US20190112020A1 - Ship - Google Patents

Ship Download PDF

Info

Publication number
US20190112020A1
US20190112020A1 US16/088,030 US201716088030A US2019112020A1 US 20190112020 A1 US20190112020 A1 US 20190112020A1 US 201716088030 A US201716088030 A US 201716088030A US 2019112020 A1 US2019112020 A1 US 2019112020A1
Authority
US
United States
Prior art keywords
ship
steering
control device
brake pedal
manipulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US16/088,030
Other versions
US11034425B2 (en
Inventor
Gakuji TAMURA
Ryosuke OHASHI
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanmar Power Technology Co Ltd
Original Assignee
Yanmar Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanmar Co Ltd filed Critical Yanmar Co Ltd
Assigned to YANMAR CO., LTD. reassignment YANMAR CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: TAMURA, Gakuji, OHASHI, Ryosuke
Publication of US20190112020A1 publication Critical patent/US20190112020A1/en
Assigned to YANMAR POWER TECHNOLOGY CO., LTD. reassignment YANMAR POWER TECHNOLOGY CO., LTD. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: YANMAR CO., LTD.
Application granted granted Critical
Publication of US11034425B2 publication Critical patent/US11034425B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H21/21Control means for engine or transmission, specially adapted for use on marine vessels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H21/21Control means for engine or transmission, specially adapted for use on marine vessels
    • B63H21/213Levers or the like for controlling the engine or the transmission, e.g. single hand control levers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H25/00Steering; Slowing-down otherwise than by use of propulsive elements; Dynamic anchoring, i.e. positioning vessels by means of main or auxiliary propulsive elements
    • B63H25/42Steering or dynamic anchoring by propulsive elements; Steering or dynamic anchoring by propellers used therefor only; Steering or dynamic anchoring by rudders carrying propellers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H20/00Outboard propulsion units, e.g. outboard motors or Z-drives; Arrangements thereof on vessels
    • B63H2020/003Arrangements of two, or more outboard propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H21/21Control means for engine or transmission, specially adapted for use on marine vessels
    • B63H2021/216Control means for engine or transmission, specially adapted for use on marine vessels using electric control means

Definitions

  • the present invention relates to a ship, and particularly to a technique enabling a ship to be manipulated as if it was a vehicle.
  • Patent Literature 1 adopts a method in which an accelerator lever is manipulated into a reverse traveling position to apply a propulsion force in a reverse direction or a method in which the accelerator lever is manipulated into a neutral position to make a propulsion force zero so that a ship decelerates or stops by inertia.
  • PTL 1 Patent Literature 1
  • the magnitude or the output direction of a propulsion force of a propulsion unit is changed by manipulating the accelerator lever, to limit a ship navigation speed.
  • an object of the present invention is to provide a technique enabling a ship to be manipulated as if it was a vehicle.
  • a ship includes: a propulsion unit that exerts a propulsion force on a ship hull by power from an engine; detection means for detecting a current position, a bow direction, and a moving speed of the ship hull; a brake pedal that limits a moving speed of the ship hull; a brake sensor that detects a foot-pushing amount on the brake pedal; and a control device that is connected to the propulsion unit, the detection means, and the brake sensor, the control device being configured to acquire an operating status of the propulsion unit and detection results obtained by the detection means and the brake sensor, and to control the propulsion unit based on the detection results, the control device being configured to change an output of the propulsion unit in accordance with a foot-pushing amount on the brake pedal detected by the brake sensor.
  • the control device may perform a dynamic positioning control upon the brake sensor detecting manipulation on the brake pedal in a state where a moving speed of the ship hull detected by the detection means is zero.
  • An aspect of the present invention can provide a technique enabling a ship to be manipulated as if it was a vehicle.
  • FIG. 1 A diagram showing a basic configuration of a ship.
  • FIG. 2 A diagram showing an engine and an out-drive unit.
  • FIG. 3 A block diagram of a ship steering control.
  • FIG. 4 A diagram showing a configuration of a shift lever.
  • FIG. 5 A flowchart of vehicle-like ship steering.
  • FIG. 6 A flowchart of vehicle-like ship steering.
  • FIG. 7 A flowchart of vehicle-like ship steering.
  • a ship 100 will be described with reference to FIG. 1 and FIG. 2 .
  • the ship 100 according to this embodiment is a so-called twin propeller ship.
  • the number of propeller shafts is not limited to two, and the ship only needs to include a plurality of shafts.
  • the ship 100 includes a ship hull 1 including two engines 10 and two out-drive units 20 .
  • the out-drive units 20 as propulsion units are driven by the engines 10 , and a propulsion force is exerted on the ship hull 1 by rotating propulsive propellers 25 of the out-drive units 20 .
  • the ship hull 1 includes an accelerator pedal 2 , a steering 3 , a joystick lever 4 , a shift lever 41 , a brake pedal 42 , and the like, as manipulation tools for manipulating the ship 100 . In accordance with manipulation on these manipulation tools, operating statuses of the engines 10 , a propulsion force from the out-drive units 20 , and directions in which the propulsion force is exerted are controlled.
  • the ship 100 is a stern drive ship including two engines 10 and two out-drive units 20 , but is not limited to such a type, and for example, may be a shaft ship including a plurality of propeller shafts, or a ship including a POD type propeller.
  • the ship hull 1 includes a ship steering control device 30 for performing a ship steering control on the ship 100 .
  • the ship hull 1 includes the steering 3 , the joystick lever 4 , the shift lever 5 , and the brake pedal 42 as manipulation means for controlling the out-drive units 20 for ship steering.
  • the ship hull 1 also includes a global navigation satellite system (GNSS) device 5 a and a heading sensor 5 b as detection means 5 for detecting a current position, a bow direction, and a moving speed of the ship hull 1 .
  • GNSS global navigation satellite system
  • the GNSS device 5 a detects the current position and the moving speed of the ship hull 1 .
  • the heading sensor 5 b detects the bow direction of the ship hull 1 .
  • the GNSS device 5 a acquires the current position of the ship hull 1 every predetermined time using a satellite positioning system to thereby detect the moving speed and the moving direction based on a positional shift in addition to the current position of the ship hull 1 .
  • a turning speed is detected based on the amount of change in the bow direction detected by the heading sensor 5 b per a unit time.
  • the ship hull 1 also includes a monitor 6 disposed near the steering 3 , for example.
  • the monitor 6 displays a manipulation status of the manipulation tools and a detection result obtained by the detection means 5 , and the like.
  • the current position, the bow direction, the moving speed, and the like, of the ship hull 1 are detected by the detection means 5 including the GNSS device 5 a and the heading sensor 5 b .
  • the detection means 5 including the GNSS device 5 a and the heading sensor 5 b .
  • a GNSS device for detecting the current position of the ship hull a GNSS device for detecting the current position of the ship hull, a gyro sensor for detecting the bow direction of the ship hull, and an electromagnetic log for detecting a sea speed of the ship hull, may be used for separate detections.
  • all of the current position, the bow direction, the moving speed, and the like may be detected by a GNSS device alone.
  • An ECU 15 which controls the engine 10 , is provided in each of the engines 10 .
  • the ECU 15 stores various programs and data for the control on the engine 10 .
  • the ECU 15 may be configured with a CPU, a ROM, a RAM, an HDD, and the like, connected by a bus, or may be configured with a one-chip LSI, for example.
  • the ECU 15 is electrically connected to a fuel metering valve of a fuel supply pump, a fuel injection valve, and various sensors for detecting operating statuses of various devices in the engine 10 , though not shown.
  • the ECU 15 controls a feed rate of the fuel metering valve and open/close of the fuel injection valve, and acquires information detected by the various sensors.
  • Each of the out-drive units 20 rotates a propulsive propeller 25 , to cause a propulsion force in the ship hull 1 .
  • the out-drive unit 20 includes an input shaft 21 , a switching clutch 22 , a drive shaft 23 , an output shaft 24 , and the propulsive propeller 25 .
  • one out-drive unit 20 is cooperatively coupled to one engine 10 .
  • the number of out-drive units 20 provided for one engine 10 is not limited to the one described in this embodiment.
  • a drive device is not limited to the out-drive unit 20 of this embodiment.
  • a device whose propeller is directly or indirectly driven by the engine, or a POD type one may be adoptable, too.
  • the input shaft 21 transmits rotational power of the engine 10 to the switching clutch 22 .
  • the input shaft 21 has one end portion thereof coupled to a universal joint attached to an output shaft 10 a of the engine 10 , and the other end portion thereof coupled to the switching clutch 22 disposed inside an upper housing 20 U.
  • the switching clutch 22 is able to switch the rotational power of the engine 10 , which has been transmitted through the input shaft 21 and the like, from one to the other between a normal rotation direction and a reverse rotation direction.
  • the switching clutch 22 includes a normal rotation bevel gear coupled to an inner drum having disk plates, and a reverse rotation bevel gear.
  • the switching clutch 22 presses a pressure plate of an outer drum which is coupled to the input shaft 21 against any of the disk plates, to transmit power.
  • the switching clutch 22 brings the pressure plate into a half-clutch state in which the pressure plate is imperfectly pressed against any of the disk plates, to thereby transmit part of the rotational power of the engine 10 to the propulsive propeller 25 .
  • the switching clutch 22 brings the pressure plate into a neutral position where the pressure plate is not pressed against any of the disk plates, to thereby disable transmission of the rotational power of the engine 10 to the propulsive propeller 25 .
  • the drive shaft 23 transmits the rotational power of the engine 10 , which has been transmitted through the switching clutch 22 and the like, to the output shaft 24 .
  • a bevel gear disposed at one end of the drive shaft 23 is meshed with the normal rotation bevel gear and the reverse rotation bevel gear of the switching clutch 22
  • a bevel gear disposed at the other end of the drive shaft 23 is meshed with a bevel gear of the output shaft 24 disposed inside a lower housing 20 R.
  • the output shaft 24 transmits the rotational power of the engine 10 , which has been transmitted through the drive shaft 23 and the like, to the propulsive propeller 25 .
  • the bevel gear disposed at one end of the output shaft 24 is meshed with the bevel gear of the drive shaft 23 as mentioned above, and the other end of the output shaft 24 is provided with the propulsive propeller 25 .
  • Rotation of the propulsive propeller 25 generates a propulsion force.
  • the propulsive propeller 25 is driven by the rotational power of the engine 10 which has been transmitted through the output shaft 24 and the like, and generates a propulsion force by paddling surrounding water with a plurality of blades 25 b which are arranged around a rotation shaft 25 a.
  • Each of the out-drive units 20 is supported by a gimbal housing 1 a which is attached to a quarter board (transom board) of the ship hull 1 .
  • each of the out-drive units 20 is supported by the gimbal housing 1 a in such a manner that a gimbal ring 26 serving as a rotation fulcrum shaft is substantially perpendicular to a waterline w.
  • An upper portion of the gimbal ring 26 extends to the inside of the gimbal housing 1 a (ship hull 1 ), and a steering arm 29 is attached to the upper end of the gimbal ring 26 .
  • Rotation of the steering arm 29 causes rotation of the gimbal ring 26 , so that the out-drive unit 20 rotates about the gimbal ring 26 .
  • the steering arm 29 is driven by a hydraulic actuator 27 that is actuated in conjunction with manipulation on the steering 3 or the joystick lever 4 .
  • the hydraulic actuator 27 is controlled by an electromagnetic proportional control valve 28 that switches a flow direction of a working fluid in accordance with manipulation on the steering 3 or the joystick lever 4 .
  • the ship steering control device 30 controls the engines 10 and the out-drive units 20 based on detection signals supplied from manipulation tools such as the accelerator pedal 2 , the steering 3 , the joystick lever 4 , the shift lever 41 , the brake pedal 42 , and the like.
  • the ship steering control device 30 acquires information concerning the current position, the moving speed, the moving direction, the bow direction, and a turning amount of the ship hull 1 from the detection means 5 (the GNSS device 5 a and the heading sensor 5 b ). Based on detection results obtained by the detection means 5 and manipulation on the manipulation tools, the ship steering control device 30 performs a ship steering control on the ship 100 .
  • the ship steering control device 30 stores various programs and data for controlling the engines 10 and the out-drive units 20 .
  • the ship steering control device 30 may be configured with a CPU, a ROM, a RAM, an HDD, and the like, connected by a bus, or may be configured with a one-chip LSI, for example.
  • the ship steering control device 30 which is connected to the accelerator pedal 2 , the steering 3 , the joystick lever 4 , the shift lever 41 , the brake pedal 42 , and the like, acquires detection signals that are generated by various sensors when these manipulation tools are manipulated.
  • the ship steering control device 30 is electrically connected to: an accelerator sensor 51 for detecting a foot-pushing amount which is a manipulation amount on the accelerator pedal 2 ; a steering sensor 52 for detecting a rotation angle which is a manipulation amount on the steering 3 ; a sensor for detecting a manipulation angle, a manipulation amount, and the like, of the joystick lever 4 ; a lever sensor 53 for detecting a manipulation position of the shift lever 41 ; and a brake sensor 54 for detecting a foot-pushing amount which is a manipulation amount on the brake pedal 42 .
  • the ship steering control device 30 acquires, as manipulation amounts, detection values that are based on detection signals transmitted from these sensors.
  • the ship steering control device 30 which is electrically connected to the ECUs 15 of the respective engines 10 , acquires various detection signals concerning operating statuses of the engines 10 acquired by the ECUs 15 .
  • the ship steering control device 30 transmits, to the ECUs 15 , signals for turning on and off the engines 10 (ECUs 15 ) and control signals for controlling the fuel metering valves of the fuel supply pumps and other devices in the engines 10 .
  • the ship steering control device 30 which is electrically connected to the electromagnetic proportional control valves 28 of the respective out-drive units 20 , controls the electromagnetic proportional control valves 28 based on control signals supplied from the manipulation tools, for steerage.
  • a lever guide 43 for guiding manipulation on the shift lever 41 is disposed around the shift lever 41 .
  • forward traveling (S, 1 , 2 , 3 ), neutral (N), and reverse traveling (R) are arranged linearly, and positioning (P) is disposed on a lateral side of the neutral (N).
  • the shift lever 41 can be held at each of the positions.
  • the lever sensor 53 detects a shift position at which the shift lever 41 is held.
  • the shift lever 41 In a range from the neutral (N) position to the forward traveling (S, 1 , 2 , 3 ) position and the reverse traveling (R) position, the shift lever 41 is manipulated in one direction along the lever guide 43 . In a range from the neutral (N) position to the positioning (P) position, the shift lever 41 is manipulated in a direction orthogonal to the one direction.
  • the manipulation position of the shift lever 41 of this embodiment includes seven positions in total, namely, the four forward traveling positions, the neutral position, the reverse traveling position, and the positioning position.
  • For the forward traveling multiple speed positions are provided, each of which is set corresponding to each speed range. Namely, the forward traveling (S) corresponds to trolling (very low speed), the forward traveling ( 1 ) corresponds to low speed, the forward traveling ( 2 ) corresponds to intermediate speed, and the forward traveling ( 3 ) corresponds to high speed.
  • the positions of the shift lever 41 are not limited to the ones illustrated in this embodiment, as long as they include at least four positions of a forward traveling position, a neutral position, a reverse traveling position, and a positioning position.
  • the shape of the lever guide 43 is not limited to the one illustrated in this embodiment. It however is preferable that a manipulation direction toward the positioning position is different from a manipulation direction from the neutral position toward the forward or reverse traveling position.
  • the dynamic positioning control is a control for holding a position of the ship 100 and an azimuth of the bow of the ship hull 1 .
  • the ECUs 15 of the engines 10 and the out-drive units 20 are controlled such that a propulsion force exerted by the two out-drive units 20 is balanced with an external force such as wind power and tidal power.
  • the lever sensor 53 detects that the manipulation position of the shift lever 41 is at the positioning position.
  • the ship steering control device 30 calculates a target moving amount, a target moving direction, and a target turning amount based on information acquired from the detection means 5 , the information concerning the current position, the moving speed, the moving direction, the bow direction, and the turning amount of the ship hull 1 .
  • the ship steering control device 30 controls an operating status of each engine 10 , an output of a propulsion force from each out-drive unit 20 , and a direction of the propulsion force. This dynamic positioning control performed by the ship steering control device 30 enables the ship 100 to be automatically held at a set position and a set azimuth.
  • a maximum number of revolutions of the engine 10 is set in accordance with its manipulation position.
  • assignment of a foot-pushing amount on the accelerator pedal 2 and an output until reaching a maximum output is controlled such that a maximum output (a maximum moving speed of the ship hull 1 ) of the out-drive unit 20 can be equal to a maximum output that is set to be exerted when the accelerator pedal 2 is foot-pushed to the maximum. That is, a pseudo gear change is performed by manipulating the shift lever 41 , and a speed range that can be outputted by the out-drive unit 20 is set for each manipulation position.
  • An actual output of the out-drive unit 20 (a navigation speed of the ship 100 ) within the speed range set by the shift lever 41 is operated by the accelerator pedal 2 which will be illustrated below.
  • the accelerator pedal 2 controls the number of revolutions of the two engines 10 .
  • the ship hull 1 is provided with one accelerator pedal 2 .
  • a foot-pushing amount on the accelerator pedal 2 is detected by the accelerator sensor 51 .
  • the ship steering control device 30 transmits a control signal to the ECU 15 in accordance with the foot-pushing amount on the accelerator pedal 2 thus detected, to change the number of revolutions of the engine 10 .
  • a navigation speed of the ship 100 is determined.
  • a foot-pushing amount on the accelerator pedal 2 is assigned as a slip ratio (trolling ratio) in the half-clutch state of the switching clutch 22 .
  • the shift lever 41 including at least four manipulation positions of the forward traveling position, the neutral position, the reverse traveling position, and the positioning position is provided, and the maximum output of the out-drive unit 20 is controlled in accordance with a manipulation position of the shift lever 41 .
  • the navigation speed of the ship 100 is suppressed.
  • a pseudo shift change similar to that of a vehicle can be performed, in which the manipulation position of the shift lever 41 is changed so as to obtain a desired navigation speed of the ship 100 .
  • a ship steering like a vehicle steering can be achieved.
  • Manipulating the shift lever 41 into the positioning position causes the dynamic positioning control to be performed on the ship 100 .
  • This provides a pseudo parking control similar to that of a vehicle.
  • a ship steering ship stopping manipulation
  • an output of the out-drive unit 20 within a speed range set by the shift lever 41 is controlled by manipulation on the accelerator pedal 2 . This corresponds rightly to a traveling control operation in a vehicle, and therefore a ship steering like a vehicle steering can be achieved.
  • the GNSS device 5 a detects a current position and a navigation speed of the ship 100 , whether or not it is in a navigation speed restricted area is determined based on the current position of the ship 100 , and if it is in the restricted area, the navigation speed is limited so as not to exceed a set speed. This can automatically avoid exceeding the set speed even when the shift lever 41 is manipulated in a speed range including a speed that exceeds a limit speed.
  • the brake pedal 42 limits a moving speed of the ship hull 1 by controlling an output and a direction of the two out-drive units 20 .
  • the ship hull 1 is provided with one brake pedal 42 .
  • a foot-pushing amount on the brake pedal 42 is detected by the brake sensor 54 .
  • the ship steering control device 30 changes the number of revolutions of the engine 10 , an output of a propulsion force from the out-drive unit 20 , and a direction of the propulsion force. That is, by the foot-pushing amount (foot-pushing strength) on the brake pedal 42 , the magnitude and direction of the propulsion force from the out-drive unit 20 are controlled, and a navigation speed of the ship 100 is limited.
  • a manipulation amount on the brake pedal 42 is detected by the brake sensor 53 , and based on its detection value, the ship steering control device 30 determines an output of a propulsion force from the out-drive unit 20 and a direction in which the propulsion force is exerted, to thereby determine the amount of deceleration of the ship hull 1 .
  • the brake pedal 42 when the brake pedal 42 is kept weakly foot-pushed, the output of the out-drive unit 20 is decreased without changing the output direction, or the output of the out-drive unit 20 is decreased and then the output direction is reversed, so that the ship 100 gradually decelerates, to stop the ship.
  • the brake pedal 42 When the brake pedal 42 is strongly foot-pushed, the output direction of the out-drive unit 20 is reversed so that the speed of the ship 100 rapidly drops, to stop the ship.
  • an astern operation is performed in which the output direction of the out-drive unit 20 is reversed and the output is increased, to quickly stop the ship 100 .
  • a quick stop of the ship can be handled by shortening delay processing which is executed for relieving a shock caused by the astern operation.
  • the propulsion force of the out-drive unit 20 is controlled until the moving speed of the ship 100 finally reaches zero.
  • the assignment of the foot-pushing amount on the brake pedal 42 and the propulsion force of the out-drive unit 20 is performed as appropriate.
  • the strength of manipulation on the brake pedal 42 can be identified not only based on a foot-pushing amount on the brake pedal 42 but also based on both an output of the engine 10 and a foot-pushing amount on the brake pedal 42 .
  • the GNSS device 5 a detects the current position and the moving speed of the ship hull 1 .
  • the ship steering control device 30 is configured to perform the dynamic positioning control upon detecting that the brake pedal 42 has been manipulated with the moving speed of the ship hull 1 being zero. That is, if the brake pedal 42 is manipulated while the ship hull 1 is stopped, an output of a propulsion force from the out-drive unit 20 and a direction of the propulsion force are controlled such that the ship 100 stays on the current ship stop position and the current ship stop azimuth.
  • a specific manipulation on the brake pedal 42 is as follows. To decelerate the ship 100 during navigation, the brake pedal 42 is foot-pushed in accordance with a desired degree of deceleration. Then, to stop the ship, the brake pedal 42 is kept foot-pushed until the moving speed reaches zero. To stop the ship 100 at a predetermined position and hold the ship 100 at this position, firstly the brake pedal 42 is foot-pushed to decelerate the ship hull 1 , then the manipulation on the brake pedal 42 is continued until the moving speed reaches zero, and then the brake pedal 42 is further kept foot-pushed while the ship is stopped. Through this manipulation, the dynamic positioning control is performed, so that the ship 100 can be stopped and held at the predetermined position.
  • the moving speed of the ship hull 1 can be limited by manipulating the brake pedal 42 provided in the ship hull 1 , and further the dynamic positioning can be performed at the ship stop position by manipulating the brake pedal 42 while the ship is stopped. This corresponds rightly to a deceleration or stop operation in a vehicle.
  • a ship steering like a vehicle steering can be achieved.
  • the steering 3 changes a direction of the out-drive unit 20 , to change a traveling direction of the ship hull 1 .
  • a rotation angle which corresponds to a manipulation amount on the steering 3 is detected by the steering sensor 52 .
  • the ship 100 has a unique operation called “pivot turn” in which only turning is performed by causing the out-drive units 20 to output in opposite directions.
  • the turn operating which is so-called “pivot turn”, is performed by manipulating the steering 3 .
  • the ship steering control device 30 permits or prohibits the turning-alone operation with the steering 3 , in accordance with a moving speed of the ship hull 1 (a navigation speed of the ship 100 ) detected by the detection means 5 . If the navigation speed of the ship 100 is equal to or less than a predetermined value and the rotation angle detected by the steering sensor 52 is more than a predetermined threshold value (e.g., 360 degrees), the out-drive units 20 , 20 are caused to output in opposite directions, to perform turning toward a direction in which the steering 3 is manipulated.
  • a predetermined threshold value e.g. 360 degrees
  • announcing means 60 is electrically connected to the ship steering control device 30 .
  • the announcing means 60 is provided near the steering 3 .
  • the announcing means 60 announces to an operator that turning alone will be performed, by using sound, light, or the like. The announcement is made when the ship steering control device 30 performs a turning operation.
  • the “pivot turn” for turning at the present place is performed only by manipulating the steering 3 .
  • a ship steering operation like a vehicle steering operation can be achieved, and in addition, operator convenience can be improved.
  • a navigation path through which the ship 100 will navigate is predicted based on a manipulation amount on the steering 3 and a navigation speed of the ship 100 . If the distance between a current position of the ship 100 and the predicted navigation path is equal to or more than a certain fixed value, an output of the out-drive unit 20 is calibrated such that the current position of the ship 100 can be along the predicted navigation path. Such calibration makes a steering control less likely to be influenced by tide or wave. Thus, a ship steering that is more similar to a vehicle steering can be achieved.
  • the “pivot turn” may be performed by manipulating the joystick lever 4 .
  • the joystick lever 4 for the ship steering, the ship steering operation with the steering 3 is unavailable.
  • a left switch 70 and a right switch 71 for causing lateral movement of the ship hull 1 are connected to the ship steering control device 30 .
  • lateral movement switches 70 , 71 are arranged is not limited. It is preferable that, for example, the lateral movement switches 70 , 71 are arranged at a position that is highly convenient for performing lateral movement manipulation, such as a central portion (hub portion) of the steering 3 , the monitor 6 , or the like.
  • the ship 100 has a unique operation in which, while the out-drive units 20 are caused to output in opposite directions, their outputs are adjusted to direct a synthetic vector resulting from their propulsion forces toward the port side or the starboard side, to thereby cause lateral movement of the ship hull 1 .
  • the lateral movement is performed by operating the lateral movement switches 70 , 71 .
  • the “lateral movement” may be performed by manipulating the joystick lever 4 .
  • the ship steering operation with the lateral movement switches 70 , 71 is unavailable.
  • a vehicle-like ship steering switch 45 for starting/stopping a ship steering operation control enabling the ship 100 to be manipulated as if it was a vehicle is connected to the ship steering control device 30 .
  • the vehicle-like ship steering switch 45 is arranged near the steering 3 , for example.
  • a vehicle-like ship steering control as described above is performed by the ship steering control device 30 .
  • a normal ship steering control is performed by the ship steering control device 30 .
  • the normal ship steering control is a conventional ship steering control, and means that the above-mentioned “pivot turn” with the steering 3 and the ship steering control with the shift lever 41 , the accelerator pedal 2 , and the brake pedal 42 are partially or entirely unavailable.
  • Control flows of the vehicle-like ship steering operation in a state where the vehicle-like ship steering switch 45 is ON will now be described with reference to FIG. 5 to FIG. 7 .
  • FIG. 5 shows a control step S 10 regarding manipulation on the shift lever and on the accelerator pedal.
  • step S 11 the fact that the vehicle-like ship steering switch 45 is ON is acquired.
  • step S 12 a ship steering state (information concerning a current position, a moving speed, a moving direction, a bow direction, and a turning amount detected by the detection means) is acquired.
  • step S 13 a manipulation state (information concerning manipulation amounts on the manipulation tools detected by the various sensors) is acquired.
  • step S 14 whether or not a shift position of the shift lever 41 detected by the lever sensor 53 is the positioning (P) position is determined. If the shift position is P (S 14 :Y), then in step S 15 , the dynamic positioning control is performed. If the shift position is not P (S 14 :N), then in step S 16 , a speed range and an output direction corresponding to the shift position are set, and then in step S 17 , the number of revolutions of the engine corresponding to an accelerator position of the accelerator pedal 2 detected by the accelerator sensor 51 is set.
  • FIG. 6 shows a control step S 20 regarding manipulation on the brake pedal.
  • step S 21 the fact that the vehicle-like ship steering switch 45 is ON is acquired.
  • step S 22 a ship steering state (information concerning a current position, a moving speed, a moving direction, a bow direction, and a turning amount detected by the detection means 5 ) is acquired.
  • step S 23 a manipulation state (information concerning manipulation amounts on the manipulation tools detected by the various sensors) is acquired.
  • step S 24 whether or not a moving speed of the ship hull 1 detected by the detection means 5 is zero is determined. If the moving speed is zero (S 24 :Y), then in step S 25 , the dynamic positioning control is performed. If the moving speed is not zero (S 24 :N), then in step S 26 , an output and a direction of a propulsion force from the out-drive unit 20 is changed in accordance with a pedal position of the brake pedal 42 detected by the brake sensor 54 .
  • FIG. 7 shows a control step S 30 regarding manipulation on the steering.
  • step S 31 the fact that the vehicle-like ship steering switch 45 is ON is acquired.
  • step S 32 a ship steering state (information concerning a current position, a moving speed, a moving direction, a bow direction, and a turning amount detected by the detection means 5 ) is acquired.
  • step S 33 a manipulation state (information concerning manipulation amounts on the manipulation tools detected by the various sensors) is acquired.
  • step S 34 whether or not a moving speed of the ship hull 1 detected by the detection means 5 is equal to or less than a predetermined value is determined. If the moving speed is equal to or less than the predetermined value (S 34 :Y), then in step S 35 , whether or not a steering angle of the steering 3 detected by the steering sensor 52 is more than a threshold value is determined. If the steering angle is more than the threshold value (S 35 :Y), then in step S 36 , the pivot turn is performed. If the moving speed is more than the predetermined value (S 34 :N) or if the steering angle is equal to or less than the threshold value (S 35 :N), the processing advances to step S 37 to continue the normal ship steering control.
  • 1 ship hull
  • 2 accelerator pedal
  • 3 steering
  • 5 detection means
  • 5 a GNSS device
  • 5 b heading sensor
  • 10 engine
  • 20 out-drive unit
  • 30 ship steering control device
  • 41 shift lever
  • 42 brake pedal
  • 45 vehicle-like ship steering switch
  • 51 accelerator sensor
  • 52 steering sensor
  • 53 lever sensor
  • 54 brake sensor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

A ship (100) including: an out-drive unit (20) that exerts a propulsion force on a ship hull (1) by power from an engine (10); a detection device (5) for detecting a current position, a bow direction, and a moving speed of the ship hull (1); a brake pedal (42) that limits a moving speed of the ship hull; a brake sensor (54) that detects a foot-pushing amount on the brake pedal; and a ship steering control device (30) connected to the out-drive unit (20), the detection means (5), and the brake sensor (54), The ship steering control device (30) acquires an operating status of the out-drive unit and detection results obtained by the detection device and the brake sensor, and controls the out-drive unit based on the detection results. The ship steering control device changes the output of the out-drive unit in accordance with a foot-pushing amount on the brake pedal.

Description

    TECHNICAL FIELD
  • The present invention relates to a ship, and particularly to a technique enabling a ship to be manipulated as if it was a vehicle.
  • BACKGROUND ART
  • Conventional ships have no concept of braking, and for example, a technique shown in Patent Literature 1 (PTL 1) adopts a method in which an accelerator lever is manipulated into a reverse traveling position to apply a propulsion force in a reverse direction or a method in which the accelerator lever is manipulated into a neutral position to make a propulsion force zero so that a ship decelerates or stops by inertia. In other words, in the conventional ships, the magnitude or the output direction of a propulsion force of a propulsion unit is changed by manipulating the accelerator lever, to limit a ship navigation speed.
  • CITATION LIST Patent Literature
  • PTL 1: Japanese Patent Application Laid-Open No. 2014-46864
  • SUMMARY OF INVENTION Technical Problem
  • A ship steering operation is unique, and largely differs in many points from a method for manipulating a land vehicle. It therefore takes time for a beginner to be skilled in the ship steering operation. In view of these circumstances, an object of the present invention is to provide a technique enabling a ship to be manipulated as if it was a vehicle.
  • Solution to Problem
  • A ship according to an aspect of the present invention includes: a propulsion unit that exerts a propulsion force on a ship hull by power from an engine; detection means for detecting a current position, a bow direction, and a moving speed of the ship hull; a brake pedal that limits a moving speed of the ship hull; a brake sensor that detects a foot-pushing amount on the brake pedal; and a control device that is connected to the propulsion unit, the detection means, and the brake sensor, the control device being configured to acquire an operating status of the propulsion unit and detection results obtained by the detection means and the brake sensor, and to control the propulsion unit based on the detection results, the control device being configured to change an output of the propulsion unit in accordance with a foot-pushing amount on the brake pedal detected by the brake sensor.
  • The control device may perform a dynamic positioning control upon the brake sensor detecting manipulation on the brake pedal in a state where a moving speed of the ship hull detected by the detection means is zero.
  • Advantageous Effects of Invention
  • An aspect of the present invention can provide a technique enabling a ship to be manipulated as if it was a vehicle.
  • BRIEF DESCRIPTION OF DRAWINGS
  • FIG. 1 A diagram showing a basic configuration of a ship.
  • FIG. 2 A diagram showing an engine and an out-drive unit.
  • FIG. 3 A block diagram of a ship steering control.
  • FIG. 4 A diagram showing a configuration of a shift lever.
  • FIG. 5 A flowchart of vehicle-like ship steering.
  • FIG. 6 A flowchart of vehicle-like ship steering.
  • FIG. 7 A flowchart of vehicle-like ship steering.
  • DESCRIPTION OF EMBODIMENT
  • A ship 100 will be described with reference to FIG. 1 and FIG. 2. The ship 100 according to this embodiment is a so-called twin propeller ship. The number of propeller shafts is not limited to two, and the ship only needs to include a plurality of shafts.
  • The ship 100 includes a ship hull 1 including two engines 10 and two out-drive units 20. The out-drive units 20 as propulsion units are driven by the engines 10, and a propulsion force is exerted on the ship hull 1 by rotating propulsive propellers 25 of the out-drive units 20. The ship hull 1 includes an accelerator pedal 2, a steering 3, a joystick lever 4, a shift lever 41, a brake pedal 42, and the like, as manipulation tools for manipulating the ship 100. In accordance with manipulation on these manipulation tools, operating statuses of the engines 10, a propulsion force from the out-drive units 20, and directions in which the propulsion force is exerted are controlled.
  • In this embodiment, the ship 100 is a stern drive ship including two engines 10 and two out-drive units 20, but is not limited to such a type, and for example, may be a shaft ship including a plurality of propeller shafts, or a ship including a POD type propeller.
  • By manipulating the steering 3 or the joystick lever 4 of the ship hull 1, output directions of the out-drive units 20 can be changed so that a course of the ship 100 can be changed. The ship hull 1 includes a ship steering control device 30 for performing a ship steering control on the ship 100.
  • The ship hull 1 includes the steering 3, the joystick lever 4, the shift lever 5, and the brake pedal 42 as manipulation means for controlling the out-drive units 20 for ship steering. The ship hull 1 also includes a global navigation satellite system (GNSS) device 5 a and a heading sensor 5 b as detection means 5 for detecting a current position, a bow direction, and a moving speed of the ship hull 1. The GNSS device 5 a detects the current position and the moving speed of the ship hull 1. The heading sensor 5 b detects the bow direction of the ship hull 1. The GNSS device 5 a acquires the current position of the ship hull 1 every predetermined time using a satellite positioning system to thereby detect the moving speed and the moving direction based on a positional shift in addition to the current position of the ship hull 1. A turning speed is detected based on the amount of change in the bow direction detected by the heading sensor 5 b per a unit time. The ship hull 1 also includes a monitor 6 disposed near the steering 3, for example. The monitor 6 displays a manipulation status of the manipulation tools and a detection result obtained by the detection means 5, and the like.
  • In this embodiment, the current position, the bow direction, the moving speed, and the like, of the ship hull 1 are detected by the detection means 5 including the GNSS device 5 a and the heading sensor 5 b. This, however, is not limitative. For example, a GNSS device for detecting the current position of the ship hull, a gyro sensor for detecting the bow direction of the ship hull, and an electromagnetic log for detecting a sea speed of the ship hull, may be used for separate detections. Alternatively, all of the current position, the bow direction, the moving speed, and the like, may be detected by a GNSS device alone.
  • An ECU 15, which controls the engine 10, is provided in each of the engines 10. The ECU 15 stores various programs and data for the control on the engine 10. The ECU 15 may be configured with a CPU, a ROM, a RAM, an HDD, and the like, connected by a bus, or may be configured with a one-chip LSI, for example.
  • The ECU 15 is electrically connected to a fuel metering valve of a fuel supply pump, a fuel injection valve, and various sensors for detecting operating statuses of various devices in the engine 10, though not shown. The ECU 15 controls a feed rate of the fuel metering valve and open/close of the fuel injection valve, and acquires information detected by the various sensors.
  • Each of the out-drive units 20 rotates a propulsive propeller 25, to cause a propulsion force in the ship hull 1. The out-drive unit 20 includes an input shaft 21, a switching clutch 22, a drive shaft 23, an output shaft 24, and the propulsive propeller 25. In this embodiment, one out-drive unit 20 is cooperatively coupled to one engine 10. Here, the number of out-drive units 20 provided for one engine 10 is not limited to the one described in this embodiment. A drive device is not limited to the out-drive unit 20 of this embodiment. A device whose propeller is directly or indirectly driven by the engine, or a POD type one may be adoptable, too.
  • The input shaft 21 transmits rotational power of the engine 10 to the switching clutch 22. The input shaft 21 has one end portion thereof coupled to a universal joint attached to an output shaft 10 a of the engine 10, and the other end portion thereof coupled to the switching clutch 22 disposed inside an upper housing 20U.
  • The switching clutch 22 is able to switch the rotational power of the engine 10, which has been transmitted through the input shaft 21 and the like, from one to the other between a normal rotation direction and a reverse rotation direction. The switching clutch 22 includes a normal rotation bevel gear coupled to an inner drum having disk plates, and a reverse rotation bevel gear. The switching clutch 22 presses a pressure plate of an outer drum which is coupled to the input shaft 21 against any of the disk plates, to transmit power. The switching clutch 22 brings the pressure plate into a half-clutch state in which the pressure plate is imperfectly pressed against any of the disk plates, to thereby transmit part of the rotational power of the engine 10 to the propulsive propeller 25. The switching clutch 22 brings the pressure plate into a neutral position where the pressure plate is not pressed against any of the disk plates, to thereby disable transmission of the rotational power of the engine 10 to the propulsive propeller 25.
  • The drive shaft 23 transmits the rotational power of the engine 10, which has been transmitted through the switching clutch 22 and the like, to the output shaft 24. A bevel gear disposed at one end of the drive shaft 23 is meshed with the normal rotation bevel gear and the reverse rotation bevel gear of the switching clutch 22, and a bevel gear disposed at the other end of the drive shaft 23 is meshed with a bevel gear of the output shaft 24 disposed inside a lower housing 20R.
  • The output shaft 24 transmits the rotational power of the engine 10, which has been transmitted through the drive shaft 23 and the like, to the propulsive propeller 25. The bevel gear disposed at one end of the output shaft 24 is meshed with the bevel gear of the drive shaft 23 as mentioned above, and the other end of the output shaft 24 is provided with the propulsive propeller 25.
  • Rotation of the propulsive propeller 25 generates a propulsion force. The propulsive propeller 25 is driven by the rotational power of the engine 10 which has been transmitted through the output shaft 24 and the like, and generates a propulsion force by paddling surrounding water with a plurality of blades 25 b which are arranged around a rotation shaft 25 a.
  • Each of the out-drive units 20 is supported by a gimbal housing 1 a which is attached to a quarter board (transom board) of the ship hull 1. To be specific, each of the out-drive units 20 is supported by the gimbal housing 1 a in such a manner that a gimbal ring 26 serving as a rotation fulcrum shaft is substantially perpendicular to a waterline w.
  • An upper portion of the gimbal ring 26 extends to the inside of the gimbal housing 1 a (ship hull 1), and a steering arm 29 is attached to the upper end of the gimbal ring 26. Rotation of the steering arm 29 causes rotation of the gimbal ring 26, so that the out-drive unit 20 rotates about the gimbal ring 26. The steering arm 29 is driven by a hydraulic actuator 27 that is actuated in conjunction with manipulation on the steering 3 or the joystick lever 4. The hydraulic actuator 27 is controlled by an electromagnetic proportional control valve 28 that switches a flow direction of a working fluid in accordance with manipulation on the steering 3 or the joystick lever 4.
  • A configuration for a ship steering control that is performed by a ship steering control device will be described with reference to FIG. 3 to FIG. 7. As shown in FIG. 3, the ship steering control device 30 controls the engines 10 and the out-drive units 20 based on detection signals supplied from manipulation tools such as the accelerator pedal 2, the steering 3, the joystick lever 4, the shift lever 41, the brake pedal 42, and the like. The ship steering control device 30 acquires information concerning the current position, the moving speed, the moving direction, the bow direction, and a turning amount of the ship hull 1 from the detection means 5 (the GNSS device 5 a and the heading sensor 5 b). Based on detection results obtained by the detection means 5 and manipulation on the manipulation tools, the ship steering control device 30 performs a ship steering control on the ship 100.
  • The ship steering control device 30 stores various programs and data for controlling the engines 10 and the out-drive units 20. The ship steering control device 30 may be configured with a CPU, a ROM, a RAM, an HDD, and the like, connected by a bus, or may be configured with a one-chip LSI, for example.
  • The ship steering control device 30, which is connected to the accelerator pedal 2, the steering 3, the joystick lever 4, the shift lever 41, the brake pedal 42, and the like, acquires detection signals that are generated by various sensors when these manipulation tools are manipulated.
  • More specifically, as shown in FIG. 3, the ship steering control device 30 is electrically connected to: an accelerator sensor 51 for detecting a foot-pushing amount which is a manipulation amount on the accelerator pedal 2; a steering sensor 52 for detecting a rotation angle which is a manipulation amount on the steering 3; a sensor for detecting a manipulation angle, a manipulation amount, and the like, of the joystick lever 4; a lever sensor 53 for detecting a manipulation position of the shift lever 41; and a brake sensor 54 for detecting a foot-pushing amount which is a manipulation amount on the brake pedal 42. The ship steering control device 30 acquires, as manipulation amounts, detection values that are based on detection signals transmitted from these sensors.
  • The ship steering control device 30, which is electrically connected to the ECUs 15 of the respective engines 10, acquires various detection signals concerning operating statuses of the engines 10 acquired by the ECUs 15. The ship steering control device 30 transmits, to the ECUs 15, signals for turning on and off the engines 10 (ECUs 15) and control signals for controlling the fuel metering valves of the fuel supply pumps and other devices in the engines 10. The ship steering control device 30, which is electrically connected to the electromagnetic proportional control valves 28 of the respective out-drive units 20, controls the electromagnetic proportional control valves 28 based on control signals supplied from the manipulation tools, for steerage.
  • A configuration of the shift lever 41 will now be described with reference to FIG. 4. As shown in FIG. 4, a lever guide 43 for guiding manipulation on the shift lever 41 is disposed around the shift lever 41. In the lever guide 43, forward traveling (S, 1, 2, 3), neutral (N), and reverse traveling (R) are arranged linearly, and positioning (P) is disposed on a lateral side of the neutral (N). The shift lever 41 can be held at each of the positions. The lever sensor 53 detects a shift position at which the shift lever 41 is held. In a range from the neutral (N) position to the forward traveling (S, 1, 2, 3) position and the reverse traveling (R) position, the shift lever 41 is manipulated in one direction along the lever guide 43. In a range from the neutral (N) position to the positioning (P) position, the shift lever 41 is manipulated in a direction orthogonal to the one direction.
  • The manipulation position of the shift lever 41 of this embodiment includes seven positions in total, namely, the four forward traveling positions, the neutral position, the reverse traveling position, and the positioning position. For the forward traveling, multiple speed positions are provided, each of which is set corresponding to each speed range. Namely, the forward traveling (S) corresponds to trolling (very low speed), the forward traveling (1) corresponds to low speed, the forward traveling (2) corresponds to intermediate speed, and the forward traveling (3) corresponds to high speed. The positions of the shift lever 41 are not limited to the ones illustrated in this embodiment, as long as they include at least four positions of a forward traveling position, a neutral position, a reverse traveling position, and a positioning position. The shape of the lever guide 43 is not limited to the one illustrated in this embodiment. It however is preferable that a manipulation direction toward the positioning position is different from a manipulation direction from the neutral position toward the forward or reverse traveling position.
  • Manipulating the shift lever 41 into the positioning (P) position causes a dynamic positioning control to be performed. The dynamic positioning control is a control for holding a position of the ship 100 and an azimuth of the bow of the ship hull 1. In the dynamic positioning control, the ECUs 15 of the engines 10 and the out-drive units 20 are controlled such that a propulsion force exerted by the two out-drive units 20 is balanced with an external force such as wind power and tidal power.
  • To be specific, the lever sensor 53 detects that the manipulation position of the shift lever 41 is at the positioning position. When such a detection result is acquired by the ship steering control device 30, the ship steering control device 30 calculates a target moving amount, a target moving direction, and a target turning amount based on information acquired from the detection means 5, the information concerning the current position, the moving speed, the moving direction, the bow direction, and the turning amount of the ship hull 1. In accordance with a calculation result, the ship steering control device 30 controls an operating status of each engine 10, an output of a propulsion force from each out-drive unit 20, and a direction of the propulsion force. This dynamic positioning control performed by the ship steering control device 30 enables the ship 100 to be automatically held at a set position and a set azimuth.
  • In the shift lever 41, a maximum number of revolutions of the engine 10 is set in accordance with its manipulation position. As a result, assignment of a foot-pushing amount on the accelerator pedal 2 and an output until reaching a maximum output is controlled such that a maximum output (a maximum moving speed of the ship hull 1) of the out-drive unit 20 can be equal to a maximum output that is set to be exerted when the accelerator pedal 2 is foot-pushed to the maximum. That is, a pseudo gear change is performed by manipulating the shift lever 41, and a speed range that can be outputted by the out-drive unit 20 is set for each manipulation position. An actual output of the out-drive unit 20 (a navigation speed of the ship 100) within the speed range set by the shift lever 41 is operated by the accelerator pedal 2 which will be illustrated below.
  • The accelerator pedal 2 controls the number of revolutions of the two engines 10. The ship hull 1 is provided with one accelerator pedal 2. A foot-pushing amount on the accelerator pedal 2 is detected by the accelerator sensor 51. The ship steering control device 30 transmits a control signal to the ECU 15 in accordance with the foot-pushing amount on the accelerator pedal 2 thus detected, to change the number of revolutions of the engine 10.
  • That is, based on a manipulation position of the shift lever 41 and a foot-pushing amount (foot-pushing strength) on the accelerator pedal 2, an output of the out-drive unit 20 is controlled, and a navigation speed of the ship 100 is determined. In a case where the shift lever 41 is manipulated into the low speed forward traveling (S) position so that a low-speed speed range of the forward traveling is set, a foot-pushing amount on the accelerator pedal 2 is assigned as a slip ratio (trolling ratio) in the half-clutch state of the switching clutch 22. Thereby, delicate manipulation within the low-speed speed range is allowed.
  • As thus described above, in this embodiment, the shift lever 41 including at least four manipulation positions of the forward traveling position, the neutral position, the reverse traveling position, and the positioning position is provided, and the maximum output of the out-drive unit 20 is controlled in accordance with a manipulation position of the shift lever 41. Thereby, the navigation speed of the ship 100 is suppressed. As a result, in the ship 100, a pseudo shift change similar to that of a vehicle can be performed, in which the manipulation position of the shift lever 41 is changed so as to obtain a desired navigation speed of the ship 100. Thus, a ship steering like a vehicle steering can be achieved. Manipulating the shift lever 41 into the positioning position causes the dynamic positioning control to be performed on the ship 100. This provides a pseudo parking control similar to that of a vehicle. Thus, a ship steering (ship stopping manipulation) can be achieved. In addition, an output of the out-drive unit 20 within a speed range set by the shift lever 41 is controlled by manipulation on the accelerator pedal 2. This corresponds rightly to a traveling control operation in a vehicle, and therefore a ship steering like a vehicle steering can be achieved.
  • To eliminate the need to check a speed every time inside a bay, it may be possible that the GNSS device 5 a detects a current position and a navigation speed of the ship 100, whether or not it is in a navigation speed restricted area is determined based on the current position of the ship 100, and if it is in the restricted area, the navigation speed is limited so as not to exceed a set speed. This can automatically avoid exceeding the set speed even when the shift lever 41 is manipulated in a speed range including a speed that exceeds a limit speed. It may be also possible to make setting that increases a low-speed side torque by adjusting the assignment of an output of the out-drive unit 20 generated relative to a foot-pushing amount on the accelerator pedal 2 or by changing the output itself of the out-drive unit 20 such as changing a compatible value for controlling a fuel injection amount which is determined depending on an engine load and the number of revolutions of the engine.
  • The brake pedal 42 limits a moving speed of the ship hull 1 by controlling an output and a direction of the two out-drive units 20. The ship hull 1 is provided with one brake pedal 42. A foot-pushing amount on the brake pedal 42 is detected by the brake sensor 54. In accordance with the foot-pushing amount on the brake pedal 42 thus detected, the ship steering control device 30 changes the number of revolutions of the engine 10, an output of a propulsion force from the out-drive unit 20, and a direction of the propulsion force. That is, by the foot-pushing amount (foot-pushing strength) on the brake pedal 42, the magnitude and direction of the propulsion force from the out-drive unit 20 are controlled, and a navigation speed of the ship 100 is limited.
  • More specifically, a manipulation amount on the brake pedal 42 is detected by the brake sensor 53, and based on its detection value, the ship steering control device 30 determines an output of a propulsion force from the out-drive unit 20 and a direction in which the propulsion force is exerted, to thereby determine the amount of deceleration of the ship hull 1.
  • For example, when the brake pedal 42 is kept weakly foot-pushed, the output of the out-drive unit 20 is decreased without changing the output direction, or the output of the out-drive unit 20 is decreased and then the output direction is reversed, so that the ship 100 gradually decelerates, to stop the ship. When the brake pedal 42 is strongly foot-pushed, the output direction of the out-drive unit 20 is reversed so that the speed of the ship 100 rapidly drops, to stop the ship. When the brake pedal 42 is further strongly foot-pushed, an astern operation is performed in which the output direction of the out-drive unit 20 is reversed and the output is increased, to quickly stop the ship 100. A quick stop of the ship can be handled by shortening delay processing which is executed for relieving a shock caused by the astern operation. By keeping the brake pedal 42 foot-pushed, the propulsion force of the out-drive unit 20 is controlled until the moving speed of the ship 100 finally reaches zero. The assignment of the foot-pushing amount on the brake pedal 42 and the propulsion force of the out-drive unit 20 is performed as appropriate. The strength of manipulation on the brake pedal 42 can be identified not only based on a foot-pushing amount on the brake pedal 42 but also based on both an output of the engine 10 and a foot-pushing amount on the brake pedal 42.
  • When the brake pedal 42 is manipulated to limit the moving speed of the ship hull 1, the GNSS device 5 a detects the current position and the moving speed of the ship hull 1. The ship steering control device 30, therefore, is configured to perform the dynamic positioning control upon detecting that the brake pedal 42 has been manipulated with the moving speed of the ship hull 1 being zero. That is, if the brake pedal 42 is manipulated while the ship hull 1 is stopped, an output of a propulsion force from the out-drive unit 20 and a direction of the propulsion force are controlled such that the ship 100 stays on the current ship stop position and the current ship stop azimuth.
  • A specific manipulation on the brake pedal 42 is as follows. To decelerate the ship 100 during navigation, the brake pedal 42 is foot-pushed in accordance with a desired degree of deceleration. Then, to stop the ship, the brake pedal 42 is kept foot-pushed until the moving speed reaches zero. To stop the ship 100 at a predetermined position and hold the ship 100 at this position, firstly the brake pedal 42 is foot-pushed to decelerate the ship hull 1, then the manipulation on the brake pedal 42 is continued until the moving speed reaches zero, and then the brake pedal 42 is further kept foot-pushed while the ship is stopped. Through this manipulation, the dynamic positioning control is performed, so that the ship 100 can be stopped and held at the predetermined position.
  • As described above, the moving speed of the ship hull 1 can be limited by manipulating the brake pedal 42 provided in the ship hull 1, and further the dynamic positioning can be performed at the ship stop position by manipulating the brake pedal 42 while the ship is stopped. This corresponds rightly to a deceleration or stop operation in a vehicle. Thus, a ship steering like a vehicle steering can be achieved.
  • The steering 3 changes a direction of the out-drive unit 20, to change a traveling direction of the ship hull 1. A rotation angle which corresponds to a manipulation amount on the steering 3 is detected by the steering sensor 52. Here, unlike a vehicle, the ship 100 has a unique operation called “pivot turn” in which only turning is performed by causing the out-drive units 20 to output in opposite directions. In this embodiment, the turn operating, which is so-called “pivot turn”, is performed by manipulating the steering 3.
  • The ship steering control device 30 permits or prohibits the turning-alone operation with the steering 3, in accordance with a moving speed of the ship hull 1 (a navigation speed of the ship 100) detected by the detection means 5. If the navigation speed of the ship 100 is equal to or less than a predetermined value and the rotation angle detected by the steering sensor 52 is more than a predetermined threshold value (e.g., 360 degrees), the out- drive units 20, 20 are caused to output in opposite directions, to perform turning toward a direction in which the steering 3 is manipulated.
  • As shown in FIG. 3, announcing means 60 is electrically connected to the ship steering control device 30. The announcing means 60 is provided near the steering 3. The announcing means 60 announces to an operator that turning alone will be performed, by using sound, light, or the like. The announcement is made when the ship steering control device 30 performs a turning operation.
  • In this manner, the “pivot turn” for turning at the present place is performed only by manipulating the steering 3. Thereby, a ship steering operation like a vehicle steering operation can be achieved, and in addition, operator convenience can be improved. It is conceivable to provide a limit on the navigation speed of the ship 100 as a condition for performing the “pivot turn”. This can avoid sudden turning. Since the announcing means 60 makes announcement at a time of performing the “pivot turn”, a ship steerability is given to the operator.
  • As means for achieving ship steering that is more similar to vehicle steering, the following is adoptable. A navigation path through which the ship 100 will navigate is predicted based on a manipulation amount on the steering 3 and a navigation speed of the ship 100. If the distance between a current position of the ship 100 and the predicted navigation path is equal to or more than a certain fixed value, an output of the out-drive unit 20 is calibrated such that the current position of the ship 100 can be along the predicted navigation path. Such calibration makes a steering control less likely to be influenced by tide or wave. Thus, a ship steering that is more similar to a vehicle steering can be achieved.
  • In another possible control, the “pivot turn” may be performed by manipulating the joystick lever 4. In a case of using the joystick lever 4 for the ship steering, the ship steering operation with the steering 3 is unavailable.
  • As shown in FIG. 3, a left switch 70 and a right switch 71 for causing lateral movement of the ship hull 1 are connected to the ship steering control device 30. How these lateral movement switches 70, 71 are arranged is not limited. It is preferable that, for example, the lateral movement switches 70, 71 are arranged at a position that is highly convenient for performing lateral movement manipulation, such as a central portion (hub portion) of the steering 3, the monitor 6, or the like. Here, unlike a vehicle, the ship 100 has a unique operation in which, while the out-drive units 20 are caused to output in opposite directions, their outputs are adjusted to direct a synthetic vector resulting from their propulsion forces toward the port side or the starboard side, to thereby cause lateral movement of the ship hull 1. In this embodiment, the lateral movement is performed by operating the lateral movement switches 70, 71.
  • In another possible control, the “lateral movement” may be performed by manipulating the joystick lever 4. In a case of using the joystick lever 4 for the ship steering, the ship steering operation with the lateral movement switches 70, 71 is unavailable.
  • As shown in FIG. 3, a vehicle-like ship steering switch 45 for starting/stopping a ship steering operation control enabling the ship 100 to be manipulated as if it was a vehicle is connected to the ship steering control device 30. The vehicle-like ship steering switch 45 is arranged near the steering 3, for example. When the vehicle-like ship steering switch 45 is ON, a vehicle-like ship steering control as described above is performed by the ship steering control device 30. When the vehicle-like ship steering switch 45 is OFF, a normal ship steering control is performed by the ship steering control device 30. The normal ship steering control is a conventional ship steering control, and means that the above-mentioned “pivot turn” with the steering 3 and the ship steering control with the shift lever 41, the accelerator pedal 2, and the brake pedal 42 are partially or entirely unavailable.
  • Control flows of the vehicle-like ship steering operation in a state where the vehicle-like ship steering switch 45 is ON will now be described with reference to FIG. 5 to FIG. 7.
  • FIG. 5 shows a control step S10 regarding manipulation on the shift lever and on the accelerator pedal. Firstly in step S11, the fact that the vehicle-like ship steering switch 45 is ON is acquired. In step S12, a ship steering state (information concerning a current position, a moving speed, a moving direction, a bow direction, and a turning amount detected by the detection means) is acquired. In step S13, a manipulation state (information concerning manipulation amounts on the manipulation tools detected by the various sensors) is acquired.
  • Then, in step S14, whether or not a shift position of the shift lever 41 detected by the lever sensor 53 is the positioning (P) position is determined. If the shift position is P (S14:Y), then in step S15, the dynamic positioning control is performed. If the shift position is not P (S14:N), then in step S16, a speed range and an output direction corresponding to the shift position are set, and then in step S17, the number of revolutions of the engine corresponding to an accelerator position of the accelerator pedal 2 detected by the accelerator sensor 51 is set.
  • FIG. 6 shows a control step S20 regarding manipulation on the brake pedal. Firstly in step S21, the fact that the vehicle-like ship steering switch 45 is ON is acquired. In step S22, a ship steering state (information concerning a current position, a moving speed, a moving direction, a bow direction, and a turning amount detected by the detection means 5) is acquired. In step S23, a manipulation state (information concerning manipulation amounts on the manipulation tools detected by the various sensors) is acquired.
  • Then, in step S24, whether or not a moving speed of the ship hull 1 detected by the detection means 5 is zero is determined. If the moving speed is zero (S24:Y), then in step S25, the dynamic positioning control is performed. If the moving speed is not zero (S24:N), then in step S26, an output and a direction of a propulsion force from the out-drive unit 20 is changed in accordance with a pedal position of the brake pedal 42 detected by the brake sensor 54.
  • FIG. 7 shows a control step S30 regarding manipulation on the steering. Firstly, in step S31, the fact that the vehicle-like ship steering switch 45 is ON is acquired. In step S32, a ship steering state (information concerning a current position, a moving speed, a moving direction, a bow direction, and a turning amount detected by the detection means 5) is acquired. In step S33, a manipulation state (information concerning manipulation amounts on the manipulation tools detected by the various sensors) is acquired.
  • Then, in step S34, whether or not a moving speed of the ship hull 1 detected by the detection means 5 is equal to or less than a predetermined value is determined. If the moving speed is equal to or less than the predetermined value (S34:Y), then in step S35, whether or not a steering angle of the steering 3 detected by the steering sensor 52 is more than a threshold value is determined. If the steering angle is more than the threshold value (S35:Y), then in step S36, the pivot turn is performed. If the moving speed is more than the predetermined value (S34:N) or if the steering angle is equal to or less than the threshold value (S35:N), the processing advances to step S37 to continue the normal ship steering control.
  • INDUSTRIAL APPLICABILITY
  • Some aspects of the present invention are applicable to ships.
  • REFERENCE SIGNS LIST
  • 1: ship hull, 2: accelerator pedal, 3: steering, 5: detection means, 5 a: GNSS device, 5 b: heading sensor, 10: engine, 20: out-drive unit, 30: ship steering control device, 41: shift lever, 42: brake pedal, 45: vehicle-like ship steering switch, 51: accelerator sensor, 52: steering sensor, 53: lever sensor, 54: brake sensor

Claims (2)

1. A ship comprising:
a propulsion unit configured to exert a propulsion force on a ship hull by power from an engine;
detection means for detecting a current position, a bow direction, and a moving speed of the ship hull;
a brake pedal configured to limit a moving speed of the ship hull;
a brake sensor configured to detect a foot-pushing amount on the brake pedal; and
a control device connected to the propulsion unit, the detection means, and the brake sensor, the control device being configured to acquire an operating status of the propulsion unit and detection results obtained by the detection means and the brake sensor, and to control the propulsion unit based on the detection results, and
the control device being further configured to change an output of the propulsion unit in accordance with a foot-pushing amount on the brake pedal detected by the brake sensor.
2. The ship according to claim 1, wherein
the control device is configured to perform a dynamic positioning control upon detection by the brake sensor of manipulation on the brake pedal in a state where a moving speed of the ship hull detected by the detection means is zero.
US16/088,030 2016-03-25 2017-03-24 Ship control Active 2037-09-12 US11034425B2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-062859 2016-03-25
JPJP2016-062859 2016-03-25
JP2016062859A JP6642898B2 (en) 2016-03-25 2016-03-25 Ship
PCT/JP2017/012117 WO2017164392A1 (en) 2016-03-25 2017-03-24 Ship

Publications (2)

Publication Number Publication Date
US20190112020A1 true US20190112020A1 (en) 2019-04-18
US11034425B2 US11034425B2 (en) 2021-06-15

Family

ID=59899613

Family Applications (1)

Application Number Title Priority Date Filing Date
US16/088,030 Active 2037-09-12 US11034425B2 (en) 2016-03-25 2017-03-24 Ship control

Country Status (4)

Country Link
US (1) US11034425B2 (en)
EP (1) EP3434580B1 (en)
JP (1) JP6642898B2 (en)
WO (1) WO2017164392A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10730600B2 (en) * 2018-07-26 2020-08-04 Brunwick Corporation Lanyard system and method for a marine vessel
US20210139126A1 (en) * 2018-11-01 2021-05-13 Brunswick Corporation Methods and systems for controlling low-speed propulsion of a marine vessel

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023049504A (en) 2021-09-29 2023-04-10 日本発條株式会社 Ship maneuvering system, ship control device, ship control method and program

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060052014A1 (en) * 2004-09-08 2006-03-09 Noboru Kobayashi Propulsion unit and boat
US7131385B1 (en) * 2005-10-14 2006-11-07 Brunswick Corporation Method for braking a vessel with two marine propulsion devices

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01233198A (en) * 1988-03-14 1989-09-18 Mitsubishi Heavy Ind Ltd Stoppage system for leisure boat
US20080269968A1 (en) * 2007-04-30 2008-10-30 Alan Stewart Watercraft position management system & method
CA2709279C (en) * 2007-12-12 2014-04-15 Foss Maritime Company Hybrid propulsion systems
US8858277B2 (en) * 2008-07-14 2014-10-14 General Electric Company System and method for dynamic energy recovery in marine propulsion
KR101428184B1 (en) * 2012-08-29 2014-08-07 현대자동차주식회사 Device and method controlling driving of electric vehicle in the coasting situation
JP5944275B2 (en) 2012-08-31 2016-07-05 ヤンマー株式会社 Ship with automatic calibration function
RU2619067C2 (en) 2012-12-04 2017-05-11 Тойота Дзидося Кабусики Кайся Device for controlling battery charge, method for charging control, computer program and recording medium
JP5893574B2 (en) * 2013-01-18 2016-03-23 本田技研工業株式会社 Motor output control device
CN103085618B (en) * 2013-02-20 2015-04-08 陈国宏 Amphibious boat
JP5964268B2 (en) * 2013-03-22 2016-08-03 ヤンマー株式会社 Maneuvering system
JP2015157510A (en) 2014-02-21 2015-09-03 ヤマハ発動機株式会社 jet propulsion boat
US11505292B2 (en) * 2014-12-31 2022-11-22 FLIR Belgium BVBA Perimeter ranging sensor systems and methods
US9944361B2 (en) * 2016-02-24 2018-04-17 David Hyun Jong Cho Motorized board for use on water
JP6667935B2 (en) 2016-03-25 2020-03-18 ヤンマー株式会社 Ship

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060052014A1 (en) * 2004-09-08 2006-03-09 Noboru Kobayashi Propulsion unit and boat
US7131385B1 (en) * 2005-10-14 2006-11-07 Brunswick Corporation Method for braking a vessel with two marine propulsion devices

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10730600B2 (en) * 2018-07-26 2020-08-04 Brunwick Corporation Lanyard system and method for a marine vessel
US11014642B2 (en) * 2018-07-26 2021-05-25 Brunswick Corporation Lanyard system and method for a marine vessel
US11718375B2 (en) 2018-07-26 2023-08-08 Brunswick Corporation Lanyard system and method for a marine vessel
US12065224B1 (en) 2018-07-26 2024-08-20 Brunswick Corporation Lanyard system and method for a marine vessel
US20210139126A1 (en) * 2018-11-01 2021-05-13 Brunswick Corporation Methods and systems for controlling low-speed propulsion of a marine vessel
US12084160B2 (en) * 2018-11-01 2024-09-10 Brunswick Corporation Methods and systems for controlling low-speed propulsion of a marine vessel

Also Published As

Publication number Publication date
US11034425B2 (en) 2021-06-15
EP3434580B1 (en) 2021-06-16
JP2017171261A (en) 2017-09-28
JP6642898B2 (en) 2020-02-12
EP3434580A1 (en) 2019-01-30
EP3434580A4 (en) 2019-03-06
WO2017164392A1 (en) 2017-09-28

Similar Documents

Publication Publication Date Title
US7131385B1 (en) Method for braking a vessel with two marine propulsion devices
US9193431B2 (en) Ship steering device and ship steering method
US9180951B2 (en) Ship maneuvering device
EP3222511B1 (en) A vessel operation control device
US10953973B2 (en) Ship handling device and ship including the same
US10782692B2 (en) Ship handling device
US10501161B2 (en) Ship steering device and ship including the same
US10597132B2 (en) Ship
US11034425B2 (en) Ship control
JP2013014173A (en) Ship steering device
JP2016159805A (en) Ship
US20180237117A1 (en) Boat
JP2014172446A (en) Accelerator lever and ship equipped with the same

Legal Events

Date Code Title Description
AS Assignment

Owner name: YANMAR CO., LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:TAMURA, GAKUJI;OHASHI, RYOSUKE;SIGNING DATES FROM 20180918 TO 20180920;REEL/FRAME:046955/0103

FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

AS Assignment

Owner name: YANMAR POWER TECHNOLOGY CO., LTD., JAPAN

Free format text: CHANGE OF NAME;ASSIGNOR:YANMAR CO., LTD.;REEL/FRAME:053069/0730

Effective date: 20200401

STPP Information on status: patent application and granting procedure in general

Free format text: ADVISORY ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT RECEIVED

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE