in 1M aqueous potassium hydroxide solution (499 mL, 499 mmol) was stirred under reflux for 3 hours, then cooled to RT and concentrated under reduced pressure. The crude solid was triturated in diethyl ether, filtered off and washed with diethyl ether. The solid was then dried in vacuo over P2O5 at 45° C. Step 2: To a solution of the product of step 1 (25.0 g, 160.0 mmol) in DMF (200 mL) was added dropwise at RT under nitrogen 2-iodopropane (31.9 mL, 320 mmol). The reaction mixture was stirred at RT for 5 h. 2-iodopropane (8.0 mL, 80 mmol) was added, and the reaction mixture was stirred at RT overnight. The mixture was diluted with EtOAc, and the organic layer was washed with a metabisulfite solution and brine. The organic layer was dried, filtered and concentrated under reduced pressure at 20-30° C. to provide the expected intermediate. 1H NMR (400 MHz, CDCl3) δ 4.97 (heptuplet, J=6.23 Hz, 1H), 3.66-3.60 (m, 2H), 2.59-2.50 (m, 1H), 1.92-1.84 (m, 1H), 1.67-1.59 (m, 1H), 1.195 (d, J=6.23 Hz, 3H), 1.19 (d, J=6.23 Hz, 3H), 1.14 (d, J=7.09 Hz, 3H).
- Intermediate F was synthesized using the method described for the synthesis of intermediate compound E starting for step 2 from iodoethane (1.2 eq.). 1H NMR (400 MHz, CDCl3) δ 4.14 (q, J=7.11 Hz, 2H), 3.69-3.63 (m, 2H), 2.67-2.58 (m, 1H), 1.98-1.89 (m, 1H), 1.71-1.63 (m, 1H), 1.26 (t, J=7.11 Hz, 3H), 1.19 (d, J=7.10 Hz, 3H).
-
- Step 1: A solution of phosphorus (V) oxychloride (0.12 mL, 1.29 mmol) in anhydrous DCM (4 mL) was cooled to −20° C. A solution of intermediate A (171 mg, 1.17 mmol) and triethylamine (0.18 mL, 1.29 mmol) in anhydrous DCM (3 mL) was added to the previous solution dropwise at −20° C. The reaction mixture was stirred at −25° C. for 64 h. The resulting reaction mixture was warmed to RT and solvent was removed in vacuo at 30° C. Diethyl ether was added to the residue, filtered and concentrated under reduced pressure to afford the expected intermediate, which was used in the next step without further purification.
- Step 2: To a solution of previous intermediate of step 1 in DCM (10 mL) was added dropwise a solution of 1-((2R,3S,4S,5R)-3-fluoro-4-hydroxy-5-(hydroxymethyl)tetrahydrothiophen-2-yl)-4-(((4-methoxyphenyl)diphenylmethyl)amino)pyrimidin-2(1H)-one (500 mg, 0.94 mmol) and triethylamine (0.45 mL, 3.23 mmol) in DCM (3 mL). The reaction mixture was stirred for 30 min at RT, and then, a solution of 1-methylimidazole (77 mg, 0.94 mmol) in DCM (0.5 mL) was added. The reaction mixture was stirred at RT overnight, and then, concentrated under reduced pressure. The crude residue was dissolved in ethyl acetate (100 mL) and the resulting solution was washed with brine. The organic layer was dried over sodium sulfate, filtered and concentrated under reduced pressure. The crude compound was purified via silica gel flash column chromatography (DCM/EtOAc 50%) to afford the 2 expected isomers Sp and Rp. Diastereoisomer 1:MS (ESI) m/z=723.8 (MH+); Diastereoisomer 2:MS (ESI) m/z=723.6 (MH+).
- Step 3: To a solution of diastereoisomer 1 of ethyl (2R)-4-(((4aR,6R,7S,7aS)-7-fluoro-6-(4-(((4-methoxyphenyl)diphenylmethyl)amino)-2-oxopyrimidin-1 (2H)-yl)-2-oxidotetrahydro-4H-thieno[3,2-d][1,3,2]dioxaphosphinin-2-yl)oxy)-2-methylbutanoate (40 mg, 55 μmol) in DCM (5 mL) was added triethylsilane (0.5 mL). A solution of trifluoroacetic acid (0.5 mL) in DCM (5 mL) was added dropwise to the reaction mixture. The reaction mixture was stirred at RT for 90 min. Solvent was removed under reduced pressure and the residue was azeotroped with toluene (×2) (30° C. bath). The crude residue was purified via silica gel flash column chromatography (DCM/EtOH 0-10%) to afford the expected isomer.
- Compound 1 Diastereoisomer 1: 1H NMR (DMSO-d6, 400 MHz) δ (ppm) 8.13 (d, J=7.61 Hz, 1H), 7.47-7.41 (m, 2H), 6.62-6.61 (m, 1H), 5.81 (d, J=7.61 Hz, 1H), 5.51-5.33 (m, 1H), 5.29-5.20 (m, 1H), 4.69-4.58 (m, 2H), 4.15-4.04 (m, 2H), 4.07 (q, J=7.03 Hz, 2H), 3.72-3.66 (m, 1H), 2.59-2.53 (m, 1H), 1.99-1.90 (m, 1H), 1.75-1.67 (m, 1H), 1.19 (t, J=7.03 Hz, 3H), 1.11 (d, J=7.17 Hz, 3H); 31P NMR (DMSO-d6, 162 MHz) δ (ppm) −6.59 (s, 1P); 19F NMR (DMSO-d6, 376 MHz) δ (ppm) −198.26 (s, 1F); MS (ESI) m/z=452.4 (MH+).
- Step 3 bis: To a solution of diastereoisomer 2 of ethyl (2R)-4-(((4aR,6R,7S,7aS)-7-fluoro-6-(4-(((4-methoxyphenyl)diphenylmethyl)amino)-2-oxopyrimidin-1 (2H)-yl)-2-oxidotetrahydro-4H-thieno[3,2-d][1,3,2]dioxaphosphinin-2-yl)oxy)-2-methylbutanoate (35 mg, 48 μmol) in DCM (5 mL) was added triethylsilane (0.5 mL). A solution of trifluoroacetic acid (0.5 mL) in DCM (5 mL) was added dropwise to the reaction mixture. The reaction mixture was stirred at RT for 2 h. Solvent was removed under reduced pressure and the residue was azeotroped with toluene (×2) (30° C. bath). The crude residue was purified via silica gel flash column chromatography (DCM/EtOH 0-10%) to afford the expected isomer.
- Compound 1 Diastereoisomer 2: 1H NMR (DMSO-d6, 400 MHz) δ (ppm) 8.03 (d, J=7.41 Hz, 1H), 7.35 (brs, 2H), 6.66-6.63 (m, 1H), 5.81 (d, J=7.41 Hz, 1H), 5.52-5.35 (m, 1H), 4.98-4.89 (m, 1H), 4.70-4.60 (m, 1H), 4.47-4.40 (m, 1H), 4.12-4.05 (m, 4H), 3.69-3.63 (m, 1H), 2.64-2.61 (m, 1H), 2.06-1.97 (m, 1H), 1.86-1.78 (m, 1H), 1.18 (t, J=7.06 Hz, 3H), 1.13 (d, J=7.08 Hz, 3H); 31P NMR (DMSO-d6, 162 MHz) δ (ppm) −7.99 (s, 1P); 19F NMR (DMSO-d6, 376 MHz) δ (ppm) −197.94 (s, 1F); MS (ESI) m/z=452.3 (MH+).
-
- Compounds 2A/2B were synthesized according to a similar procedure than the procedure described for Compounds 1A/1B using Intermediate B as starting material.
- Compound 2 Diastereoisomer 1: 1H NMR (DMSO-d6, 400 MHz) δ (ppm) 9.01 (brs, 1H), 8.45-8.42 (m, 2H), 6.49 (d, J=7.96 Hz, 1H), 6.03 (d, J=7.83 Hz, 1H), 5.58-5.41 (m, 1H), 5.25-5.17 (m, 1H), 4.89 (heptuplet, J=6.26 Hz, 1H), 4.72-4.60 (m, 2H), 4.13-4.06 (m, 2H), 3.72-3.66 (m, 1H), 2.53-2.52 (m, 1H), 1.98-1.89 (m, 1H), 1.74-1.66 (m, 1H), 1.185 (d, J=6.26 Hz, 3H), 1.18 (d, J=6.26 Hz, 3H), 1.10 (d, J=7.05 Hz, 3H); 31P NMR (DMSO-d6, 162 MHz) δ (ppm) −6.53 (s, 1P); 19F NMR (DMSO-d6, 376 MHz) δ (ppm) −198.18 (s, 1F); MS (ESI) m/z=466.5 (MH+).
- Compound 2 Diastereoisomer 2: 1H NMR (DMSO-d6, 400 MHz) δ (ppm) 8.48 (brs, 1H), 8.26 (d, J=7.65 Hz, 1H), 8.07 (brs, 1H), 6.55 (d, J=8.09 Hz, 1H), 5.97 (d, J=7.65 Hz, 1H), 5.58-5.41 (m, 1H), 4.96-4.87 (m, 2H), 4.72-4.62 (m, 1H), 4.44 (t, J=10.50 Hz, 1H), 4.13-4.05 (m, 2H), 3.70-3.63 (m, 1H), 2.62-2.55 (m, 1H), 2.05-1.97 (m, 1H), 1.84-1.76 (m, 1H), 1.18 (d, J=6.28 Hz, 3H), 1.175 (d, J=6.28 Hz, 3H), 1.11 (d, J=7.10 Hz, 3H); 31P NMR (DMSO-d6, 162 MHz) δ (ppm) −8.04 (s, 1P); 19F NMR (DMSO-d6, 376 MHz) δ (ppm) −197.83 (s, 1F); MS (ESI) m/z=466.5 (MH+).
-
- Step 1: To a −15° C. solution of 1-chloro-N,N,N′,N′-tetraisopropylphosphinediamine (15 g, 56.2 mmol) and triethylamine (7.84 mL, 56.2 mmol) in diethyl ether (187 mL), under nitrogen, was added dropwise a solution of isopropyl (S)-4-hydroxy-2-methylbutanoate (9.01 g, 56.2 mmol) in diethyl ether (94 mL). The reaction mixture was stirred at −15° C. for 1 h and then at RT for 2 h. The resulting suspension was filtered under nitrogen and washed with diethyl ether. The filtrate was concentrated in vacuo at RT under nitrogen to provide a crude intermediate compound, which was stored at −20° C. under nitrogen and was directly used in the next step without further purification: 31P NMR (162 MHz, CDCl3) δ 124.0 (s, 1P).
- Step 2: To a solution of THF (3.2 mL) under nitrogen at RT were simultaneously slowly added a solution of (2R,3S,5R)-5-(6-amino-2-chloro-9H-purin-9-yl)-2-(hydroxymethyl)tetrahydrofuran-3-ol (400 mg, 1.4 mmol) and 1H-imidazole-4,5-dicarbonitrile (413 mg, 3.5 mmol) (coevaporated 3 times with CH3CN and THF) in THF (10.2 mL) and CH3CN (5.1 mL), and a solution of the intermediate compound of step 1 (729 mg, 1.68 mmol) in THF (3.2 mL). The reaction mixture was stirred at RT overnight. Hydrogen peroxide (0.21 mL, 7.0 mmol) was then added dropwise at RT for 15 min. The reaction mixture was stirred at RT for 3 hours, and then, diluted with EtOAc and water. The aqueous layer was washed twice with EtOAc. The combined organic layers were washed with brine, dried, and concentrated under reduced pressure. The crude residue was purified by flash chromatography on silica gel (DCM/MeOH: 0 to 10%) followed by preparative MS/HPLC to afford the 2 title compounds (isolated diasteromers at P).
- Compound 3 Diastereoisomer 1: 1H NMR (DMSO-d6, 400 MHz) δ (ppm) 8.38 (s, 1H), 7.90 (brs, 2H), 6.46-6.43 (m, 1H), 5.32-5.26 (m, 1H), 4.89 (heptuplet, J=6.25 Hz, 1H), 4.61 (ddd, J=21.97 Hz, 9.26 Hz, 4.63 Hz, 1H), 4.34-4.29 (m, 1H), 4.18-4.09 (m, 2H), 4.05-3.99 (m, 1H), 2.80-2.76 (m, 2H), 2.68-2.59 (m, 1H), 2.09-2.00 (m, 1H), 1.86-1.78 (m, 1H), 1.16 (d, J=6.25 Hz, 6H), 1.13 (d, J=7.00 Hz, 3H); 31P NMR (DMSO-d6, 162 MHz) δ (ppm) −6.61 (s, 1P); MS (ESI) m/z=490.3 (MH+).
- Compound 3 Diastereoisomer 2: 1H NMR (DMSO-d6, 400 MHz) δ (ppm) 8.46 (s, 1H), 7.89 (brs, 2H), 6.48-6.45 (m, 1H), 5.33-5.26 (m, 1H), 4.91 (heptuplet, J=6.33 Hz, 1H), 4.66-4.59 (m, 1H), 4.47-4.40 (m, 1H), 4.16-4.06 (m, 3H), 2.83-2.72 (m, 2H), 2.57-2.53 (m, 1H), 2.01-1.92 (m, 1H), 1.76-1.68 (m, 1H), 1.21 (d, J=6.33 Hz, 3H), 1.20 (d, J=6.33 Hz, 3H), 1.12 (d, J=7.06 Hz, 3H); 31P NMR (DMSO-d6, 162 MHz) δ (ppm) −4.93 (s, 1P); MS (ESI) m/z=490.3 (MH+).
-
- Compounds 4A/4B were synthesized according to a similar procedure than the procedure described for Compounds 3A/3B using (2R,3R,4S,5R)-5-(6-amino-2-chloro-9H-purin-9-yl)-4-fluoro-2-(hydroxymethyl)tetrahydrofuran-3-ol as starting material.
- Compound 4 Diastereoisomer 1: 1H NMR (DMSO-d6, 400 MHz) δ (ppm) 8.43 (s, 1H), 7.98 (brs, 2H), 6.63-6.60 (m, 1H), 5.96-5.79 (m, 1H), 5.60-5.50 (m, 1H), 4.90 (heptuplet, J=6.29 Hz, 1H), 4.75-4.66 (m, 1H), 4.50-4.46 (m, 1H), 4.24-4.13 (m, 3H), 2.65-2.58 (m, 1H), 2.11-2.03 (m, 1H), 1.87-1.79 (m, 1H), 1.18 (d, J=6.29 Hz, 6H), 1.12 (d, J=7.06 Hz, 3H); 31P NMR (DMSO-d6, 162 MHz) δ (ppm) −6.92 (s, 1P); 19F NMR (DMSO-d6, 376 MHz) δ (ppm) −200.16 (s, 1F); MS (ESI) m/z=508.3 (MH+).
- Compound 4 Diastereoisomer 2: 1H NMR (DMSO-d6, 400 MHz) δ (ppm) 8.54-8.53 (m, 1H), 7.98 (brs, 2H), 6.65-6.62 (m, 1H), 5.92-5.74 (m, 1H), 5.67-5.57 (m, 1H), 4.91 (heptuplet, J=6.33 Hz, 1H), 4.74-4.67 (m, 1H), 4.61-4.54 (m, 1H), 4.32-4.26 (m, 1H), 4.18-4.09 (m, 2H), 2.57-2.54 (m, 1H), 2.02-1.93 (m, 1H), 1.78-1.69 (m, 1H), 1.205 (d, J=6.33 Hz, 3H), 1.20 (d, J=6.33 Hz, 3H), 1.12 (d, J=7.03 Hz, 3H); 31P NMR (DMSO-d6, 162 MHz) δ (ppm) −5.20 (s, 1P); 19F NMR (DMSO-d6, 376 MHz) δ (ppm) −199.57 (s, 1F); MS (ESI) m/z=508.3 (MH+).
-
- Step 1: was similar than the procedure described for Step 1 of Compounds 3A/3B using Intermediate B as starting material. 31P NMR (162 MHz, CDCl3) δ 123.89 (s, 1P).
- Step 2: To a solution of (2R,3S,4R,5R)-2-(2-amino-6-methoxy-9H-purin-9-yl)-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-3-yl benzyl carbonate (500 mg, 1.16 mmol) in anhydrous pyridine (11 mL, 9.5 mL/mmol) was added under nitrogen at RT 1H-tetrazole (11 mL, 9.5 mL/mmol). The reaction mixture was cooled to −5° C. and a solution of the intermediate compound of step 1 (453 mg, 1.16 mmol) in CH3CN (5 mL) was added dropwise. The reaction mixture was stirred at 0° C. for 1 h and then at RT for 2 h. The reaction was monitored by LC/MS. A solution of tert-butylhydroperoxide, 5M in decane (0.6 mL, 0.5 mL/mmol) was then added dropwise and the resulting reaction mixture was allowed to stir for 1 h at RT. The crude reaction mixture was concentrated under reduced pressure. The crude residue was purified using flash chromatography on silica gel (DCM/MeOH: 0 to 10%) to afford the intermediate compound as a mixture of diastereomers.
- Step 3: To a solution of isopropyl (2R)-4-(((4aR,6R,7S,7aR)-6-(2-amino-6-methoxy-9H-purin-9-yl)-7-(((benzyloxy)carbonyl)oxy)-2-oxidotetrahydro-4H-furo[3,2-d][1,3,2]dioxaphosphinin-2-yl)oxy)-2-methylbutanoate (468 mg, 0.74 mmol) in propan-2-ol (5 mL) was added palladium on carbon (78 mg, 0.74 mmol). The reaction mixture was degassed few times with nitrogen. Then the flask was filled with hydrogen and the reaction mixture was stirred under hydrogen for 3 h. The reaction mixture was filtered through a pad of celite. The filtrate was concentrated under reduced pressure and purified by RP-18 chromatography (H2O/CH3CN) to afford the expected compound as a mixture of diastereoisomers.
- Compound 5: Mixture of Diastereoisomers 5A/5B: 1H NMR (DMSO-d6, 400 MHz) δ (ppm) 8.07 (s, 0.5H), 8.05 (s, 0.5H), 6.47 (brs, 2H), 6.31-6.29 (m, 1H), 6.07-6.04 (m, 1H), 5.04-4.99 (m, 0.5H), 4.95-4.87 (m, 1H), 4.74-4.66 (m, 1.5H), 4.62-4.44 (m, 2H), 4.20-4.03 (m, 3H), 3.96 (s, 3H), 2.63-2.55 (m, 1H), 2.09-1.91 (m, 1H), 1.86-1.68 (m, 1H), 1.21-1.18 (m, 6H), 1.15-1.10 (m, 3H); 31P NMR (DMSO-d6, 162 MHz) δ (ppm) −4.87 (s, 0.5P), −6.40 (s, 0.5P); MS (ESI) m/z=502.2 (MH+).
-
- Compounds 6A/6B were synthesized according to a similar procedure than the procedure described for Compounds 3A/3B using 1-((2R,4S,5R)-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-5-(trifluoromethyl)pyrimidine-2,4(1H,3H)-dione and Intermediate E as starting materials.
- Compound 6: Mixture of Diastereoisomers 6A/6B: 1H NMR (DMSO-d6, 400 MHz) δ (ppm) 12.00 (brs, 1H), 8.16 (s, 0.1H), 8.13 (s, 0.9H), 6.23-6.17 (m, 1H), 4.90 (heptuplet, J=6.28 Hz, 1H), 4.85-4.77 (m, 1H), 4.67-4.59 (m, 1H), 4.41-4.36 (m, 1H), 4.13-4.03 (m, 2H), 3.98-3.92 (m, 1H), 2.65-2.55 (m, 2H), 2.04-1.92 (m, 1H), 1.82-1.71 (m, 1H), 1.19 (d, J=6.28 Hz, 6H), 1.12 (d, J=7.00 Hz, 3H); 31P NMR (DMSO-d6, 162 MHz) δ (ppm) −4.84 (s, 0.1P), −6.69 (s, 0.9P); 19F NMR (DMSO-d6, 376 MHz) δ (ppm) −61.43 (s, 0.1F), −61.58-(-61.59) (s, 0.9F); MS (ESI) m/z=523.2 (MNa+).
-
- Step 1: To a solution of 2,3,4,5,6-pentafluorophenol (2.77 g, 15.05 mmol) in DCM (25 mL) were added at −75° C. a solution of 4-chlorophenyl phosphodichloridate (3.69 g, 15.05 mmol) in DCM (25 mL), followed by triethylamine (2.01 mL, 15.05 mmol) dropwise. The reaction mixture was stirred at −75° C. for 30 min, then allowed to warm up to 0° C. A solution of intermediate D (2.5 g, 15.05 mmol) in DCM (25 mL) was then added followed by triethylamine (4.20 mL, 30.10 mmol) dropwise. The reaction mixture was stirred at RT for 1 h and then concentrated under reduced pressure. 31P NMR (DMSO-d6, 162 MHz) δ (ppm) −11.57 (s, 1P).
- Step 2: To a solution of 2-((2-amino-6-ethoxy-9H-purin-9-yl)methoxy)propane-1,3-diol (50 mg, 0.18 mmol) in DMF (880 μL) under nitrogen was added DBU (80 μL, 0.53 mmol). After stirring for 10 min, a solution of intermediate of step 1 (89 mg, 0.18 mmol) in DMF (880 μL) was then added dropwise at −10° C. The reaction mixture was stirred at 140° C. under microwaves irradiation for 20 min. The reaction mixture was then diluted with EtOAc and washed with saturated NaHCO3 solution. The aqueous layer was extracted with EtOAc. The organic layers were combined, dried, filtered and concentrated under reduced pressure. The crude compound was purified by preparative MS/HPLC to afford a mixture of diastereoisomers.
- Compound 7: Mixture of Diastereoisomers 7A/7B: 31P NMR (DMSO-d6, 162 MHz) δ (ppm) −7.12 (s, 0.5P), −9.09 (s, 0.5P); MS (ESI) m/z=474.6 (MH+).
- The mixture of diastereoisomers was separated by preparative chiral SFC (CHIRALPAK-AD-H, 20*150 mm; Mobile Phase A: 20% IPA; Mobile Phase B CO2) to afford the 2 expected separated diastereoisomers:
- Compound 7 Diastereoisomer 1: 1H NMR (DMSO-d6, 400 MHz) δ (ppm) 8.01 (s, 1H), 6.49 (s, 2H), 5.56 (s, 2H), 4.47-4.34 (m, 5H), 4.08-3.96 (m, 4H), 3.81 (m, 1H), 2.61-2.54 (m, 1H), 1.98-1.92 (m, 1H), 1.75-1.69 (m, 1H), 1.37-1.34 (m, 3H), 1.19-1.16 (m, 3H), 1.11-1.03 (m, 3H); 31P NMR (DMSO-d6, 162 MHz) δ (ppm) −9.08 (s, 1P).
- Compound 7 Diastereoisomer 2: 1H NMR (DMSO-d6, 400 MHz) δ (ppm) 8.02 (s, 1H), 6.50 (s, 2H), 5.54 (s, 2H), 4.47-4.38 (m, 4H), 4.23-4.17 (m, 2H), 4.06-3.95 (m, 4H), 1.93-1.86 (m, 1H), 1.69-1.62 (m, 1H), 1.37-1.34 (m, 3H), 1.17-1.14 (m, 3H), 1.07-1.03 (m, 3H); 31P NMR (DMSO-d6, 162 MHz) δ (ppm) −7.11 (s, 1P).
-
- Compounds 8A/8B were synthesized according to a similar procedure than the procedure described for Compounds 3A/3B using (2S,3R,5 S)-5-(6-amino-9H-purin-9-yl)-2-(hydroxymethyl)tetrahydrofuran-3-ol and Intermediate F as starting materials.
- Compound 8: Mixture of Diastereoisomers 8A/8B: 1H NMR (DMSO-d6, 400 MHz) δ (ppm) 8.40 (s, 0.2H), 8.36-8.35 (m, 0.8H), 8.19 (s, 0.2H), 8.16 (m, 0.8H), 7.36 (brs, 2H), 6.52-6.47 (m, 1H), 5.47-5.36 (m, 1H), 4.65-4.56 (m, 1H), 4.43-4.27 (m, 1H), 4.18-3.99 (m, 5H), 2.83-2.66 (m, 3H), 2.13-1.93 (m, 1H), 1.87-1.69 (m, 1H), 1.22-1.12 (m, 6H); 31P NMR (DMSO-d6, 162 MHz) δ (ppm) −4.86 (s, 0.1P), −4.88 (s, 0.1P), −6.60 (s, 0.8P); MS (ESI) m/z=442.3 (MH+).
-
- Compounds 9A1/9A2/9B1/9B2 were synthesized according to a similar procedure than the procedure described for Compounds 3A/3B using 1-((2S,4R,5 S)-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-5-methylpyrimidine-2,4(1H,3H)-dione and Intermediate F as starting materials.
- Compound 9: Mixture of Diastereoisomers 9A1/9A2/9B1/9B2: 1H NMR (DMSO-d6, 400 MHz) δ (ppm) 11.42 (s, 0.8H), 11.39 (s, 0.2H), 7.58 (s, 0.2H), 7.51 (s, 0.8H), 6.38-6.29 (m, 1H), 4.77 (q, J=9.06 Hz, 1H), 4.64-4.55 (m, 1H), 4.50-4.33 (m, 1H), 4.13-4.06 (m, 4H), 3.93-3.87 (m, 1H), 2.68-2.54 (m, 2H), 2.49-2.41 (m, 1H), 2.08-1.93 (m, 1H), 1.85-1.70 (m, 4H), 1.21-1.11 (m, 6H); 31P NMR (DMSO-d6, 162 MHz) δ (ppm) −4.92 (s, 0.1P), −4.95 (s, 0.1P), −6.66 (s, 0.8P); MS (ESI) m/z=455.2 (MNa+).
- The mixture of diastereoisomers was separated by preparative chiral SFC to afford the 4 expected separated diastereoisomers:
- Compound 9 Diastereoisomer 1: 31P NMR (DMSO-d6, 162 MHz) δ (ppm) −4.94 (s, 1P).
- Compound 9 Diastereoisomer 2: 31P NMR (DMSO-d6, 162 MHz) (ppm) −4.91 (s, 1P).
- Compound 9 Diastereoisomer 3: 31P NMR (DMSO-d6, 162 MHz) δ (ppm) −6.66 (s, 1P).
- Compound 9 Diastereoisomer 4: 31P NMR (DMSO-d6, 162 MHz) δ (ppm) −6.66 (s, 1P).
-
- To a solution of isopropyl (2R)-4-(((4aR,6R,7aR)-6-(4-amino-2-oxopyrimidin-1(2H)-yl)-7,7-difluoro-2-oxidotetrahydro-4H-furo[3,2-d][1,3,2]dioxaphosphinin-2-yl)oxy)-2-methylbutanoate (650 mg, 1.39 mmol), in DMF (4.6 mL), were added N-ethyl-N-isopropylpropan-2-amine (630 μL, 3.62 mmol), benzoic anhydride (440 mg, 1.95 mmol) and DMAP (51 mg, 0.42 mmol). The reaction mixture was stirred at RT for 3 hours. The crude compound was purified by preparative MS/HPLC to afford the title compound. 1H NMR (DMSO-d6, 400 MHz) δ (ppm) 11.51 (brs, 1H), 8.31 (d, J=7.53 Hz, 1H), 8.03-8.01 (m, 2H), 7.67-7.63 (m, 1H), 7.56-7.52 (m, 2H), 7.44-7.43 (m, 1H), 6.48 (brs, 1H), 5.06 (brs, 1H), 4.90 (heptuplet, J=6.33 Hz, 1H), 4.83-4.74 (m, 1H), 4.65-4.60 (m, 1H), 4.44-4.38 (m, 1H), 4.21-4.13 (m, 2H), 2.63-2.55 (m, 1H), 2.09-2.01 (m, 1H), 1.85-1.77 (m, 1H), 1.19 (d, J=6.33 Hz, 3H), 1.185 (d, J=6.33 Hz, 3H), 1.13 (d, J=7.06 Hz, 3H); 31P NMR (DMSO-d6, 162 MHz) δ (ppm) −7.50 (s, 1P); 19F NMR (DMSO-d6, 376 MHz) δ (ppm) −115.93-(−117.39) (m, 2F); MS (ESI) m/z=572.5 (MH+).
-
- Compounds 11A/11B were synthesized according to a similar procedure than the procedure described for Compounds 3A/3B using 1-((2S,4R,5 S)-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-4-(((4-methoxyphenyl)diphenylmethyl)amino)pyrimidin-2(1H)-one and Intermediate F as starting materials.
- Compound 11: Mixture of Diastereoisomers 11A/11B: 1H NMR (DMSO-d6, 400 MHz) δ (ppm) 8.52 (s, 1H), 8.07 (s, 1H), 7.85 (d, J=7.59 Hz, 1H), 6.27-6.23 (m, 1H), 5.93 (d, J=7.59 Hz, 1H), 4.72-4.58 (m, 2H), 4.40 (t, J=10.05 Hz, 1H), 4.12-4.05 (m, 4H), 3.98-3.92 (m, 1H), 2.65-2.54 (m, 2H), 2.46-2.41 (m, 1H), 2.07-1.98 (m, 1H), 1.83-1.74 (m, 1H), 1.21-1.17 (m, 3H), 1.14 (d, J=7.10 Hz, 3H); 31P NMR (DMSO-d6, 162 MHz) δ (ppm) −4.83 (s, 0.1P), −6.71 (s, 0.9P); MS (ESI) m/z=418.3 (MH+).
- The compounds of the invention were tested in cell based in vitro assays comprising HuH-1 cells and HepG2 cells, as in vitro models for potential hepatocellular carcinoma activity.
- HuH-1 cells were purchased from JCRB, HepG2 cells from ATCC, and both tested with the following method:
- Cells are suspended at a specific density in a specific culture medium. Then, 100 μl of cell suspension are plated per well in 96-well plates.
- Compounds or negative controls (DMSO) are added to the cells (100 μl of a compound solution in its specific medium with a final concentration of 0.15% DMSO).
Each compound concentration is tested in duplicate (6 concentrations per compound).
Cells are incubated at 37° C. for 72 h without treating again. - SDS is added to control wells (final concentration of 1%) and kept for 15 min at 37° C. SDS 1% represents the positive control of proliferation inhibition.
Cell supernatant is removed and 100 μl of a MTT (3-[4.5-dimethylthiazol-2-yl]-2.5-diphenyltetrazolium bromide) solution in fresh medium are added per well (MTT final concentration of 0.5 mg/ml) and incubated for 4 h at 37° C.
MTT reaction is stopped and homogenized by adding 100 μl/well of SDS 10%, 0.01M HCl and incubated for 2 h at 37° C.
Absorbance is measured at 570 nm.
The results for selected compounds are shown in Table 1. -
TABLE 1 In vitro inhibition of HuH-1 and HepG2: HuH-1: HepG2: Compound Relative IC50 Relative IC50 1 Diastereoisomer 1 A ND 2 Diastereoisomer 1 A ND 2 Diastereoisomer 2 A B 3 Diastereoisomer 1 B A Mixture 5A/5B C C Mixture 6A/6B C C - The IC50 values in Table 1 are as follows:
- The degree of conversion of a prodrug compound of the present invention to its corresponding nucleoside triphosphate (NTP) can be measured in vitro using the procedure described below.
- A 2 mM stock solution of the prodrug test compound is prepared in 5% DMSO/95% MeOH to provide a final sample concentration of 10M. A 5 μL aliquot is removed from this stock solution and added to 1 mL of either a rat or human cryopreserved hepatocyte sample to provide a control sample at concentration of 1 million cells/mL. This sample is assayed in triplicate and used as a test sample.
- A 2 mM stock solution of (2R,3R,4R,5R)-2-(4-amino-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-5-(hydroxymethyl)-3-methyltetrahydrofuran-3,4-diol is prepared in 5% DMSO/95% MeOH to provide a final sample concentration of 10 μM.
- A 5 μL aliquot is removed from this stock solution and added to 1 mL of either a rat or human cryopreserved hepatocyte sample to provide a control sample at a concentration of 1 million cells/mL. This sample is assayed in triplicate and used as a control standard.
- Human and rat hepatocytes are removed from liquid nitrogen storage and thawed by submerging the hepatocyte tube into a pre-heated 37° C. waterbath and gently shaking the tube back & forth until thawed. The thawed hepatocytes are then gently poured into a container of Hepatocyte Basal Medium (50 mL, pre-warmed to 37° C.) and washed. The hepatocyte tube is then rinsed out with pre-warmed Hepatocyte Basal Medium and the washed hepatocytes and rinse are combined and centrifuged at 500 rpm for 4 minutes at room temperature. The supernatant is then discarded and the resulting hepatocyte pellet is resuspended with Hepatocyte Basal Medium (pre-warmed to 37° C.) and the final hepatocyte concentration is adjusted to 1 million cells/mL to provide the final hepatocyte suspension.
- A 1 mL aliquot is removed from the 1 million cells/mL final hepatocyte suspension, analyzed in triplicate and placed into 20 mL scintillation vial without a cap. 2 mM of the prodrug test sample is then added into the hepatocyte suspension to provide a 10 μM final concentration in the 1 mL hepatocyte sample. The sample is then incubated at 37° C./5% CO2 for 4 hours. A blank hepatocyte sample as well as the control standard are also incubated in this fashion.
- The incubated hepatocyte suspension samples are transferred to a microcentrifuge tube using a transfer pipette and centrifuged at 500 rpm for 4 minutes at room temperature. The supernatant is discarded and the resulting hepatocyte pellet was resuspended and the cells are extracted with 0.25 mL of a 4° C. solution of 70% methanol/30% (20 mM EDTA/20 mM EGTA) that has been adjusted to pH 8 using sodium hydroxide. The resulting extract solution is then stored in a refrigerator at 4° C. until ready for use, at which point the sample is first subjected to vortexing/sonication to ensure that all hepatocyte cells have burst. The sample is then centrifuged at 4000 rpm for 10 minutes at 4° C. and a 100 μL aliquot of the resulting supernatant is added into a bioanalytical plate (2 mL Square 96 well plate w/100 uL Tapered Reservoir), with the remaining supernatant immediately stored at −80° C. for re-assay if necessary. The blank control supernatant is transferred to a new tube for use as a control matrix in standard curves.
- Alternatively, cryopreserved plateable hepatocytes are obtained from Celsius-In Vitro Technologies (Baltimore, Md.) and plated according to manufacturer's protocol at 0.7×106 cells/mL in In Vitro GRO CP Medium (1.75×106 cells/well in 6-well plates) three hours prior to inhibitor treatment. An inhibitor in DMSO at the indicated concentration in In Vitro GRO CP Medium is added to the hepatocytes at t=0. At indicated times up to 48 hours post dosing, cells are washed in ice-cold PBS, extracted with ice-cold 1 mL 70% methanol: 30% 20 mM EDTA/EGTA and centrifuged. The supernatant is stored at −80° C. until analysis. For intracellular NTP analysis, an NTP calibration curve is first generated by spiking a blank extraction buffer with known concentrations of the NTP standard. LC/ESI-MS analysis is performed on a QTRAP 5500 LC/MS/MS system (Applied Biosystems, Foster City, Calif.) coupled to a Shimazu UFLC system, operated in the positive-ion mode. The HPLC system is consisted of solvent delivery module (LC20-AD XR), auto injector (SIL-20ACXR), and photodiode array detector (SPD-M20A PDA) (Shimazu Corporation, Tokyo, Japan). All HPLC separations are performed at 40° C. The test samples are analyzed on a BioBasic AX column (5 μm particle size, 100×2.1 mm I.D., Thermo Scientific) using A (Acetonitrile: 10 mM NH4Ac=30:70, v:v, pH=6) and B (Acetonitrile: 1 mM NH4Ac=30:70, v:v, pH=10) as mobile phases at a flow rate of 1.0 mL/min. The injection volume is 50 μL. The mobile phase gradient starts at 0% B, and linearly increases to 100% B over 6 min. The MS analysis of all NTPs is performed on the same QTRAP 5500 MS instrument in the multiple ion monitoring mode (MRM), with Turbo-Ion-Spray ionization. The collision energy is 40 eV for all the analytes and standards. The quadrupole mass analyzer is set to unit resolution.
- The results for selected compounds are shown in Table 2:
-
TABLE 2 In vitro NTP in Human Hepatocytes: Human Hepatocyte Compound 1 hour at 10 μM, NTP 2 Diastereoisomer 2 A 1 Diastereoisomer 2 A 10 C - The NTP values in Table 2 are as follows:
-
Claims (17)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP16306526 | 2016-11-21 | ||
EP16306526.1 | 2016-11-21 | ||
PCT/EP2017/079346 WO2018091542A1 (en) | 2016-11-21 | 2017-11-15 | Cyclic phosphate substituted nucleoside derivatives for the treatment of liver diseases |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2017/079346 A-371-Of-International WO2018091542A1 (en) | 2016-11-21 | 2017-11-15 | Cyclic phosphate substituted nucleoside derivatives for the treatment of liver diseases |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/103,391 Continuation US11730748B2 (en) | 2016-11-21 | 2020-11-24 | Cyclic phosphate substituted nucleoside derivatives for the treatment of liver diseases |
Publications (1)
Publication Number | Publication Date |
---|---|
US20190365788A1 true US20190365788A1 (en) | 2019-12-05 |
Family
ID=57442623
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/462,779 Abandoned US20190365788A1 (en) | 2016-11-21 | 2017-11-15 | Cyclic phosphate substituted nucleoside derivatives for the treatment of liver diseases |
US17/103,391 Active 2038-04-21 US11730748B2 (en) | 2016-11-21 | 2020-11-24 | Cyclic phosphate substituted nucleoside derivatives for the treatment of liver diseases |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/103,391 Active 2038-04-21 US11730748B2 (en) | 2016-11-21 | 2020-11-24 | Cyclic phosphate substituted nucleoside derivatives for the treatment of liver diseases |
Country Status (3)
Country | Link |
---|---|
US (2) | US20190365788A1 (en) |
EP (1) | EP3541825A1 (en) |
WO (1) | WO2018091542A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20200179428A1 (en) * | 2016-06-20 | 2020-06-11 | Merck Sharp & Dohme Corp. | Cyclic phosphate substituted nucleoside derivatives and methods of use thereof for the treatment of viral diseases |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA3088287A1 (en) | 2018-01-10 | 2019-07-18 | Nucorion Pharmaceuticals, Inc. | Phosphor(n)amidatacetal and phosph(on)atalcetal compounds |
US11427550B2 (en) | 2018-01-19 | 2022-08-30 | Nucorion Pharmaceuticals, Inc. | 5-fluorouracil compounds |
CN111801339A (en) * | 2018-01-19 | 2020-10-20 | 纽科利制药公司 | 5-fluorouracil compounds |
WO2020154917A1 (en) * | 2019-01-29 | 2020-08-06 | Minghui Pharmaceutical (Shanghai) Limited | Phosphate and phosphonate based compounds of 6-thio-2'-deoxyguanosine as anti-cancer agents |
KR20220035143A (en) | 2019-07-17 | 2022-03-21 | 누코리온 파마슈티컬스, 인코포레이티드. | Cyclic Deoxyribonucleotide Compounds |
WO2021216427A1 (en) | 2020-04-21 | 2021-10-28 | Ligand Pharmaceuticals, Inc. | Nucleotide prodrug compounds |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140099283A1 (en) * | 2012-10-08 | 2014-04-10 | Idenix Pharmaceuticals, Inc. | 2'-chloro nucleoside analogs for hcv infection |
US9296778B2 (en) * | 2012-05-22 | 2016-03-29 | Idenix Pharmaceuticals, Inc. | 3′,5′-cyclic phosphate prodrugs for HCV infection |
US10202411B2 (en) * | 2014-04-16 | 2019-02-12 | Idenix Pharmaceuticals Llc | 3′-substituted methyl or alkynyl nucleosides nucleotides for the treatment of HCV |
Family Cites Families (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0661284A1 (en) | 1992-09-18 | 1995-07-05 | Yoshitomi Pharmaceutical Industries, Ltd. | Thienodiazepine compound and medicinal use thereof |
PE20010306A1 (en) | 1999-07-02 | 2001-03-29 | Agouron Pharma | INDAZOLE COMPOUNDS AND PHARMACEUTICAL COMPOSITIONS CONTAINING THEM USEFUL FOR THE INHIBITION OF PROTEIN KINASE |
GB0018891D0 (en) | 2000-08-01 | 2000-09-20 | Novartis Ag | Organic compounds |
AU2002234755A1 (en) | 2001-02-26 | 2002-09-12 | Pharma Pacific Pty Ltd | Interferon-alpha induced gene |
AU2003281200A1 (en) | 2002-07-03 | 2004-01-23 | Tasuku Honjo | Immunopotentiating compositions |
CN1753912B (en) | 2002-12-23 | 2011-11-02 | 惠氏公司 | Antibodies against PD-1 and uses therefor |
JP4532409B2 (en) | 2003-01-23 | 2010-08-25 | 小野薬品工業株式会社 | Substance with specificity for human PD-1 |
WO2005003047A1 (en) | 2003-07-03 | 2005-01-13 | Philips Intellectual Property & Standards Gmbh | Pane which can be heated by means of invisible light |
EP1896582A4 (en) | 2005-05-09 | 2009-04-08 | Ono Pharmaceutical Co | Human monoclonal antibodies to programmed death 1(pd-1) and methods for treating cancer using anti-pd-1 antibodies alone or in combination with other immunotherapeutics |
ME02260B (en) | 2005-07-01 | 2016-02-29 | Medarex Inc | Human monoclonal antibodies to programmed death ligand 1 (pd-l1) |
AU2007215114A1 (en) | 2006-02-14 | 2007-08-23 | Istituto Di Ricerche Di Biologia Molecolare P. Angeletti S.P.A. | Nucleoside aryl phosphoramidates for the treatment of RNA-dependent RNA viral infection |
US7951789B2 (en) | 2006-12-28 | 2011-05-31 | Idenix Pharmaceuticals, Inc. | Compounds and pharmaceutical compositions for the treatment of viral infections |
CN102131828B (en) | 2007-06-18 | 2015-06-17 | 默沙东有限责任公司 | Antibodies to human programmed death receptor pd-1 |
CA2710740C (en) | 2007-12-28 | 2016-07-19 | Shinji Miyoshi | Thienotriazolodiazepine compound as antitumor agent |
WO2009114335A2 (en) | 2008-03-12 | 2009-09-17 | Merck & Co., Inc. | Pd-1 binding proteins |
WO2010098788A2 (en) | 2008-08-25 | 2010-09-02 | Amplimmune, Inc. | Pd-i antagonists and methods for treating infectious disease |
SI2342226T1 (en) | 2008-09-26 | 2016-11-30 | Dana-Farber Cancer Institute Inc. | Human anti-pd-1, pd-l1, and pd-l2 antibodies and uses thereof |
MA32948B1 (en) | 2008-12-09 | 2012-01-02 | Genentech Inc | ANTI-PD-L1 ANTIBODIES AND THEIR USE FOR IMPROVING T CELL FUNCTION |
AR074882A1 (en) | 2008-12-23 | 2011-02-16 | Pharmasset Inc | NUCLEOSID ANALOGS |
MX2011006891A (en) | 2008-12-23 | 2011-10-06 | Pharmasset Inc | Nucleoside phosphoramidates. |
DE102009000180A1 (en) | 2009-01-13 | 2010-07-15 | Evonik Degussa Gmbh | Process for the preparation of multilayer coated rubber particles and multilayer coated rubber particles |
EP2504028A4 (en) | 2009-11-24 | 2014-04-09 | Amplimmune Inc | Simultaneous inhibition of pd-l1/pd-l2 |
JP6238459B2 (en) | 2011-08-01 | 2017-11-29 | ジェネンテック, インコーポレイテッド | Method for treating cancer using PD-1 axis binding antagonist and MEK inhibitor |
EP3303359B1 (en) * | 2015-05-27 | 2024-11-06 | Idenix Pharmaceuticals LLC | Nucleotides for the treatment of cancer |
WO2017223012A1 (en) * | 2016-06-20 | 2017-12-28 | Merck Sharp & Dohme Corp. | Cyclic phosphate substituted nucleoside compounds and methods of use thereof for the treatment of viral diseases |
US20200179428A1 (en) * | 2016-06-20 | 2020-06-11 | Merck Sharp & Dohme Corp. | Cyclic phosphate substituted nucleoside derivatives and methods of use thereof for the treatment of viral diseases |
-
2017
- 2017-11-15 US US16/462,779 patent/US20190365788A1/en not_active Abandoned
- 2017-11-15 WO PCT/EP2017/079346 patent/WO2018091542A1/en active Application Filing
- 2017-11-15 EP EP17797655.2A patent/EP3541825A1/en active Pending
-
2020
- 2020-11-24 US US17/103,391 patent/US11730748B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9296778B2 (en) * | 2012-05-22 | 2016-03-29 | Idenix Pharmaceuticals, Inc. | 3′,5′-cyclic phosphate prodrugs for HCV infection |
US20140099283A1 (en) * | 2012-10-08 | 2014-04-10 | Idenix Pharmaceuticals, Inc. | 2'-chloro nucleoside analogs for hcv infection |
US10202411B2 (en) * | 2014-04-16 | 2019-02-12 | Idenix Pharmaceuticals Llc | 3′-substituted methyl or alkynyl nucleosides nucleotides for the treatment of HCV |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20200179428A1 (en) * | 2016-06-20 | 2020-06-11 | Merck Sharp & Dohme Corp. | Cyclic phosphate substituted nucleoside derivatives and methods of use thereof for the treatment of viral diseases |
Also Published As
Publication number | Publication date |
---|---|
EP3541825A1 (en) | 2019-09-25 |
WO2018091542A1 (en) | 2018-05-24 |
US20210205339A1 (en) | 2021-07-08 |
US11730748B2 (en) | 2023-08-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11730748B2 (en) | Cyclic phosphate substituted nucleoside derivatives for the treatment of liver diseases | |
TWI732245B (en) | Pd-1/pd-l1 inhibitors | |
JP6820241B2 (en) | Toll-like receptor regulatory 4,6-diamino-pyrido [3,2-d] pyrimidine compounds | |
TWI793231B (en) | 2'3' cyclic dinucleotides with phosphonate bond activating the sting adaptor protein | |
US9408863B2 (en) | 5′-substituted nucleoside analogs and methods of use thereof for the treatment of viral diseases | |
BR112021008255A2 (en) | substituted 6-azabenzimidazole compounds as hpk1 inhibitors | |
US9457039B2 (en) | 2′-disubstituted nucleoside derivatives and methods of use thereof for the treatment of viral diseases | |
US9150603B2 (en) | 2′-cyano substituted nucleoside derivatives and methods of use thereof useful for the treatment of viral diseases | |
US9732111B2 (en) | 2′-alkynyl substituted nucleoside derivatives and methods of use thereof for the treatment of viral diseases | |
TWI786242B (en) | 3'3' cyclic dinucleotides with phosphonate bond activating the sting adaptor protein | |
CN111971284A (en) | Combination modes of nucleoside and/or nadph oxidase (nox) inhibitors as myellis-specific antiviral agents | |
US10766917B2 (en) | Nucleotides for the treatment of cancer | |
US20140128339A1 (en) | 2'-methyl substituted nucleoside derivatives and methods of use thereof for the treatment of viral diseases | |
KR20230170015A (en) | Nucleosides and nucleotide analogs as antiviral agents | |
US20150274739A1 (en) | 2'-cyano substituted nucleoside derivatives and methods of use thereof for the treatment of viral diseases | |
US20160122380A1 (en) | Cyclic phosphonate substituted nucleoside derivatives and methods of use thereof for the treatment of viral diseases | |
KR102651420B1 (en) | Therapeutic Heterocyclic Compounds | |
US10815264B2 (en) | Nucleotides for the treatment of cancer | |
JP2021529210A (en) | Therapeutic heterocyclic compounds | |
US10899788B2 (en) | Cyclic phosphate substituted nucleoside compounds and methods of use thereof for the treatment of viral diseases | |
US20190192548A1 (en) | Use of cyclic phosphate substituted nucleoside derivativesfor the treatment of viral diseases | |
TWI746532B (en) | Alkynyl nucleoside analogs as inhibitors of human rhinovirus | |
CA3140708A1 (en) | Combination of hepatitis b virus (hbv) vaccines and pyridopyrimidine derivatives | |
CN117858711A (en) | Nucleoside and nucleotide analogs as antiviral agents | |
EA048040B1 (en) | SUBSTITUTED 6-AZABENZIMIDAZOLE COMPOUNDS |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: IDENIX PHARMACEUTICALS LLC, MASSACHUSETTS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DOUSSON, CYRIL;DUKHAN, DAVID;PARSY, CHRISTOPHE CLAUDE;AND OTHERS;SIGNING DATES FROM 20170306 TO 20170412;REEL/FRAME:051119/0001 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
AS | Assignment |
Owner name: MERCK GLOBAL RESEARCH LLC, NEW JERSEY Free format text: MERGER;ASSIGNOR:IDENIX PHARMACEUTICALS LLC;REEL/FRAME:054415/0181 Effective date: 20190529 Owner name: MSD INTERNATIONAL GMBH, SWITZERLAND Free format text: MERGER;ASSIGNOR:MERCK GLOBAL RESEARCH LLC;REEL/FRAME:054415/0395 Effective date: 20190628 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |